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ABSTRACT 24 

Poor response to tuberculosis (TB) therapy might be attributable to sub-therapeutic levels in 25 

drug-compliant patients. Pharmacokinetic parameters can be affected by co-morbidities or the 26 

interaction of drugs with food.     27 

This study aimed to determine the effect of food intake upon pharmacokinetics of rifampicin 28 

and isoniazid in a Peruvian TB population. Rifampicin and isoniazid levels were analysed at 2, 4 29 

and 6 hours after drug intake in both fasting and non-fasting state using liquid chromatography 30 

mass spectrometric methods.  31 

Sixty patients participated in the study. The median rifampicin Cmax and AUC0-6 were higher 32 

on fasting days than non-fasting days: 7.02mg/L vs. 6.59mg/L (p:0.054) and 28.64mg·h/l vs. 33 

24.31mg·h/l (p:0.002). There was a statistically significant delay overall of non-fasting Tmax 34 

compared to the fasting state Tmax(p=0.005). In the multivariate analysis, besides the effect of 35 

fasting, Cmax for females was 20% higher than for males (p=0.03). Concerning isoniazid, there 36 

were significant differences in the Cmax on non-fasting day (median 3.51mg/L) compared with 37 

the fasting day (4.54mg/L). The isoniazid-dose received had an effect upon the isoniazid-levels 38 

(1.26,p:0.038). In the multivariate analysis, isoniazid-exposure on the fasting day was found to 39 

be 14% higher than on the non-fasting day (CI:1.02–1.28,p<0.001). Neither radiological extent 40 

of the disease nor consumption of food with drug intake nor pharmacokinetics of rifampicin or 41 

isoniazid was associated with a poorer treatment outcome. 42 

 Rifampicin in particular and also isoniazid pharmacokinetics were significantly affected by the 43 

intake of the drug with food between and within individuals.  44 

 45 

 46 

 47 

 48 
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BAKCGROUND 49 

The current first-line strategy to treat tuberculosis(TB) is based on the standardized short 50 

course regimen recommended by WHO of rifampicin(RIF), isoniazid(INH), pyrazinamide(PZA) 51 

and ethambutol(ETA) which is usually highly effective1. Despite the success of directly 52 

observed therapy(DOT) strategies1,2 in many TB endemic countries, relapse and acquired drug 53 

resistance has not been entirely eliminated3. Factors such as high baseline bacillary burden or 54 

sputum smear-positivity, cavitation, HIV, DM and other underlying diseases have been 55 

associated with poorer TB outcome4-7 and also with impaired pharmacokinetics8-11 . 56 

Recently, experimental and clinical studies have shown that pharmacokinetic variability 57 

expressed in key parameters such as plasma area-under-the-curve(AUC) seems to play an 58 

important role in the emergence of acquired multidrug-resistant TB(MDR-TB) in in vitro 59 

models; inadequate exposure to anti-TB drugs is associated with acquired drug resistance12,13. 60 

In prospective clinical studies, impaired pharmacokinetic studies have been related to a 61 

suboptimal treatment response14,15 though this is not a universal finding16-18 and 62 

concentrations below the expected range for key drugs in the anti-TB regimen have been 63 

frequently found in patients responding well to treatment19,20.  64 

Several studies suggest that bioavailability of RIF and INH is reduced by dosing the TB drugs 65 

with meals21-23, prompting recommendations that the drugs should be taken on an empty 66 

stomach. However, other studies showed no significant difference in the time for which the 67 

serum-rifampicin remained above the minimum inhibitory concentration(MIC) for  68 

Mycobacterium tuberculosis, suggesting that the chemotherapeutic effect is likely to be 69 

unaffected24. 70 

As anti-tuberculosis drugs can cause gastrointestinal upset which may impair adherence to 71 

therapy25-27, an adverse effect heightened by taking medication without food, the current 72 

official recommendation of the American Thoracic Society, is to provide TB medication with 73 
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meals if gastrointestinal intolerance persists28. However, few studies have evaluated if patients 74 

dosing the TB drugs with meals are associated with treatment failure or early relapse.  75 

