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This work contains a detailed analysis of the properties of the ground state of a two-component two-site
Bose-Hubbard model, which captures the physics of a binary mixture of Bose-Einstein condensates trapped in a
double-well potential. The atom-atom interactions within each species and among the two species are taken as
variable parameters, while the hopping terms are kept fixed. To characterize the ground state, we use observables
such as the imbalance of population and its quantum uncertainty. The quantum many-body correlations present
in the system are further quantified by studying the degree of condensation of each species, the entanglement
between the two sites, and the entanglement between the two species. The latter is measured by means of the
Schmidt gap, the von Neumann entropy, or the purity obtained after tracing out a part of the system. A number of
relevant states are identified, e.g., Schrodinger catlike many-body states, in which the outcome of the population
imbalance of both components is completely correlated, and other states with even larger von Neumann entropy

which have a large spread in Fock space.
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I. INTRODUCTION

Bose-Einstein  condensates trapped in double-well
potentials are interesting not only from a fundamental point
of view [1-4], but also for their potential applications. Among
the latter, the most prominent examples are found in quantum
metrology [5-9] and matter-wave interferometry [10,11].
A crucial aspect of this system is that it can host relevant
entangled many-body states, e.g., Schrodinger catlike states
[12-16], or pseudospin squeezed states, as already
demonstrated experimentally for the single-component
case [5-7,17-19].

Going from the single-component into the binary-mixture
case, the richness of the possible many-body correlations is
increased. For instance, to the spatial entanglement present
in the single component trapped in the double well, we
now add the possibility of having entanglement between the
two species. The interplay between spatial and interspecies
correlations allows one to have a variety of correlated many-
body states depending on the atom-atom interactions and
tunneling strengths.

Our article explores the many-body properties of the binary
mixture. Most of the previous studies have concentrated on
mean-field descriptions [20-27] discussing dynamical features
related to the Josephson to self-trapping transitions. Binary
mixtures in the mean-field approximation have also been stud-
ied in the context of measure synchronization [28]. Beyond-
mean-field studies include the onset of hybrid synchronization
between a mean-field subsystem and a full quantum one [29],
the dynamical generation of correlated states [30-32], and
also the extension of measure synchronization to many-body
systems [33].

In this article, we concentrate on fully characterizing the
many-body properties of the binary mixture by means of
quantum information tools, such as the entanglement spectrum
and Schmidt gap [34-36] of the ground state of the system.
We will complement them by the usual many-body techniques
such as the computation of the condensed fractions, population
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imbalances of the two species, and ground-state energy
gap. A precise knowledge of the ground states which can
appear for both attractive and repulsive atom-atom interactions
may later be used to design protocols to produce desired
many-body correlations, dynamically [19,30,37], by control
theory [38,39], or by means of shortcut protocols [40—42].

The paper is organized as follows. First, in Sec. II, we
will describe the theoretical model and explain the procedure
used to obtain the quantum many-body states. Then, in
Sec. III, we present the magnitudes used to characterize
the ground-state properties of the system. The main ones
are (1) the imbalance of population between the wells,
which can be measured experimentally in single-component
bosons, (2) the condensed fraction, which measures the degree
of Bose-Einstein condensation of each component, and (3)
entanglement measures, such as von Neumann entropies of
the subsystems after bipartition. Sections IV-VI contain the
main results. In Sec. IV, we discuss the symmetric case, in
which the bosons of the two species, A and B, have the same
intraspecies interaction. In Sec. V, we consider a more general
case, in which the intraspecies interactions are not taken equal.
In Sec. VI, we explore the effect of having a different number
of particles of each species. Finally, in Sec. VII, we provide a
brief summary and conclusions.

