Fischer Indole Reaction in Batch and Flow Employing a Sulfonic Acid Resin: Synthesis of Pyrido[2,3-a]carbazoles

Caroline Bosch, ${ }^{+}$Pablo López-Lledó, ${ }^{\dagger}$ Josep Bonjoch*, ${ }^{\dagger}$, Ben Bradshaw, ${ }^{\dagger}$ Pieter J. Nieuwland ${ }^{\ddagger}$, Daniel Blanco-Ania ${ }^{\S}$, and Floris P. J. T. Rutjes ${ }^{*, \S}$
${ }^{+}$Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain
${ }^{\ddagger}$ FutureChemistry Holding BV, Toernooiveld 100, 6525 EC Nijmegen, The Netherlands
${ }^{\S}$ Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
e-mail address: josep.bonjoch@ub.edu; F.Rutjes@science.ru.nl

Contents

General information S2
Experimental procedures S3
NMR tables of all compounds S14
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-NMR spectra S18
X-ray data for (4a) S38

GENERAL INFORMATION

All reactions were carried out under an argon atmosphere in dry solvents under anhydrous conditions. Drying of organic extracts during workup of reactions was performed over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ except where otherwise stated. Evaporation of solvents was accomplished with a rotatory evaporator. Analytical thin layer chromatography was performed on SiO_{2} (Merck silica gel $60 F_{254}$) or on glass-backed plates pre-coated with silica and the spots were located with aqueous KMnO_{4} or p-anisaldehyde. Chromatography refers to flash chromatography and was carried out on SiO_{2} (silica gel 60 ACC, 35-75 $\mu \mathrm{m}$, 230-240 mesh ASTM). NMR spectra were recorded in CDCl_{3} on a Varian Mercury 400 MHz or Varian VNMRS 400 MHz . Chemical shifts of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are reported in ppm downfield (δ) from $\mathrm{Me}_{4} \mathrm{Si}$. All NMR data assignments are supported by COSY and HSQC experiments.

Melting points were performed on recrystallized solids and are uncorrected.

EXPERIMENTAL PROCEDURES

Batch Reactions

General procedure A:

To a stirring solution of cyclohexanone (1 equiv) and solid acid catalyst Amberlite IR $120 \mathrm{H}^{\circledR}$ (5 equiv w / w) in $\mathrm{MeOH}(0.1-0.5 \mathrm{M})$ at $50^{\circ} \mathrm{C}$, was added phenylhydrazine 1 or phenylhydrazine hydrochloric salt $1 \cdot \mathbf{H C l}$ (1.1 equiv). The mixture was left stirring at $50^{\circ} \mathrm{C}$ for the indicated time. After cooling, the reaction mixture was filtered and the resin was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH and the crude product was purified by crystallization from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ to afford the pure carbazole.

2,3,4,9-Tetrahydro-1H-carbazole (2a)

Following the general procedure using cyclohexanone ($260 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$)
 and phenylhydrazine 1a ($270 \mu \mathrm{~L}, 2.75 \mathrm{mmol}$) for $1 \mathrm{~h}, \mathbf{2 a}$ was isolated as a pale yellowish solid ($415 \mathrm{mg}, 97 \%$) whose data proved consistent with the literature. ${ }^{1}$

Mp: 115-119 ${ }^{\circ} \mathrm{C}\left(\mathrm{lit.}^{1 \mathrm{a}}{ }^{119-120}{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.85-1.98(\mathrm{~m}, 4 \mathrm{H}), 2.70-2.76$ (m, 4H), 7.06-7.16 (m, 2H), 7.28 (br d, J = 7.5 Hz, 1H), 7.48 (br d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}$) $7.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 21.1,23.36,23.40,23.44,110.3,110.4,117.9,119.2,121.1$, 128.0, 134.2, 135.8

6-Isopropyl-2,3,4,9-tetrahydro-1H-carbazole (2b)

Following the general procedure using cyclohexanone ($230 \mu \mathrm{~L}, 2.2$ mmol) and p-isopropylphenylhydrazine hydrochloride salt $\mathbf{1 b} \cdot \mathbf{H C l}$ ($467 \mathrm{mg}, 2.4 \mathrm{mmol}$) for $1.5 \mathrm{~h}, \mathbf{2 b}$ was isolated as a pale yellowish solid (445 mg, 95\%) whose data proved consistent with the literature. ${ }^{2}$

Mp: 67-69 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{2} 68-70^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.34$ ($\mathrm{d}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 6 \mathrm{H}$), 1.87-1.98 (m, 4H), 2.69-2.77 (m, 4H), 3.04 (hep, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.04 (dd, $J=8.5$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 21.1,23.39,23.40,23.5,24.9,34.4,110.0,110.2,114.8,120.1,128.0,134.3,134.4$, 140.0

[^0]
6-Methoxy-2,3,4,9-tetrahydro-1H-carbazole (2c)

Following the general procedure using cyclohexanone ($230 \mu \mathrm{~L}, 2.2$
 mmol) and p-methoxyphenylhydrazine hydrochloride salt $1 \mathrm{c} \cdot \mathrm{HCl}$ ($442 \mathrm{mg}, 2.5 \mathrm{mmol}$) for $2 \mathrm{~h}, \mathbf{2 c}$ was isolated as a pale pink solid (389 $\mathrm{mg}, 93 \%)$ whose data proved consistent with the literature. ${ }^{3 a}$

Mp: 89-90 ${ }^{\circ} \mathrm{C}$ (lit. $91-92{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.83-1.95$ $(\mathrm{m}, 4 \mathrm{H}), 2.65-2.75(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.78(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 21.1,23.3,23.4,23.5,56.1$, 100.4, 110.1, 110.6, 111.1, 128.3, 130.9, 135.2, 154.0

6-Fluoro-2,3,4,9-tetrahydro-1H-carbazole (2d)

Following the general procedure using cyclohexanone ($230 \mu \mathrm{~L}, 2.2$ mmol) and p-fluorophenylhydrazine hydrochloride salt $\mathbf{1 d} \cdot \mathbf{H C l}(408 \mathrm{mg}$, 2.5 mmol) for $2 \mathrm{~h}, \mathbf{2 d}$ was isolated as a pale yellowish solid (389 mg , 93\%) whose data proved consistent with the literature. ${ }^{3}$
$\mathrm{Mp}: 103-104{ }^{\circ} \mathrm{C}\left(\mathrm{lit.}^{3} 106-108{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.83-$ $1.96(\mathrm{~m}, 4 \mathrm{H}), 2.64-2.74(\mathrm{~m}, 4 \mathrm{H}), 6.85(\mathrm{td}, J=9.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=9.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (dd, $J=9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 21.0,23.2,23.3,23.4$, $103.0(\mathrm{~d}, \mathrm{~J}=23.5 \mathrm{~Hz}), 108.9(\mathrm{~d}, \mathrm{~J}=26.0 \mathrm{~Hz}), 110.6,110.8(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}), 128.3,132.2,136.3$, 157.9 (d, J = 232 Hz)

6-Trifluoromethyl-2,3,4,9-tetrahydro-1H-carbazole (2e)

Following the general procedure using cyclohexanone (104 $\mu \mathrm{L}, 1$ $\mathrm{mmol}), p$-trifluoromethylphenylhydrazine $1 \mathbf{e}(1.05 \mathrm{~g}, 6.0 \mathrm{mmol})$ and Amberlite IR $120 \mathrm{H}(2.7 \mathrm{~g})$ for 3 h , filtration on silica with 10% EtOAc /hexane prior to crystallization affords $\mathbf{2 e}$ as brown yellow solid (220 $\mathrm{mg}, 92 \%)$ whose data proved consistent with the literature. ${ }^{4}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.85-1.98(\mathrm{~m}, 4 \mathrm{H}), 2.70-2.77(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~s}$, 1H), 7.83 (br s, 1H); ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$): $\delta 20.8,23.1,23.2,23.3,110.5,111.2,115.5$ (q, J $=4.2 \mathrm{~Hz}), 117.9(q, J=3.6 \mathrm{~Hz}), 121.6(q, J=31.4 \mathrm{~Hz}), 125.7(q, J=269.6 \mathrm{~Hz}), 127.4,136.1,137.1$

