will be concurrent development for high-income, and low-income and middle-income countries. The need for maternal group B streptococcus vaccine in low-income and middle-income countries that do not have the infrastructure and resources to implement intrapartum antibiotic prophylaxis strategies is clear. The data presented by O’Sullivan and colleagues underscore that high-income countries also have a shared interest in alternatives or adjuncts to intrapartum antibiotic prophylaxis to protect infants from group B streptococcus.

Stephanie J Schrag
National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
zha6@cdc.gov
I declare no competing interests.

Primaquine for all: is it time to simplify malaria treatment in co-endemic areas?

In most areas endemic for malaria, the major species are Plasmodium falciparum and Plasmodium vivax. Falciparum malaria is more often lethal, develops resistance to drugs easily, and is responsible for most of the malaria burden in Africa. However, particularly in this second era of malaria elimination efforts, P vivax requires increasing attention because of the intrinsic challenges related to its control. This species can lead to severe or even life-threatening disease, can present variable evidence of resistance to chloroquine in relation to geographical area, and has few drug options to prevent relapse. Prevention of relapse is essential because up to 80% of reported cases of P vivax malaria could result from hypnozoite-derived relapses, rather than from newly acquired infections. The triggers of relapse are not sufficiently understood, but 8-aminoquinolines (such as primaquine, or the newly registered tafenoquine) are the only effective drugs enabling radical cure.

There are several sources of variation in relapse rates. Different strains of vivax have distinct relapse patterns, and pharmacogenetics also seems to have a role in primaquine metabolism, which could affect relapse as primaquine only becomes active once metabolised by CYP 2D6 pathway into its active metabolites. However, acute infections may also trigger relapses.

Data showing possible P vivax relapses after P falciparum infection were obtained first in Thailand, but an analysis reported in The Lancet Infectious Diseases by Robert Commons and colleagues provides statistical robustness regarding this observation. Their impressive meta-analysis, which included 31,262 patients from 153 studies done over more than four decades, supports that such relapses are not just local, but rather occur...
globally in all settings co-endemic for *P vivax* and *P falciparum*. The overall risk of *P vivax* parasitaemia by day 42 after *P falciparum* treatment was 5.6% (95% CI 4.0–7.4). Although the investigators found some short-term significant differences in the risk of recurrence depending on regional relapse periodicity and the half-lives of the drugs used to treat the initial *P falciparum* infection, the differential effect seemed to wane by day 63, when nearly a quarter (24%) of all patients treated for *P falciparum* had developed a *P vivax* relapse, detectable in peripheral blood. Importantly, *P vivax* predominated among all parasite recurrences following *P falciparum* treatment, representing about 70% of recurrences at day 63.

The mechanisms behind such relapses are still unknown, but one could argue, from a public health standpoint, that the time has come to propose an innovative move in the treatment of malaria, promoting the universal use of primaquine for both species in areas where they co-exist and remain prevalent. Indeed, the number of cases of *P falciparum* needed to treat with radical cure to prevent one *P vivax* recurrence by day 63—ranging between 4.7 and 5.0 as proposed by the study investigators—would seem to amply justify this radical change in malaria treatment. The additional *P falciparum* gametocidal effect that 8-aminoquinolines exert, which should also substantially reduce malaria transmission, might be another advantage of such a bold programmatic change.

In areas where primaquine is routinely used for all patients with *P vivax*, such as Latin America, this change would not pose major difficulties, with the exception of ensuring adequate compliance for a usually 2-week treatment course. Nevertheless, in areas where glucose-6-phosphate dehydrogenase (G6PD) deficiency is prevalent, such as southeast Asia, primaquine use might help the safe use of primaquine against both *P falciparum* and *P vivax*. Use of an ACT plus primaquine (or tafenoquine) regimen irrespective of the underlying species could have huge operational advantages, but the overall impact of such an approach needs to be thoroughly evaluated.

