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Abstract

We apply distortion functions to bivariate survival functions for non-
negative random variables. This leads to a natural extension of uni-
variate distortion risk measures to the multivariate setting. For Gini’s
principle, the proportional hazard transform and the dual power trans-
form distortions, certain families of multivariate distributions lead to
a straightforward risk measure. We show that an exact analytical ex-
pression can be obtained in some cases. We consider the independence
case, the bivariate Pareto distribution and the bivariate exponential
distribution. An illustration of the estimation procedure and the in-
terpretation is also included. In the case study we consider two loss
events with one single risk value and monitor the two events together
over four different periods. We conclude that the Dual Power Trans-
form gives more weight to the observations of extreme losses, but that
the distortion parameter can modulate this influence in all cases. In
our example, multivariate risk clearly diminishes over time.

Key Words: Distortion functions, multivariate risk factors, multi-period
risk assessment, dependence.

1 Introduction

Classical risk measures are defined on univariate risks, i.e. on unidimensional
random variables, and not on a multivariate setting. However, risk evalua-
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tion problems in real life are rarely of dimension one. In many practical
applications, it is usual to deal with multidimensionality by transforming
multivariate risks into a unidimensional risk using some aggregation proce-
dure, for instance using the sum of risks. Once the multiple dimension of the
risk problem has been reduced to one dimension, then classical risk measures
can be used to quantify risk.

The purpose of this paper is to propose a set of risk measures for non-
negative multivariate risks from a different perspective. Our approach to
multivariate risk assessment problems differs from the traditional procedure
in the way aggregation is performed. Instead of transforming the multivariate
random variable first and then quantifying the risk in the univariate setting,
we concentrate on the whole multidimensional distribution and we define a
risk measurement one-dimensional value there. We follow the definition given
by Rüschendorf (2013, p. 180) and present it in Section 2.

Risk management often requires multivariate risk measures that capture
the dependence among many risk factors. When considering all the dimen-
sions, it is natural to take the joint multivariate distribution function of the
risks as the starting point. For instance, the quantile of the joint distribution
leads to the analysis of critical layers, as defined by Salvadori et al. (2011) or
discussed later by Di Bernardino and Palacios-Rodŕıguez (2017), which are
multidimensional by definition. Our approach is totally different, we aim to
obtain one single value that summarizes the risk of a multivariate random
vector, but we apply a distortion to the joint survival multidimensional func-
tion and then we do a multiple integration in order to obtain a summary
value. The main advantage is that we do not work with vectors of risk mea-
sures, moreover, we show that for some special multivariate distributions,
this approach provides simple analytic expressions. A potential drawback
is that the distortion of the multivariate survival and the multiple integral,
even if it is an elegant generalization, is a summary measure that combines
all dimensions in one and may be difficult to interpret.

As stated in Embrechts and Puccetti (2006), in the risk management and
finance literature random vectors are referred to as portfolios and the individ-
ual random sub-vectors as risks. Usually portfolios of identically distributed,
non-negative risks are considered. Note that even if in finance returns can be
positive or negative, the risk manager looks at losses, so that one of the two
axes is the side of interest. According to Sun et al. (2017) portfolio risk man-
agement measures the distribution of losses in a portfolio over a fixed horizon,
but the dependence among risk factors complicates the computation. The
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dependence structure is then assumed from a joint multivariate distribution
that has a fixed dependence over time or a multivariate copula function that
could include some time varying dependence. Alternatively, in order to anal-
yse each dimension separately, one has to take the marginal distribution or
the component-wise measures. Cousin and Di Bernardino (2013) dealt with
multidimensionality by analysing vector-valued measures with the same di-
mension as the underlying risk variables, this approach is also referred to as
set-valued risk measures. From the vector of risk measures these authors de-
fine the lower-orthant VaR, which constructed from level sets of multivariate
distribution functions and the upperorthant VaR is constructed from level
sets of multivariate survival functions.

We should note that an application of multivariate risk measures is found
in risk management of financial institutions, since Basel III requires a mini-
mum capital which is derived from the analysis of risk on an aggregated basis.
Traditional univariate risk measures cannot address portfolio risk manage-
ment as a whole.

The set of risk measures that we propose can be called distortion risk mea-
sures for non-negative multivariate risks. As it is explained along the next
sections, there is a natural parallelism between unidimensional distortion risk
measures introduced by Wang (1995a,b) and the risk measures introduced in
this paper.

In the insurance setting and in operational risk in particular, risk man-
agers generally look at losses only and they are positive values. If these results
were to be extended to the analysis of returns, which can be either positive
or negative, then one could use the same principle of distortion of the joint
survival. Belles-Sampera et al. (2013) indicated that distortion risk measures
can be interpreted as aggregation operators for finite random variables that
do not necessarily have to be positive.