OBJECTIVES 76 

The aim of this study was to determine the frequency and magnitude of any within-person 77 

difference in the pharmacokinetics of R and H in a group of patients taking TB treatment on an 78 

empty stomach or with food, and to determine the effect upon sputum smear and culture 79 

conversion times and end-of-treatment(EOT) and EOT+6 month disease outcomes of taking TB 80 

treatment predominantly with food or predominantly fasted during the course of treatment.  81 

 METHODS 82 

This observational study was conducted in Lima(Peru), from January-December,2012. People 83 

diagnosed with Pulmonary TB commencing supervised treatment under the DOTS programme 84 

of the Peruvian National TB programme(PNTP) were invited to participate. 85 

 The recommended scheduled by PNTP is a six days/week during the intensive 86 

phase(RIF,INH,PZA and ETA) and twice/week(RIF/INH) during the maintenance phase at the 87 

time of the study. RIF-dose is 10mg/Kg/day and INH-dose is 5mg/kg/day during the intensive 88 

phase of treatment.   89 

Patients who were not sputum smear positive, who were known to have co-morbid HIV 90 

disease or DM, or were unwilling or unable to give informed consent were excluded from the 91 

study. 92 

A semi-structured questionnaire was given to all participants. Personal data, information about 93 

their TB disease, gender, age, height(cm) and weight(Kg) were recorded and the body mass 94 

index(BMI) was calculated.  A chest radiograph was performed for all participants and the 95 

scored developed by Ralph et al29 was used to calculate the severity of pulmonary TB in each 96 

case.   97 
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All patients were given a diet diary (collected at weekly intervals) where they daily annotated, 98 

whether they had eaten and the kind of food in the period beginning 2-hours before, during or 99 

within 1-hour after the drug intake.    100 

At day 30 and 60, blood samples were drawn from each patient at the health-centre by 101 

dedicated staff into 10ml lithium-heparin tubes at 3 time points -two, four, and six hours after 102 

the directly-observed TB drug intake. On one of these days, patients were required to fast at 103 

least one hour before and an hour after the drug intake. 104 

Treatment outcome of patients was determined at end of therapy (by personal examination, 105 

chest radiography and conventional culture) and 6 months later either by a personal interview 106 

or a phone-call. 107 

Laboratory methods 108 

All blood samples were drawn and centrifuged in the health centres (centrifugation at 109 

2000rpm for 10min) and aliquots of the serum was refrigerated and transported to UPCH and 110 

stored at -70ºC until batched and transported to the pharmacokinetics laboratory of the 111 

Liverpool School of Tropical Medicine. RIF and INH concentrations in each blood sample were 112 

determined with validated assays9,10, described in detail in Annex 1.   113 

Pharmacokinetics outcome measurements 114 

For each patient, the Cmax was defined as the highest of the three concentrations measured 115 

at 2, 4 and 6 h, and the Tmax was the time point at which the Cmax occurred. PK parameters 116 

were obtained by non-compartmental analysis using the trapezoidal rule and the linear-up-117 

logdown method. MIC data were not available, and no additional analysis of PK-118 

pharmacodynamic(PD) parameters was developed. Although an internationally agreed-upon 119 

guideline for therapeutic drug monitoring is lacking, Cmax RIF values were also categorized as 120 

normal(>8mg/L), low(4-8mg/L) or very low(<4mg/L) in accordance with previous work21,30. 121 
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Normal INH-Cmax was defined, by comparison with existing pharmacokinetic data, as 3-122 

5mg/litre after a 5mg/kg daily21. INH-PK data were categorized according to Pasipanodya et al 123 

that established that a Cmax level of <2mg/litre after a 300-mg daily dose or a Cmax level of 124 

<7mg/litre after a 900-mg biweekly dose were regarded as inadequate31. 125 

Data analysis 126 

The chi-squared test was used for the comparison of proportions, and the Student t-test or 127 

Wilcoxon rank-sum test for paired samples was used for continuous variables, depending on 128 

variable distribution. The percentage of treatment days on which treatment was taken in a 129 

fasting state was derived for each individual from their diet diary, for use as a continuous 130 

exposure variable in the outcome analysis. The data were analysed with Stata-13.   131 

Ethics 132 

The study protocol and consent form were approved by the ethics committee of the London 133 

