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Driving Rate Effects in Avalanche-Mediated First-Order Phase Transitions
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We study the driving-rate and temperature dependence of the power-law exponents that characterize
the avalanche distribution in first-order phase transitions. Measurements of acoustic emission in
structural transitions in Cu-Zn-Al and Cu-Al-Ni are presented. We show how the observed behavior
emerges within a general framework of competing time scales of avalanche relaxation, driving rate, and
thermal fluctuations. We confirm our findings by numerical simulations of a prototype model.
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Introduction.—The dynamics of first-order phase tran-
sitions (FOPT) in the presence of disorder is a long-
standing problem that is undergoing renewed interest.
Besides the phenomena of nucleation, metastability, and
hysteresis, additional features are presently being revis-
ited: (i) the extension of the transition over a broad region
on the generic temperature-field phase diagram (the field
is the intensive parameter conjugated to the order pa-
rameter); and (ii) the fact that transitions occur through
a sequence of avalanches that link metastable states when
thermal fluctuations are not dominant at low enough
temperatures. These order parameter discontinuities are
associated with the sudden transformation of a fraction of
the system. This behavior is observed in many magnetic
[1–4], superconducting [5,6], and structural [7,8] transi-
tions and in vapor condensation on porous media [9]. In
many cases this phenomenon has been described as
‘‘athermal’’ FOPT [8]. In practice, this means that for
the FOPT to proceed, it is necessary to drive the system
externally by varying the temperature T or the generic
field H. When T and H are constant, no avalanches are
detected even in the case of long waiting times. This
reflects the fact that thermal fluctuations are irrelevant
compared with the high-energy barriers separating the
metastable states, and that temperature acts as a scalar
field. The transformed fraction as a function of time only
depends on the present and past values of T or H, but not
explicitly on time.

In different systems, avalanches have been detected
with a variety of experimental techniques: induction
(Barkhausen) [4,10], magnetization [11], calorimetry
[12], resistivity [5], acoustic emission (AE) [7], capaci-
tance [9], and optical measurements [1,3,13]. In many
cases the statistical distribution of the avalanche proper-
ties (area, duration, etc.) exhibits power-law behavior
over several decades. This has suggested the existence
of criticality and has stimulated the search for universal-
ity in the power-law exponents. However, many different
exponent values have been reported and comparison with
the theoretically predicted universality classes [14–16] is
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controversial. Experimentally accessible quantities such
as the distribution of signal amplitudes are not straight-
forwardly comparable with those obtained in numerical
simulations such as the avalanche sizes. Moreover, the
experimental distributions in some cases show exponen-
tial corrections that make it difficult to obtain the power-
law exponents.

Systematic measurements with well-controlled exter-
nal parameters are scarce. In structural transitions, the
exponent associated with AE distributions has been
shown to depend on repetitive cycling through the tran-
sition. Stationary values, which can be grouped into
different classes, are obtained after a relatively large
number of cycles [17]. For Barkhausen measurements in
Fe films, an increase of the exponent has been found when
temperature is decreased from room temperature to 10 K
[18]. For soft-magnetic materials, two classes have been
proposed [19]: one exhibiting exponents that decrease
with increasing driving-rate r and the other with expo-
nents that are independent of r [20].

In this Letter we present systematic measurements of
the influence of cooling rate r � j _Tj on the distribution
of amplitudes of AE signals in structural transitions.
We analyze two systems with different degrees of ather-
mal character. In one case, the exponent has been found
to decrease with r, while it increases in the other case.
Results are well explained within a general frame-
work, which accounts for the effect of thermal fluctua-
tions. Numerical simulations corroborate the proposed
framework.

Experimental.—The studied single crystals [8] are
Cu68:0Zn16:0Al16:0 and Cu68:4Al27:8Ni3:8, with martensitic
transition temperatures TM � 245 K and TM � 257 K,
respectively. Both transitions extend in temperature
�T � 35 K. Previous results [8] confirmed that the Cu-
Zn-Al behaves athermally for temperature driving rates
larger than a value that is less than 0:1 K=min. This was
verified by checking that the AE activity per temperature
interval as a function of T is independent of r (scaling). In
contrast, Cu-Al-Ni is much less athermal. Although it
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clearly shows avalanche dynamics, the activity does not
scale at the studied driving rates and few isothermal
signals occur. It was estimated that scaling for this sam-
ple will hold for r above 50 K=min.