II. DESCRIPTION OF THE MODEL

A mixture of two bosonic species with a fixed number of
particles, i.e., Ny particles of A and Np particles of B, is
trapped in a double-well potential. The atom-atom interaction
is assumed to be well approximated by a contact potential.
Further, we consider only two single-particle modes for each
species [4]. We consider the two lowest-energy states of the
double well to be quasidegenerate, which can be attained
with a high barrier height. Moreover, we assume that the
energy gap with higher-energy states is large enough such
that the interparticle interactions considered in the manuscript
do not populate these higher-energy states [2,26]. Under
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these approximations, we have the following second quantized
Hamiltonian:

= —Ju(@ha, +alag) — Jsblhb, + bl bg)

Utaropga A fa
D lag (o — 1) +ap(p - )]

28 [af (3% — 1) + (% — 1)]
+Uag(AgA] +igig) — €(A] — Ag), Q)

where [a,,a 1=96;, [bl,b 1=26i;, i —de,, Ai = IQTE,,
andi,j = L R (L assoc1ated with the left site and R with the
right site). The strength of the intraspecies, AA and BB, and
interspecies, AB, interaction is given by the parameter Uy,
Ugg,and U4 p, respectively [1,43]. Within our sign convention,
positive and negative values of U,g correspond to repulsive and
attractive interactions, respectively. The hopping parameters
Ja and Jp can, in principle, be varied by raising or lowering
the potential barrier between the two wells. A small bias term,
0 < € < Ja, Jp, ensures the breaking of left-right symmetry
and also A-B symmetry. In our case, it has been chosen to be
energetically favorable to have B particles on the L site. We
define the parameters Ay = NgUaa/Ja, Ap = NpUpp/Js,
and AAB = NAUAB/JA.

To diagonalize the Hamiltonian, the Fock basis used is
labeled as

lka,kp) = |Na — ka,ka)INp — kp.,kg), 2

where k4 =0,...,Ny and kg =0,...,Ng, and thus the
dimension of the Hilbert space is (N4 + 1)(Npg + 1). The state
|k4,kp) is the one having k4 bosons of type A on the right and
kg bosons of type B on the right. Diagonalizing the Hamilto-
nian matrix, the energy spectrum is obtained numerically and
the ground state is found in different situations.

III. GROUND-STATE PROPERTIES
A. Spectral decomposition and degeneracy
The ground state of the system | W) can be expressed in the
Fock basis as
Na Np

(Wo) = Y " Cyky k). 3)

ka=0 kp=0

Since it is an eigenvector of the Hamiltonian, it satisfies
H|Wy) = Eo|Wo), with Eq the energy of the ground state. The
first excited state | W, ) satisfies H|W,) = E;| V). Degeneracy
will occur when at least two different eigenstates have the same
energy. For this reason, the difference

AElyoEEl —Eo (4)

determines whether or not the ground state is degenerate.

B. Population imbalance

The population imbalance z;, with i = A, B, for a given
arbitrary state of the system |W), is defined as the expectation
value

1

Ewm’; — AR W), (5)

i =
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For a state with all particles of type A (B) on the left site, z4(g)
is 1, while if all of the particles are on the right site, its value is
—1. This quantity is zero in the case of an equal population of
particles of a given type in the two sites. We can also compute
the dispersion of z;,

Al i\ 2 Al i 2
o s/(%(%) W) — ((M%I%) . (©)

Particularly for the ground state | W) using its spectral decom-
position (3), we can express the population imbalance (5) for
each component of the mixture as

Ny Np 2](

=33 (G )

ka=0kp=0

and also the corresponding dispersion (6) as

Na  Ng N2
=[5 3 P (22)
12

ka=0 k=0
Ny Np
(ZZICMBZN 2") ®
ka=0 kp=0 Ni

C. Degree of condensation

The degree of condensation of each of the species in the
ground state is characterized using the one-body density matrix
for each component,

1 At A

piY = - (Woldja W), ®
1 o

,ij = N—B(‘I’0|bjbj|‘1’o), (10)

where, in both Egs. (9) and (10),i,j = L,R.