We show in the illustrations that our proposal provides a good method
to monitor multivariate risks that can be specially interesting in the context
of operational risk analysis.
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2 Distortion risk measures for the non-negative

univariate case

Let us assume a probability space (Ω,A, P ) with sample space Ω, a σ-algebra
A and a probability P from A to [0, 1], and the set of all random variables
defined on this space. Consider a non-negative random variable X defined
on this probability space and its survival function S(x) = P (X > x). A
distortion risk measure applied to X, which we denote as ψ[g : S], is defined
by

ψ [g : S] =

∫ +∞

0

g (S (x)) dx, (1)

where g is the associated distortion function, which is a function from [0, 1]
to [0, 1] and it must be increasing (not necessarily strictly increasing) and
such that g(0) = 0 and g(1) = 1. Two main examples of distortion risk
measures broadly used in financial and insurance applications are Value-
at-Risk (VaR) and Tail Value-at-Risk (TVaR) at a fixed confidence level
α ∈ (0, 1), whose distortion functions are δα(t) = [1−α,1](t) and γα(t) =
(

t
1−α

)

· [0,1−α)(t) + [1−α,1](t), respectively, where [a,b](t) equals 1 if a ≤

t ≤ b and 0 otherwise. Three classes of distortion risk measures that will
be used in the rest of the paper and their associated distortion functions
are given in Table 1, namely the risk measure based on the Gini’s principle,
the proportional hazard transform and the dual power transform. Similar
procedures can be applied to the Denneberg’s absolute deviation principle
(Denneberg, 1990), which is defined through the distortion function gα(t) =
t · (1 + α) · [0,0.5)(t) + (α + (1− α) · t) · [0.5,1](t) and to the GlueVaR risk
measures introduced by Belles-Sampera et al. (2014) which generalize Range-
VaR and follow from distortion functions gh1,h2

β,α (t) = (h1/(1− β))· [0,1−β)(t)+
(h1 + (h2 − h1)/(β − α) · [t− (1− β)]) · [1−β,1−α)(t) + [1−α,1](t), with α ≤

β < 1, 0 < h1 < 1, h1 ≤ h2 < 1. Note that when α = β neither (β−α)−1 nor

[1−β,1−α)(t) for t ∈ (0, 1) are well-defined and, in addition, α = β implies
that h1 = h2 because h1 and h2 represent the distorted survival probability
associated to 1 − β and 1 − α respectively. So in those cases the distortion
function reduces to gh1

α (t) = (h1/(1− α)) · [0,1−α)(t) + [1−α,1](t).
Expression (1) can be understood as the Choquet integral of X with

respect to the set function g◦P , where P is the probability function associated
with the probability space in which X is defined (Choquet, 1954; Denneberg,
1994). Hereinafter, only non-negative random variables are considered.

4



Table 1: Some examples of distortion functions for distortion risk measures

Risk measure Parameters Distortion function
Gini’s principle 0 < θ < 1 gθ(t) = (1 + θ) · t− θ · t2

Proportional Hazard Transform m ≥ 1 gm(t) = t
1

m

Dual Power Transform m ≥ 1 gm(t) = 1− (1− t)m
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Figure 1: Distortion functions corresponding to Gini’s principle (left), pro-
portional hazard transform (center) and dual power transform (right)

The specific preference for a distortion function is difficult to determine.
However, the transformation of the survival function reflects in some way
the emphasis on the extremes. Belles-Sampera et al. (2016) examined how
risk attitudes can be represented in the selection of a given distortion. They
showed that the analysis of the distortion function offers a local description of
the agents stance on risk in relation to the occurrence of accumulated losses.
Here, the concepts of absolute risk attitude and local risk attitude arise
naturally. For example, the area under the distortion reveals the global risk
attitude, whereas the ratio between the distortion and the identity function
provides with local information about the relative risk behavior associated
with the risk measure at any point in the range of values

A plot of the three distortion functions (see Figure 1) shows that the
Gini’s principle risk measure weights the right tail less heavily than the other
measures, because its distortion function is flatter than the others for low
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values. When the proportional hazard transform is used, the importance of
the large losses is moderate, but when the Dual Power Transform is selected
with the parameter equal to 5 or 10, then we observe a high curve for low
values, which means that the right tail of the positive losses will have more
importance for the calculation of the risk measure. Therefore, extreme losses
are weighted more than in other cases for the Dual Power Transform for
m = 10 because the distortion function is closer to one for low values of t.

3 Distortion risk measures for the non-negative

bivariate case

Let (X1, X2)
⊤ be a non-negative bivariate random variable with joint survival

function S12(x1, x2) and marginal survival functions S1(x1) and S2(x2).
The idea is to introduce distortion risk measures defined on (X1, X2)

⊤

congruent with unidimensional distortion risk measures defined on the asso-
ciated marginal distributions.

In a first step, we consider a distortion function g(·), and we define a
distorted bivariate survival:

T12(x1, x2) = g[S12(x1, x2)], (2)

where the g(·) function is chosen in order to define a genuine bivariate survival
function in (2). Note that the marginal survival functions in (2) are:

T1(x1) = T12(x1, 0) = g[S1(x1)], (3)

and
T2(x2) = T12(0, x2) = g[S2(x2)], (4)

which correspond to distorted transformations of the joint survival function
S12(x1, x2).

Once a suitable distortion function g(·) has been selected, a possible dis-
tortion risk measure associated to (2) is simply

ψ12[g : S12] =

∫ ∞

0

∫ ∞

0

T12(x1, x2)dx1dx2 =

∫ ∞

0

∫ ∞

0

g[S12(x1, x2)]dx1dx2.

