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Abstract. This paper analyses the rules for free allocation in the EU Emissions Trading System (EU 
ETS). The analysis draws on the empirical evidence emerging from two literature strands. One group 
of studies sheds light on the following questions: how efficient are free allocation rules in minimizing 
the risk of carbon leakage? Have they become more efficient over the trading periods? What are the 
technical limits to making them more efficient? Further: is firm behaviour neutral to allowance 
allocation? Did specific provisions induce strategic behaviour with unintended effects? Studies from 
the second group estimate sectoral pass-through rates for the costs imposed by the EU ETS. Taking cost 
pass-through into account is necessary for properly targeting free allocation. The difficulty of accurately 
quantifying sectoral differences in cost pass-through ability is the main obstacle to achieving further 
efficiency in allowance allocation. The new rules defined in the reform for Phase IV (2021-2030) make 
some progress in this direction nevertheless. In any case, with carbon prices expected to rise and the 
total volume of allowances shrinking, free allocation – however efficient may it be – cannot be the only 
or main measure for preventing carbon leakage in the future. 
 

 

 

1. Introduction 

Since 2005, the EU Emissions Trading System (EU ETS) has been the EU’s prime instrument 

for decarbonising the economy. It caps overall emissions of carbon dioxide, nitrous oxide and 

perfluorocarbons from over 11,000 heavy energy-using and electricity generating installations 

and aircraft, covering about 45% of the EU’s greenhouse gas (GHG) emissions. Still today, it 

remains the world’s largest cap-and-trade system regulating GHG emissions at the installation 

level. The EU ETS is approaching the end of its third trading period, which is called Phase III 

(2013-2020). It will then enter Phase IV (2021-2030) under a newly-revised legislation. The 

rules governing the allocation of emission allowances are a fundamental component of the 

system’s regulation. They have changed significantly across the trading periods as part of wider 

reforms, including the latest reform for Phase IV.  

In a cap-and-trade system such as the EU ETS, emission allowances can be distributed 

to installations by free allocation, through auctions, or a mix of these two allocation methods. 

In the last case, which is the most common among the systems extending beyond the electricity 

sector, the rules for free allocation constitute an area of special interest. The reasons are 



 

twofold. First, free allocation rules can have equity implications related to the distribution of 

scarcity rents (the economic value created by limited supply of emission allowances relative to 

demand) between consumers and producers as well as among the latter. Second, given different 

carbon prices across the world and international competition, the rules can have implications 

for the competitiveness of regulated sectors and ultimately for the environmental effectiveness 

of the system in reducing global GHG emissions. In climate economics and policy, the 

displacement of GHG emissions due to differences in the stringency of mitigation policies is 

called “carbon leakage”. Minimising the risk of market share losses to foreign competitors and, 

thereby, minimising the risk of carbon leakage, is the economic rationale for giving allowances 

for free.  

Crucially, giving allowances away is similar but not equivalent to granting tax 

exemptions. Since they have market value, using preallocated allowances for compliance 

carries an opportunity cost, equal to the revenue that would be earned if (the corresponding 

emissions were avoided and) the allowances were sold. It is therefore legitimate to expect that 

rational profit-maximising firms will factor such opportunity costs in their decisions – as they 

would with real costs. Building on the Coase Theorem (Coase, 1960), the assumption that 

regulated firms take opportunity costs into account, and several other neoclassical assumptions 

about markets (both the allowance market and the output markets) and firm behaviour, underlie 

the “independence property” of cap-and-trade systems (Hahn and Stavins, 2011). The essence 

of the independence property is that the overall emission target is achieved at minimum cost 

irrespective of how the allowances are initially distributed. Economists, while emphasising the 

independence property, tend to focus more on its possible violations, and less on distributional 

implications. Nevertheless, the reality of cap-and-trade systems highlights the political 

relevance of the second. 

This paper analyses the rules for free allocation in the EU ETS with a view to establishing 

whether, how, and why they may have deviated from an ideal setting that reconciles efficiency 

and equity considerations. The analysis draws on the empirical evidence emerging from two 

distinct strands of the EU ETS literature. One group of studies, directly concerned with these 

rules, sheds light on the following questions: how efficient are free allocation rules in 

minimising the risk of carbon leakage? Have they become more efficient over the trading 

periods? What are the technical limits to making them more efficient? Further: is firm 

behaviour neutral to allowance allocation (consistent with the independence property)? Did 

specific provisions induce strategic behaviour with unintended effects? Studies from the 

second group more specifically estimate sectoral pass-through rates for the costs imposed by 



 

the EU ETS. From a regulatory perspective, taking cost pass-through into account is necessary 

for properly targeting free allocation, be it primarily for the purpose of minimising “windfall 

profits” or of minimising the risk of carbon leakage. Thus, reviewing the literature on cost pass-

through allows us to better assess how the allocation rules in operation deviate from perfect 

efficiency. 

Windfall profits are controversial because they entail a wealth transfer from consumers 

to producers that is difficult to justify, raising equity issues. We focus on windfall profits from 

pass-through of opportunity costs, but there are other ways in which firms can profit from 

participation in the EU ETS1. Depending on different factors, including notably the degree of 

international competition and abatement possibilities, it is possible for some firms to increase 

profits by passing through the opportunity cost of free allowances onto output prices. 

Therefore, the quantity of free allowances granted to a firm should be inversely related to its 

ability to pass through the costs of regulation (Vollebergh et al., 1997; Bovenberg and Goulder, 

2000; Quirion, 2003). In practice, precise estimates of cost pass-through ability are difficult to 

derive, especially in manufacturing sectors. Proxies can, and indeed are, used instead. As far 

as the EU ETS is concerned, equity issues related to windfall profits were much more relevant 

in the first two trading periods, when over 90% of allowances were distributed for free. Under 

the current allocation regime and with the volume of free allowances progressively shrinking, 

well-targeted allocations are increasingly important for minimising the risk of carbon leakage. 