Diagonalizing p*®, we obtain its eigenvalues n)
A(B)
ny

A(B) and

normalized to unity, which correspond to the occupations
of the single-particle eigenstates of the one-body density
matrix |¢A(B)) and |¢A(B)) respectively.

The eigenvalues fulfill nA(B) + nA(B)
0< n’;(B ) < < A(B ) In the particular case when n;
of the bosons of type A (B) populate the same s1ngle partlcle

state |¢A(B)) and the state of the subsystem of bosons of type A
A(B)) |¢A(B))®NA(B>

= 1 and, by definition,
B — 1, all

(B) can be written as a product state, |

D. Partial traces, purity, and entanglement

The density matrix associated with the ground state |W),
which completely describes the state of the total system formed
by the two types of particles, is

po = |Wo)(Wol. (an

This matrix has dimension (Ns + 1)(Ng + 1). If we are
interested in only one part of the system, for instance the
type A (B) bosons, we can obtain the state for this subsystem
taking the partial trace with respect to B (A) of the matrix fy.
The state of type A (B) bosons then would be described by
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Jos MP that is,
~A(B A
/00( ' = Trpw [ o], (12)
which has dimension (N ) + 1).

In general, after tracing out part of the system, the state of
the remaining subsystem is a mixed state. In order to determine
if g, AA(B) is a pure state and its degree of purity, the trace of this
matrlx squared, Pa(p), is computed,

e[ (50 )] (13)

When the state of each subsystem is a pure state, we
obtain P4py = 1. In this case, the ground state is a product
state, |Wo) = |¥¢')|WE), and there is no entanglement between
A and B. Otherwise, when P,y # 1, the ground state is
not a product state,|Wp) # |\IJA)|\IJB), and Pyp) satisfies
N,wl;, —7 < Paw) < 1, now having entanglement between A

and B with completely entangled subsystems for the case
~AAB) __ 1
Po = NA(B)+1]I.

Py =

E. Entropy and Schmidt gap

The von Neumann entropy of the state of each subsystem
is computed diagonalizing

Ny
Z )LA(B)|)LA(B)>( A(B)‘ (14)
i=0

~A(B
p()

to obtain its eigenvalues )\iA(B), considering AQ(B) > Af‘(B) >
> Aﬁiﬁ;. As the density matrix ﬁA(B) is normalized,

Tr[ AA(B)] = 1, the eigenvalues satisfy ZNA“” AA(B) 1. In
order to calculate the entropy S4(g), we use the deﬁnltlon

Nacs)

Z )LA(B) log A(B)

15)

SA(B) = —TI'[ AB) IOg AA(B)

where if a AA(B) = 0, the corresponding term is considered

to be zero and is not added to the sum. The entropy has
a minimum value equal to zero when all of the )\A(B) =0
except A AB) — 1 and then the state is pure. Its maximum
value, SA(B) = log(Nacp) + 1), is reached when A9 = AA(B)

max
AB) _ _ 1

NA(B) - NA(B)-‘rl
entanglement situation (discussed previously) which means
that each subsystem is in a mixed state. In fact, as the density
matrix of the system (11) always corresponds to a pure state, in
our case, S4 = Sp. This is derived from the triangle inequality
that relates the von Neumann entropy of the whole system and
the partial entropies [44]. For this reason, if Ny # Npg, then
SAB) = min{log(Na + 1),log(Ng + 1)}.