(5)
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Note that the corresponding distortion risk measures associated to (3) and
(4) are,

ψ1[g : S1] =

∫ ∞

0

g[S1(x1)]dx1, (6)

and

ψ2[g : S2] =

∫ ∞

0

g[S2(x2)]dx2. (7)

So, there is a natural parallelism between the multivariate setting (5) and the
marginals in (6) and (7), and the univariate case. This approach is the one
proposed in Rüschendorf (2006, section 3) and Rüschendorf (2013, p. 180).
However, it is not the only possible way to address risk measures for bivariate
risks. See, for instance, Embrechts et al. (2009) that show how multivariate
extreme value theory yields the ideal modeling environment. Different exten-
sions to multivariate risk measurement using VaR and TVaR can be found in
Cousin and Di Bernardino (2013) and in Cousin and Di Bernardino (2014)
who propose vector-valued measures with the same dimension as the under-
lying risk portfolio, where the lower-orthant risk measure (resp. the upper-
orthant) is constructed from level sets of multivariate distribution functions
(resp. of multivariate survival distribution functions). Contrary to allocation
measures or systemic risk measures, these measures are suitable for multi-
variate risk problems where risks are heterogeneous in nature and cannot be
aggregated together before calculating the risk measure.

4 Some bivariate distortion risk measures with

a closed-form expression

Before generalizing this definition to higher dimensions, we explore some ex-
pressions for ψ12[g : S12] where the g function has been restricted to belong
to the set of distortion functions associated to univariate risk measures pre-
sented in Table 1. The cases considered here have the advantage of providing
a straightforward analytical expression in some cases. The main reason why
having closed-form expressions is interesting is because these risk measures
can then be implemented in spreadsheet calculations and simulation proce-
dures very easily.

Let us begin with a bivariate random variable (X1, X2)
⊤ with independent

marginals, and then assume a dependence structure between the marginals
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driven by copulas in the Farlie-Gumbel-Morgenstern (FGM) family. In the
independence case, we do not assume any particular marginal distribution,
but this situation is not the main focus of the article, because what we really
want to analyse is cases where we assume a dependence structure. The
bivariate Pareto distribution is a clear example of the type of two-dimensional
distribution that a risk manager would use to analyse losses coming from
two lines of business, or types of risk. For example, in operational risk, we
can assume that we have the losses can be of two types and therefore each
severity is represented by one of the two dimensions. Similarly, the bivariate
exponential distribution or the FGM distribution could reflect the monthly
size of losses in internal fraud and external fraud for instance.

A bivariate Pareto distribution for finance/insurance losses is a standard
choice. For instance, Embrechts and Puccetti (2006) calculate the bounds of
a sum of two Pareto and Log-Normal bivariate risks and they also provide a
new definition of multivariate Value-at-Risk.

4.1 Risk measures for the bivariate independent case

Let (X1, X2)
⊤ be a bivariate risk with joint survival function S12(x1, x2).

In this section we obtain bivariate risk measures assuming independence
between marginal risks X1 and X2, that is, assuming that S12(x1, x2) =
S1(x1)S2(x2). We consider three different distortion risk measures.

4.1.1 Risk measures based on the Gini’s principle

Let us consider the distortion function given by the Gini’s principle gθ(t) =
(1+θ)t−θt2, with 0 < θ < 1. Using (5), we obtain the multivariate measure,

ψ12[gθ : S12] = (1 + θ) · µ1 · µ2 − θ · µ
(1)
1:2 · µ

(2)
1:2, (8)

where µi = E(Xi), i = 1, 2 and µ
(i)
1:2, i = 1, 2 represent the mathematical

expectation of the minimum of two copies of the random variable Xi, with
i = 1, 2.

4.1.2 Risk measures based on the proportional hazard transform

Let us consider the proportional hazard transform principle given by the
distortion function gm(t) = t1/m, m ≥ 1. In this case, using notation Fi(xi) =
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1− Si(xi), i = 1, 2, the multivariate risk measure can be written as

ψ12[gm : S12] =
2
∏

i=1

E
{

F−1
i [Be(1, 1/m)]

}

, (9)

where Be(a, b) represent a classical beta distribution. Note that the terms
in the product correspond with the mathematical expectation of the gener-
alized beta distribution (Alexander et al., 2012; Jones et al., 2004, see) with
baseline CDF Fi and parameters (1, 1/m).

4.1.3 Risk measures based on the dual power transform

The following bivariate risk measure is based on the dual power transform
principle gm(t) = 1 − (1 − t)m with m ≥ 1. The corresponding multivariate
risk measure is given by

ψ12[gm : S12] =
m
∑

k=1

(−1)k+1

(

m

k

)

µ
(1)
1:k · µ

(2)
1:k, (10)

where µ
(i)
1:k, i = 1, 2 represent the mathematical expectation of the minimum

of k copies (iid) of the random variable Xi, with i = 1, 2. Note that µi
1:1 = µi

for all i.