The rest of the paper is organised as follows. Section 2 describes the evolution of 

allowance allocation through the trading periods; Section 3 reviews the empirical literature 

assessing free allocation rules; Section 4 reviews the literature estimating cost pass-through 

rates. Section 5 concludes. 

 

2. The evolution of allowance allocation through the trading periods 

In the EU ETS, free allocation rules have significantly changed over the trading periods. To 

understand the empirical literature analysing these rules, one needs to know how allowance 

allocation and the relevant legislation have evolved. 

Both in Phase I (2005-2007) and Phase II (2008-2012), “grandfathering” was the basic 

allocation regime. That is, almost all allowances were distributed free in proportion to 

                                                      
1 The literature identifies four types of windfall profits under the EU ETS: a) from pass-through of opportunity 
costs; b) from overallocation; c) from exploiting the price differential between emission offsets issued under the 
Kyoto Protocol’s flexible mechanisms and emission allowances issued under the EU ETS (de Bruyn et al., 2016); 
and d) from inframarginal rents, arising when marginal producers setting output market prices use more carbon-
intensive technologies. 



 

installations’ historical emissions. A fundamentally different allocation system was 

subsequently adopted. Since Phase III, electricity generation has ceased to receive free 

allowances (with exceptions for some countries) upon clear evidence of high cost pass-through 

and related windfall profits. For all other sectors, targeted free allocation has been applied. The 

current regime of free allocation hinges on: a) the distinction between the sectors “deemed at 

significant risk of carbon leakage” and all others; and b) on the application of emission 

efficiency benchmarks 2 . The recent reform for Phase IV, while not revolutionising free 

allocation, has introduced some relevant changes. 

 

2.1 Phase I (2005-2007) and Phase II (2008-2012) 

In the first two trading periods, determining the total volume of allowances and their allocation 

was the responsibility of national governments. These had to specify their allocation decisions 

in so-called National Allocation Plans (NAPs), which would enter into force at the end of a 

reviewing process directed by the European Commission. The purpose of this process was to 

ensure that final NAPs would meet the criteria set out in the ETS Directive (European 

Parliament and Council, 2003). 

Concerning allocation rules, the ETS Directive imposed two fundamental limits. First, 

governments could auction up to 5% and 10% of the total number of allowances in Phase I and 

Phase II, respectively. Accordingly, the vast majority of the allowances were given away for 

free. In fact, many countries decided not to auction any allowances at all. Second, the ETS 

Directive did not allow ex-post adjustments to initial allocations, as these could have induced 

strategic behaviour affecting the allowance market. 

In general, within the boundaries of the ETS Directive, room was left for discretionary 

choices by member states. This meant that allocation rules, while largely harmonised, 

inevitably presented some heterogeneity across countries (Kettner et al., 2008). An example in 

point is that the ETS Directive did not specify how allocation for new installations or for 

closing installations had to be regulated. Almost all member states opted for different new-

entrant and closure provisions, as they are called, whereby new installations are granted free 

allowances and closing installations forfeit theirs. These rules were much debated at the time 

because they could distort investment decisions, thus affecting the cost-effectiveness of the EU 

ETS over the long term (see, e.g., Åhman et al., 2007, and Ellerman, 2008). Moreover, their 

                                                      
2 With benchmarking, an emission rate that characterises emission-efficient production is used as the basis for 
allocations, with appropriate adjustments for the installation’s past or expected production levels.  



 

heterogeneity across countries could distort competition within the European market (Ellerman 

et al., 2010).  

 

2.2 Phase III (2013-2020) 

In 2009, a new Directive was agreed (European Parliament and Council, 2009) reforming the 

EU ETS with effect from Phase III. The overarching institutional innovation was the 

centralisation of the system. The total volume of allowances – the cap – is now determined at 

the EU level and a single set of rules governs their allocation. In Phase III, the cap decreases 

each year by a linear factor of 1.74% compared to 2010 (the midpoint of 2008-2012), reaching 

in 2020 a level 21% below 2005 emissions. At the same time, the allocation regime was 

radically changed. While very limited in the first two trading periods, auctioning has become 

the default allocation method for electricity generating installations3. For all other installations, 

benchmarked allocation was introduced. 

The application of emission efficiency benchmarks is combined with the identification 

of the sectors at risk of carbon leakage. Installations in the sectors deemed at significant risk of 

carbon leakage are given free allowances covering 100% of their benchmarked emissions. The 

level of benchmarked emissions is determined by multiplying the relevant benchmark by the 

installation’s recent output level 4 . As a rule, the benchmark corresponds to the average 

performance of the 10% most efficient installations over 2007-2008. The European 

Commission developed 52 product-specific benchmarks and two “fallback approaches” based 

on heat and fuel consumption (European Commission, 2011). For the installations not falling 

in a sector at risk of carbon leakage, free allocation is less generous. For them, free allowances 

cover progressively smaller shares of benchmarked emissions: from 80% in 2013 to as little as 

30% in 2020. 

The identification of the sectors at risk of carbon leakage is based on two indicators (4-

digit NACE5) computed at the EU level: Carbon (cost) Intensity (CI) and Trade Intensity (TI). 

                                                      
3 By derogation, some member states, among those with a GDP per capita below 50% of the EU average, can 
continue free allocation to installations generating electricity in exchange for their modernisation of the sector and 
for the diversification of the energy mix. In addition, the 2009 ETS Directive introduces a redistribution 
mechanism operating through cross-country allocation of the allowances to be auctioned. 88% of these are 
allocated to member states in proportion to their emission volumes in year 2005. 10% are distributed to the least 
wealthy member states as an additional source of revenue to help them invest in climate change mitigation and 
adaptation. The remaining 2% are given as a bonus to member states which, by 2005, had reduced their emissions 
by at least 20%, compared to their base year under the Kyoto Protocol. 
4 In Phase III, this level is the highest between median production over 2005-2008 and median production over 
2009-2010. 
5 NACE is the statistical classification of economic activities in the EU. 