The Schmidt gap is defined as the difference between the
two largest eigenvalues of the density matrix,

AGEB B (16)

and, in this case, we have the maximum

AV =

and also distinguishes between having pure states and no
entanglement between the A and B when AAA®) =1 and
totally entangled subsystems and mixed states for parts A and
B when AAAB) =0,
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Moreover, L-R quantum correlations are quantified by
tracing out the L (R) part of the system,

AE® = Trpey[pol, (17)

and computing the von Neumann entropy defined as
Sir = —Tr[pf log oy ] = —Tr[ o log A5 ] (18)
which by using the Fock basis [2] reads

N4y Np

Z Z ’CkA»kB}Zlog ’CkAka‘z' (19)

ka=0kp=0

Sir=—

We also characterize L-R quantum correlations within each
species, tracing out the L (R) part in each subsystem (14) and
computing the von Neumann entropy for A as

Ny Ng Ng
Stk=—>_ [(Z |ckA,kB|2) log (Z |ckA,kB|2>],

ka=0 L \kz=0 k=0
(20)
and for species B as
Np Na Na
Str==>_ [(Z |ckA,kB|2) log (Z |ckA,kB|2)}.
kz=0 L \ks=0 ka=0
(2D

The maximum values of L-R entropies are S5R = log[(N4 +
D(Ng + D]and S7y) = log(Na + 1.

IV. EQUAL INTRASPECIES INTERACTION

In this section, we present our results for the case in which
the intraspecies interaction is the same for both species. We
discuss how the properties of the system change as we vary
the interspecies one, Usp. In terms of our parameters, we
concentrate onthe cases Ny = N, Uaa = Upp, J4 = Jp,and
Uap # Uaa. Now, for simplicity, we define A = Ay = Ap
and also J = J4 = Jp. In our numerical calculations, Ny =
Np =20, J =20,and €/J = 10719, Thus, the Hamiltonian
is a 441 x 441 matrix, which is diagonalized for different
values of A and A,p. We organize the section as follows.
First we discuss the spectral decomposition of the ground
state depending on the character of the intraspecies interaction.
Second, we study the condensed fraction and entanglement
properties as a function of A and A 4p.

A. Repulsive intraspecies interaction

In this case, we have A > 0, i.e., atoms of each species
repel each other. We can consider three situations, A4z > 0,
AAB < 0, and AAB =0.

Aap > 0. In this case, particles of different types do
not want to be at the same site. For A4 > A > 1, which
is neglecting tunneling effects, this can be achieved with
all type-A bosons on the right site and type-B bosons on
the left site, or similarly with type-B bosons on the right
and type-A bosons on the left site. These two states are
degenerate in this limit and, therefore, any superposition of
them, | W) = a|N4,0) + B|0,Ng), with ||> + |8]> = 1, has
the same energy. This degeneracy is broken by the bias term
introduced in the Hamiltonian, and since the bias has been
chosen to be energetically favorable to have B particles on
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FIG. 1. Spectral decomposition of the ground state, |Cy, 1, |?, for
repulsive intraspecies interaction (A > 0), plotted for different values
of A 45. We observe the transition from (a) a regime dominated by the
attraction between the different species to (g) a regime dominated by
the repulsion between species A and B, going through intermediate
regimes in (b)—(f). For all panels, A =4, Ny = Ng =20, J = 20,
ande/J =107,

the left site, the ground state is |Wy) = |N4,0). This limiting
case, obtained for A4 > A > 1, can help one to understand
the numerical results. For instance, in Fig. 1(g), we present
the spectral decomposition of the state obtained for A 45 = 10
and A = 4. The ground state is seen to be close to the |[N4,0).
As the A 4p is decreased, the bias term is not large enough to
localize the state and the ground state is closer to the linear
combination %2(|NA,O) =+ |0,Np)); see Fig. 1(f).