The AE signals were detected by a piezo-electric trans-
ducer using the experimental setup explained elsewhere
[8]. The samples were cycled through the transition more
than 100 times in order to reach the stationary path.
Individual AE signals were detected during cooling
runs at selected rates and their amplitudes A were ana-
lyzed. The experimentally accessible range is 4�
10�5 V<A< 1:5� 10�3 V. For the Cu-Al-Ni sample
averages, over �10 cycles were also performed in order
to obtain good statistics. The typical number of analyzed
signals for each rate is �105. The temperatures between
which the cycles are performed are always the same: T �
220 K and T � 320 K for the Cu-Zn-Al sample and T �
220 K and T � 340 K for Cu-Al-Ni. The distribution of
AE amplitudes (as well as the size distribution in the
simulations presented below) is studied by the maximum
likelihood method, which is independent of the way
histograms are plotted. We have fitted the data to the
normalized probability law: p�A� � A�
e��A. Two dif-
ferent fits are performed: first, a one-parameter fit of the
exponent 
 by imposing � � 0 and second, a two-
parameter fit of 
 and �. The values of 
 reported here
correspond to the first fitted value, but error bars include
the second fitted value. For the second fit, j�j< 1000 V�1

in all cases, which indicates that differences between the
two fitted functions start to be important outside of the
experimental window. Figure 1 shows the dependence of

 on the rate r. The striking feature is that for the most
athermal case (Cu-Zn-Al), 
 decreases with r while for
the less athermal sample (Cu-Al-Ni), it increases.
Moreover, in both cases, the dependence on r is logarith-
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FIG. 1. Fitted exponents corresponding to the amplitude
distribution of AE signals as a function of the driving-
rate r. The inset shows the exponents corresponding to the
Barkhausen signal integrated amplitudes from Ref. [20]
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mic, as shown by the fitted lines. A decrease of the
exponent of Barkhausen avalanche sizes (area below the
signals) in polycrystalline Si-Fe with increasing rate is
reported in Ref. [20]. We have plotted these data on a log-
linear scale in the inset of Fig. 1, and a good logarithmic
dependence is also observed.

Modeling.—Understanding of the results comes from
the analysis of the relevant time scales involved in the
problem. These are: (i) the time scale of the avalanche
relaxation av. Although avalanche durations are known
to be also power-law distributed over several decades,
the detected values range between av � 10�6–10�3 s.
(ii) The characteristic time associated with the driving
rate dr. This can be conveniently defined as a function of
the extension of the FOPT as dr � �T=r. In our case
from the experimentally accessible rates, dr � 102–104 s.
(iii) The third time scale is associated with the activation
of the FOPT by thermal fluctuations th, which decreases
with temperature. It can be estimated using the model in
Ref. [8]. For Cu-Al-Ni, th & 102 s is obtained (from the
inverse of the fitted value of the characteristic frequency
!). For Cu-Zn-Al, isothermal experiments indicate a
lower bound th > 105 s. This difference is likely to be
due to the different mechanisms (slipping for Cu-Zn-Al
and twinning for Cu-Al-Ni) for the transitions which
exhibit quite a different rate of formation (twinth � slipth )
[21]. Moreover, given that �T=TM � 0:1 is small for the
studied samples, we expect that, in both cases, th does
not depend on r.

