
P H Y S I C A L R E V I E W L E T T E R S week ending
25 JUNE 2004VOLUME 92, NUMBER 25
Diffusion on a Solid Surface: Anomalous is Normal
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We present a numerical study of classical particles diffusing on a solid surface. The particles’ motion
is modeled by an underdamped Langevin equation with ordinary thermal noise. The particle-surface
interaction is described by a periodic or a random two-dimensional potential. The model leads to a rich
variety of different transport regimes, some of which correspond to anomalous diffusion such as has
recently been observed in experiments and Monte Carlo simulations. We show that this anomalous
behavior is controlled by the friction coefficient and stress that it emerges naturally in a system
described by ordinary canonical Maxwell-Boltzmann statistics.
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experimentally relevant time scales [13]. Moreover, density function of displacements.
Diffusion of atoms, molecules, and clusters on solid
surfaces occurs in a number of modern technologies
involving self-assembled molecular film growth, cataly-
sis, and surface-bound nanostructures [1]. The study of
the motion of small and large organic molecules [2,3], and
of adsorbed metal clusters composed of tens and even
hundreds of atoms [4,5], has led to the unexpected ob-
servation that, as with single atoms [6], long jumps may
play a dominant role in these motions.

Theoretical, numerical, and phenomenological discus-
sions of surface diffusion have led to the clear under-
standing that jumps beyond nearest neighbors are
ubiquitous in some parameter regimes [7]. However, these
studies focus on the fact that the motion in periodic
potentials is necessarily diffusive on very long time
scales. In a random potential the motion at long times is
either diffusive or, in the case of overdamped motion in
some parameter regimes, subdiffusive. The latter case has
been thoroughly studied [8]. Of interest to us, the possi-
bility that jumps can be so long as to lead to superdiffu-
sive motion over appreciable intermediate time scales, has
been recognized as an interesting problem, but one in
which Lévy walks or flights [9] are invoked as a model
input. Lévy-walk-like behavior is clearly observed in
Hamiltonian systems [10,11] and in microcanonical
simulations [11,12]. We show that the behavior observed
for small friction in the canonical case shares several
features of the Lévy walk behavior in a Hamiltonian
system; however, a closer look at the properties of this
process shows that it is considerably different.

While a detailed analysis of surface diffusion requires
extensive calculations (e.g., ab initio or molecular dy-
namics), even the most powerful currently available com-
puters cannot carry such calculations to anywhere near
0031-9007=04=92(25)=250601(4)$22.50 
current experimental probes of the topography of sur-
faces, scanning tunneling microscopy and atomic force
microscopy, are usually carried out at relatively high
temperatures, which leads to additional difficulties
for first-principles calculations. Therefore, simpler ap-
proaches are essential and valuable [7].

We consider a generic model of classical particles
moving in a two-dimensional potential, under the action
of thermal fluctuations and dissipation, the important
control parameter being the friction coefficient. In spite
of the simplicity of the model, we find that it reproduces
the entire range of experimentally and computationally
observed phenomena, from superdiffusion all the way to
subdiffusion. The equation of motion of a particle of mass
m on the surface is

m �xx � �rV�x=�� �� _xx� ��t�; (1)

where � is the characteristic length scale of the po-
tential. The parameter � is the coefficient of fric-
tion, and the �i�t� are mutually uncorrelated white
noises that obey the fluctuation-dissipation relation
h�i�t��j�t0�i � 2�kBT�ij��t� t0�. We first consider the
nonseparable periodic potential V�x; y� � V0 cos
��x�
y�=�� cos
��x� y�=��, where V0 is the barrier height at
the saddle points. Equation (1) can be rewritten in scaled
dimensionless variables, rx � x=�, ry � y=�, and � �������������
V0=m

p
t=�, leaving only two independent parameters,

the scaled temperature T , and the scaled dissipation �,

T � kBT=V0; � � ��=
����������
mV0

p
: (2)