 

CI measures the potential significance of carbon costs as in the maximum impact that carbon 

prices could have on the sector. CI is given by the ratio of a) the sum of direct and indirect 

emissions6, valued at €30/tCO2, to b) the gross value added. TI, which measures the openness 

of the sector to international competition, is a proxy for the inability to pass through additional 

costs without loss in international market share. It is defined as the ratio between a) the total 

value of exports and imports (to- and from non-EU countries) and b) the total EU market size, 

which is equal to the sum of turnover and imports (European Commission, 2009). A sector is 

then classified as being at risk if one or more of the three following thresholds is exceeded: CI 

>30%; TI >30%; and the double threshold CI >5% & TI >10%. The first “carbon leakage list” 

was defined in 2009, for the years 2013 and 2014. Out of 258 sectors, 165 were classified as 

being at risk. The second list was defined in 2014 for the years 2015-2019. 

Because the aggregate amount of preliminary free allocation calculated by member states 

exceeded the maximum amount of allocation available, a uniform cross-sectoral correction 

factor (CSCF) has been applied to all installations. In 2013, the CSCF reduced the total number 

of free allowances by 5.7% (European Commission, 2013). Since the cap declines over time, 

the CSCF increases with it, reaching 17.6% in 2020. The CSCF mechanism has proved 

contentious because it implies that even the most efficient installations do not receive enough 

free allowances to cover 100% of their initial emissions7. 

 

2.3 Phase IV (2021-2030) 

In March 2018, the reform for Phase IV became law after over two years of negotiations 

(European Parliament and Council, 2018). The reform has three main objectives: strengthening 

the price signal by reducing the cap at a faster pace8,9, better-targeting free allocation, and 

supporting low-carbon innovation and energy sector modernisation (in lower-income member 

states) through dedicated funding mechanisms based on auction revenues (the Innovation Fund 

and the Modernisation Fund). 

Focusing on free allocation, the main new provisions are the following. First, as a rule, a 

sector will be classified as being at risk of carbon leakage if the product of the carbon emissions 

                                                      
6 Indirect emissions are those resulting from the generation of purchased electricity consumed by the entity. 
7 The formula of free allocation in Phase III is reported in the Appendix. 
8 The linear reduction factor applied in Phase IV will be 2.2%. The cap reaches in 2030 a level 43% below 2005 
emissions. This level is consistent with the EU’s mitigation target for 2030 (40% reduction of overall GHG 
emissions below 1900 levels) set in the 2030 Climate and Energy Framework. 
9 The strengthening of the price signal is also pursued through the enhancement of the Market Stability Reserve 
mechanism. For an analysis of how changes in different key parameters of allowance supply would impact on 
allowance price paths in Phase IV and beyond, see Perino and Willner (2017). 



 

intensity indicator (CeI) (expressed in terms of KgCO2 per Euro of gross value added) and the 

TI indicator, 𝐶𝑒𝐼 × 𝑇𝐼, exceeds 0.2. As this rule is more stringent than the one applied in Phase 

III, the number of sectors classified as being at risk will shrink10. Second, to better align 

allocations with actual production levels, allocations will be adjusted in case of output 

variations exceeding +15% (increases) or -15% (decreases)11. Third, to limit the use of the 

CSCF (if needed), the share of allowances to be auctioned will be reduced instead of applying 

the CSCF, by up to 3% of the total quantity of allowances. Other rules relevant to free allocation 

have not significantly changed from Phase III. 

 

3. Empirical literature on free allocation rules 

This section provides a comprehensive review of the empirical literature analysing free 

allocation rules in the EU ETS. The works found (12) are grouped as follows. Four studies 

focus on the rule used in Phase III for identifying the sectors at risk of carbon leakage. Two 

studies look at benchmarking: one showing its distributional merits compared to 

grandfathering, the other pointing to its limitations. Three studies test for whether allocation 

endowments affected firms’ operational decisions. Finally, three papers investigate whether 

ex-post allocation adjustments, related to closing installations or to major output reductions, 

induced strategic behaviour. 

 

3.1 Identification of the sectors at risk of carbon leakage 

As of Phase III, a key free allocation rule is the one determining which sectors are to be 

considered at risk of carbon leakage. As previously explained, the rule involves the exceeding 

of at least one of three thresholds: for carbon intensity (CI), for trade intensity (TI), and for 

both CI and TI considered simultaneously. Four empirical studies were found assessing this 

rule. The studies are concordant in indicating that the rule is too lenient. That is, it results in 

too many sectors being classified as being at risk of carbon leakage, some of which are in fact 

most likely not at risk. 

The study by de Bruyn et al. (2013) is chronologically the first. In 2009, the European 

Commission compiled the first carbon leakage list. It comprised over 60% of all regulated 

sectors, representing about 95% of industrial emissions. Using the same data and methodology 

                                                      
10 According to the European Commission, of the 177 sectors currently classified as at risk, only about 50 will 
continue to be classified as such. However, the reduction in terms of emissions is smaller than the reduction in 
terms of sectors (European Commission, 2015).  
11 Variations are relative to production levels considered for determining initial allocations. They are calculated 
as rolling two-year averages. 



 

of the European Commission, the authors find that the number of sectors classified as being at 

risk would shrink by 50% if the calculations were updated to reflect the new economic context. 

In terms of emissions, the difference would be even bigger, as free allocation would only cover 

10% of industrial emissions. Specifically, two parameters are revised. First, the authors assume 

an average carbon price, for Phase III, of €12/tCO2, instead of €30/tCO2. Second, they assume 

benchmarked allocation to cover 80% of emissions from the sectors deemed at significant risk, 

instead of 40%. In addition, sectoral TI indicators are recalculated excluding the trade flows 

between the EU and the countries that, in the meantime, joined the EU ETS.  

