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Traveling-Stripe Forcing Generates Hexagonal Patterns
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We study the response of Turing stripe patterns to a simple spatiotemporal forcing. This forcing has
the form of a traveling wave and is spatially resonant with the characteristic Turing wavelength.
Experiments conducted with the photosensitive chlorine dioxide-iodine-malonic acid reaction reveal a
striking symmetry-breaking phenomenon of the intrinsic striped patterns giving rise to hexagonal
lattices for intermediate values of the forcing velocity. The phenomenon is understood in the framework
of the corresponding amplitude equations, which unveils a complex scenario of dynamical behaviors.
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The response of patterns to external forcing provides
a tool to probe the inherently nonlinear mechanisms
of self-organization under nonequilibrium constraints.
During the past few years, attention had mostly focused
on resonances or locking of spatially structured states,
either oscillatory or stationary, under purely temporal [1–
3] or spatial (steady) modulations [4–7]. We extended
these scenarios recently by proposing a particularly
simple mode of spatiotemporal forcing [8]. The situation
considered was the dynamical response of a striped
Turing pattern to a resonant stripe modulation of a control
parameter, sweeping the system at small velocities.
Without the forcing, the instability leads to a stationary
periodic stripe pattern (finite wave number, zero fre-
quency) [9,10].

We report here on the discovery of a surprising sym-
metry breaking phenomenon in the forced system, lead-
ing to the emergence of hexagonal lattices, when the
forcing is applied at larger velocities. The experimental
context, as it was in our previous work [8], refers to the
chlorine dioxide-iodine-malonic acid (CDIMA) reaction
[11], which has the interesting feature of being photo-
sensitive [12]. To understand this new phenomenon, the
scenario is interpreted within an amplitude equation ge-
neric framework.

Experiments.—The experiments were carried out in a
thermostated one-feeding chamber continuously feed un-
stirred reactor maintained at 4� 0:5 �C using an experi-
mental setup described elsewhere [13]. Reagents of the
(photosensitive) CDIMA reaction were continuously
pumped into the reactor with feed-stream concentrations:
�I2� � 0:45 mM, �MA� � 1:2 mM, �ClO2� � 0:1 mM,
�H2SO4� � 10 mM, and �PVA� � 10 g=l. Under these
conditions and without illumination, the system sponta-
neously develops labyrinthine patterns with a wavelength
of 2�=kc � 0:54� 0:02 mm. In our experiments, a peri-
odic array of light stripes with a wavelength of precisely
0.54 mm (i.e., in spatial resonance) were focused on the
0031-9007=04=93(4)=048303(4)$22.50 
gel layer and were moved perpendicularly to the stripes
with a well-controlled and constant velocity vf. Light
intensity was varied using filters on a 300 W halogen
lamp. Digital images were taken periodically (at 8–9 min
intervals) using a charge-coupled device camera.

Considering vf as the control parameter, two trivial
limiting cases are easily identified. At sufficiently small
velocities, the striped pattern adiabatically follows the
imposed light pattern. Such a traveling wave mode [8] is
hereafter referred to as a pattern of entrained stripes (ES).
Slightly increasing the velocity of the forcing, the stripes
continue following the imposed pattern but with a spa-
tially homogeneous and time modulated amplitude. Here
we will refer to this pattern as oscillating stripes (OS),
rather than modulated traveling waves [8]. Just in the
opposite limit, i.e., for large values of vf, the system
averages out the illumination and exhibits the static pat-
tern corresponding to a uniform illumination with the
same mean value (stripes in our case).

Striking new results, those at the core of this Letter,
appear for intermediate values of the forcing velocity. In
this regime the system responds, quite unexpectedly,
organizing itself into a hexagonal lattice and breaking
the initial continuous transversal symmetry of the prob-
lem. Depending on the light intensity, this lattice may
either oscillate or travel. It is worth remarking that this
system supports hexagonal patterns but for a completely
different range of parameters.