A ap < 0.1Inthe absence of tunneling, attractive interaction
between different bosons will make all of them be at the same
site despite the repulsion between the same types of bosons
because now we consider the regime where —A 45 > A > 1.
There is degeneracy in this case, too. Bosons can be all together
on the right, |Wy) = |N4,Np), or on the left, |¥y) = |0,0),
or on any superposition, |Wy) = «|Na,Ng) + 8]0,0), with
la|? 4 |B|? = 1. Again, the bias breaks the symmetry and in
this case selects the state |\Wy) = |0,0) because type-B bosons
are on the left site in this one. The numerical results do agree
with these arguments. For A p = —10, the ground state is
close to the state |0,0); see Fig. 1(a). For A 4p = —8, the bias
does not localize the state and the ground state is close to a
linear combination, %(|0,0) + |[Na,Np)).
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A ap = 0. Here, the system is equivalent to having two
independent bosonic Josephson junctions, which only differ
by the presence of a bias in one of them (in the B component).
Single-component Bose-Einstein condensates in a double well
have been studied in detail in [1,4,12,13,16]. The ground state
of the full system is the direct product of the ground state of
each subsystem. Thus, we obtain a left-right A-B symmetric
ground state [see Fig. 1(d)]. This type of state would be
binomial for each component [13] for A = 0. For A > 0, it
becomes squeezed. In the limit case when |A| >> 1, it tends to
[Wo) = |5, ).

When the bias does not play a role, i.e., when € <
AE|, the Hamiltonian has left-right and A-B symmetries
so in this situation its eigenstates have these symmetries too.
Therefore, catlike states appear for A, p < 0 as well as for
A ap > 0. In both cases, the ground state is quasidegenerate
with the first excited state. Without bias in the A p domi-
nated regime, we have, for attractive intraspecies interaction,

[Wo) = LZ(INA,NB) +10,0)), and, for the repulsive case,

W) = \/li(|NA,O) 4 |0,Np)). This is mainly what is found
in Figs. 1(b) and 1(f), respectively. For |A 45| small enough,
the two peaks merge and form a broadened peak which has
its tails pointing to the previous corresponding two peaks
[see Figs. 1(c) and 1(e)] and becomes narrow when |A 45|
decreases, until A p = 0. As we will discuss in Sec. IV C,
the states with larger spread, such as Figs. 1(c) and 1(e), will
have the larger entropy, marking regions where the ground
state goes from localized to highly delocalized catlike states
[see Figs. 1(b) and 1(f)].

B. Attractive intraspecies interaction

Again, we can distinguish three cases: Ay > 0, Asp < O,
and A AB = 0.

A sp > 0. Here the repulsion between different types of
bosons and the attraction between the same types of bosons
are not competing, in the sense that both effects can be easily
fulfilled simultaneously, which did not happen in the two
first limits discussed in Sec. IV A. Particles of the same
type want to be together and separated from the other types.
The states that accomplish this in the absence of tunneling
are |Wy) = |N4,0), |Wo) =10,Np) and their superposition
|Wo) = a|Ny,0) + B|0,Np), with |a|?> + |B]*> = 1. The bias
breaks the symmetry towards [Wy) = |N4,0) [see Fig. 2(g)].
Notice that this argument also holds for the repulsive-repulsive
case (repulsion between same and different types of bosons).

A sp < 0. This is the attractive-attractive case where, in the
absence of tunneling, it is clear that all of the bosons will be at
the same site. Now the expected states are the same as in the
regime —A 4 > A > 1. The difference in this case is that the
effects of A and A 4p go in the same direction. The ground-
state candidates are |Wy) = |Na,Ng), |¥o) = |0,0), and, as
before, their superposition |Wy) = «|Na,Np) + £10,0), with
la|? 4 |B|? = 1, with the bias breaking the symmetry and
selecting the state |Wy) = |0,0) [see Fig. 2(a)].

A 4B = 0. Here, we also have the catlike states described in
the previous section, as shown in Figs. 2(b) and 2(f). However,
the ground state for A 45 = 0 is a different one [see Fig. 2(d)]
and thus the intermediate states are too [see Figs. 2(c) and 2(e)].
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FIG. 2. Spectral decomposition of the ground state, |Cy, 4, |*, for
attractive intraspecies interaction (A < 0), plotted for different values
of A 45. We observe the transition from (a) a regime dominated by the
attraction between the different species to (g) a regime dominated by
the repulsion between species A and B, going through intermediate
regimes in (b)—(f). For all panels, A = =3, Ny = Ny =20, J = 20,
ande/J = 1071,