[^1]
General procedure B:

A stirring solution of phenylhydrazine (10 equiv) and solid acid catalyst Amberlite IR $120 \mathrm{H}^{\circledR}(10$ equiv w / w with respect to 3) in $\mathrm{MeOH}\left(0.05-0.1 \mathrm{M}\right.$) was mixed for 5 min at $70^{\circ} \mathrm{C}$. To this mixture was added ketone 3 (1 equiv). The mixture was left stirring at $70^{\circ} \mathrm{C}$ for 24 h . After cooling, the reaction mixture was filtered and the resin was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH and the crude product was purified by crystallization from cold MeOH or cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the pure carbazole product.
(4aRS,6RS,11bRS)-6-Methyl-4-(4-methylphenylsulfonyl)-2,3,4,4a,5,6,11,11b-octahydro-1H-pyrido[3,2-a]carbazole (4a)

Following the general procedure B using phenylhydrazine 1a (915 $\mu \mathrm{L}$, $9.33 \mathrm{mmol})$, 5-oxodecahydroquinoline $3(300 \mathrm{mg}, 0.93 \mathrm{mmol})$ and Amberlite IR $120 \mathrm{H}^{\circledR}(3 \mathrm{~g})$ for 20 h , 4a was isolated as a pale yellow solid (320 mg, 88\%) further crystallization from CHCl_{3} and dichloroethane afforded pale yellow crystal.
$\mathrm{Mp}: 213-215{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (COSY, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.28-1.38(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-5 \mathrm{eq}), 1.32(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-12), 1.53-1.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-2), 1.65-1.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2)$, 1.92-2.01 (m, 1H, H-1), 2.31 (ddd, $J=12.8,12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{ax}), 2.45(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-17), 2.88$ (ddd, $J=10.4,5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}$), 2.97 (ddd, J = 12.8, 12.8, $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}$), 3.21 (br quint, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.95 (br d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}$), 4.56 (ddd, $J=13.2,5.2,3.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}$), $7.05-7.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8$ and $\mathrm{H}-9), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-15$), 7.47 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.66 (br s, $1 \mathrm{H}, \mathrm{H}-11$), 7.76 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-14$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$): $\delta 21.2$ (C-12), 21.5 (C-17), 24.7 (C-2), 25.8 (C-6), 27.7 (C-1), 28.4 (C-5), 34.2 (C-11b), 40.5 (C-3), 49.1 (C-4a), 110.7 (C-10), 113.5 (C-6a), 118.3 (C-7), 119.3 (C-8), 121.5 (C-9), 126.5 (C-6b), 127.0 (C-14), 129.7 (C-15), 135.8 (C-10a), 136.2 (C-13), 138.5 (C-16), 143.1 (C-11a); HRMS: m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 395.1788$, found 395.1801

(4aRS,6RS,11bRS)-8-Isopropyl-6-methyl-4-(4-methylphenylsulfonyl)-2,3,4,4a,5,6,11,11b-octahydro-1H-pyrido[3,2-a]carbazole (4b)

Following the general procedure B using p isopropylphenylhydrazine $\mathbf{1 b}(467 \mathrm{mg}, 3.11 \mathrm{mmol}), 5-$ oxodecahydroquinoline 3 ($100 \mathrm{mg}, 0.31 \mathrm{mmol}$) and Amberlite IR $120 \mathrm{H}^{\circledR}(1.00 \mathrm{~g})$ for $20 \mathrm{~h} \mathbf{4 b}$ was isolated after trituration in cold MeOH and recrystallization in dichloroethane as a white solid ($103 \mathrm{mg}, 84 \%$).
$\mathrm{Mp}: 161-163{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{COSY}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.25-1.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{eq}), 1.30(\mathrm{br} \mathrm{d}, \mathrm{J}=6.8$ $\left.\mathrm{Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3} i \operatorname{Pr}\right), 1.33(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-12), 1.52-1.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-2)$, 1.62-1.68(m, $1 \mathrm{H}, \mathrm{H}-2$), 1.92-1.98 (m, 1H, H-1), 2.30 (ddd, J = 13.2, 13.2, 6.4 Hz, 1H, H-5ax), 2.45 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-17$), 2.85 (ddd, $J=11.6,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}$), 2.91-3.05 (m, 2H, H-3ax \& CH iPr), 3.20 (br quint, $J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.94 ($\mathrm{br} d, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}$), 4.56 (ddd, $J=13.2,5.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}$), 7.02 (dd, J = 8.4, 2.0 Hz, 1H, H-9), 7.20 (br d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 7.27-7.37 (m, 3H, H-7 \& H15), 7.56 (br s, $1 \mathrm{H}, \mathrm{H}-11$), 7.76 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-14$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$): δ 21.2 (C-12), 21.5 (C-17), 24.68 (C-2), 24.75 ($\mathrm{CH}_{3} \mathrm{iPr}$), 25.8 (C-6), 27.7 (C-1), 28.5 (C-5), 34.25 (CH iPr), 34.28 (C-11b), 40.5 (C-3), 49.1 (C-4a), 110.5 (C-10), 113.3 (C-6a), 115.3 (C-7), 120.5 (C-9), 126.5 (C-6b), 127.0 (C-14), 129.7 (C-15), 134.8 (C-10a), 136.0 (C-8), 138.5 (C-13), 140.2 (C-16), 143.0 (C-11a); HRMS: m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 437.2257$, found 437.2256

(4aRS,6RS,11bRS)-8-Methoxy-6-methyl-4-(4-methylphenylsulfonyl)-2,3,4,4a,5,6,11,11b-octahydro-1H-pyrido[3,2-a]carbazole (4c)

A stirring solution of p-methoxyphenylhydrazine hydrochloride 1c ($380 \mathrm{mg}, 2.17 \mathrm{mmol}$), and solid acid catalyst Amberlite IR $120 \mathrm{H}^{\circledR}$ (350 mg , 5 equiv w / w with respect to 3) in MeOH ($2.1 \mathrm{~mL}, 0.1 \mathrm{M}$) was mix for 5 minutes at $70^{\circ} \mathrm{C}$. On this mixture was added the 5-oxodecahydroquinoline 3 (70 $\mathrm{mg}, 0.22 \mathrm{mmol}$). The mixture was left stirring at $70^{\circ} \mathrm{C}$ for 24 h . After cooling, the reaction mixture was filtered and the resin was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH and the crude product was purified by chromatography (10-25-50\% EtOAc/hexane) to afford 69 mg of a mixture $4 \mathrm{c} / 7 \mathrm{c}$ in a ratio $33 / 67$ (yield of 4 c : $24 \%)$. (NMR data of 4 c were determined by removing signals of 7c).
${ }^{1} \mathrm{H}$ NMR (COSY, $\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.28-1.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{eq}), 1.31(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-12)$, 1.50-1.62 (m, 2H, H-1 and H-2), 1.62-1.70 (m, 1H, H-2), 1.92-2.00 (m, 1H, H-1), 2.31 (ddd, J = $12.8,12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{ax}$), 2.44 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-17$), 2.80-2.88 (m, 1H, H-11b), 2.92-3.02 (m, 1H, H$3 \mathrm{ax}), 3.12-3.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.83(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.95(\mathrm{br} \mathrm{d}, \mathrm{J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}), 4.55$ (ddd, J $=13.2,5.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 6.78$ (dd, J = $8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), $6.91(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7)$, 7.16 (d, J = 8.4 Hz, 1H, H-10), 7.31 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-15$), 7.53 (br s, 1H, H-11), 7.75 (d, J = 8.4 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-14) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, HSQC, CDCl_{3}): $\delta 21.0(\mathrm{C}-12), 21.5(\mathrm{C}-17), 24.7$ (C-2), 25.8 (C6), 27.8 (C-1), 28.5 (C-5), 34.3 (C-11b), 40.5 (C-3), 49.1 (C-4a), 56.0 (OMe), 100.9 (C-7), 111.0 (C9), 111.4 (C-10), 113.4 (C-6a), 126.9 (C-6b), 127.0 (C-14), 129.7 (C-15), 131.3 (C-10a), 136.8 (C13),138.5 ($\mathrm{C}-16$), 143.0 ($\mathrm{C}-11 \mathrm{a}$), 153.9 ($\mathrm{C}-8$); HRMS: m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$ 425.1893 , found 425.1881
(4aRS,6RS,11bRS)-8-Fluoro-6-methyl-4-(4-methylphenylsulfonyl)-2,3,4,4a,5,6,11,11b-octahydro-1H-pyrido[3,2-a]carbazole (4d)