We study three properties of the motion of the particle:
the mean square displacement, the dependence of the
diffusion coefficient on the friction, and the probability
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FIG. 1. Left: A trajectory for � � 1 over t � 20 000 time
units. Right: A trajectory for � � 0:04 over t � 15 000 time
units. The period of the potential is � � 4. Note the different
scales in the two panels. 10
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FIG. 2. hr2i=4� for a particle in the periodic potential, for
� � 0:0004 (solid line), 0:004 (dotted line), 0:04 (dashed line),
and 0:4 (dot-dashed line). The straight-line segment has unit
slope as a guide to the eye. Inset: Diffusion coefficient vs �.
The solid lines correspond to the theoretical calculations
[Eqs. (3) and (4)].
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Normal diffusive behavior is characterized by a linear
time dependence of the mean square displacement,
hr2���i � �. The brackets denote an ensemble average
over realizations of the noise. Nondiffusive behavior
shows a different time dependence, hr2���i � ��, with
� > 1 ( < 1) for superdiffusive (subdiffusive) motion.
In Fig. 1 we show typical trajectory segments obtained
upon numerical simulation of the equations of motion
with T � 0:2 (we use this value throughout) for particles
initially located at the center of the system. One trajec-
tory (left panel) is for a large friction coefficient, and the
particle follows typical diffusive motion characterized by
short steps of length �� and frequent changes in direc-
tion. The other (right panel) corresponds to a small fric-
tion coefficient and clearly shows the preponderance of
long (  �) tracks along Cartesian coordinates.

The evolution of hr2i averaged over 5000 particles is
shown in Fig. 2 for several friction coefficients. The
particles are initially deposited in a square of side 2�
around the center of the system according to a Boltzmann
equilibrium distribution for the positions and for the
velocities. For very long times the motion is diffusive,
as expected, but for small � and at intermediate times
there is clear superdiffusive ballistic (� � 2) behavior
over several decades in time, reflective of the long straight
stretches seen in the low-� trajectory in Fig. 1. We stress
that this behavior has emerged naturally and has not
required explicit implementation of any but ordinary
thermal fluctuations.

Even though the motion of the particle may include
long superdiffusive stretches, at long times the motion is
necessarily diffusive. The dependence of the diffusion
coefficient on the friction for small and for large � can
be obtained analytically using the approximate relation
D � hl2i=2�0, where hl2i is the mean square size of a jump
out of one well and into another, and ��1

0 is the mean jump
rate (related to the familiar ‘‘mean escape rate’’). In the
overdamped regime, jumps typically occur from one well
to a neighboring well, so hl2i � 1. Familiar Kramers
formulas can be used to obtain the mean escape rate
[14], with the result
250601-2
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e�1=T : (3)

The ��1 dependence of D arises because hl2i is indepen-
dent of � while �0 � �. In the underdamped limit
a number of approximations can be invoked [15]:
(a) Particles move preferentially along directions of low-
est potential barriers, so that the motion is essentially
one-dimensional between trapping events. (b) The par-
ticles must have initial energy above the barrier. As they
move, they lose energy until they become trapped. (c) The
slowest variable is the energy loss. An estimate of the
time ��E� it takes a particle to traverse the distance to a
neighboring well can be obtained by assuming a constant
energy. One finds ��E� � �1=�

���
2

p
� ln�16=E� for E close to

the barrier. (d) One can separately estimate the energy
actually lost due to slow dissipation in such a traversal.
The result is �E � �

���
8

p
��. (e) The distance l�E� trav-

eled by a particle of initial energy E before being trapped
then is l�E� � ��E=�E� � �E=

���
8

p
�. (f) The mean

squared displacement is the average of l2�E� over the
initial Boltzmann distribution of energies, which gives
hl2i � ��T =2��2. Standard results [14] lead to �0 � 1=�
[16], but now hl2i � ��2 [15]. The result is

D�
�T
4�

e�1=T ; (4)

that is, again an inverse dependence on friction. The
theoretical diffusion coefficient as a function of the fric-
tion parameter is shown as the solid curves in the inset of
Fig. 2. The symbols are the simulation results. The ��1

dependences have been noted in the literature [7],
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but we have provided explicit forms with no adjustable
parameters.