The dynamics of the FOPT will therefore be deter-
mined by competition between these three time scales.
In the ‘‘adiabatic’’ limit dr=th ! 0 and av=dr ! 0, i.e.,
when the time scales are well separated av � dr � th,
the avalanches are well defined and both temperature and
finite driving rate do not affect avalanche scaling. When
dr approaches av, the system will still display avalanche
behavior but will start to overlap. Typically, small ava-
lanches merge to form larger signals [22]. This leads to a
decrease in the exponent 
 when av=dr / r increases.
On the other hand, by increasing temperature and or
decreasing driving rate, competition of the thermal fluc-
tuations and driving may produce diverse effects. Strictly
speaking, for any nonzero value of the ratio dr=th / 1=r,
the activity may not stop even at r � 0 until thermal
equilibrium is reached, making the concept of avalanches
difficult to define. Nevertheless, from the experimental
point of view, there is always a threshold below which
signals cannot be detected. Thus, distinct signals can still
be measured for low enough values of dr=th. We expect
that increasing thermal activation (decreasing th) will
help the advance of the FOPT by promoting the trans-
formation of domains which otherwise would not trans-
form under athermal circumstances, thus resulting again
in the merging of small avalanches. On the other hand,
thermal fluctuations may initiate small avalanches when
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the system is slowly driven (dr is large) which will not
initiate at such early fields under fast driving. The poten-
tial effects of the two time scale ratios av=dr and dr=th
on the scaling exponents are shown schematically in
Fig. 2. Generally, for a given system at finite temperature,
driving-rate dependence is determined along the pro-
jected curve on the basal plane. Thus, depending on the
experimentally accessible range of driving rates we can
find an increase of the exponent for the less athermal
samples, a region of constant exponents, or a decrease of
the exponent for the more athermal samples. This en-
larged space of parameters offers a suitable scenario to
understand the present results for the AE measurements,
as well as the behavior observed by large temperature
changes recently reported [18]. The studied case of
Barkhausen avalanches [19,20] represents the limit where
thermal fluctuations can be neglected.

In order to substantiate the above arguments, we have
performed numerical simulations. The prototype model
for hysteresis and avalanches in athermal FOPT is the 3D-
Random Field Ising Model (RFIM) at T � 0 with meta-
stable dynamics [14]. It consists of a ferromagnetic Ising
model with local random fields which are Gaussian dis-
tributed with standard deviation �. The system is driven
from the saturated state by decreasing the external field
H. Spins flip according to a local relaxation rule, which is
responsible for hysteresis. By construction, the model is
in the perfect adiabatic limit av � dr � th � 1. The
first inequality is guaranteed because as soon as one
avalanche starts, H is kept constant until the system
reaches a new metastable state. We will refer to such
dynamics as athermal-adiabatic dynamics. The model
reproduces the existence of avalanches whose size s and
duration �t can be statistically analyzed. In a large region
close to the critical point �c ’ 2:21 [23], the avalanche
sizes corresponding to a full half-loop distribute, to a
good approximation, according to a power law.
Sensitivity of the exponent to system size L and � has
recently been studied in detail [23]. Moreover, given that
τdr /τ th ∝ 1/r

τav
τdr

∝ r

αAthermal-adiabatic
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FIG. 2. Schematic diagram showing the behavior of the
exponent as a function of the relevant time scales. The hyper-
bola on the base plane shows the behavior at constant tempera-
ture when increasing the driving rate.
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the distributions are only approximate power laws, the
exponents also depend on the fitting range.

Extension of the model in order to incorporate the
finite driving rate r � j _Hj and thermal fluctuations ef-
fects is not straightforward. The appropriate enlargement
of the parameter space can be achieved in several ways.
Here we adapt the approach in which the separation of
signals is preserved to a large degree. A first attempt to
incorporate the finite driving rate, which we refer to as
athermal-step-driven dynamics, was proposed in
Refs. [24,25]. (Here we extend this work to lower driving
rates.) It consists of increasing the external field H by a
certain step �H and keeping it fixed until a new meta-
stable situation is reached. The obtained signals are super-
positions of the avalanches of the athermal-adiabatic
model. The statistical analysis shows that the exponent
decreases with the increasing ‘‘rate’’ (quantified by �H).
Results for a system with � � 2:0 are shown in Fig. 3 as
filled circles [26]. Data are compared with the exponent
corresponding to athermal-adiabatic dynamics, which is
shown by a dashed horizontal line. A logarithmic de-
crease with r is obtained in a broad region, in qualitative
agreement with the results obtained for Cu-Zn-Al [27].