Following the general procedure B using p-fluorophenylhydrazine 1d ($392 \mathrm{mg}, 3.11 \mathrm{mmol}$), 5-oxodecahydroquinoline 3 (100 mg , $0.31 \mathrm{mmol})$ and Amberlite IR $120 \mathrm{H}^{\circledR}(1.00 \mathrm{~g})$ for $20 \mathrm{~h}, 4 \mathrm{~d}$ was isolated after trituration in cold MeOH and recrystallization in dichloroethane as a white solid ($96 \mathrm{mg}, 75 \%$).

Mp: 242-244 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{COSY}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.25-1.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{eq}), 1.29(\mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{H}-12$), 1.52-1.63 (m, 2H, H-1 and H-2), 1.63-1.73 (m, 1H, H-2), 1.92-2.02 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1$), 2.30 (ddd, J = 12.8, 12.8, $6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{ax}$), 2.45 (s, $3 \mathrm{H}, \mathrm{H}-17$), 2.87 (ddd, J = 11.6, 5.0, 5.0 Hz , $1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}$), 2.96 (br t, $J=12.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}$), 3.14 (br quint, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.94 (br d, J = $12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}$), 4.54 (ddd, $J=13.2,5.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}$), 6.86 (ddd, $J=8.8,8.8,2.4, \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-9), 7.09$ (dd, $J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.17 (dd, $J=8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 7.31 (d, $J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-15$), 7.64 (br s, 1H, H-11), 7.75 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-14$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{HSQC}$, CDCl_{3}): $\delta 21.0$ ($\mathrm{C}-12$), 21.5 (C-17), 24.7 (C-2), 25.7 (C-6), 27.7 (C-1), 28.3 (C-5), 34.3 (C-11b), 40.4 (C-3), 49.0 (C-4a), 103.4 (d, J = 23.3 Hz, C-7), 109.5 (d, J = 26.1 Hz, C-9), 111.2 (d, J = 9.6 Hz, C10), 113.8 (C-6a), 126.9 (C-6b), 127.0 (C-14), 129.7 (C-15), 132.7 (C-10a), 137.8 (C-13), 138.4 (C16), 143.1 (C-11a), 157.7 ($d, J=234.4 \mathrm{~Hz}, \mathrm{C}-8$); HRMS: m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$ 413.1694, found 413.1684
(4aRS,6RS,11bRS)-8-Trifluoromethyl-6-methyl-4-(4-methylphenylsulfonyl)-2,3,4,4a,5,6,11,11b-octahydro-1H-pyrido[3,2-a]carbazole (4e)

Following the general procedure B using p trifluoromethylphenylhydrazine 1e ($548 \mathrm{mg}, 3.11 \mathrm{mmol}$), 5oxodecahydroquinoline 3 ($100 \mathrm{mg}, 0.31 \mathrm{mmol}$) and Amberlite IR $120 \mathrm{H}^{\circledR}(1.00 \mathrm{~g})$ for 72 h . Purification by chromatography (10-25-50\% EtOAc/hexane) followed by trituration in cold MeOH allowed to obtain a mixture $4 \mathrm{e} / 7 \mathrm{e}$ in a ratio $75 / 25$ (yield of $4 \mathrm{e}: 8 \mathrm{mg}, 5.5 \%$). Another fraction was isolated 19 mg containing 50% of $4 \mathbf{e} / 7 \mathrm{e} 1 / 2$. The remaining part corresponding to hydrazone and 5 oxodecahydroquinoline 3 (yield of $\mathbf{4 e}$ combined: 8%). (NMR data of $4 \mathbf{e}$ were determined by removing signals of $\mathbf{7 e}$).
${ }^{1} \mathrm{H}$ NMR (COSY, $\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.28-1.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{eq}), 1.32(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-12)$, 1.52-1.63 (m, 2H, H-1 \& H-2), 1.66-1.73 (m, 1H, H-2), 1.95-2.05 (m, 1H, H-1), 2.31 (ddd, J = 13.2, 13.2, $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{ax}), 2.45(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-17), 2.89-3.08$ (m, 2H, H-3ax \& H-11b), 3.22 (quint, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.95(\mathrm{brd}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}), 4.57$ (ddd, $J=13.2,5.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4a), 7.28-7.38 (m, 4H, H-7, H-10 \& H-15), 7.70-7.74 (m, 3H, H-9 \& H-14), 7.89 (br s, 1H, H-11); ${ }^{13} \mathrm{C}$ NMR (100 MHz, HSQC, CDCl ${ }_{3}$): $\delta 21.3$ (C-12), 21.5 (C-17), 24.7 (C-2), 25.6 (C-6), 27.7 (C-1), 28.2 (C-5), 34.3 (C-11b), 40.4 (C-3), 48.9 (C-4a), 110.9 (C-7), 114.4 (C-6a), 115.9 (d, J = $4.1 \mathrm{~Hz}, \mathrm{C}-$ 9), 118.3 (d, J = 3.4 Hz, C-10), 121.8 ($q, J=31.6 \mathrm{~Hz}, \mathrm{C}-8$), 125.3 ($\mathrm{q}, \mathrm{J}=269.6 \mathrm{~Hz}, \mathrm{C}-18$), 125.9 (C$6 b), 127.0(C-14), 129.8(C-15), 137.7$ (C-13 \& C-10a), 138.4 (C-16), 143.2 (C-11a); HRMS: m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 463.1662$, found 463.1675

General procedure C:

A stirring solution of phenylhydrazine hydrochloride $1 \cdot \mathbf{H C l}$ (2.5 equiv), solid acid catalyst Amberlite IR $120 \mathrm{H}^{\circledR}$ (10 equiv w/w with respect to 3) and 5-oxodecahydroquinoline 3 (1 equiv) in $\mathrm{HCl} / \mathrm{MeOH}\left(1.25 \mathrm{M}, 30\right.$ equiv) was stirred at $70^{\circ} \mathrm{C}$ for the indicated time. After cooling, the reaction mixture was filtered and the resin was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH . The excess hydrazine salt was removed by precipitation in cold dichloromethane and the crude product was purified by precipitation from cold MeOH to afford the pure carbazole product.