4.2 Risk measures for the bivariate Pareto distribution

The examples of bivariate risk measures with a closed-form expression which
are presented in Section 4.1 are based on the hypothesis of independence be-
tween both two risks. However, this assumption is often unrealistic in prac-
tice because losses from different sources may occur simultaneously. Then,
we work with different classes of dependent risks.

In this section we consider the expressions that several bivariate distortion
risk measures take when they are applied to a bivariate dependent Pareto
distribution as proposed by Mardia (1962) (see, Arnold (1983)), which some-
times is also called the bivariate Lomax distribution. The bivariate Pareto
distribution is defined in terms of the following bivariate survival function

S12(x1, x2) =
1

(1 + x1/σ1 + x2/σ2)a
, x1, x2 ≥ 0, (11)
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where σ1, σ2 > 0 are scale parameters and a > 0 is a shape parameter.
Note that both marginal distributions are Pareto distributions with survival
functions equal to Si(xi) =

1
(1+xi/σi)a

, with xi ≥ 0, i = 1, 2.
In order to compute the different bivariate risk measures we use the result

stated in Lemma 1,

Lemma 1 If σ1, σ2 > 0 and a > 2, then

∫ ∞

0

∫ ∞

0

dx1dx2
(1 + x1/σ1 + x2/σ2)a

=
σ1σ2

(a− 1)(a− 2)
. (12)

Proof: The result is direct taking into account that if a > 1,

∫ ∞

0

dx1
(1 + x1/σ1 + x2/σ2)a

=
σ1

a− 1

1

(1 + x2/σ2)a−1
.

4.2.1 Risk measures based on the Gini’s principle

If we consider the distortion function given by the Gini’s principle gθ(t) =
(1 + θ)t− θt2, with 0 < θ < 1, using (5) and (12) we obtain

ψ12[gθ : S12] = (1 + θ)
σ1σ2

(a− 1)(a− 2)
− θ

σ1σ2
(2a− 1)(2a− 2)

,

which can be written as

ψ12[gθ : S12] =
(3aθ + 4a− 2)σ1σ2

2(a− 1)(a− 2)(2a− 1)
, (13)

and is valid for a > 2.

4.2.2 Risk measures based on the proportional hazard transform

Now, we choose the proportional hazard transform principle represented by
the distortion function gm(t) = t1/m withm ≥ 1. The associated risk measure
is

ψ12[gm : S12] =
mσ1σ2

(a−m)(a− 2m)
, (14)

if a > 2m.
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4.2.3 Risk measures based on the dual power transform

For the dual power transform principle with distortion function gm(t) =
1 − (1 − t)m with m ≥ 1, the corresponding bivariate risk measure is given
by

ψ12[gm : S12] =
m
∑

k=1

(−1)k+1

(

m

k

)

σ1σ2
(ak − 1)(ak − 2)

, (15)

with a > 2.

4.3 Risk measures for the bivariate exponential distri-

bution

Another dependence structure to be investigated is the bivariate exponential
distribution given by

S12(x1, x2) = exp(−a1x1 − a2x2 − φa1a2x1x2), x1, x2 ≥ 0, (16)

where a1, a2 > 0 and 0 ≤ φ ≤ 1. This joint survival function corresponds to
the Gumbel type I bivariate exponential distribution considered by Gumbel
(1960).

The following lemma is useful for the computation of the different risk
measures when they are applied to this distribution.

Lemma 2 If S12(x1, x2) denotes the bivariate survival function defined in
(16), we have

∫ ∞

0

∫ ∞

0

S12(x1, x2)dx1dx2 =
exp(1/φ)

φa1a2
[−Ei(1/φ)], (17)

where

−Ei(z) =

∫ ∞

z

e−t

t
dt (18)

represents the exponential integral function.

Proof: Integrating (16) with respect x1 we have,
∫ ∞

0

S12(x1, x2)dx1 =
e−a2x2

a1(1 + a2φx2)
,

and integrating again with respect x2 we obtain (17), using definition (18).
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4.3.1 Risk measures based on the Gini’s principle

For the Gini’s principle we have that the risk measure expression for the
bivariate exponential distribution is

ψ12[gθ : S12] =
(1 + θ) exp(1/φ)

φa1a2
[−Ei(1/φ)]−

θ exp(2/φ)

2φa1a2
[−Ei(2/φ)]. (19)

4.3.2 Risk measures based on the proportional hazard transform

In the case of the proportional hazard transform we obtain that the bivariate
risk measure can be expressed as

ψ12[gm : S12] =
m exp(1/mφ)

φa1a2
[−Ei(1/mφ)]. (20)

4.3.3 Risk measures based on the dual power transform principle

For the dual power transform principle we obtain the following closed-form
expression for the risk measure applied to a bivariate exponential distribu-
tion:

ψ12[gm : S12] =
m
∑

k=1

(−1)k+1

(

m

k

)

exp(k/φ)

kφa1a2
[−Ei(k/φ)]. (21)

4.4 A dependent model based on the FGM distribu-

tions

Now, we consider the Farlie-Gumbel-Morgenstern distribution (Farlie, 1960;
Gumbel, 1960; Morgenstern, 1956) with joint survival function,

S12(x1, x2;α) = S1(x1)S2(x2)[1 + δ(1− S1(x1))(1− S2(x2))], (22)

where δ ∈ [−1, 1] is the dependence parameter, and δ = 0 corresponds to the
independent case.