School of Hygiene and Tropical Medicine, Universidad Peruana Cayetano-Heredia and the 134 

regional Ministry of Health, Lima, Peru. 135 

 136 

 137 

 138 

 139 

 140 

  141 
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RESULTS 142 

Sixty patients were recruited to the study with a median age of 32.7(IQR 23.7-45 years); 143 

34(56.7%) were male. General characteristics of patients are summarized in table 1. The 144 

median RIF, INH, ETA and PZA dosages received were consistent with those recommended by 145 

the PNTP. 146 

Eight patients withdrew from the study before the first blood sample, two additional subjects 147 

were withdrawn after a subsequent new diagnosis of HIV and two more changed treatment 148 

regimen (one due to resistance and one due to adverse effects) so were also withdrawn. Thus 149 

48 patients had at least one PK data point and were included in the PK analysis(figure 1). 150 

Eleven patients could not be included in treatment outcome follow-up (six had changed 151 

therapy after PK sampling because of drug resistance and five abandoned either the therapy or 152 

the study). Thirty-seven participants were included in the follow-up evaluation. 153 

The information on the diet diaries was analysed for the 37 patients with follow-up treatment 154 

outcome data.  During the intensive phase, patients properly fasted (only drinking water) on a 155 

median of 2% of the treatment days (interquartile-range 1-7.5) and they took the TB drugs 156 

with water or any other drink (juice, cereal or carbonated beverages) without solid food a 157 

median of 4.5% of the treatment days(IQR:1-11.5).  The rest of the treatment days, patients 158 

consumed some food during drug intake. 159 

During the maintenance phase, patients fasted (only drinking water) with the drug intake a 160 

median of 1% of the treatment days(IQR:0-3) and they took the TB drugs either with water or 161 

with a drink without a meal a median of 4% of the treatment days(0-10). The rest of the 162 

treatment days, patients consumed some food during drug intake. 163 

PHARMACOKINETICS RESULTS 164 

Pharmacokinetics of rifampicin 165 
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Overall, median serum rifampicin levels at two, four and six hours were 3.25, 6.08 and 4.2mg/L 166 

respectively during the non-fasting day and 6.49, 6.08 and 4.23mg/L during the fasting day. 167 

The individual difference between RIF PK in the fasting day compared with the non-fasting day 168 

was particularly high at 2 hours (figure 2). 169 

Comparing PK parameters within individuals, the median Cmax and AUC0-6 were higher on 170 

fasting days than non-fasting days: 7.02mg/L vs. 6.59mg/L(p=0.054) and 28.64mg·h/l vs. 171 

24.31mg·h/l(p=0.002, Wilcoxon signed rank test) respectively.  172 

RIF-Cmax, when RIF was taken in a non-fasting state, was significantly lower in male compared 173 

with female patients (6 vs. 8.3mg/litre;p=0.035); however this effect of gender was not 174 

apparent when RIF was taken in a fasting state (6.73 versus 7.55mg/litre;p=0.09). 175 

Though not statistically significant there was also a tendency towards lower RIF AUC0-6 in male 176 

compared with female patients with dosing in both the fasting (27.85 vs. 31.75mg·h/l;p=0.09) 177 

and non-fasting state (22 vs. 27.27mg·h/l;p=0.08). 178 

Effect of fasting on Tmax 179 

On fasting days, Tmax occurred at 2, 4 or 6 hours in 68.8%, 27.1% and 4.2% of patients 180 

respectively. On non-fasting days, Tmax occurred at 2, 4 or 6 hours in 34.8%, 56.5%, and 8.7% 181 

respectively, a statistically significant delay overall compared to the fasting state 182 

Tmax(p=0.005,Wilcoxon Signed-rank test). Tmax was not associated with gender, age group, or 183 

dose received (data not shown). 184 

Categorization of Cmax: Adequate vs. inadequate levels. 185 

When non-fasting, three patients(6.5%) had Cmax values of <4mg/L, 28(60.9%) had rifampicin 186 

levels between 4-8mg/L, and 15(32.6%) had values that are regarded as adequate levels for 187 