(4aRS,6SR,11bRS)-6-Methyl-4-(4-methylphenylsulfonyl)-2,3,4,4a,5,6,11,11b-octahydro-1H-pyrido[3,2-a]carbazole (7a)

Following the general procedure C using phenylhydrazine hydrochloride $\mathbf{1 a} \cdot \mathrm{HCl}(61 \mathrm{mg}, 0.42 \mathrm{mmol}), 5$-oxodecahydroquinoline 3 ($54 \mathrm{mg}, 0.17 \mathrm{mmol}$) and Amberlite IR $120 \mathrm{H}^{\circledR}(500 \mathrm{mg})$ for $3 \mathrm{~h}, 7 \mathrm{a}$ was isolated as a pale yellow solid ($62 \mathrm{mg}, 92 \%$) further crystallization from CHCl_{3} and DCE afforded pale yellow crystals.

Mp: 205-207 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (COSY, $\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.41(\mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{H}-12), 1.45-1.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.60-1.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1 \& \mathrm{H}-2), 1.75-1.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5)$, 1.95-2.02 (m, 1H, H-1), 2.44 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-17$), 2.78 (ddd, $J=12.0,4.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}$), 3.05 (ddd, $J=13.4,13.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}), 3.10-3.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.92(\mathrm{br} \mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq})$, 4.36 (ddd, $J=12.8,4.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 7.05-7.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8 \& \mathrm{H}-9), 7.27(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-10), 7.30(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15), 7.61(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.68$ (br s, 1H, H-11), 7.75 (d, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-14) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$): $\delta 21.3(\mathrm{C}-12), 21.5(\mathrm{C}-17), 24.5(\mathrm{C}-2)$, 28.14 (C-1), 28.32 (C-6), 32.3 (C-5), 34.0 (C-11b), 40.5 (C-3), 52.4 (C-4a), 110.7 (C-10), 113.1 (C6a), 119.3 (C-8), 119.9 (C-7), 121.3 (C-9), 126.6 (C-6b), 127.0 (C-14), 129.7 (C-15), 136.1 (C-10a), 136.3 (C-13), 138.5 (C-16), 143.1 (C-11a); HRMS: m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 395.1788$, found 395.1805
(4aRS,6SR,11bRS)-8-Isopropyl-6-methyl-4-(4-methylphenylsulfonyl)-2,3,4,4a,5,6,11,11b-octahydro-1H-pyrido[3,2-a]carbazole (7b)

Following the general procedure C using p isopropylphenylhydrazine hydrochloride $\mathbf{1 b} \cdot \mathbf{H C l}(145 \mathrm{mg}, 0.78$ $\mathrm{mmol})$, 5-oxodecahydroquinoline $3(100 \mathrm{mg}, 0.31 \mathrm{mmol})$ and Amberlite IR $120 \mathrm{H}^{\circledR}(1.00 \mathrm{~g})$ for $3 \mathrm{~h}, 7 \mathrm{~b}$ was isolated after trituration in cold MeOH and recrystallization in DCE as a white solid (119 mg, 88\%).
${ }^{1} \mathrm{H}$ NMR (COSY, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 1.29\left(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3} i \operatorname{Pr}\right), 1.40(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{H}-12$), 1.43-1.53 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2$), 1.53-1.68 (m, 2H, H-1 \& H-2), 1.72-1.90 (m, 2H, H-5), 1.911.99 (m, 1H, H-1), 2.42 (s, 3H, H-17), 2.74 (ddd, $J=12.0,4.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}), 2.91-3.15(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{CH} \operatorname{iPr}, \mathrm{H}-3 \mathrm{ax} \& \mathrm{H}-6), 3.89$ (br d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}), 4.32$ (ddd, $J=12.8,4.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4 \mathrm{a}$), 7.01 (bd, $J=8.4 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{H}-9), 7.18$ (d, $J=8,4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 7.28 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-15$), 7.43 (bs, 1H, H-7), 7.66 (s, 1H, H-11), 7.73 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-14$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{HSQC}$, CDCl_{3}): $\delta 21.3(\mathrm{C}-12), 21.5(\mathrm{C}-17), 24.4(\mathrm{C}-2), 24.7\left(\mathrm{CH}_{3} \mathrm{iPr}\right), 24.8\left(\mathrm{CH}_{3} \mathrm{iPr}\right), 28.1(\mathrm{C}-1), 28.3(\mathrm{C}-6)$, 32.3 (C-5), 34.0 (C-11b), 34. 3 (CH iPr), 40.5 (C-3), 52.5 (C-4a), 110.5 (C-10), 112.7 (C-6a), 116.9 (C-7), 120.3 (C-9), 126.6 (C-6b), 126.8 (C-14), 129.7 (C-15), 134.9 (C-10a), 136.4 (C-8), 138.5 (C13), 139.9 (16), 143.0 ($\mathrm{C}-11 \mathrm{a}$); HRMS: m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 437.2257$, found 437.2256

(4aRS,6SR,11bRS)-8-Methoxy-6-methyl-4-(4-methylphenylsulfonyl)-2,3,4,4a,5,6,11,11b-octahydro-1H-pyrido[3,2-a]carbazole (7c)

Following the general procedure C using p methoxyphenylhydrazine hydrochloride $\mathbf{1 c} \cdot \mathbf{H C l}(136 \mathrm{mg}, 0.78$ $\mathrm{mmol}), 5$-oxodecahydroquinoline 3 ($100 \mathrm{mg}, 0.31 \mathrm{mmol}$) and Amberlite IR $120 \mathrm{H}^{\circledR}(1.00 \mathrm{~g})$ for $6 \mathrm{~h}, 7 \mathrm{c}$ was isolated after purification by chromatography (10-25-50\% EtOAc/hexane) followed by trituration in cold MeOH as a light pink solid (75 $\mathrm{mg}, 57 \%)$.
${ }^{1} \mathrm{H}$ NMR (COSY, $\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.40(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-12), 1.45-1.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.60-$ $1.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1 \& \mathrm{H}-2), 1.75-1.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 1.95-2.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 2.44(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-17), 2.74$ (ddd, $J=12.0,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}$), 3.05 (ddd, $J=13.6,13.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}$), $3.10-3.20$ (m, 1H, H-6), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.94$ (br d, J=13.6 Hz, 1H, H-3eq), 4.34 (ddd, J=12.8, 5.0, 3.6 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 6.79$ (dd, $J=8.8,2.4, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), $7.07(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.15(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-10), 7.29$ (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-15$), 7.51 (br s, 1H, H-11), 7.74 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-14$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$): $\delta 21.2$ (C-12), 21.5 (C-17), 24.4 (C-2), 28.15 (C-1), 28.24 (C-6), 32.3 (C-5), 34.1 (C-11b), 40.5 (C-3), 52.4 (C-4a), $56.1\left(\mathrm{CH}_{3} \mathrm{O}\right), 102.8$ (C-7), 110.8 (C-9), 111.2 (C10), 113.0 (C-6a), 126.96 (C-14), 127.01 (C-6b), 129.7 (C-15), 131.5 (C-10a), 137.1 (C-13), 138.6 (C-16), 143.0 (C-11a), 153.7 (C-8); HRMS: m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 425.1893$, found 425.1881
(4aRS,6SR,11bRS)-8-Fluoro-6-methyl-4-(4-methylphenylsulfonyl)-2,3,4,4a,5,6,11,11b-octahydro-1H-pyrido[3,2-a]carbazole (7d)