For obtaining the different bivariate risk measures, we need the following
lemma.

Lemma 3 Let Xi:n be the ith order statistics in a sample of size n and let
the ith spacing be

Si:n = Xi+1:n −Xi:n, (23)
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The fundamental formulae for moments of order statistics in terms of inte-
grals concerning distribution function only is given by,

E(Si:n) =

(

n

i

)
∫ ∞

−∞

F (x)i[1− F (x)]n−idx. (24)

Proof: See Pearson (1902) and also Jones and Balakrishnan (2002).
Using Lemma 3, if X is a positive random variable we have,

∫ ∞

0

F (x)[1− F (x)]dx =
E(S1:2)

2
=
E(X2:2 −X1:2)

2
, (25)

∫ ∞

0

F (x)[1− F (x)]2dx =
E(S1:3)

3
=
E(X2:3 −X1:3)

3
, (26)

∫ ∞

0

F (x)2[1− F (x)]2dx =
E(S2:4)

6
=
E(X3:4 −X2:4)

6
. (27)

4.4.1 Risk measures based on the Gini’s principle

We consider the distortion function based on the Gini’s principle given by
gθ(t) = (1 + θ)t− θt2. We have the following theorem.

Theorem 1 Let (X1, X2)
⊤ a bivariate random variable with bivariate sur-

vival function given by (22). Then, we have
∫ ∞

0

∫ ∞

0

S12(x1, x2)dx1dx2 = µ1µ2 +
δ

4
E(S

(1)
1:2)E(S

(2)
1:2) (28)

and
∫ ∞

0

∫ ∞

0

S12(x1, x2)
2dx1dx2 = µ

(1)
1:2µ

(2)
1:2+

2δ

9
E(S

(1)
1:3)E(S

(2)
1:3)+

δ2

36
E(S

(1)
2:4)E(S

(2)
2:4),

(29)

where S
(k)
i:n , k = 1, 2 is defined in (23), where the superscript corresponds to

the marginal Xk, k = 1, 2 and µi
1:2, i = 1, 2 are defined as in section 4.1.1.

Proof: The proof is direct using the expression of the survival FGM copula
(22) and formulas (25) to (27).

Using the previous result, the corresponding bivariate risk measure is:

ψ12[gθ : S12] = (1 + θ)

{

µ1µ2 +
δ

4
E(S

(1)
1:2)E(S

(2)
1:2)

}

−

− θ

{

µ
(1)
1:2µ

(2)
1:2 +

2δ

9
E(S

(1)
1:3)E(S

(2)
1:3) +

δ2

36
E(S

(1)
2:4)E(S

(2)
2:4)

}

.(30)
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4.4.2 Risk measures based on the dual power transform

If we take the distortion function gm(t) = 1− (1− t)m with m = 2 we obtain
the formula,

ψ12[g2 : S12 : δ] = 2µ1 · µ2 − µ
(1)
1:2 · µ

(2)
1:2

+
2δ

4

(

µ
(1)
2:2 − µ

(1)
1:2

)

·

(

µ
(2)
2:2 − µ

(2)
1:2

)

−
2δ

9

(

µ
(1)
2:3 − µ

(1)
1:3

)

·

(

µ
(2)
2:3 − µ

(2)
1:3

)

−
δ2

36

(

µ
(1)
3:4 − µ

(1)
2:4

)

·

(

µ
(2)
3:4 − µ

(2)
2:4

)

(31)

where,
µ
(k)
i:j = E[X

(k)
i:j ], k = 1, 2,

andX
(k)
i:j , k = 1, 2 is the ith-order statistics in a sample of size j corresponding

to the random variables X1 and X2.
If we set δ = 0 in (31) we obtain (10), taking into account that µ1:1(i) = µi

for all i = 1, 2.

5 Extension to the multivariate case

Let us consider (X1, X2, . . . , Xp)
⊤ a p-dimensional non-negative random vari-

able and a distortion function g. Following the spirit of the definition of dis-
tortion risk measures for the non-negative bivariate case given in expression
(5), the distortion risk measure for multivariate risks associated to g may be
defined by

Definition 1 A distortion risk measure for multivariate non-negative risks
can be defined as:

ψ12...p[g : S12...p] =

∫ ∞

0

· · ·

∫ ∞

0

g [S12...p(x1, . . . , xp)] dx1 · · · dxp, (32)

where S12...p is the multivariate survival function of p-dimensional non-negative
random variable (X1, X2, . . . , Xp)

⊤. and g is a distortion function.

This definition corresponds to the one given in section 3 of Rüschendorf
(2006).
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Definition 1 may not be too appropriate for some specific purposes. For
instance, if an insurance company needs to determine a solvency capital for
a three-year window, it is necessary that the risk value preserves the scale, so
it should correspond to monetary units and not, for instance, to ‘monetary
units to the power of three’ . If Xs is the random loss from period s − 1 to
period s, s = 1, 2, 3, then an insurance company interested in a risk measure
for vector (X1, X2, X3)

⊤ may find that ψ123[g : S123] is too large. Our proposal

is to consider (ψ123[g : S123])
1/3 to overcome such an inconvenience.