Using the responses from interviews with more than 400 managers of regulated firms in 

six European countries12, Martin et al. (2014a) measure firm vulnerability to carbon leakage. 

On a five-point scale, the vulnerability indicator measures managers’ expected risk of closing 

or relocating the firm outside the EU because of carbon pricing. The results indicate this risk 

to be generally low13. The study makes the important point that free allocation is efficient if it 

equalises, across firms, the marginal propensity to relocate weighted by the relocation damage. 

The damage could be the displacement of emissions or jobs, or a combination of the two, 

overseas. The problem is that firms’ propensity to relocate is not publicly observable and, if 

self-stated, it could be manipulated. Yet, the authors demonstrate through simulations that 

simple allocation rules based on observable firm-level variables, such as emissions and the 

number of employees, can be more efficient than the allocation system in force. 

Martin et al. (2014b) explore the correlations between the same indicator of carbon 

leakage vulnerability used in Martin et al. (2014a), and both the CI and the TI indicators used 

by the European Commission. Self-stated relocation risk is found to be strongly correlated with 

CI but not with TI. Yet, most sectors are classified as being at risk exclusively because TI is 

high. Thus, two changes to the official rule are proposed. First, sectors with high TI should 

qualify as being at risk only if CI is high too. Second, in the calculation of TI, only trade with 

less developed countries, rather than with all non-EU countries, should be considered. If these 

criteria were applied, the number of sectors classified as being at risk would halve. 

Using national statistics for Germany and the UK, Sato et al. (2015) show the 

significance of variation both in sectoral CI and TI across countries and, therefore, the 

inefficiency of EU-aggregate CI and TI indicators in identifying sectors at risk at the national 

                                                      
12 The interviews were carried out in 2009. 
13 The sectors that are the most vulnerable are: other minerals, glass, iron and steel, and cement, the respective 
mean values of the vulnerability indicator ranging between 2.5 and 3.5. Other sectors, such as food and tobacco, 
fabricated metals, and vehicles, are significantly less vulnerable than the average. 



 

level. Cross-country variation in CI is due to differences in production processes, technologies 

and fuel mix14, as well as in sector classifications and data quality. Sectoral TIs are also shown 

to vary considerably across countries. TI is also criticised for being a highly imperfect proxy 

for cost pass-through inability. The authors recommend that measures addressing carbon 

leakage should be more focused, targeting narrower subsectors. While such measures would 

remain homogenous in the EU, more factors should be considered for assessing carbon leakage 

risk at a less aggregate level. 

 

3.2 Benchmarking 

As of Phase III, emission efficiency benchmarks are applied for determining initial allocations. 

The main purpose of benchmarking is to give regulated firms an additional incentive for 

reducing emissions. However, while studies estimating the effect of benchmarking on emission 

abatement still do not exist – as far as we are aware –, the two summarised below analyse the 

impact of benchmarking on how well-targeted allocations are.  

Sartor et al. (2015) investigate the efficiency and distributional implications of free 

allocation in Phase III in a comparison with the previous trading periods. The study offers three 

main results. First, it is estimated that the application of benchmarks alone reduced the total 

quantity of free allowances by about 20% relative to Phase II while still sufficiently shielding 

regulated industries from the risk of carbon leakage. Second, following the switch to the new 

allocation regime, the redistribution of free allowances across sectors has been small between 

countries and much more significant within countries. Third, this redistribution within 

countries represents an efficiency improvement, as the authors show that, before, significant 

shares of the allocations to installations producing cement were not explained by historical 

emissions. The conclusion is that free allocation clearly improved, both with respect to 

efficiency and equity, thanks to the harmonisation of the rules and the introduction of 

benchmarking. 

Stenqvist and Åhman (2016) focus on the adequacy of different benchmarks, showing 

how well-suited benchmarks are for homogeneous sectors, but significantly less so for highly 

heterogeneous ones. The allocation results of the application of the benchmarks are compared 

for the cement industry and for the pulp and paper industry in three countries, namely Sweden, 

France and the UK. In Europe, while the cement sector is highly homogeneous, the pulp and 

                                                      
14  The authors also indicate more specific factors, including cross-country sectoral differences in process 
emissions, recycling rate and product mix.  



 

paper sector is highly heterogeneous with respect to products, infrastructures and fuel mixes. 

In this sector, the use of benchmarks biased towards a fossil fuel-mix and based on energy use, 

rather than on emission intensity, leads to allocations that do not necessarily represent the 

average performance of the top 10% emission-efficient installations. Sweden’s pulp and paper 

sector provides a striking example, as the imperfections of the benchmarking system result in 

significantly higher allocations than in Phase II. 

 

3.3 Endowment effect 

In the cap-and-trade literature, the endowment effect refers to a situation in which free 

allocations affect production decisions. The endowment effect is usually explained with firms 

undervaluing (not fully internalising) the opportunity cost of using free allowances for 

compliance. Its presence indicates a loss in cost-effectiveness. We have found three studies 

specifically devoted to testing for the presence of an endowment effect in the EU ETS. 

Reguant and Ellerman (2008) exploit a non-linearity in the allocation rule for coal plants 

in Spain, in Phase I, to test for the relevance of initial allocations to emission abatement 

outcomes. The evidence suggests no systematic relationship between the initial endowment 

and production decisions. Zaklan (2016) investigates the same question. Exploiting time and 

cross-country differences in allocation rules, he tests whether, with Phase III, the switch from 

free allocation to auctioning affected emissions from electricity-producing installations. No 

evidence of an endowment effect is found save for a subsample of small emitters. The author 

also argues that endowment effects are more likely to occur for manufacturing installations, 

especially small ones, as they tend to be less active traders than electricity producers. This 

conjecture finds support in the analysis by De Vivo and Marin (2018), who test for whether 

granting more generous allocations to the installations in sectors classified as being at risk of 

carbon leakage affected their emission abatement behaviour. It turns out that indeed these 

installations appear to have reduced emissions less than other regulated manufacturing 

installations. The authors also suggest that exposure to international competition in 

manufacturing sectors means that some firms may prefer not to fully pass through opportunity 

costs. 