Following the general procedure C using p-fluorophenylhydrazine hydrochloride $\mathbf{1 d} \cdot \mathbf{H C l}(127 \mathrm{mg}, 0.78 \mathrm{mmol})$, 5oxodecahydroquinoline 3 ($100 \mathrm{mg}, 0.31 \mathrm{mmol}$) and Amberlite IR $120 \mathrm{H}^{\circledR}(1.00 \mathrm{~g})$ for $3 \mathrm{~h}, 7 \mathrm{~d}$ was isolated after trituration in cold MeOH and recrystallization in DCE as a white solid ($101 \mathrm{mg}, 82 \%$).
${ }^{1} \mathrm{H}$ NMR (COSY, CDCl $\left.3,400 \mathrm{MHz}\right): \delta 1.37(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-12)$, 1.46-1.53 (m, 1H, H-2), 1.58-1.72 (m, 2H, H-1 \& H-2), 1.73-1.92 (m, 2H, H-5), 1.94-2.03 (m, 1H, $\mathrm{H}-1$), 2.44 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-17$), 2.78 (ddd, $J=12.0,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}$), 3.04 (ddd, $J=13.2,13.2,2.4$
$\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}$), 3.08-3.16 (m, 1H, H-6), 3.91 (ddd, $J=13.2,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}$), 4.34 (ddd, $J=$ $12.4,5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}$), 6.86 (ddd, J = 9.0, $9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 7.16 (dd, J = 9.0, $4.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-10$), 7.24 (dd, J = 9.6, $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.30 (br d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-15$), 7.64 (s, 1H, H-11), 7.74 (br d, J = 8.4 Hz, 2H, H-14); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$): $\delta 21.0$ (C-12), 21.5 (C-17), 24.5 (C-2), 28.1 (C-1), 28.2 (C-6), 32.2 (C-5), 34.1 (C-11b), 40.5 (C-3), 52.3 (C-4a), 105.0 (d, J =23.9 Hz, C-7), 109.4 ($d, J=26.1 \mathrm{~Hz}, \mathrm{C}-9$), 111.1 ($\mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{C}-10$), 113.4 (C-6a), 126.9 (C-6b), 127.0 (C14), 129.7 (C-15), 132.8 (C-10a), 138.1 (C-13), 138.5 (C-16), 143.1 (C-11a), 157.5 (d, J = 233.8 $\mathrm{Hz}, \mathrm{C}-8)$; HRMS: m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 413.1694$, found 413.1695
(4aRS,6SR,11bRS)-8-Trifluoromethyl-6-methyl-4-(4-methylphenylsulfonyl)-2,3,4,4a,5,6,11,11b-octahydro-1H-pyrido[3,2-a]carbazole (7e)

Following the general procedure C using p trifluoromethylphenylhydrazine hydrochloride $\mathbf{1 e} \cdot \mathbf{H C l}(166 \mathrm{mg}$, 0.78 mmol), 5-oxodecahydroquinoline 3 ($100 \mathrm{mg}, 0.31 \mathrm{mmol}$) and Amberlite IR $120 \mathrm{H}^{\circledR}(1.00 \mathrm{~g})$ for $24 \mathrm{~h}, 7 \mathrm{e}$ was isolated after purification by chromatohraphy (10-25-50\% EtOAc/hexane) followed by trituration in cold MeOH as a white solid (15 mg , 10.5%) and the recovered filtrate 50 mg containing 15% of the product (Yield of 7e combined : 16\%).
${ }^{1} \mathrm{H}$ NMR (COSY, $\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.40(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-12), 1.47-1.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.62-$ 1.71 (m, 2H, H-1 \& H-2), 1.72-1.92 (m, 2H, H-5), 1.97-2.07 (m, 1H, H-1), 2.44 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-17$), 2.84 (ddd, $J=12.0,4.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}$), 3.03 (ddd, $J=13.2,13.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}$), 3.12 (br quint, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.90(\mathrm{br} \mathrm{d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}), 4.36$ (ddd, $J=12.8,4.8,3.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}$), $7.28-7.38$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-10 \& \mathrm{H}-15$), 7.74 ($\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-14$), 7.86 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-9$), 7.96 (s, 1H, H-11); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$): $\delta 21.2$ (C-12), 21.5 (C-17), 24.5 (C-2), 28.06 (C-1), 28.13 (C-6), 31.9 (C-5), 34.1 (C-11b), 40.5 (C-3), 52.2 (C-4a), 110.8 (C-7), 114.0 (C-6a), 117.3 (d, J = $4.2 \mathrm{~Hz}, \mathrm{C}-9$), 118.1 ($\mathrm{d}, \mathrm{J}=3.3 \mathrm{~Hz}, \mathrm{C}-10$), 121.6 ($\mathrm{q}, \mathrm{J}=31.6 \mathrm{~Hz}, \mathrm{C}-8$), 125.4 ($\mathrm{q}, \mathrm{J}=$ $269.8 \mathrm{~Hz}, \mathrm{C}-18$), 126.0 (C-6b), 126.9 (C-14), 129.8 (C-15), 137.8 (C-10a), 138.0 (C-13), 138.4 (C16), 143.2 (C-11a); HRMS: m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 463.1662$, found 463.1669

Synthesis of indoles in flow

Cartridge assembly:

Both ends of $10-\mathrm{cm}$ Tefzel ${ }^{\circledR}$ (ETFE) tubing ($1 / 8^{\prime \prime}$ OD, $1 / 16^{\prime \prime}$ ID, a) were blocked with cotton wool, fitted with assembled flat bottom super flangeless fittings + metal ferrules ($1 / 8^{\prime \prime}$ OD, P359, IDEX, b) and male nut parts (LT-215, IDEX, c). These connections were mounted onto flat unions (P-703-01, IDEX, d). For the filling of the cartridges, only one end was blocked at first, the cartridge was filled with the catalyst ($\sim 100 \mathrm{mg}$) employing vacuum suction and after, the other end was blocked to
 seal the cartridge.

Microreactor setup:

All gas-tight syringes ($5 \mathrm{~mL}, \mathrm{~B}-247$, FutureChemistry Holding BV) were mounted on syringe pumps (B-230, FutureChemistry Holding BV) and connected to Tefzel ${ }^{\circledR}$ tubing ($1 / 16^{\prime \prime}$ OD, 1529, IDEX) via female Luer adapters (P-628, IDEX). Throughout the flow system, all the tubing (Tefzel ${ }^{\circledR} 1 / 16^{\prime \prime}$ OD, 1529 , IDEX) was assembled with super flangeless nut connections ($\mathrm{P}-287$, IDEX) and assembled ferrules (P -259, IDEX) in order to achieve leak-free fluid connections. Also, a 5 bar back pressure regulator (B-444, FutureChemistry Holding BV) guaranteed pressurization inside the system before eluting into a collection flask (see Figure 1).

Figure 1. Flow set-up including back pressure regulator (detail, right).

Flow general procedure C :

Two feed solutions were employed: stream A containing the ketone in solution, and stream B containing the hydrazine in solution both driven by syringe pumps ($\phi_{A}=\phi_{B}$). These were mixed in a PEEK T-mixer connection (P-713, IDEX) before entering the microreactor (consisting of a ETFE cartridge packed with Amberlite ${ }^{\oplus}$ IR 120 H) at $70^{\circ} \mathrm{C}$ for 10 to 60 minutes. By removing the solvent in vacuo, the desired indole products were obtained. In some cases, further purification was achieved by recrystallization $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or methanol.

Full characterization of the indole products can be found within the general procedure for the preparation of the title compounds in batch.