Marcus V G Lacerda, *Quique Bassat

Instituto Lêonidas & Maria Deane (Fiocruz), Brazil (MVGL); Tropical Medicine Foundation Dr Heitor Vieira Dourado, Manaus, Brazil (MVGL); ISGlobal, Hospital Clinic-Universitat de Barcelona, Barcelona 08036, Spain (QB); ICREA, Pg Lluís Companys 23, Barcelona, Spain (QB); and Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain (QB)

quique.bassat@isglobal.org

We declare no competing interests. QB is a member of the WHO Malaria Treatment Guidelines Group. This group produces global guidance on the treatment of malaria and this includes decisions about antimalarial drugs mentioned in this comment. The views expressed by the authors are personal opinions and do not represent the recommendations of WHO.

Copyright © 2018The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license.

Comment

Improving the provision of rabies post-exposure prophylaxis

In 2015, WHO and its partners set the ambitious objective1 to reach zero human deaths from dog-mediated rabies by 2030, after the concept of effective One Health interventions.2 Mass dog vaccination is expected to be an important part of any successful strategy.3,4 In The Lancet Infectious Diseases, the WHO Rabies Modelling Consortium5 reminds us that effective and timely post-exposure prophylaxis, administered to humans bitten by rabid dogs to prevent the fatal onset of rabies, is another essential tool for success.6 Through the analysis of a wide range of data collected in multiple countries and the use of multilayer mathematical models, the authors show that increased investment in post-exposure prophylaxis by Gavi, the Vaccine Alliance, would be extremely cost-effective and could substantially reduce disease burden. The study is particularly timely because Gavi is currently reconsidering rabies vaccine investment.

Preparation of such assessment required the Consortium6 to overcome several major challenges. First, any assessment of post-exposure prophylaxis needs to account for a very diverse set of factors.4 For example, it must be based on a good understanding of dog populations, how they are structured, how they interact with humans, how they can be affected by the spread of rabies, and how that spread might be mitigated by dog vaccination.7 Furthermore, the likelihood that a bitten person will seek, obtain access to, and complete post-exposure prophylaxis treatment depends on cultural, economic, geographical, and logistical factors (eg, awareness in the population, accessibility to post-exposure prophylaxis centres, direct and indirect costs, effective stockpiling, and delivery of vaccines). Several of these factors have historically been poorly characterised and might exhibit strong spatial heterogeneities. A major strength of the analysis8 is that it benefited from tremendous efforts by Gavi to reduce some of these knowledge gaps by supporting rabies field studies. Consequently, the diversity of data the authors used to build their assessment is quite impressive, both in terms of data type and geographical coverage. A second achievement of the paper is that the authors developed a multidisciplinary modelling framework in which these data could be integrated in a coherent way, making it possible to generate rabies incidence dynamics in dogs and the associated human exposures under various epidemiological scenarios, while also capturing economic, behavioural, and logistical aspects.5

The new data and modelling framework therefore constitute an important improvement to past studies; future iterations of the work are likely to lead to additional refinements. Of course, still too many countries have little or no data available, and more field studies targeting these places are needed. Some aspects of the assessment could also be improved further. For example, in some circumstances, free provision alone might be insufficient to increase health-care seeking and accessibility. Indeed, the lack of infrastructure might make it impossible for exposed populations (especially those living in rural remote areas) to travel to clinics and access post-exposure prophylaxis,8 even if vaccines are freely available. To this regard, further investments are needed to improve the accessibility to post-exposure prophylaxis via point-of-care and decentralised integrated dog bite management centres (IDBCs).9 The geographical distribution of these IDBCs is a crucial issue in many developing countries and will require important efforts from national authorities.8 The education of populations to increase awareness and perception of the risks related to dog bite exposure and rabies is another complex issue that is starting to be addressed by stakeholders but should be promoted further.10

Hopefully, Gavi and other national and international stakeholders and donors will keep on supporting field studies so that all these aspects can be better