Definition 2 A rescaled distortion risk measure for multivariate non-negative
risks can be defined as:

ρ12...p[g : S12...p] = (ψ12...p[g : S12...p])
1/p , (33)

where ψ12...p[g : S12...p] comes from definition 1, S12...p is the multivariate sur-
vival function of p-dimensional non-negative random variable (X1, X2, . . . , Xp)

⊤.
and g is a distortion function.

It has to be noted that, once a distortion function g has been selected, both
definitions 1 and 2 are consistent with the definition of a distortion risk
measure for the unidimensional case, because ρ1[g : S1] = ψ1[g : S1] by
expression (33) and they also match expression (1).

We suggest that standardised data could be used when the different units
of measurement are a concern. In many cases the dimensions use different
units of measurement. For instance, in the industry of financial services,
some risks are price-based (such as the betas), whereas others are calculated
as an index (Composite Indicator of Systemic Stress) or balance-sheet based
(the ratio of nonperforming loans over total loans).

In this section we only compute the multivariate risk measure (32), as-
suming that the components of the random vector (X1, . . . , Xp)

⊤ are inde-
pendent, because in this case the expressions are straightforward.

For the distortion function given by the Gini’s principle gθ(t) = (1+θ)t−
θt2, with 0 < θ < 1, expression (32) turns into

ψ12...p[gθ : S12...p] = (1 + θ)

p
∏

i=1

µi − θ

p
∏

i=1

µ
(i)
1:2, (34)

where µi = E(Xi), i = 1, 2 and µ
(i)
1:2, i = 1, 2, . . . , p represent the mathemat-

ical expectation of the minimum of two copies of the random variable Xi,
with i = 1, 2.
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In this case, the closed-form expression of the multivariate risk measure
for independent risks is

ψ12...p[gm : S12...p] =

p
∏

i=1

E
{

F−1
i [Be(1, 1/m)]

}

, (35)

where Be(a, b) represent a classical beta distribution.
For the dual power transform principle gm(t) = 1− (1− t)m with m ≥ 1,

the expression for the multivariate risk measure is given by,

ψ12...p[gm : S12...p] =
m
∑

k=1

(−1)k+1

(

m

k

) p
∏

i=1

µ
(i)
1:k, (36)

where µ
(i)
1:k, i = 1, 2, . . . , p represent the mathematical expectation of the

minimum of k copies (iid) of the random variable Xi, with i = 1, 2, . . . , p.

6 Numerical example for bivariate non-negative

risks

We considered an example where the occurrence of two phenomena is ob-
served over time. The objective is to provide a multivariate risk measure
in order to monitor the evolution of risk of those two magnitudes using one
single synthesized value. Therefore, one multivariate risk measure is better
than using two different risk measures for each dimension separately.

This application shows that it is possible to analyze multivariate oper-
ational risk from many sources, for instance when the risk manager has to
monitor the occurrence of operational events by looking at the number or
severity of events by classes, i.e. several dimensions, and he wants to have
only one risk value instead of a different risk measure for every type of event.

6.1 Data and methodology

For illustrative purposes, we took accident (unintentional injury) deaths data
from the Spanish National Statistics Institute ((INE, 2014)). In that dataset,
accident deaths in Spain are classified according to the following list of causes:
(1) traffic accidents of motor vehicles; (2) other transport accidents; (3) acci-
dental falls; (4) accidental drowning, immersion and suffocation; (5) accidents
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by fire, smoke and hot substances; (6) accidental poisoning by psychoactive
drugs and abuse drugs; (7) other accidental poisoning; (8) other accidents.
For this work, we grouped them into two classes: deaths due to crashes
(causes (1)-(2)) and deaths due to other accidental causes (causes (3)-(8)).
Then, we analyzed the following bivariate variable: number of fatalities due
to crashes (X1) and number of deaths due to other accidental causes (X2),
in a province or autonomous city (according to the province of residence of
the deceased), in a year - there are 50 provinces and 2 autonomous cities
in Spain. For that, we selected the following four years: 2000, 2004, 2008
and 2012. Table 2 shows the dataset considered and Figure 2 shows the
corresponding three-dimensional histograms.
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Figure 2: Display of 3-dimensional histograms: fatalities due to crashes (X1) and deaths
due to other accidental causes (X2), in a Spanish province, in a year. Years: 2000, 2004,
2008, 2012.

Given that the observed number of occurences is large, we did not fit a dis-
crete distribution, but we fitted the bivariate Pareto distribution described in
Section 4.1 by maximum likelihood. For that model, the probability density
function is

f12(x1, x2; a, σ1, σ2) =
∂2S12(x1, x2)

∂x1∂x2
=

a(a+ 1)

σ1σ2

(

1 +
x1
σ1

+
x2
σ2

)a+2 ,
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Table 2: Accident deaths in Spain, due to crashes (X1) or other accidental causes (X2),
in a province (or autonomous city). Years: 2000, 2004, 2008 and 2012. Source: INE.