Calculation for reactions performed under flow conditions:

For the reactions performed in flow, yields were calculated taking into account the total moles of product obtained ($n($ Collected Product)), the flow rate ($\phi S M$) and the concentration ([SM]) of the starting material and the overall collection time ($\mathrm{t}($ Collection)), as shown in the equation below.

$$
\eta_{\text {Flow }}(\%)=\frac{n(\text { Collected Product })}{[S M] \times \phi_{S M} \times t_{(\text {Collection })}} \times 100
$$

(4aRS,6RS,11bRS)-6-Methyl-4-(4-methylphenylsulfonyl)-2,3,4,4a,5,6,11,11b-octahydro-1H-pyrido[3,2-a]carbazole (4a)

Following the flow general procedure C using 5oxodecahydroquinoline 3 (0.05 M in $\mathrm{MeOH} / \mathrm{AcOH} / \mathrm{DCE} 4 / 2 / 4$) and phenylhydrazine $\mathbf{1 a}(0.5 \mathrm{M}$ in $\mathrm{MeOH} / \mathrm{AcOH} 1 / 1)$ with reaction time $=$ 20 min , total flow $=15.00 \mu \mathrm{~L} \cdot \mathrm{~min}^{-1}$ and collecting for $2 \mathrm{~h}(2 \mathrm{~mL}$ of ketone), product 4a was isolated as a pale yellow solid ($31.2 \mathrm{mg}, 76 \%$).
(4aRS,6RS,11bRS)-8-Isopropyl-6-methyl-4-(4-methylphenylsulfonyl)-2,3,4,4a,5,6,11,11b-octahydro-1H-pyrido[3,2-a]carbazole (4b)

Following the flow general procedure C using a 30 cm cartridge (inner volume $300 \mu \mathrm{~L}$) 5-oxodecahydroquinoline 3 (0.05 M in $\mathrm{MeOH} / \mathrm{AcOH} / \mathrm{DCE} 4 / 2 / 4$) and p-isopropylphenylhydrazine hydrochloride salt $\mathbf{1 b} \cdot \mathrm{HCl}(0.5 \mathrm{M}$ in $\mathrm{MeOH} / \mathrm{AcOH} 1 / 1)$ with reaction time $=30 \mathrm{~min}$, total flow $=10.00 \mu \mathrm{~L} \cdot \mathrm{~min}^{-1}$ and collecting for $2 \mathrm{~h}\left(2 \mathrm{~mL}\right.$ of ketone), the crude ${ }^{1} \mathrm{H}$ NMR spectrum showed full conversion to $\mathbf{4 b}$ which was isolated as a pale yellow solid (32 mg, 75\%).
(4aRS,6RS,11bRS)-8-Methoxy-6-methyl-4-(4-methylphenylsulfonyl)-2,3,4,4a,5,6,11,11b-octahydro-1H-pyrido[3,2-a]carbazole (4c)

Following the flow general procedure C using a 1 m cartridge (inner volume 1 mL), 5 -oxodecahydroquinoline $\mathbf{3}$ (0.02 M in $\mathrm{MeOH} / \mathrm{AcOH} / \mathrm{DCE} 4 / 4 / 2$) and p-methoxyphenylhydrazine hydrochloride salt $\mathbf{1 c} \cdot \mathrm{HCl}(0.2 \mathrm{M}$ in MeOH) with reaction time $=60 \mathrm{~min}$, total flow $=16.00 \mu \mathrm{~L} \cdot \mathrm{~min}^{-1}$ and collecting for $2 \mathrm{~h}(2$ mL of ketone), the crude ${ }^{1} \mathrm{H}$ NMR spectrum showed 55% conversion to 4 c with the remaining part corresponding to a mix hydrazone/ 5-oxodecahydroquinoline.

(4aRS,6RS,11bRS)-8-Fluoro-6-methyl-4-(4-methylphenylsulfonyl)-2,3,4,4a,5,6,11,11b-octahydro-1H-pyrido[3,2-a]carbazole (4d)

Following the flow general procedure C using a 1 m cartridge (inner volume 1 mL), 5 -oxodecahydroquinoline 3 (0.01 M in $\mathrm{MeOH} / \mathrm{AcOH} / \mathrm{DCE} \quad 4 / 5 / 1$) and p-fluorophenylhydrazine hydrochloride salt $\mathbf{1 d} \cdot \mathbf{H C l}(0.1 \mathrm{M}$ in MeOH$)$ with reaction time $=$ 60 min , total flow $=16.00 \mu \mathrm{~L} \cdot \mathrm{~min}^{-1}$ and collecting for $2 \mathrm{~h}(2 \mathrm{~mL}$ of ketone), the crude ${ }^{1} \mathrm{H}$ NMR spectrum showed 42% conversion to 4d with the remaining part corresponding to a mix hydrazone/ 5-oxodecahydroquinoline.
(4aRS,6RS,11bRS)-8-Trifluoromethyl-6-methyl-4-(4-methylphenylsulfonyl)-2,3,4,4a,5,6,11,11b-octahydro-1H-pyrido[3,2-a]carbazole (4e)

Following the flow general procedure C using a 1 m cartridge (inner volume 1 mL), 5 -oxodecahydroquinoline 3 (0.04 M in AcOH/DCE 8/2) and p-trifluoromethylphenylhydrazine $\mathbf{1 e}(0.4$ M in MeOH) with reaction time $=60 \mathrm{~min}$, total flow $=16.00$ $\mu \mathrm{L} \cdot \mathrm{min}^{-1}$ and collecting for 2 h (2 mL of ketone), the crude ${ }^{1} \mathrm{H}$ NMR spectrum showed 22% conversion to 4 e with the remaining part corresponding to a mix hydrazone/ 5oxodecahydroquinoline.

Table 1. ${ }^{1} \mathrm{H}$ NMR data of 6 -Methyl-4-(4-methylphenylsulfonyl)-1 H-2,3,4,4a,5,6,11,11b-octahydropyrido[3,2-a]carbazoles

Series 4

		$\begin{gathered} \mathbf{4 a} \\ \mathrm{H} \end{gathered}$	$\begin{aligned} & \text { 4b } \\ & \text { Pr } \end{aligned}$	$\begin{gathered} \hline \mathbf{4 c} \\ \mathrm{OMe} \end{gathered}$	$\begin{gathered} \hline \text { 4d } \\ F \end{gathered}$	$\begin{aligned} & \mathbf{4 e} \\ & C F_{3} \end{aligned}$
H-1		$\begin{aligned} & 1.53-1.61(\mathrm{~m}) \\ & 1.92-2.01(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1.52-1.59(\mathrm{~m}) \\ & 1.92-1.98(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1.50-1.62(\mathrm{~m}) \\ & 1.92-2.00(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1.52-1.63(\mathrm{~m}) \\ & 1.92-2.02(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1.52-1.63(\mathrm{~m}) \\ & 1.95-2.05(\mathrm{~m}) \end{aligned}$
H-2		$\begin{aligned} & 1.53-1.61(\mathrm{~m}) \\ & 1.65-1.70(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1.52-1,59(\mathrm{~m}) \\ & 1.62-1.68(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1.50-1.62(\mathrm{~m}) \\ & 1.62-1.70(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1.52-1.63(\mathrm{~m}) \\ & 1-63-1.73(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1.52-1.63(\mathrm{~m}) \\ & 1.66-1.73(\mathrm{~m}) \end{aligned}$
H-3	ax	$\begin{aligned} & \hline 2.97 \text { (ddd, 12.8, } \\ & 12.8,2.8) \end{aligned}$	2.91-3.05 (m)	2.92-3.02 (m)	2.96 (br t, 12.8)	2.89-3.08 (m)
	eq	3.95 (br d, 13.2)	3.94 (br d, 12.4)	3.95 (br d, 12.8)	3.94 (br d, 12.8)	3.95 (br d, 12.4)
H-4a		$\begin{aligned} & 4.56 \text { (ddd, 13.2, } \\ & 5.2,3.2) \end{aligned}$	$\begin{aligned} & 4.56 \text { (ddd, 13.2, } \\ & 5.0,3.2) \end{aligned}$	$\begin{aligned} & 4.55 \text { (ddd, 13.2, } \\ & 5.2,2.8) \end{aligned}$	$\begin{aligned} & 4.54 \text { (ddd, 13.2, } \\ & 5.2,3.2) \end{aligned}$	$\begin{aligned} & 4.57 \text { (ddd, 13.2, } \\ & 5.2,2.8) \end{aligned}$
H-5	ax	$\begin{aligned} & 2.31 \text { (ddd, 12.8, } \\ & 12.8,6.0 \text {) } \end{aligned}$	$\begin{aligned} & 2.30 \text { (ddd, 13.2, } \\ & 13.2,6.4) \end{aligned}$	$\begin{aligned} & 2.31 \text { (ddd, } 12.8, \\ & 12.8,6.0) \end{aligned}$	$\begin{aligned} & 2.30 \text { (ddd, 12.8, } \\ & 12.8,6.2) \end{aligned}$	$\begin{aligned} & 2.31 \text { (ddd, 13.2, } \\ & 13.2,6.8) \end{aligned}$
	eq	1.28-1.38 (m)	1.25-1.35 (m)	1.28-1.35 (m)	1.25-1.35 (m)	1.28-1.35 (m)
H-6		3.21 (quint, 7.0)	3.20 (quint, 7.2)	3.12-3.20 (m)	3.14 (quint, 6.8)	3.22 (quint, 6.8)
H-7		7.47	7.27-7.37	6.91	7.09	7.28-7.38
H-8		7.05-7.15	---	---	---	---
H-9		7.05-7.15	7.02	6.78	6.86	7.70-7.74
H-10		7.27	7.20	7.16	7.17	7.28-7.38
H-11		7.66	7.56	7.53	7.64	7.89
H-11b		$\begin{aligned} & 2.88 \text { (ddd, 11.4, } \\ & 5.2,5.2 \text {) } \end{aligned}$	$\begin{aligned} & 2.85 \text { (ddd, 11.6, } \\ & 5.0,5.0) \end{aligned}$	2.80-2.88 (m)	$\begin{aligned} & 2.87 \text { (ddd, 11.6, } \\ & 5.0,5.0) \end{aligned}$	2.89-3.08 (m)
Me		1.32 (d, 7.2)	1.33	1.31	1.29	1.32
H-14		7.76	7.76	7.75	7.75	7.70-7.74
H-15		7.31	7.27-7.37	7.31	7.31	7.28-7.38
Me -Ts		2.45	2.45	2.44	2.45	2.45
Other			$\begin{aligned} & 1.30 \& 2.91- \\ & 3.05 \text { (iPr) } \end{aligned}$	$3.84\left(\mathrm{OCH}_{3}\right)$		