The ground state for zero intraspecies interaction is degenerate
not only with the first excited state but also with the second,
the third, and the fourth. Looking only at one type of boson,
we have in these conditions a left-right catlike state [12,13], so
here we see this for both components at the same time. Each
catlike state for each species is degenerate, which means that
the ground state of the whole system is a linear combination
of |0,0), |N4,0), |0,Ng), and |N4,Npg). As occurred before,
the tunneling mixes the four states and, for finite A, we obtain
states close to these, but with a finite width in the Fock space;
see Figs. 2(c)-2(e).

In Table I, we summarize the ground state in the interaction
dominated regime.
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FIG. 3. Properties of the ground state, varying A and A,p. (a)
Population imbalance, z4. The particles of this type are all on the left
z4 = 1 (yellow), all on the right z4 = —1 (black), or z4 = 0 (red).
(b) Population imbalance, z. The particles of this type are all on the
left zp = 1 (yellow) and z = 0 (red). (c) Dispersion of population
imbalance, o 7. (d) Condensed fraction, nf. For A 45 = 0, the results
obtained in [13] are reproduced. Green spots mark where the states
of Figs. 1 and 2 are found, except for the cases A, p = —0.01 and
0.01 which are not marked. For all panels, Ny = Ng = 20, J = 20,
ande/J = 10710,

C. Condensed fractions and entanglement properties

Up to now, we have mainly discussed the spectral structure
of the ground state for different values of A and A 4p. Starting
from the interaction dominated cases, we have understood
the Fock space structure obtained in our numerical diago-
nalization. In particular, we have identified regimes in which
ground-state quasidegeneracies and many-body fragmentation
are expected to appear. In this section, we will characterize
the condensation of the two ultracold atomic clouds and the
entanglement between the two species.

First, let us provide a global picture and consider the
population imbalance of the ground state for the A and B
species as a function of A and A p. The main difference
between the two species is found in the attractive intraspecies
interaction case, as seen by comparing Figs. 3(a) and 3(b).
This is due to the bias term which explicitly breaks the A-B
symmetry, which in the interaction dominated regime localizes
the B atoms on the left and the A atoms on the right.

TABLE I. Ground state for the case |A,p| > |A| in the absence of tunneling (|A| >> 1) and in the absence of bias depending on the

character of inter- and intraspecies interaction.

A <O

A>0
Aag >0 (1/+/2)(IN4,0) £ 0,Np))
Az =0(A]>0) IN4/2,Np/2)
Axp <0 (1/+/2)(10,0) & | N4, Np))

(1/+/2)(IN4,0) £ |0,Np))
(1/2)(IN4,Ng) 4+ |N4,0) + [0,Ng) + 10,0))
(1/+/2)(10,0) & | N4, Ng))
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The population imbalance only provides an average in-
formation, which does not allow one to differentiate, for
instance, between two very different quantum states, e.g.,
Figs. 1(b) and 1(d). Both of these states have a zero-population
imbalance, but the structure in Fock space is completely
different. For instance, it can be inferred directly from the
figure that the two states should have a very different quantum
uncertainty for the imbalance of population. This means, for
instance, the following: If one prepares the system in the state
shown in Fig. 1(b) and measures the populations, the outcome
of the measurements will be very polarized, i.e., almost all
particles of each species will be found on the same well in each
experiment. On average, however, we should find an average
of population equal to zero. In contrast, in the state depicted
in Fig. 1(d), the outcome of each individual experiment will
almost never be too polarized, finding outcomes where a
similar number of particles of each species is found in each
well. These two states can be discriminated by means of the

10 @ 100 10 &
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80
5 o 5 :
60
2o 50 =
< 10 <
30 -
5 " 5
10
-10 0 -10
10 5 0 5 10 0 5 0 5 10
A A

10 © 1
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A
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5
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<
-5
-10
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A