Province\Year
2000 2004 2008 2012

X1 X2 X1 X2 X1 X2 X1 X2
Albacete 64 44 44 48 30 69 17 94
Alicante/Alacant 219 165 198 209 133 255 65 226
Almeŕıa 129 75 114 81 56 96 31 103
Araba/Alava 43 27 37 39 19 43 16 53
Asturias 188 181 151 245 74 241 66 297
Avila 19 17 27 37 11 32 15 45
Badajoz 107 57 100 66 64 54 40 99
Balears, Illes 147 124 118 118 93 137 67 164
Barcelona 646 902 414 940 253 1192 226 1101
Bizkaia 168 148 106 168 61 195 51 200
Burgos 92 42 42 87 44 79 31 85
Cáceres 54 45 80 54 33 32 16 58
Cádiz 123 87 129 131 61 133 38 140
Cantabria 69 83 43 101 31 120 24 178
Castellón/Castelló 100 68 87 75 41 74 31 89
Ciudad Real 88 47 60 63 56 73 31 114
Córdoba 91 84 82 98 57 112 47 119
Coruña, A 251 160 169 211 105 229 65 163
Cuenca 33 26 36 32 18 49 18 65
Gipuzkoa 110 109 67 113 49 120 22 136
Girona 94 106 71 119 51 130 48 132
Granada 119 115 112 125 80 134 49 122
Guadalajara 25 18 28 29 15 31 12 44
Huelva 46 42 51 54 44 44 25 62
Huesca 47 27 43 50 19 44 19 49
Jaén 84 72 68 98 75 66 20 80
León 121 72 78 96 69 99 48 121
Lleida 100 61 86 76 56 94 43 75
Lugo 100 73 79 76 50 78 37 85
Madrid 488 665 357 782 253 767 86 696
Málaga 150 135 142 170 113 189 63 240
Murcia 222 132 218 174 118 178 80 172
Navarra 108 68 94 106 52 115 40 114
Ourense 76 69 64 117 40 90 21 94
Palencia 34 19 24 37 17 38 6 44
Palmas, Las 132 142 63 192 111 204 31 101
Pontevedra 186 133 136 211 94 170 70 157
Rioja, La 60 42 55 62 36 53 14 49
Salamanca 44 34 61 58 36 64 19 51
Santa Cruz de Tenerife 89 109 73 147 59 164 48 170
Segovia 32 15 21 17 11 26 10 18
Sevilla 204 180 216 213 121 213 72 196
Soria 24 13 32 17 12 34 3 17
Tarragona 143 116 130 120 72 157 48 137
Teruel 33 22 23 38 16 40 10 21
Toledo 81 55 79 77 66 74 32 147
Valencia/València 311 274 286 300 183 307 101 360
Valladolid 70 57 66 87 44 71 23 72
Zamora 37 31 28 35 17 31 7 35
Zaragoza 150 86 145 114 85 150 54 117
Ceuta 4 4 9 4 2 6 2 9
Melilla 4 5 3 9 2 8 0 7
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where (a, σ1, σ2) is the unknown three-parameter vector of the model, S12(x1, x2)
is the corresponding bivariate survival function (Eq. 11), and the log-likelihood
function is given by

log ℓ(a, σ1, σ2) =
n

∑

i=1

log f(x1i, x2i; a, σ1, σ2) =

= n log[a(a+ 1)]− n log(σ1)− n log(σ2)− (a+ 2)
n

∑

i=1

log

(

1 +
x1i
σ1

+
x2i
σ2

)

where (x1i, x2i), i = 1, . . . , n is the sample bivariate data and the maximum
likelihood estimation of the parameter vector (â, σ̂1, σ̂2) is the one that max-
imizes the log-likelihood function log ℓ(a, σ1, σ2).

Finally, we obtained the risk measures for the bivariate Pareto distri-
bution based on the Gini’s principle, on the proportional hazard trans-
form and on the dual power transform, described in Section 4.1, by using
Eqs.(13,14,15).

6.2 Results

Table 3 shows the parameter estimates from the bivariate Pareto model con-
sidered (a, σ1 and σ2 parameters), fitted to the number of fatalities due to
crashes and number of deaths due to other accidental causes, in a Spanish
province or autonomous city, in a year, by maximum likelihood and in the
four years selected: 2000, 2004, 2008 and 2012.

Tables 4, 5 and 6 show the risk measures for the bivariate Pareto dis-
tribution based on the Gini’s principle, based on the proportional hazard
transform and based on the dual power transform, respectively.

It can be seen that increasing the value of θ (Table 4) or the value of m
(Tables 5, 6) results in an increase in the corresponding risk measure value.
Additionally, in this example, it can be seen that risk measures decrease in
most cases year-over-year when θ or m are held constant.

The conclusion for this illustration is that there is evidence of a descent
in the risk of the number of deaths by two different causes from 2000 to 2012.

This application shows that our proposed method to quantify multivari-
ate operational risk is a straightforward method that is useful to monitor
multivariate risks.
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Table 3: Parameter estimates from the bivariate Pareto model to the accident deaths
dataset by maximum likelihood. Years: 2000, 2004, 2008 and 2012.