A typical dynamical pattern for high light intensities is
shown in Fig. 1. The amplitude of the hexagonal lattice
oscillates periodically with a frequency similar to the one
imposed by the forcing [see Figs. 1(d) and 1(e)]. This
pattern transits between lattices of white and black spots
and appears to oscillate coherently around a fixed posi-
tion. We will refer to this dynamical pattern as oscillating
hexagons (OH). Let us remark that this behavior is robust
and appears for a wide spectrum of vf. This robustness
extends in a broad range of light intensities, except for its
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FIG. 1. Oscillating hexagons for a forcing velocity of vf �
0:28 mm=h. In this case, the pattern exhibits three hexagonal
lattices of white spots (a), black spots (c), and an intermediate
state (b) where both lattices are interlaced. The corresponding
spatiotemporal plot of cuts along the horizontal direction of the
pattern and the forcing are shown in (d) and (e), respectively.
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lower limit where more complex behavior has been ob-
served. For example, the transition between white and
black spot lattices may occur in an abrupt and unpredict-
able way.

For low intensities, a different kind of hexagonal pat-
terns has been observed in some experiments (see Fig. 2).
In contrast to the previous case, this lattice is composed of
black spots which move entrained with the forcing [see
Figs. 2(b) and 2(c)]. We refer to this spatiotemporal struc-
ture as a pattern of entrained hexagons (EH). We note that
this spatial arrangement is less ordered than the OH (i.e.,
it has a shorter coherence length). It is worth stress-
ing that EH appear only for a small range of forcing
velocities.

Amplitude Equations.—Near threshold, where the be-
havior is expected to be generic, the pattern can be
described by a superposition of stripes (or rolls). The
forcing is characterized by its wave number, which we
here choose to be equal to the critical one kc (1:1 reso-
nance), and the (small) frequency! � vfkc. We allow for
stripes with the wave vector along that of the forcing
(with complex amplitude A) and the addition of two roll
systems (with B1 and B2, respectively) that generate
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FIG. 2. Entrained hexagons appearing for a forcing velocity
of vf � 0:16 mm=h. In (a) we show a snapshot of the experi-
ment and in (b) and (c) the corresponding spatiotemporal plots
of the pattern and forcing, respectively.
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hexagons (or, according to Busse’s designation, ‘‘hexa-
rolls’’ [14]). The wave vectors associated with A, B1,
and B2 are ~k � kcx̂, ~k1 � kc��x̂�

���
3

p
ŷ
=2, and ~k2 �

kc��x̂�
���
3

p
ŷ
=2, respectively. The basic assumption is

that the forcing has a negligible influence on B1; B2, since
for those rolls the projected wave vector of the forcing is
far from resonance. In this situation, the corresponding
amplitude equations can be shown to be

@tA ���� gjAj2 � h�jB1j
2 � jB2j

2
�A� �B�
1B

�
2

� � exp��i!t
; (1a)

@tB1 ���� gjB1j
2 � h�jAj2 � jB2j

2
�B1 � �B
�
2A

�; (1b)

@tB2 ���� gjB2j
2 � h�jAj2 � jB1j

2
�B2 � �B
�
1A

�; (1c)

where we assume h > g, so that in the absence of the
resonance terms (i.e., for� � 0) stripes are preferred over
hexagons.

The explicit time dependence can be eliminated by
going into a comoving frame such that A � �A exp�i!t
and B1;2 � �B1;2 expi!t=2 (the factor 1=2 arises from the
projection). Then � is replaced in (1a) by �� i! and in
(1b) and (1c) by �� i!=2. Fixed points in this represen-
tation correspond to entrained solutions.

We will here look for solutions with jB1j � jB2j. It is
easy to verify that then the difference between the phases
of B1 and B2 is constant in time. In fact, we can choose
B1 � B2�� B
.

The freedom to specify the scale of t and of A and B
allows us to choose the relevant parameters h0 � h=g,
�0 � �=

����������
j�jg

p
, �0 �

���
g

p
�=j�j3=2, t0 � j�jt, and !0 �

!=j�j (together with the sign of �). In this representa-
tion, Eqs. (1) take the scaled form (we keep the same
symbols for the scaled A and B and consider the case
�> 0)

@t0 �A � �1� i!0 � j �Aj2 � 2h0j �Bj2
 �A

� �0 �B�2 � �0; (2a)

@t0 �B � �1� i!0=2� j �Bj2 � h0�j �Aj2 � j �Bj2
� �B

� �0 �B� �A�: (2b)

These equations allow the symmetries: (i) � �B;�0
 !
�i �B;��0
, which expresses the fact that there are two
kinds of hexagon solutions (connected by a shift in x of
2�=kc) that are degenerate only for �0 � 0; and (ii) �B!
� �B, which corresponds to a shift of the pattern by
2�=�

���
3

p
kc
 along the y direction.