FIG. 4. Properties of the ground state, varying A and A4p. (a)
Energy gap, AE o. The black region is where there is degeneracy. (b)
The von Neumann entropy for subsystem A (B), Sacs), normalized
to its maximum value. (c) Trace of the density matrix squared for
subsystem A (B), Pup). (d) Schmidt gap for subsystem A (B),
AMA® _ The L-R von Neumann entropy for (e) the whole system,
Srr, and (f) for subsystem A (B), Sf;f), both normalized to their
maximum values. Green spots mark where the states of Figs. 1 and 2
are found, except for the cases A 45 = —0.01 and 0.01 which are not
marked. For all panels, Ny = Ng =20, J =20,and€/J = 10719,
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dispersion of the population imbalance o, which is depicted
in Fig. 3(c).

For species B, the sharp lines delimiting the different
population imbalance regions seen in Fig. 3(b) are replaced by
broad transition regions in Fig. 3(c). This is a quantal effect,
similar to the transition observed in the single-component
case [8,13]. As occurred in the single-component case, in the
transition regions the many-body state is very fragmented.
As seen in Fig. 3(d), the B component is almost fully
condensed for all values of A and A,p, except for the
transition regions where the condensed fraction falls below
0.7. These fragmented states are, for instance, the ones in
Figs. 1(b), 1(c), 1(e), and 1(f).

As explained above, in certain limits the ground state
becomes degenerate with the first excited state. In Fig. 4(a), we
depict A E| o. Small degeneracies are not seen in the figure, and
thus, for instance, the localization due to the bias is not reflected
in the figure. For A < 0, the ground state is mostly degenerate.
Gapped ground states are found for repulsive intraspecies
interactions and also in the transition regions.

The entanglement between the two species is characterized
by the purity, the von Neumann entropy, and the Schmidt
gap of the density matrix after tracing out one of the species.
The Schmidt gap provides a broad picture of the presence of
entanglement; see Fig. 4(d). As it only involves the difference
between the two largest Schmidt coefficients, it does not
completely differentiate between different entangled states;
for instance, it cannot discriminate between a catlike state

0.4} i ‘ 1

Aap

FIG. 5. Entanglement properties for A =4 depending on the
interspecies interaction A 5. (a) Schmidt gap for subsystem A (B).
(b) Trace of the density matrix squared for subsystem A (B), Py(p).
(c) The von Neumann entropy for subsystem A (B), S (), normalized
to its maximum value. Dashed green lines mark where the states of
Fig. 1 are found. (a)—(c) Vertical cuts in (b)—(d) of Fig. 4, respectively.
For all panels, Ny = Nz = 20, J =20, and ¢/J = 107'°,
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[Fig. 1(b)] and a broadened peak [Fig. 1(c)]. These two
states can be individually identified by computing the von
Neumann entropy; see Fig. 4(b). In this case, the broadened
peak has a larger number of sizable Schmidt coefficients
than in the catlike case, and thus shows as a maximum of
the von Neumann entropy, in yellow inside the transition
region. A similar discussion can be made with the states in
Figs. 1(e) and 1(f), which again have a similar Schmidt gap but
different von Neumann entropy. The purity, shown in Fig. 4(c),
provides a very similar picture as the von Neumann entropy.
The effectiveness of these three quantities in distinguishing
between different states with entanglement is better seen in
Fig. 5. There, we observe that purity and the von Neumann
entropy are minimum and maximum, respectively, only for a
single value of A4p for a given A. That is not the case for
the Schmidt gap, which remains constant and zero for a wide
range of A4p. In our system, the purity provides essentially
the same information as the von Neumann entropy. Both of
them supply more detailed information than the Schmidt gap.
Therefore, in the next sections, we will focus only on the von
Neumann entropy.