TDM(>8mg/L). When the blood sampling was done during the fasting day, 1(2.1%) had a Cmax 188 

value of <4mg/L, 30(62.5%) had levels between 4-8mg/L, and 17 patients(35.4%) had normal 189 

levels (>8mg/L)(figure 3). Considering rifampicin AUC0-6 values <13mg.h/L as  low or inadequate 190 
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levels of AUC0-24, as suggested elsewhere14,  13% of patients had a low AUC during the fasting 191 

day compared with 2.1% during the non-fasting day. 192 

Multivariate analysis 193 

A model was constructed to assess the independent effect of fasting during drug intake, RIF-194 

Tmax and gender on the logarithm of RIF-Cmax.  RIF-Cmax on the fasting day was found to be 195 

15% higher than RIF-Cmax during the non-fasting day(CI:1.01–1.30,p<0.036). Cmax for females 196 

was 20% higher than for males(p=0.03). The effect of Tmax did not influence the Cmax (Tmax-197 

4h: 0.98,p=0.9; Tmax 6h: 1.11,p=0.676)(table 2). 198 

A further model was constructed to assess the independent effect of fasting during drug 199 

intake, the RIF-Tmax and gender on the logarithm of RIF-AUC0-6.   200 

RIF-AUC0-6 on the fasting day was found to be 14% higher than RIF-AUC0-6 during the non-201 

fasting day(CI:1.01–1.28, p<0.02).  RIF-AUC0-6 for females was 20% higher than for 202 

males(p:0.027). When RIF-Tmax occurred at 4h, RIF-AUC0-6 was reduced by 20% (p=0.002) and 203 

when it occurred at 6h, the RIF-AUC0-6 decreased by 50%(p<0.001), as compared with a RIF-204 

Tmax of 2 hours. 205 

Pharmacokinetics of INH 206 

Overall, median serum isoniazid levels at two, four and six hours were 3.27, 1.96 and 0.92mg/L 207 

respectively during the non-fasting day and 4.54, 1.19 and 0.75mg/L during the fasting day.  208 

The individual difference between INH-PK in the fasting day compared with the non-fasting 209 

day was particularly high at 2 hours(figure 4).  210 

There were significant differences in the Cmax on non-fasting day(median 3.51mg/L) 211 

compared with the fasting day(4.54mg/L)(Wilcoxon Signed-rank test p<0.001). The AUC0-6 was 212 

12.11mg·h/L on the non-fasting day vs. 13.31mg·h/L during the fasting day(p=0.001).  213 

 214 
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INH-Cmax in men was not different to INH-Cmax in women, whether fasted(4.21mg/L v. 215 

4.88mg/L;p=0.21) or not (3.29mg/L v 4.41mg/L respectively,p=0.08). Similarly, INH AUC0-6 did 216 

not differ between males and females either with fasting(13.21mg·h/L vs. 15.13mg·h/L,p=0.28) 217 

or non-fasting dosing conditions(12.08mg·h/L vs. 12.65mg·h/L,p=0.36). INH-Cmax was not 218 

affected by presence of intestinal parasites, age group or BMI (data not shown). 219 

Effect of fasting on INH-Tmax 220 

Tmax occurred at two hours in 80.4% and 95.8% of patients on the non-fasting and fasting day 221 

respectively, at 4 hours in 17.4% (non-fasting) and 2.1%(fasting), and at 6 hours in 2.2%(non-222 

fasting day) and 2.1%(fasting day) of patients; a statistically significant delay due to non-fasting 223 

(p=0.023,Wilcoxon Signed-rank test). 224 

Tmax was not associated with gender, age group, intestinal parasitic infection, or dose 225 

received (data not shown) regardless of fasting condition. 226 

On the non-fasting day, seven patients(15.2%) had Cmax values of <2mg/L, and 39(84.8%) had 227 

values that are regarded as adequate levels. When INH was taken in a fasting condition, 3 228 

(6.3%) had Cmax values of <2mg/L, 45(93.8%) had adequate levels(>2mg/L)(figure 5). 229 

However, considering isoniazid AUC0-6 values <52mg.h/L as  low or inadequate levels of AUC0-24, 230 

as suggested by Pasipanodya et al14,  100% of patients had a low  AUC during the fasting day 231 

compared with 95% during the non-fasting day(p=0.162),   232 

A model was constructed to assess the independent effect of gender, INH-dose received and 233 

the effect of fasting during drug intake on the logarithm of INH-Cmax(table 3). 234 