Series 7

		$\begin{aligned} & \text { 7a } \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { 7b } \\ & \text { Pr } \end{aligned}$	7c OMe	$\begin{aligned} & \text { 7d } \\ & \text { F } \end{aligned}$	$\begin{aligned} & \mathbf{7 e} \\ & \mathrm{CF}_{3} \end{aligned}$
H-1		$\begin{aligned} & 1.60-1.72(\mathrm{~m}) \\ & 1.95-2.02(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1.53-1.68(\mathrm{~m}) \\ & 1.91-1.99(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1.60-1.72(\mathrm{~m}) \\ & 1.95-2.02(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1.58-1.72(\mathrm{~m}) \\ & 1.94-2.03(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1.62-1.71(\mathrm{~m}) \\ & 1.97-2.07(\mathrm{~m}) \end{aligned}$
H-2		$\begin{aligned} & 1.42-1.52(\mathrm{~m}) \\ & 1.60-1.72(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1.43-1.53(\mathrm{~m}) \\ & 1.53-1.68(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1.45-1.52(\mathrm{~m}) \\ & 1.60-1.72(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1.46-1.53(\mathrm{~m}) \\ & 1.58-1.72(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 1.47-1.53(\mathrm{~m}) \\ & 1.62-1.71(\mathrm{~m}) \end{aligned}$
H-3	ax	$\begin{aligned} & 3.05 \text { (ddd, 13.4, } \\ & 13.4,2.4) \end{aligned}$	2.91-3.15 (m)	$\begin{aligned} & 3.05 \text { (ddd, 13.6, } \\ & 13.6,2.4) \end{aligned}$	$\begin{aligned} & 3.04 \text { (ddd, 13.2, } \\ & 13.2,2.4) \end{aligned}$	$\begin{aligned} & 3.03 \text { (ddd, 13.2, } \\ & 13.2,2.4) \end{aligned}$
	eq	3.92 (br d, 13.4)	3.89 (br d, 13.6)	3.94 (br d, 13.6)	3.91 (br d, 13.2)	3.90 (br d, 13.2)
H-4a		$\begin{aligned} & 4.36 \text { (ddd, 12.8, } \\ & 4.8,3.6) \end{aligned}$	$\begin{aligned} & 4.32 \text { (ddd, 12.8, } \\ & 4.8,3.6) \end{aligned}$	$\begin{aligned} & 4.34 \text { (ddd, } 12.8, \\ & 5.0,3.6) \end{aligned}$	$\begin{aligned} & 4.34 \text { (ddd, } 12.4 \text {, } \\ & 5.0,3.6) \end{aligned}$	$\begin{aligned} & 4.36 \text { (ddd, } 12.8 \text {, } \\ & 4.8,3.6) \end{aligned}$
H-5		1.75-1.93 (m)	1.72-1.90 (m)	1.75-1.95 (m)	1.73-1.92 (m)	1.72-1.92 (m)
H-6		3.10-3.24 (m)	2.91-3.15 (m)	3.10-3.20 (m)	3.08-3.16 (m)	3.12 (quint, 6.8)
H-7		7.61	7.43	7.07	7.24	7.28-7.38
H-8		7.05-7.15	---	---	---	---
H-9		7.05-7.15	7.01	6.79	6.86	7.86
H-10		7.27	7.18	7.15	7.16	7.28-7.38
H-11		7.68	7.66	7.51	7.64	7.96
H-11b		$\begin{aligned} & \hline 2.78 \text { (ddd, 12.0, } \\ & 4.8,4.8) \end{aligned}$	$\begin{aligned} & \hline 2.74 \text { (ddd, 12.0, } \\ & 4.8,4.8) \end{aligned}$	$\begin{aligned} & \begin{array}{l} 2.74 \text { (ddd, } 12.0, \\ 5.0,5.0) \end{array} \end{aligned}$	$\begin{aligned} & 2.78 \text { (ddd, } 12.0, \\ & 5.0,5.0) \end{aligned}$	$\begin{aligned} & \text { 2.84 (ddd, 12.0, } \\ & 4.8,4.8) \end{aligned}$
Me		1.41 (d, 6.8)	1.40 (d, 6.8)	1.40 (d, 6.8)	1.37 (d, 6.4)	1.40 (d, 6.8)
H-14		7.75	7.73	7.74	7.74	7.74
H-15		7.30	7.28	7.29	7.30	7.28-7.38
$\mathrm{Me}-\mathrm{Ts}$		2.44	2.42	2.44	2.44	2.44
Other			$\begin{aligned} & 1.29 \quad \& \quad 2.91- \\ & 3.15 \text { (Pr) } \end{aligned}$	$3.84\left(\mathrm{OCH}_{3}\right)$		

Table 2. ${ }^{13} \mathrm{C}$ NMR data of 6-Methyl-4-(4-methylphenylsulfonyl)-1 H-2,3,4,4a,5,6,11,11b-octahydropyrido[3,2-a]carbazoles