2000 2004 2008 2012

â 4.2406 5.7511 5.1390 6.1394

σ̂1 395.43 471.63 271.84 206.63

σ̂2 321.96 590.56 544.90 699.24

When looking at the plots of the distortion functions presented in Section
2, we clearly see that for all of them, the larger the parameter, the closer is the
distortion function to one for low values of t. In the distortion, low values of t
correspond exactly to large values of the loss variables. Therefore we expect
to obtain risk measures that increase when the distortion parameter increases.
In Tables 4, 5 and 6, we see that the larger the value of θ and m, then the
larger is the resulting risk value. This happens for all the years (columns)
and all the risk measures. The reason is that the larger this parameter,
then the larger is the weight of the right tail of the loss distribution in the
computation of the risk summary value.

When we look at the risk values by rows, we always obtain a descending
trend. This would not happen if we were using a concave transform that
would not weight the large value of losses so much.

In Figure 3, we have decided to plot the trend over the years of risk
values based on θ equal to 0.5 for the Ginis principle, then m equal to 1.5
for the proportional hazard transform and m equal to 5 for the dual power
transform. They correspond to the mid row of Tables 4, 5 and 6, respectively.
These values are powerful indicators that are able to capture the multivariate
structure of risks and to represent that in one single value per year. When
looking at the trend presented in Figure 3, we conclude that there has been
a clear decreasing risk over the years, when taking into consideration the two
dimensions of losses.

We have shown that the multivariate risk measure analysis provides a
simple tool to monitor the evolution of risk over the years when we take
into account the two dimensions considered in this example, which were the
number of victims by type. We liked this particular example because it is
common to have several types of operational risk events which need to be
monitored over time and simultaneously.
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Table 4: Risk measures for the bivariate Pareto distribution based on the Gini’s principle
for accident deaths bivariate data. Years: 2000, 2004, 2008 and 2012.

θ 2000 2004 2008 2012

0.0 17534.7 15628.0 11400.8 6791.6

0.1 19025.6 16911.7 12348.0 7346.2

0.2 20516.5 18195.4 13295.2 7900.7

0.3 22007.4 19479.1 14242.4 8455.3

0.4 23498.3 20762.8 15189.7 9009.8

0.5 24989.2 22046.5 16136.9 9564.3

0.6 26480.1 23330.2 17084.1 10118.9

0.7 27971.0 24613.9 18031.3 10673.4

0.8 29461.8 25897.6 18978.5 11227.9

0.9 30952.7 27181.3 19925.8 11782.5

1.0 32443.6 28465.0 20873.0 12337.0

Table 5: Risk measures for the bivariate Pareto distribution based on the proportional
hazard transform for accident deaths bivariate data. Years: 2000, 2004, 2008 and 2012.

m 2000 2004 2008 2012

1.0 17534.7 15628.0 11400.8 6791.6

1.1 21853.0 18549.4 13725.9 8005.9

1.2 27299.4 21914.5 16474.9 9387.1

1.3 34308.1 25814.7 19755.2 10966.0

1.4 43558.0 30366.8 23711.6 12780.9

1.5 56170.7 35722.1 28544.1 14880.2

1.6 74136.6 42080.6 34536.5 17325.6

1.7 101351.0 49711.5 42104.9 20197.3

1.8 146589.0 58985.5 51883.7 23601.3

1.9 234589.0 70427.1 64889.3 27680.2

2.0 472423.0 84802.8 82855.8 32630.6

Table 6: Risk measures for the bivariate Pareto distribution based on the dual power
tranform for accident deaths bivariate data. Years: 2000, 2004, 2008 and 2012.

m 2000 2004 2008 2012

1 17534.7 15628.0 11400.8 6791.6

2 32443.6 28465.0 20873.0 12337.0

3 45739.8 39634.5 29182.3 17141.3

4 57903.2 49657.3 36686.4 21437.9

5 69208.8 58826.7 43587.7 25357.8

6 79832.9 67327.8 50014.7 28983.4

7 89896.8 75286.5 56055.1 32370.7

8 99488.7 82793.2 61772.2 35559.8

9 108675.0 89915.4 67213.4 38580.6

10 117508.0 96705.4 72415.4 41456.1
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Figure 3: Trend over the years of risk values based on θ = 0.5 for the Gini’s
principle (left), m = 1.5 for the proportional hazard transform (center),
m = 5 for the dual power transform (right). Years: 2000, 2004, 2008 and
2012.

7 Conclusions

We have presented a way to address the definition of multivariate distortion
risk measures and we have given some examples of distortion functions and
distributions where the final expression has a closed-form.

We believe that this methodological approach, although it is restricted to
non-negative cases, can be useful in many risk management applications.

The main advantage of our method is that there is no need to use vector-
value risk measures and that for some distributions which are typical in the
operational risk context such as the bivariate Pareto, we can obtain analytic
expressions for the multivariate distortion risk measures. The main drawback
is the interpretation of the summarizing measure in the scale and units of
the original components of the vector of losses.

The main limitation regarding interpretation, like in many other aggre-
gation methods, is that distortion functions combine and rescale the original
units of measurement. In the multivariate case, when we use distorted mul-
tivariate survival functions to obtain a distortion risk measure for a multi-
variate risk, the units of measurement are also distorted.
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