The INH-dose received had an effect upon the INH-levels(1.26,p:0.038). Moreover, INH-235 

exposure on the fasting day was found to be 14% higher than on the non-fasting day(CI:1.02–236 

1.28, p<0.001)(Table 3). A further model was constructed to assess the independent effect of 237 

gender, INH-Tmax and the effect of fasting during drug intake on the INH-AUC0-6.   238 
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INH-AUC0-6 was found to be 22% higher on the fasting than the non-fasting day(CI: 1.09–1.38, 239 

p<0.001. When INH-Tmax occurred at 6h, INH-AUC0-6 decreased by 47%(p=0.013).  240 

 All 37 patients evaluated at the end of therapy were considered cured. 1/37 patients 241 

evaluated at six months after the end of the therapy had relapsed two months after having 242 

finished the therapy. This 47 year-old male had successfully completed first line TB therapy 243 

with clinical and radiological improvement; although a fibrotic right apical scar was seen at end 244 

of therapy TB culture at this time was negative. Two months later he restarted TB therapy 245 

after an early microbiology confirmed relapse with a positive culture was diagnosed. The Rx-246 

score of this patient had been 42(median Ralph score 22.6). He had fasted 16% of the time 247 

during the intensive phase and had not fasted on any occasion in the maintenance phase. 248 

For the 37 subjects with treatment outcome data, neither the Rx score nor consumption of 249 

food with drug intake nor RIF-PK or INH-PK were associated with a poorer treatment outcome 250 

(data not shown). 251 

 252 

 253 

  254 
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DISCUSSION 255 

The results of this study demonstrate that RIF in particular and also INH pharmacokinetics 256 

(Cmax, Tmax and AUC0-6) were significantly affected by the intake of the drug with food, as has 257 

been shown previously32. However, the effect of food was not large and was highly variable 258 

between individuals, with some participants achieving higher exposure on non-fasted than 259 

fasted days.  260 

A delay in RIF absorption was observed and the median Tmax occurred at 4 hours instead of 2 261 

hours amongst those who took drug with food. By excluding inter-individual variability this 262 

intra-individual PK analysis demonstrated the interaction of the food during drug intake in the 263 

absorption delay (Tmax) and also in the AUC0-6, which has been corroborated in the 264 

multivariate analysis. As has been suggested before and further confirmed by our data here, 265 

slower absorption leads to lower plasma concentrations33.  266 

When RIF was ingested with food, low levels of RIF were observed in more than half of 267 

patients although very low levels (<4mg/L) were only observed in less than 10% of patients.  268 

Lower levels of RIF-Cmax and lower RIF-AUC0-6 were demonstrated among non-fasted men 269 

compared with women. Although this was not observed when the drug was taken on an empty 270 

stomach, in multivariate analysis gender influenced the pharmacokinetics of RIF regardless of 271 

fasting status. These gender differences give cause for consideration of whether dosing 272 

recommendations warrant review, though in the absence of a demonstrable impact upon 273 

treatment outcome, this is probably premature34. 274 

INH-Tmax occurred at 2-hours regardless of fasting status although the PK parameters (Cmax) 275 

were higher in the fasting blood sampling; other studies have suggested that food causes an 276 

absorption delay and also reduces the Cmax35.  277 



 13 

It has been suggested that INH-Tmax may sometimes occurs earlier than 2 hours and we would 278 

not have captured this as our earliest sampling time point was 2 hours. The multivariate 279 

analysis also demonstrated the effect of fasting on increasing the exposure to INH.  280 

In both univariate and multivariate analysis INH-AUC0-6 and INH-Cmax did not differ by gender 281 

in either fasted or non-fasted state.   282 

The study was carried out under real-life field conditions and not in the controlled 283 

environment of a dedicated PK unit, what could influence the variability of RIF and INH PK.  284 

Conversely, this design generates more translatable data since patients are doing what they do 285 

every day.  Another strength of this study is that we were able to eliminate the confounding 286 

effect of inter-individual variability upon interpretation of the effect of food, because patients 287 

had blood sampling under both fasting and under non-fasting conditions, and a corresponding 288 

matched analysis was performed. 289 

It is usually recommended that RIF and INH are to be given on an empty stomach whenever 290 

possible, based on previous PK studies36. However, few studies have evaluated if patients 291 

dosing the TB drugs with meals are associated with treatment failure or early relapse.  In the 292 