 

3.4 Closure provisions and activity level thresholds 



 

In the EU ETS, closing installations forfeit their allowance endowments, because – this is the 

rationale – they no longer need them15. The issue with this arrangement is that it incentivises 

delay in the closure of uneconomic installations. Delayed closures imply that windfall profits 

have accumulated. Precisely to prevent delayed closures and, more generally, to reduce 

windfall profits in cases of major output reductions, since Phase III allocations are adjusted ex-

post on the basis of activity level thresholds. Three studies analyse the unintended effects of 

closure provisions and of activity level thresholds. 

Verde et al. (2018) show that installation exits from the EU ETS (due to closure or partial 

closure) were concentrated in the final years of Phases I and II (2007 and 2012). As closure 

provisions create an incentive to delay exit, the authors investigate whether they explain at least 

in part the observed pattern of installation exits. A hazard model for the risk of exit is estimated, 

controlling for several installation and firm-level variables, as well as for higher-level factors. 

On average, estimated risk evolves differently depending on whether an installation receives 

free allowances. Strong evidence of the delay effect is found, as only for installations receiving 

free allowances is the risk of exit time-dependent, steeply increasing the final year of a trading 

period, especially Phase II. 

As of Phase III, to reduce windfall profits of low-activity installations, those whose 

output falls below 50%, 25%, or 10% of the historical level, see their allocations reduced by 

50%, 75% and 100%, respectively. However, producers may respond to these thresholds by 

increasing output strategically. Comparing emissions in the cement sector before and after the 

thresholds were introduced, Neuhoff et al. (2014) point to this type of strategic behaviour. 

Interviews with managers confirm their hypothesis. Branger et al. (2015) extend the analysis 

and estimate that, in 2012, the activity level thresholds induced excess cement clinker 

production of 6.4 million tonnes (5% of total EU output). This resulted in distorted trade 

patterns and, in some cases (notably Spain’s and Greece’s), reversals of carbon intensity 

improvements. 

 

4. Literature on cost pass-through rates 

In economics, the usual measure of cost pass-through is the Pass-Through Rate (PTR), which 

quantifies the change in output prices relative to a given cost shock. The PTR is expressed in 

percentage terms, so that, for example, a carbon cost PTR of 85% indicates that a €1 increase 

                                                      
15  In the first two trading periods, defining free allocation rules for new and closing installations was the 
responsibility of member states. Most if not all member states except Sweden, adopted closure provisions 
conditioning free allocation on continued production activity (Verde et al., 2018). 



 

in carbon prices results in a €0.85 increase in output prices. We have identified 20 econometric 

studies providing sectoral estimates of PTRs for the costs imposed by the EU ETS. The 

majority of these studies derive PTR estimates for the electricity sector using data from Phases 

I or II, or both. In the following, the results of this literature are illustrated. The first half of the 

review covers the studies providing PTR estimates for the electricity sector. The second covers 

those relevant to regulated manufacturing sectors. 

 

4.1 Electricity sector 

The prevalence of studies for the electricity sector is explained by data availability and quality 

as well as by an interest in quantifying potentially large windfall profits, given the combination 

of expected high PTRs and free allocation in the first two trading periods. Not least, electricity 

prices are a central variable of the economic system, as electricity is a basic production input 

and a basic consumption good. 

The empirical literature shows that, in Phases I and II, the opportunity costs of free 

allowances granted to electricity producers were largely passed through to output prices. Two 

features of electricity markets explain why this could happen: the very limited exposure of 

producers to international competition and the very low elasticity of electricity demand. There 

is thus ample evidence that electricity producers were able to profit from regulation. Keppler 

and Cruciani (2010) estimate that, during Phase I, €19 billion windfall profits per year accrued 

to the European electricity sector. 

Table 1 reports the results of the literature at hand. While being generally high, estimated 

PTRs exhibit significant variation. Different factors are behind this. First, different econometric 

techniques are used. Single Equation Models (SEMs) and, within the framework of co-

integration, Vector Error Correction Models (VECMs) are the two most popular approaches. 

Except for Honkatukia et al. (2006), estimated PTRs from VECMs tend to be lower compared 

to those derived from SEMs16. Second, different energy mixes, in different countries, can 

determine different PTRs. These will be higher if, at the margin of the supply curve, commonly 

referred to as the “merit order”, electricity prices are set by plants using more carbon intensive 

technologies. Third, since which plant sets the market price also depends on the demand level, 

                                                      
16 VECMs are supposed to be more accurate than SEMs because they control for dynamic interactions among all 
the independent variables. A second technical distinction can be made between the studies using electricity 
forward prices (typically, one-year ahead) and those using spot prices (one-day ahead). The choice of which prices 
to use for estimation is not neutral. On the one hand, spot prices are more volatile, less driven by fuel or carbon 
costs and more influenced by unforeseen events such as plant outages or weather shocks. On the other hand, 
greater data variation is useful for parameter identification (Hintermann, 2016). 



 

most studies distinguish between peak hours and off-peak hours. Given the merit order curve, 

cost pass-through tends to be higher during peak hours. Also, for some producers, bidding 

below marginal cost may be convenient to avoid switching off plants only for a few hours 

(Fabra and Reguant, 2014). Fourth, both market power and excess generation capacity matter 

(Chernyavs’ka and Gullì, 2008). The more concentrated the market is, the higher pass-through 

is likely to be. Conversely, the more extra capacity is available, the lower pass-through is likely 

to be. 