Series 4

	$\begin{aligned} & \hline \mathbf{4 a} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathbf{4 b} \\ & \text { Pr } \end{aligned}$	4c OMe	$\begin{aligned} & \text { 4d } \\ & \text { F } \end{aligned}$	$\begin{aligned} & \hline \mathbf{4 e} \\ & \mathrm{CF}_{3} \end{aligned}$
C-1	27.7	27.7	27.8	27.7	27.7
C-2	24.7	24.7	24.7	24.7	24.7
C-3	40.5	40.5	40.5	40.4	40.5
C-4a	49.1	49.1	49.1	49.0	48.9
C-5	28.4	28.5	28.5	28.3	28.2
C-6	25.8	25.8	25.8	25.7	25.6
C-6a	113.5	113.3	113.4	113.8	114.4
C-6b	126.5	126.5	126.9	126.9	125.9
C-7	118.3	115.3	100.9	103.4	110.9
C-8	119.3	136.0	153.9	157.7	121.6
C-9	121.5	120.5	111.0	109.5	115.9
C-10	110.7	110.5	111.4	111.2	118.3
C-10a	135.8	134.8	131.3	132.7	137.7
C-11a	143.1	143.0	143.0	143.1	143.2
C-11b	34.2	34.3	34.3	34.3	34.3
Me	21.2	21.2	21.0	21.0	21.3
$\mathrm{Me}-\mathrm{Ts}$	21.5	21.5	21.5	21.5	21.6
C-13	136.2	138.5	136.8	137.8	137.8
C-14	127.0	127.0	127.0	127.0	127.0
C-15	129.7	129.7	129.7	129.7	129.8
C-16	138.5	140.2	138.5	138.4	138.4
Other		$\begin{aligned} & 24.8 \& 34.3 \\ & (\mathrm{Pr}) \end{aligned}$	$56.0\left(\mathrm{OCH}_{3}\right)$		$125.3\left(\mathrm{CF}_{3}\right)$

Series 7

	7a H	7b Pr	7c OMe	7d F	7e CF_{3}
C-1	28.1	28.1	28.2	28.1	28.1
C-2	24.5	24.4	24.4	24.5	24.5
C-3	40.5	40.5	40.5	40.5	40.5
C-4a	52.4	52.5	52.4	52.3	52.2
C-5	32.3	32.3	32.3	32.2	31.9
C-6	28.3	28.3	28.2	28.2	28.1
C-6a	113.1	112.7	113.0	113.4	114.0
C-6b	126.6	126.6	127.01	126.9	126.0
C-7	119.9	116.9	102.8	105.0	110.8
C-8	119.3	136.4	153.7	157.5	121.6
C-9	121.3	120.3	110.8	109.4	117.3
C-10	110.7	110.5	111.2	111.1	118.1
C-10a	136.1	134.9	131.5	132.8	137.8
C-11a	143.1	143.0	143.0	143.1	143.2
C-11b	34.0	34.0	34.1	34.1	34.1
Me	21.3	21.3	21.2	21.0	21.2
Me-Ts	21.5	21.5	21.5	21.5	21.5
C-13	136.3	138.5	137.1	138.1	138.0
C-14	127.0	126.8	126.96	127.0	126.9
C-15	129.7	129.7	129.7	129.7	129.8
C-16	138.5	139.9	138.6	138.5	138.4
Other		$24.7 \& 34.3$	$56.1\left(\right.$ OCH $\left._{3}\right)$		$125.3\left(\mathrm{CF}_{3}\right)$
$($ Pr)					

signal at 70.9 ppm being parasitic signal from the NMR machine

signal at 70.9 ppm being parasitic signal from the NMR machine

signal at 70.9 ppm being parasitic signal from the NMR machine

X-Ray Crystallographic Data

X-Ray crystallographic Data for compound 4a
CCDC 1476675 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Table 3. Crystal data and structure refinement for 4a.

Identification code	p1585c	
Empirical formula	C 23 H 26 N 2 O 2 S	
Formula weight	394.52	
Temperature	208 K	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	
Space group	$\mathrm{P} 21 / \mathrm{c}(\mathrm{No.14)}$	$\alpha=90^{\circ}$.
Unit cell dimensions	$\mathrm{a}=14.776(3) \AA .17(3)^{\circ}$.	
	$\mathrm{b}=9.354(2) \AA$	$\gamma=90^{\circ}$.
Volume	$\mathrm{c}=14.360(3) \AA$	
Z	$1979.5(7) \AA \AA^{3}$	
Density (calculated)	4	
Absorption coefficient	$1.324 \mathrm{Mg} / \mathrm{m}^{3}$	
F(000)	$0.185 \mathrm{~mm}{ }^{-1}$	
Crystal size	840	
Theta range for data collection	$0.07 \times 0.25 \times 0.53 \mathrm{~mm}{ }^{3}$	

Table 4. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for p1585c. Parameters of the non-Hydrogen atoms for: p1585c $\quad P 21 / c \quad R=0.05$ $U(e q)$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	z	U(eq)
S001	0.40290(3)	0.77954(6)	0.57944(3)	0.0259(1)
0002	0.48372(8)	0.86539(16)	0.59223(9)	0.0326(4)
0003	0.38857(9)	0.66776(15)	0.64496(8)	0.0318(4)
N004	0.33093(11)	0.24063(19)	$0.33126(11)$	0.0282(5)
N005	0.40455(10)	$0.70656(17)$	$0.47755(10)$	0.0250(5)
C006	0.31249(12)	0.3774(2)	$0.36039(12)$	0.0245(6)
C007	0.17961(12)	0.2719(2)	$0.31596(12)$	0.0265(6)
C008	0.38393(11)	0.4809(2)	$0.39469(12)$	0.0225(6)
C009	0.22112(12)	0.4012(2)	$0.35133(12)$	0.0261(6)
COOA	0.33633(11)	0.5964(2)	$0.44869(12)$	0.0240(6)
COOB	0.30839(12)	0.8933(2)	0.57866(12)	0.0245(6)
COOC	0.25294(12)	0.6550(2)	$0.39099(13)$	0.0283(6)
COOD	0.44791(13)	$0.7774(2)$	$0.40104(13)$	0.0297(6)
COOE	0.43421(12)	0.5454(2)	$0.31441(12)$	0.0289(6)
COOF	0.31183(14)	1.0302(2)	$0.54148(13)$	0.0339(7)
COOG	0.17858(12)	0.5410(2)	$0.37577(14)$	0.0309(6)
COOH	0.49788(12)	0.6652(2)	$0.34870(13)$	0.0308(6)
COOI	0.15359(14)	1.0631(3)	0.56712(13)	$0.0348(7)$
C00J	0.09007(13)	0.2272(2)	$0.29436(13)$	0.0339(7)
COOK	0.22838(13)	0.8419(2)	$0.61037(13)$	0.0332(7)
COOL	0.23504(15)	1.1133(2)	0.53682(14)	0.0388(7)
COOM	0.25027(13)	0.1735(2)	$0.30409(13)$	0.0279(6)
COON	0.23431(14)	0.0357(2)	$0.27137(14)$	0.0372(7)
COOO	0.15184(14)	0.9269(3)	0.60395(13)	0.0370(7)
COOP	0.07417(14)	0.0894(3)	$0.26361(15)$	0.0405(7)
COOQ	0.14492(14)	-0.0050(3)	$0.25177(14)$	0.0419(8)
COOR	0.12054(14)	0.5294(3)	$0.45857(16)$	0.0467(8)
COOS	0.06945(15)	1.1552(3)	0.55820(16)	0.0512(9)

[^0]: ${ }^{1}$ a) Welch W. M., Synthesis, 1977, 9, 645-646 b) Sun K., Liu S., Bec P. M., and Driver T. G., Ang. Chem. Int. Ed. 2011, 50, 1702-1706
 ${ }^{2}$ Yeung C. S., Ziegler R. E., Porco J. A., Jr. and Jacobsen E. N., J. Am. Chem. Soc., 2014, 136, 13614-13617

[^1]: ${ }^{3}$ a) Chen J. and Hu Y., Synth. Comm. 2006, 36,1485 b) Sun K., Liu S., Bec P. M., and Driver T. G., Ang. Chem. Int. Ed. 2011, 50, 1702-1706
 ${ }^{4}$ Desroses M., Wieckowski K., Stevens M. and Odell L. R., Tetrahedron Lett. 2011, 52, 4417-4420