US Public Health Service TB Trial-22 in which patients received rifapentine/isoniazid, patients 293 

receiving medication under fed conditions were significantly associated with treatment failure 294 

or relapse although patients were receiving INH and rifapentine instead of RIF12. However the 295 

exquisite dependence of rifapentine PK is well recognised so these data are not directly 296 

relevant.  297 

A secondary aim of our study was to determine if taking TB drugs with meals is associated with 298 

a poor response to treatment, an impact that could be hypothesized might result from lower 299 

drug exposure. In the event participant diet diaries demonstrated the real world reality in that 300 

most patients did not fast on most days around the time of drug intake in either the intensive 301 

or maintenance phase. As a result the exposure risk (taking TB drugs in an unfasted state) was 302 
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recorded for 98-99% of patients; furthermore there was only one recorded adverse outcome 303 

due to an early relapse, resulting in such low power as to render an analysis futile. A limitation 304 

of our study design is that follow-up for relapses was short at 6 months, so later relapses 305 

would not have been detected. We did not record side-effects and were thus unable to 306 

determine whether fasting increased the likelihood of them. 307 

It seems clear that lower serum concentrations, particularly with RIF can still be part of an 308 

effective therapy regimen in most patients. However, we could not accurately measure the 309 

effect of how the combination therapy might have positively influenced the treatment 310 

outcome. Although this synergistic effect can potentially be measured through a microdilution 311 

checkerboard assay37, drug susceptibility testing is done individually for each drug38. Thus, any 312 

effect of a low RIF or INH concentration might be overcome by the effect of the other agents 313 

and thus not directly influence treatment outcome.  The study was not designed to definitively 314 

prove whether poorer outcome was associated with RIF or INH-exposure. In this under-315 

powered sub-analysis, the treatment outcome was neither influenced by impaired 316 

pharmacokinetics (RIF or INH) or by difference in the intake of TB drugs with food. However, 317 

the small number of poor treatment outcomes means that this could represent a type-II error. 318 

But it could also be that the effect of food on plasma-PK is insufficiently large to impact upon 319 

response to treatment either because there are other factors which dominate or because the 320 

bit of redundancy in multi drug therapy compensates for this. Moreover, we had hoped to be 321 

able to tease out a gradient of different categories of how much patients took their drugs 322 

fasting (e.g.: “most”,“some”,“rarely”) and compare outcomes (“treatment outcomes” and 323 

“conversion times”) but almost all were “rarely” fasting so this was not possible. 324 

 325 

Although we have observed “subtherapeutic” Cmax levels of RIF in around 30% of patients, 326 

only one patient finally reported a bad treatment outcome. Interestingly when we calculate 327 
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low rifampicin exposure through AUC parameters, we observe that only 13% had low AUC 328 

exposure. Therefore, further investigation is needed to ascertain whether a review of the 329 

purported normal RIF-Cmax >8µg/mL is warranted and if the AUC-threshold proposed from 330 

hollow-fibre model studies14 is a suitable predictor of treatment outcome.  331 

Concerning INH, most patients had normal Cmax values. In contrast, if we consider the 332 

threshold of 52mgh/L suggested by Pasipanodya14, most patients would be classified as having 333 

had a low INH-exposure. A main limitation of considering the AUC as a marker of drug 334 

exposure is that we had to calculate the AUC0-6  instead of AUC0-24 as suggested elsewhere14 335 

due to the limited sample points in our study. 336 

It should be added that it is unclear what is the crucial determinant of drug efficacy at the 337 

cellular level and, if so, what the minimum drug exposure (in plasma) needs to be in order to 338 

have a high probability of efficacy. 339 

Although therapeutic drug monitoring(TDM) is neither widely used nor recommended during 340 

TB treatment, TDM might contribute not only to the identification patients with low levels of 341 

RIF or INH but also to a shrinking the time to response and also the duration of treatment39. A 342 

two and six hour post-dose sampling strategy may facilitate the analysis of both agents and it 343 

seems reasonable and practical.  344 

CONCLUSIONS 345 

 RIF in particular and also INH pharmacokinetics (both Cmax and AUC0-6) were significantly 346 

affected by the intake of the drug with food in a proportion of patients. A clear relationship 347 

between the pharmacokinetics parameters and treatment outcome was not demonstrated.  348 