We first consider the case of stripes, i.e., �B � 0, where
only the parameters �0 and !0 are relevant.

Fixed points of (2a) correspond to ES and are solutions
of

�F2 � 1
2F2 �!02F2 � �02; (3)

where �A � Fei �� and sin �� � �!0=�0
F ��������������������������������������������
1� �F2 � 1
2F2=�02

p
.

For �02 < 8=27 ’ 0:296, there is a window of !0 with
three real solutions of Eq. (3) where the intermediate
048303-2
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branch is unstable [see Figs. 3(a) and 3(b)]. These solu-
tions are generated and destroyed pairwise by saddle-
node bifurcations. The region of multiple solutions ends
in a cusp at the critical point!02 � 1=3; �02 � 8=27 where
Eq. (3) has three identical solutions with F2 � 2=3. For
�02 > 8=27, a unique solution exists for all values of!0. In
addition, solutions become Hopf unstable (with fre-
quency �OS �

���������������������
!02 � 1=4

p
�

�����������������������
2�02 � 1=2

p
) when F2

drops below 1=2. This transition, which leads from en-
trained stripes to oscillating stripes, with a time modu-
lated amplitude [ES ! OS in the following; see Fig. 3(a)
and 3(b)], has been studied in [8]. A detailed stability
analysis of the amplitude equation including wave num-
ber mismatch will be presented elsewhere.

We now focus on solutions of (2) with �B � 0, thus
allowing for the formation of hexagons. The first step is
to study the stability of entrained stripes ES towards
growth of �B. One finds that stability requires the two
conditions
FIG. 3. Instabilities of the ES in the parameter space �02 vs
!02 of the amplitude Eqs. (2). Inside the gray areas the ES are
stable, and inside the dark gray region three solutions of Eq. (3)
exist. In (a) and (b) we consider the �B � 0 case. The thick
straight line indicates the supercritical Hopf bifurcation ES !
OS which appears for �02 > 0:281 (for �02 < 0:281 this tran-
sition occurs via a homoclinic bifurcation). In (c) all the
primary instability lines of the ES are shown for h0 � 2:1
and �0 � 0:7, for the complete Eqs. (2). Thick straight and
dashed lines correspond to ES ! OS and ES ! EH, respec-
tively. Also, the secondary bifurcations (obtained numerically)
of OS and EH leading to OH are shown (hatched regions
enclosed by dotted lines).
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h0F2 � 1> 0; (4a)

�h0F2 � 1
2�!02=4� �02F2 > 0: (4b)

Breakdown of condition (4a) leads to a Hopf
bifurcation with frequency �OH �

�������������������������������
!02=4� �02=2

p
at

�0OH � ��1=h0 � 1
2 �!02�=h0. We note that, while the
orbit in the �B plane has a frequency �OH, the one in the
�A plane has 2�OH and that a time shift of half a period
transforms � �A; �B
 ! � �A;� �B
. Consequently, this instabil-
ity leads from entrained stripes to oscillating hexagons
(ES ! OH; see Fig. 4). This instability preempts the
ES ! OS bifurcation for h0 < 2 and the opposite is true
for h0 > 2 [see Fig. 3(c)].

Breakdown of (4b) can arise as the first instability only
when !02 < �4=h0
�02 if h0 < 2 or !02 < 2�02 � �h0 � 2
2

if h0 > 2. This bifurcation is stationary and it leads to
entrained hexagons (ES ! EH; see Fig. 5) which occur in
two symmetry degenerated variants related by �B! � �B.

We now go beyond the thresholds of the primary tran-
sitions already described. Consequently, we resort to a
numerical analysis of Eqs. (2). We will concentrate on the
scenario relevant for the experiment and show that one
may expect different kinds of hexagonal patterns in ad-
dition to the ones reported thus far.