Strictly speaking, for the athermal-step-driven dynam-
ics, r is not constant along the hysteresis path. This could
be important since long avalanches are known to concen-
trate on the central part of the hysteresis loop and corre-
lations may exist. In order to check whether or not this
affects the results, we propose other dynamics which we
will call athermal-finite-driving-rate dynamics. Using
the original athermal-adiabatic dynamics, one records
the sequence of avalanches in half a loop (including the
field value for which they occur, their size, and their
duration). For a given finite rate _H, it is possible to
analyze the sequence of recorded avalanches and deter-
mine which of them will overlap. Thus, one can obtain the
10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

rate ∆H,  r 〈 ∆t 〉

1

1,5

2

2,5

ex
po

ne
nt

T=0, step driven
T=0, finite driving
T=0.01
T=0.05
T=0.50

FIG. 3 (color online). Exponents corresponding to the ava-
lanche size distribution as a function of the driving rate
obtained by different numerical algorithms at different tem-
peratures T, as explained in the text.
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modified sequence of signals and perform the statistical
analysis. Results obtained by this method are indicated in
Fig. 3 as open circles. In order to compare it with the
previous data, _H has been multiplied by the average
duration h�ti of the pulses in a half loop. Agreement
with the previous dynamics is very good, thus supporting
the use of step-driven dynamics in simulations.

The numerical results obtained are in agreement with
the behavior proposed in Fig. 2 and correspond to the
dr=th � 0 plane. To simulate the effect of a finite th, we
must modify the dynamics proposed above introducing
the effect of thermal fluctuations, but still keeping sepa-
rate signals. This is achieved by slightly modifying the
step-driven algorithm. After each �H, not only unstable
spins relax, but also an extra small fraction of locally
stable spins is reversed towards the new phase due to
thermal activation. This is done using the Metropolis
algorithm, simultaneously and independently (parallel
updating) for each unreversed spin, with a probability
p � min�1; e��E=T�, where �E is the energy change as-
sociated with the reversal of each spin. During the sub-
sequent evolution of the avalanche, the field is kept
constant and temperature is set to 0. The exponents for
three different temperatures are shown in Fig. 3. As can
be seen, nonmonotonous behavior is obtained, as quali-
tatively illustrated in Fig. 2.

Several models have been previously proposed for the
understanding of the influence of driving rate on the
power-law exponents characterizing signal distributions
[4,22,28,29]. All of them correspond to athermal situ-
ations and account for the decrease of the exponent with
increasing r, as a consequence of the overlap of small
avalanches. In some cases a linear decrease of the ex-
ponents with r is predicted. Our experiments and simu-
lations fit better with a logr dependence. Moreover, we
have also shown that Barkhausen data in Ref. [20] also
conform to this logarithmic tendency. We expect that the
origin of this functional dependence lies in the correlation
between avalanches evolving in the restricted geometry
of the transforming sample rather than in the dynamics
itself. Such correlations have not been taken into account
in previous models that correspond to single advancing
interfaces in magnets [4,28,29] or systems with uncorre-
lated avalanches [22].

Conclusion.—We have shown that the avalanches at
FOPT may exhibit a variety of the driving-rate depen-
dences related to the interplay between the three relevant
time scales. We have, therefore, clarified under which
experimental circumstances one can expect exponents
similar to those predicted in the athermal-adiabatic limit.
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[25] B. Tadić, Eur. Phys. J. B 28, 81 (2002).
[26] The actual values of the exponent obtained with the

different numerical algorithms discussed in this work
depend on �, L, and the fitting range of s. We have
verified that for 2:0<�< 2:4 and L > 20, the qualita-
tive behavior for 2< s < 1000 is that shown in Fig. 3.

[27] The values of the exponents are not comparable since the
simulations correspond to avalanche sizes and the ex-
perimental data correspond to amplitudes of AE signals.

[28] B. Alessandro, C. Beatrice, G. Bertotti, and A. Montorsi,
J. Appl. Phys. 68, 2901 (1990); ibid.68, 2908 (1990).

[29] S. L. A. de Queiroz and M. Bahiana, Phys. Rev. E 64,
066127 (2001).
195701-4