 349 

 350 

 351 
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 584 

 585 

  586 

                                                                                                                                                                                                                                                                                       
TB     n (%) 

Sex (Male) 34 (56.7) 
Age (years) 32.7 (23.7-45) 
BMI (Kg/m²)a 21.8 (19.8-24.4) 
Chronic diarrhoea 2 (3.33) 
Intestinal parasite 4 (7.7) 
Hospitalization  4 (6.67) 
HIV (n=56) 2 (3.57) 
TB type  
    New 
    Relapse />6 months) 

 
53 (88.3) 
 7 (11.67) 

Sputum smear        + 
                                ++ 
                              +++ 

28 (46.7) 
17 (28.3) 
15 (25) 

Symptoms 
  Weight loss (n=59) 
  Cough 
  Fever (n=59) 
  Thoracic pain 
  Dyspnoea 
  Haemoptysis 
  Sweating 
  Anorexia 

 
37 (62.71) 
55 (91.67) 
34 (56.67) 
40 (66.67) 
28 (46.67) 

21 (35) 
37 (61.67) 
28 (46.47) 

TB diagnosis 
Conventional culture 
MODS 

 
44 positive (not undertaken in 16) 

41 pos, 7 neg 
RIF dosage (mg/Kg/day) 10.2 (9.6-11.2) 
INH dosage (mg/Kg/day) 5.1 (4.8-5.6) 
EMB dosage ((mg/Kg/day) 20.3 (19.1-22.4) 
PZA dosage (mg/Kg/day) 25.4 (23.9-28) 
Radiograph (Ralph score)*  22.6 (12.6-40.2) 
n= 60 unless specified; a. Numbers are expressed in median and 
Interquartile range. *Ralph score obtained in the Chest radiography 
evaluation =  % of affected lung + 40 (if cavitation is present) 
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Table 2.  Multilevel linear model of the independent association of variables with rifampicin 587 
exposure (Cmax) 588 

 589 

Variable Proportional difference CI p-value 

Fasting 1.15* 1.01-1.3 0.036 

Tmax 4h 0.98 0.77-1.26 0.901 

Tmax 6h 1.11 0.69-1.78 0.676 

Sex 1.2† 1.02- 1.41 0.027 

Note: The model was considered based on the natural logarithm of the Cmax values. The proportional 
difference was calculated as the exponential of the coefficient obtained for each variable in the 
multilevel linear model. Interpretation of the proportional difference: * Rifampicin Cmax on the fasting 
day was 15% higher than rifampicin Cmax during the non-fasting day.  † rifampicin Cmax in females 
were 20% higher than rifampicin Cmax in males. 

 

 590 

 591 

  592 
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Table 3 . Multivariate regression model of the independent association of variables with 593 
isoniazid exposure (Cmax) 594 

 595 

Variable Proportional difference CI p-value 

Fasting 1.14* 1.02-1.28 <0.001 

Sex 1.26 1.08 – 1.48 0.176 

Isoniazid dose 1.25 1.01-1.53 0.038 

Note: The model was considered based on the natural logarithm of the Cmax values. The proportional 
difference was calculated as the exponential of the coefficient obtained for each variable in the 
multivariate model. Interpretation of the proportional difference: * Isoniazid Cmax on the fasting day 
was 14% higher than isoniazid Cmax during the non-fasting day.  † 

596 
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Figure 1. TB diagram about patients recruitment and follow-up during the study. 597 

Figure 2. Difference in rifampicin concentration at three time-points according to fasting status 598 

(fasted minus unfasted). 599 

Figure 3 Frequency distribution of rifampicin Cmax categories during the non-fasting and the 600 

fasting day. 601 

Figure 4 .  Difference in isoniazid concentration at three time-points according to fasting status 602 

(fasted minus unfasted). 603 

Figure 5.  Frequency distribution of isoniazid Cmax categories during the non-fasting and the 604 

fasting day 605 

  606 
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Annex 1:  High-performance liquid chromatography (HPLC) assays. 607 

 608 

 609 

 610 
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