For the experiments reported, h0 should be larger than
2 such that the destabilization of entrained stripes with
increasing!0 leads to oscillating stripes (ES ! OS). Here
we choose h0 � 2:1 and �0 � 0:7. For this case, if we
increase!0 (as in the experiment) and for fixed �0, not too
small (�02�*0:61 in this case), one first encounters the
ES ! OS [see Fig. 3(c)], next there is a supercritical
bifurcation to oscillating hexagons. The resulting hexa-
gons have the same symmetries as the ones encountered
in the ES ! OH. Increasing !0 further, there is a reen-
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FIG. 4. Oscillating hexagons reconstructed from Eqs. (1)
after the bifurcation given by condition (4a) for h0 � 1:95,
�0 � 0:7, �0 � 0:9, and !0 � 1:2. In (a), (b), and (c) three
consecutive snapshots are shown. In (d) the space-time plot
along a horizontal cut is shown. In (e) and (f) the limit cycle is
shown in the planes �A and �B. The term (a.u.) designates
arbitrary units.
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FIG. 5. Entrained hexagons reconstructed from Eqs. (1) after
the ES ! EH bifurcation for h0 � 2:1, �0 � 0:7, �0 � 0:7, and
!0 � 0:83 [cf. Equation (4b)]. In (a) and (b) we show a snapshot
and its corresponding spatiotemporal plot. In (c) and (d) we
show the location of the fixed point in the �A and �B planes,
respectively.
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trant transition where �B vanishes leading back to oscil-
lating stripes, which then persist up to arbitrary !0.

For intermediate values of �0 (0:296 & �02 & 0:61), as
!0 is increased, one typically encounters a supercritical
Hopf bifurcation of the entrained hexagons. In these
oscillating hexagons [also called OH in Fig. 3(c)], the �B
orbit has the same frequency as the �A orbit, and we
continue having two separate symmetry-degenerate solu-
tions. As before, for high enough !0 a transition to
reentrant oscillating stripes takes place. Before this tran-
sition, more complex dynamics may occur, in particular,
period doubling cascades to chaos. We have also observed
gluing of chaotic, symmetry-degenerate attractors and
ungluing. Finally, we point out that similar complex
behavior is observed for slightly smaller values of �0

(�02 & 0:296), when the upper bound of the region of
multiplicity (dark gray area in Fig. 3) is crossed.

Choosing �0 smaller than 0.7, the region where hexa-
gons appear shrinks and finally vanishes. This occurs at
�0 � 0:6 for the oscillating hexagons at large �0 and at
�0 � 0:45 for the entrained hexagons.

At the root of the phenomena presented is the competi-
tion between an anisotropic driving and the three-wave
resonance mechanism leading to hexagons. Whereas one
would naively expect that such a forcing would always
increase the amplitude of the relevant stripe system and
thus suppress the growth of the other modes compared to
the unforced case, the situation is much richer. In fact, we
are in the regime where the interaction of the modes
forming 120� is such that they tend to depress each other,
thus leading to stripes rather than hexagons in the un-
forced case. On the other hand, here the amplitude of the
forced stripe system is increased by the forcing only at
low frequency, but decreased at high frequency [see
Eq. (3)]. Therefore, at high frequency, the growth of the
other two modes is enhanced compared to the unforced
case. In particular, the modes leading to the hexagons are
enhanced, unless � � 0. Then other states are presumed
to arise, in particular, rectangular patterns.

Conclusions.—Here we report on the experimental dis-
covery of the generation of a hexagonal symmetry by
traveling-stripe forcing in Turing patterns. The origin of
048303-4
this phenomenon can be understood in terms of a shift of
the transition boundary between stripes and hexagons.
However, other dynamical behaviors such as different
types of oscillating and chaotic hexagons have no counter-
part in the unforced system. Thus, the introduction of a
frequency via a spatial resonance mechanism has en-
dowed the system with a wealth of novel and complex
nonlinear dynamics which remains yet to be explored in
depth. Finally, the very nature of the amplitude equation
description guarantees the generic character of these re-
sults.While we have already observed the basic phenome-
non in a simple model of the CDIMA reaction [12], we
expect that similar phenomena should be found in a
variety of systems undergoing the same type of stationary
instability, from hydrodynamics to nonlinear optics or
biophysics.
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J. Casademunt, Phys. Rev. Lett. 90, 128301 (2003).
[9] V. Castets, E. Dulos, J. Boissonade, and P. De Kepper,

Phys. Rev. Lett. 64, 2953 (1990); Q. Ouyang and H. L.
Swinney, Nature (London) 352, 610 (1991).

[10] Chemical Waves and Patterns, edited by R. Kapral and K.
Showalter (Kluwer Academic, Dordrecht, 1995).
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