 

Table 1. Estimates of carbon cost PTRs for the electricity sector 

Study Period Country 
Electricity 
price 
(spot/forward) 

Approach 
Average 
PTR 

Peak 
PTR 

Off-peak PTR 

Sijm et al. (2006) 2005 DE, NE F SEM - 
117% (DE), 
78%(NE) 

60% (DE), 
80%(NE) 

Honkatukia et al. 
(2006) 

2005-2006 FI S VECM 75-95% - - 

Fezzi and Bunn 
(2009) 

2005-2006 UK S VECM 32% - - 

Sijm et al. (2008) 2005-2006 
FR, DE, IT, PO, 
ES,SW, CZ, NE, 
UK 

S and F SEM 
38-134% (F), 0-
200%(S) 

- - 

Fabra and 
Reguant (2014) 

2005-2006 ES S SEM 86% 100% 60% 

Zachmann and  
Hirschhausen 
(2008) 

2005-2006 DE F VECM Asymmetric PTR - - 

Chernyavs’ka 
and Gullì (2008) 

2005-2007 IT S Other* - 
>100% if scarcity 
of capacity 

100% 

Fell (2010) 2005-2008 SW,FI, DN, NO S VECM - 40-70% 60-95% 

Thoenes (2014) 2008-2010 DE S VECM 36% - - 

Jouvet and Solier 
(2013) 

2005-2011 EU S and F SEM >100% - - 

Freitas and da 
Silva (2013) 

2008-2011 PT S VECM 51% - - 

Hintermann 
(2016) 

2010-2013 DE S SEM  111% 81% 

Huisman and 
Kilic (2015) 

2007-2013 UK, DE F Other** 
47-76% (UK), 20-
90% (DE) 

- - 

Freitas and da 
Silva (2015) 

2008-2013 ES S VECM - 24% 25% 

Note: * Load duration curve; ** Kalman filter approach. 
 

 

4.2 Manufacturing sectors 

Compared to the electricity sector, cost pass-through in manufacturing sectors is much more 

difficult to analyse. This is firstly because price information for manufacturing products and 



 

for their inputs may well not be available or sufficient. Secondly, product heterogeneity implies 

that, within a sector, market conditions relevant to cost pass-through, such as the degree of 

international competition, the degree of internal market concentration, transportation costs and 

spare production capacity, can be very diverse (de Bruyn et al., 2015). Thirdly, some of these 

conditions may vary across countries and, in international markets, the position of a country 

along the supply curve may matter too. For these reasons, PTR estimates both are few relative 

to the number of regulated sectors and can be highly variable across countries. 

As far as the methodology is concerned, while all the studies reviewed use the 

cointegration framework, two approaches can be distinguished with respect to the identification 

strategy. With the cost-price approach, which is the standard one (by far the most common), 

the product’s price is explained by the prices of its input components (e.g., labour, capital, 

energy, materials) and by carbon prices. De Bruyn et al. (2010a, 2010b) introduce the market-

equilibrium approach. This approach rests on the assumption that markets are internationally 

integrated, to the extent that an equilibrium relationship exists between domestic and foreign 

prices. In the typical model, the (domestic) EU price of the given product is explained by the 

corresponding US price, the carbon price and the exchange rate. The attractive aspect of the 

market-equilibrium approach is information parsimony. Its potential weakness, on the other 

hand, are the assumptions regarding market integration and price adjustments. 

 

Table 2. Estimates of carbon/energy cost PTRs for manufacturing sectors 

Study Approach Cement Ceramic Chemicals Glass Iron and 
steel 

Pulp and 
paper 

Refining 

Alexeeva-Talebi 
(2010) [1] 

Cost-price 100%(DE)  100%(DE) 0%(DE)  
0-38%(DE) 
[9] 

 

Alexeeva-Talebi 
(2011) 

Cost-price       100%(EU) 

de Bruyn et al. 
(2010a, b) 

Market- 
equilibrium 

  
33-100% (EU) 
[5] 

 
>100% 
(N.EU) 

 >100%(DE) 

de Bruyn et al. 
(2015) 

Cost-price 

20%(FR), 
40%(DE), 
90-100% 
(CZ, PL) 

 
0%(N.EU, NL), 
100%(EU) 
[6] 

0%(ES, DE), 
40%(FR), 
60%-100% 
(IT) 
 

55-100(EU)  
80-100% (IT, 
BE, FR, DE, 
GR) 

Oberndorfer et al. 
(2010) [3] 

Cost-price  
30-100% (UK) 
[4] 

50-100% (EU) 
[7] 

0-25%(UK) 
[8] 

  50-75% (UK) 

Note: (1) Unless differently specified, values refer to electricity PTR. (2) Values refer to energy PTRs, except for Refining. (3) 30% for bricks, 
100% for ceramic goods. (4) 33% for PS, 100% for PE and PVC. (5) 0% for two fertilisers, 100% for other fertilisers and petrochemicals. (6) 
50% for fertilisers, 100% for PE. (7) 0% energy cost PTR for container glass, 20-25% for hollow glass. (8) Overall labour, material and energy 
costs PTR: 0% for paper and paper board, up to 38% for household and toilet paper. 

 

 



 

Table 2 reports the PTR estimates found in the literature. Some PTR estimates refer to 

electricity costs or to other input costs larger than carbon costs17. Very high PTRs are observed 

for some sectors, notably the refinery sector and the iron and steel sector, while lower PTRs 

are observed both for the pulp and paper sector and for the glass sector. Other sectors exhibit 

wide PTR ranges. This is especially true for the chemicals sector and for the ceramics sector, 

within which different products with different market characteristics are analysed. The 

empirical evidence on cost pass-through is reviewed below sector by sector. 

 
Cement 

Two relevant studies were found for the cement sector. One by Alexeeva-Talebi (2010), for 

Germany, analyses pass-through of electricity-, materials- and labour costs during Phase I. 