The diffusion coefficient characterizes only the very
long-time asymptotic dynamics. The interesting inter-
mediate dynamics in the low friction regime that gives
rise to long stretches of ballistic motion is reflected in the
probability distribution function (PDF) P�r; �� of particle
displacements r at time �. This PDF is shown in Fig. 3 for
� � 0:0004 and four different time intervals �. For com-
parison, we also show a typical PDF for high damping
(� � 1) at the intermediate time interval. In the high-�
curve the highest maximum corresponds to no jumps (by
far the most likely event at short times). The next is
associated with jumps to a nearest neighbor well, and
so on. In contrast, the low-� curves show a very different
behavior, with features strongly resembling those of a
Lévy-walk model [10,17]: a peak at small displacements,
a power-law intermediate regime, and a side hump at high
displacements. Each of these is a distinct signature of
Lévy-walk-like dynamics, but one must be cautious in
the detailed interpretation of these components. The per-
sistent small displacement peak is associated with long
trapping periods during which a particle does not move at
all because its energy is not sufficient to overcome the
barrier. The high displacement peak, which moves out-
ward with velocity of order unity, is associated with the
ballistic motion of those particles that acquire enough
energy to move (and lose it very slowly). Genuine Lévy-
walk dynamics also exhibit a low displacement peak and
a superdiffusive peak separated by a power-law behavior,
but there are some important differences. First, our dis-
tribution reflects ballistic transport in the intermediate
regime (in the language of Ref. [17], ballistic transport
occurs when 0<�< 1 in the Lévy model), whereas the
regime where the Lévy model shows the features we have
described is associated with sub-ballistic (but still super-
diffusive) behavior (again, in the language of Ref. [17],
the behavior when 1<�< 2). Second, the slope in our
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FIG. 3. Log-log plot of P�r; �� for � � 0:0004 and three
different values of time intervals: � � 20 (squares), 100
(open circles), 1000 (triangles), and for � � 1:0 at the time
interval � � 100 (solid curve).
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power-law regime (approximately 0:7) is not related to
the exponent � in the mean square displacement as it is
for the Lévy walk (where the slope is 4� �). Third, our
side hump is strongly broadened, whereas the side hump
in the Lévy-walk model is associated with motion at a
single constant velocity. In our case the velocity varies
according to the equilibrium Maxwell-Boltzmann distri-
bution. Nevertheless, the qualitative features of our dis-
tribution track those of the Lévy walk. Note that the
existence of the pronounced side hump reflects the fact
that the particles performing long steps (‘‘flights’’) are
those with a velocity in the tail of the Maxwellian dis-
tribution. This latter contribution to the PDF in a potential
system arises from a small subset of particles and is thus
to be distinguished from that of a typical underdamped
free Brownian particle [18]. At long times, �  1=�,
both the long trapping and ballistic features are, of
course, no longer present as diffusive motion dominates
the behavior. Preliminary numerical analysis of the ve-
locity power spectrum agrees with this scenario. Explicit
results will appear in [15].

Disorder in surfaces occurs due to the presence of
vacancies and other defects. As described in [8,19–21],
we have generated a random potential surface described
by a Gaussian distribution with a correlation function
hV�x�V�x0�i � �"=2��02� exp��jx� x0j2=2�02�. We set
the intensity " � 100 and the characteristic length �0 �
4 in our simulations.

The exponent � in hr2���i � �� at intermediate times
shows the entire range of behaviors from subdiffusive to
superdiffusive with changing friction. In Fig. 4 we show
hr2���i=4�, averaged over 5000 particles, as a function of
time, for several values of �. In the overdamped regime
we clearly observe subdiffusive behavior (�< 1) [8],
while superdiffusive (� > 1) behavior is seen for very
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FIG. 4. hr2i=4� for a particle in the random potential for � �
0:0001 (solid line), 0:001 (dotted line), 0:003 (dashed line), and
0:008 (dot-dashed line). The straight-line segment has unit
slope as a guide to the eye. Inset: Exponents � versus friction
coefficient �.
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small �. The exponents �, calculated over the last decade
of the time variation of the mean square displacement
within our finite simulation times, are plotted in the inset
of Fig. 4 as a function of �. Although the subdiffusive
behavior is probably the true asymptotic behavior in the
overdamped case [8], further theoretical and numerical
support are needed to assess whether superdiffusion is the
asymptotic behavior in the underdamped case.

We summarize our findings. We have explored the
behavior of a particle in a two-dimensional potential
subject to thermal fluctuations described by ordinary
Langevin dynamics. In a periodic potential, in the under-
damped regime, the motion of the particle includes a
ballistic range that can extend over many decades of
time. The PDF of the particle’s displacements under these
conditions shows a structure strongly resembling one for
Lévy walks. This may explain a number of observations
involving superdiffusive motion of organic molecules [3]
and atomic clusters [5] on surfaces without the need to
invoke extraordinary fluctuations beyond the usual ther-
mal description. The long-time behavior is diffusive in all
cases, and we have been able to predict theoretically the
dependence of the diffusion coefficient on friction over
essentially the entire range of values of the friction pa-
rameter with no adjustable parameters. The situation in a
random potential is even more complex, and exhibits a
wide range of subdiffusive to superdiffusive regimes.
Further analysis of the random potential case, and a
more extensive presentation of the periodic problem,
will be detailed elsewhere [15].
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