Producers are found to pass through up to 73% of cost shocks and 100% of electricity cost 

shocks. De Bruyn et al.’s (2015) study covers several European countries during Phases I to 

III. Depending on data availability, different products are considered, specifically Portland 

cement (the most common type), total cement (all types of cement) and clinker (a semi-

processed product). For Portland cement, almost full pass-through (90-100%) of carbon costs 

is found in Poland and the Czech Republic. By contrast, for total cement, PTRs range from 

20% in France to 40% in Germany. For clinker, estimated PTRs are around 35-40%. 

Considering the low transportability of cement, estimated PTRs are perhaps not as high as one 

might expect (except for Poland’s and Czech Republic’s results). The authors suggest three 

possible explanations, which relate to production overcapacity, long-term contracts (in the 

presence of which empirical models cannot properly capture the effect of carbon prices) and 

the incentive to increase production associated with activity level thresholds (see Section 3.3 

above). 

 

Ceramics 

For the ceramics sector, only one study was found (Oberndorfer et al., 2010). Here, the 

estimated PTRs refer to energy costs. Pass-through for ceramic goods and ceramic bricks, in 

the UK, are analysed. While full pass-through (100%) is found for ceramic goods, a PTR of 

30-40% is estimated for ceramic bricks used in construction. The fundamental differences 

between the two types of products underlie the different results. 

 

                                                      
17 Using larger shares of variable costs helps econometric identification of PTRs. 



 

Chemicals 

The chemicals sector comprises many subsectors and products. The literature mainly focuses 

on two subsectors: petrochemicals and fertilisers. Concerning the first, different types of 

plastics are considered, notably polyethylene (PE), polystyrene (PS), polyurethane (PUR), 

polypropylene (PP) and polyvinylchloride (PVC). As to the second, ammonium products and 

nitrogen compounds are the goods most frequently analysed.  

De Bruyn et al. (2015) offer the most comprehensive analysis of cost pass-through for 

chemicals. The models for the prices of petrochemicals include, as explanatory variables, the 

naphtha price (naphtha being the main input), the price of emission allowances and other 

potentially relevant variables, such as energy prices, output and stock indices, wages, interest 

rates and the euro-dollar exchange rate. The estimated PTRs generally exceed 100%.  The same 

approach is used for fertilisers, except for the naphtha price being replaced by the natural gas 

price. PTRs over 100% are derived for ammonium nitrate (UK), calcium ammonium nitrate 

(Germany), urea (North Western Europe - NWE) and urea ammonium nitrate (France). By 

contrast, those for ammonia (NWE) and urea (Netherlands) are not particularly significant. 

Limited transportability is the main explanation for the very high PTRs in this sector. 

The above results are largely consistent with those of previous studies. Using the market-

equilibrium approach, de Bruyn et al. (2010a, 2010b) find full pass-through both for PE and 

PVC. For PS, which has higher carbon content, the resulting PTR is 33%. In Germany, 

Alexeeva-Talebi (2010) finds full pass-through of electricity costs for most of the chemical 

products considered. In the UK, Oberndorfer et al. (2010) find energy cost PTRs of 100% and 

50% for, respectively, PE and fertilisers. 

 
Glass 

Analyses of cost pass-through for the glass sector are limited by the lack of data. Hollow glass, 

which makes 50-60% of the EU’s total glass production, is the only type of glass for which 

multiple PTR estimates exist. Estimates for flat glass (25% of the European glass production, 

mainly supplied to the building and automotive industries) were not found. For hollow glass, 

de Bruyn et al. (2015) find null carbon cost PTRs both for Germany and Spain, a PTR of 40% 

for France and one of 60-100% for Italy. Alexeeva-Talebi (2010) and Oberndorfer et al. (2010) 

analyse energy costs pass-through, also for hollow glass, in, respectively, Germany and the 

UK. The first finds null PTR, while the second find a PTR of 0-25%. Alexeeva-Talebi (2010) 

also finds non-significant PTRs for fibre glass and for “other processed glasses”.  



 

In general, except for high pass-through found in Italy, the evidence indicates null to low 

cost pass-through for hollow glass. De Bruyn et al. (2015) relate this result to strong 

international competition and to market conditions whereby the main input (soda ash) is 

supplied by a small number of companies and demand is dominated by a few large 

multinational firms. Furthermore, as carbon cost is a small share of total production costs 

(about 1% for hollow glass), pass-through is difficult to detect. 

 
Iron and steel 

Using the market-equilibrium approach, de Bruyn et al. (2010a, 2010b) analyse carbon cost 

pass-through for hot and cold rolled coil (two representative steel products) in Northern 

Europe. PTRs over 100% are found for both products. In a follow-up study, de Bruyn et al. 

(2015) repeat the analysis using the cost-price model and extending country coverage. For hot 

rolled coil, PTRs of 75% and over 100% are found in Northern Europe and Southern Europe, 

respectively. For cold rolled coil, estimated PTRs are 85% and 55%, in the same order. 

Different factors underlie this range of high PTRs. On the one hand, transportation costs play 

a role in limiting imports18. On the other, the fall in demand following the economic crisis and 

expansion of steel production in Asia resulted in lower utilisation rates in Europe’s steel 

production capacity. Under such circumstances, keeping prices competitive becomes even 

more important, which may explain incomplete PTRs (<100%).  

 

Pulp and paper 

Little empirical evidence on cost pass-through in the pulp and paper sector exists. The evidence 

we have is not specific to carbon costs, which make up less than 1% of total production costs. 

Electricity costs are instead significant, as they usually represent about 10% of total costs. 

Alexeeva-Talebi (2010) finds that, in Germany, the paper industry can pass-through only a 

small fraction, if any, of its cost shocks. A maximum cost PTR (taking together the costs of 

labour, energy and materials) of 38% is estimated for household and toilet paper, while no 

pass-through is found for paper and paperboard.  

 

Refining 

                                                      
18 According to Reinaud (2005), considering transportation costs and assuming full pass-through by European 
producers, carbon prices would need to be around €28/tCO2 for Chinese steel to compete with marginal steel 
production in Europe. 



 

Using the market-equilibrium approach, de Bruyn et al. (2010a, 2010b) find carbon cost PTRs 

in Germany to be over 100% for petrol, diesel and gasoil. These findings are confirmed by a 

follow-up study (de Bruyn et al., 2015), which uses the cost-price approach. Only slightly 

lower PTRs, ranging from 80% to 100%, are found for petrol in Belgium, France, Germany 

and Italy. Looking at 14 European countries, Alexeeva-Talebi (2011) also finds extensive 

evidence for full pass-through of carbon costs. In the UK, Oberndorfer (2010) estimates lower 

PTRs of 75% and 50% for, respectively, petrol and diesel. 

The two cross-country studies, namely Alexeeva-Talebi (2011) and de Bruyn et al. 

(2015), stress the roles of low demand price elasticities and of heterogeneous emission 

intensities. Both unresponsive demands and the small weight of carbon in total fuel production 

costs (about 2%) explain high PTRs. However, these may be reinforced by differences across 

countries in emission intensities: if the plant setting the price passes through 100% of its carbon 

costs, more efficient plants can increase profits by passing through more than 100% of their 

carbon costs. 

 

5. Concluding remarks 

In the history of the EU ETS, Phase III represents a turning point with respect to how emission 

allowances are allocated: the principle of “free-allocation as the norm and auctioning as an 

option” was replaced by “auctioning as the default and free allocation as the exception”. This 

change reflected the political will to address the equity issue of large windfall profits accruing 

to firms in certain sectors, notably the electricity sector, at the expense of the general public in 

the form of foregone fiscal revenues. However, because the EU ETS also covers manufacturing 

sectors exposed to international competition, targeted free allocation remained necessary for 

safeguarding their competitiveness and, thereby, for minimising the risk of carbon leakage. 

The ultimate purpose of the rule for identifying the sectors at risk of carbon leakage is indeed 

to preserve the environmental effectiveness of the system, and to do it efficiently. The 

application of emission efficiency benchmarks was the second major innovation concerning 

allowance allocation brought in with Phase III. Benchmarked allocation is potentially very 

important because it provides additional incentives to abate emissions. 

The new or amended free allocation rules defined in the reform for Phase IV can be 

expected to further improve the efficiency of the allocation system. First, the rule for 

identifying the sectors at risk of carbon leakage will more efficiently identify such sectors by 

considering carbon emissions intensity (CeI) and trade intensity (TI) simultaneously. Second, 

the incentives to abate emissions offered by the benchmarking system should be strengthened 



 

thanks to the more limited application of the CSCF (albeit with the “concession” of letting the 

volume of free allocation expand). Third, allocations will adjust dynamically for output 

variations exceeding +/-15%. This means that fast-growing installations will face more limited 

increases of carbon costs. At the same time, the rule will allow reduction of windfall profits 

accruing to installations with shrinking output.  

The difficulty of accurately quantifying differences in cost pass-through ability, 

especially in manufacturing sectors (due to limited data availability and market heterogeneity), 

is clearly the main obstacle to achieving further efficiency in allowance allocation. The TI 

indicator is an imperfect proxy for cost pass-through (in)ability, which – as we have seen – 

depends on product- and location-specific characteristics of the market. The reform for Phase 

IV does in fact make progress in the direction of a) considering the CeI and TI indicators for 

narrower subsectors, and b) considering complementary qualitative assessments of abatement 

potential, market characteristics and profit margins. However, this improvement in the 

evaluation of cost pass-through ability (more precise and comprehensive as it is) can only result 

in the addition of sectors or subsectors to the carbon leakage list, not in their cancellation from 

it. 

Finally, with carbon prices expected to rise and the total volume of allowances shrinking, 

free allocation – however efficient may it be – cannot be the only or main measure for 

preventing carbon leakage in the future. There is, so far, no empirical evidence of significant 

negative effects of the EU ETS on the competitiveness of regulated sectors (Verde, 2018; 

Joltreau and Sommerfeld, 2018). However, today, accompanying free allocation with effective 

support to low-carbon innovation is more important than ever. Action has been taken in this 

respect through the Innovation Fund and the Modernisation Fund established under the last 

reform. For the longer term, reducing carbon price differentials across countries is also 

paramount. Rather than venturing down the controversial road of border carbon price 

adjustments, the EU is already engaged in international carbon market cooperation that 

certainly can serve this goal well. 
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Appendix 

The following formula operationalises allocation of free allowances in Phase III (European 

Commission, 2011): 

𝐹𝐴௜,௧  =  𝐵𝐸𝑁௜  ×  𝐻𝐴𝐿௜ × 𝐶𝐿𝐶𝐹௜,௧ × CSCF௧ 

where: 



 

- 𝐹𝐴௜,௧  is the total free allocation of installation 𝑖 in year 𝑡; 

- 𝐵𝐸𝑁௜  is the benchmark for installation 𝑖  which depends on the product emissions 

intensity based on the average emissions intensity of the 10% most efficient 

installations in the EU ETS in 2007–2008; 

- 𝐻𝐴𝐿௜ is the historical production level based on the highest value of the median annual 

production levels over 2005–2008 or 2009–2010;  

- 𝐶𝐿𝐶𝐹௜,௧ is the linear reduction factor for installation 𝑖. For the installations which are 

not at risk of carbon leakage, it goes from 80% in 2013 to 30% in 2020; for the 

installations that are at risk of carbon leakage, it is 1; 

- 𝐶𝑆𝐶𝐹௧ is the cross-sectoral correction factor to ensure that the total free allocation do 

not exceed the cap; 

- 𝐹𝐴௜,௧ is reduced by 50%, 75% or 100% if the annual level of production falls below 

50%, 25% or 10% of the historical activity level 𝐻𝐴𝐿௜. 