The presence of quantum correlations between the two sites
is shown in Figs. 4(e) and 4(f), where L-R von Neumann
entropies are depicted, for the whole system and for just one
single species, respectively. These two panels look similar
but, for the whole system [Fig. 4(e)], the maximum value
achieved of the entropy fixing A 45 depends on the value of
A 4p, whereas this dependence is not seen in Sf;eB) shown in
Fig. 4(f). Notice that in this particular case, Sj', = SB.. Due
to the tunneling, we have quantum correlations between the
two sites in the absence of the interaction between bosons of
different types (A 45 = 0) and also in the noninteracting case
(A =0and Asg =0).

V. DIFFERENT INTRASPECIES INTERACTION

In this section, we will study the case Uss # Upgp with the
same number of particles for each species, Ny = Np, and, as
before, J = J, = Jp with €/J = 107'°. We consider a fixed
value of A, for repulsive (A4 > 0) and attractive (A4 < 0)
interaction, and allow for variations of the parameters Ap
and A AB-

A. Repulsive intraspecies interaction A 4

Here we have found mainly the same types of states and
transitions described in Sec. IV. There are, however, new states
and different behaviors for each type of bosons. For instance,
for Ap > 0, the states that are found are the ones of Fig. 1
but appearing for different values of A 4. For this reason, we
focus on the case of having Ap < 0 as it is shown in Fig. 6.
In the extreme cases [see Figs. 6(a) and 6(e)], the states are
similar to the ones in Figs. 1(a) and 1(g). In these cases, the
physics is dominated by A 4p and the effect of the bias. Notice
that the different intraspecies interaction plays a relevant role
because without the interspecies interaction, we would have a
binomial-like distribution for type- A bosons (slightly repulsive
intraspecies interaction, A 4) and a catlike state for type B due
to an attractive interaction in species B [see Fig. 6(c)]. When
A 4p increases [see Fig. 6(d)] or decreases [see Fig. 6(b)], it
produces an entanglement of the A coefficients maintaining

PHYSICAL REVIEW A 93, 043619 (2016)

p @ Aap =6 0.25 1 (D) Aap = =2 0.06
0.8 | 18 0.2 0.8 4f 0.05
= 06 | Hos o6t 4 004
< £ 0.03
n 04 | g 0.1 o 0.4 - g
s b 0.02
0.2 + g 0.05 0.2 + g 0.01
0 b= . v . 0 ol mme Il g
0 02040608 1 0 02040608 1
ka/Na ka/Na
1 © .A‘“i;o : 0.05 1 (D Aap =2 0.06
0
0.8 18 0.04 0.8 F 4f 0.05
= 0.6 | H o003 So6t 1 83;
504 L H o002 Todl 1 ooz
= <2 .
0.2 + g 0.01 0.2 g 0.01
0 L l 1 0 0 L— 1 cemms | 0
0 02040608 1 0 02040608 1
ka/Na ka/Na
g @ Aas=6 0.25
0.8 | 18 0.2
= 06 | 1f o015
504 M 01
~
0.2 | dH 0.0
1 1 1 0

0 02040608 1
kA/NA

FIG. 6. Spectral decomposition of the ground state, |Cy A,,(Blz,
plotted for different values of A 4. Here there is repulsion between
A-type bosons (A, > 0) and attraction between B-type bosons
(Ap < 0). We observe the transition from (a) a regime dominated
by the attraction between the different species to (e) a regime
dominated by the repulsion between species A and B, going through
intermediate regimes in (b)—(d). For all panels, Ay =4, Ap = -5,
Ny =Nz =20,J =20,and e/J = 1071,

a catlike structure for the B component, until a catlike state
between the components A and B is formed. The states of
Fig. 6 are presented along a vertical line in Figs. 7 and 8 for a
fixed value of Ap.

The existing differences between the two components are
reflected in Fig. 7 where we compare several observables. For
the population imbalance of each species, shown in Figs. 7(a)
and 7(b), we obtain a similar description. That type of behavior
was already observed in Fig. 3, but in the present case the
borders between the different regimes become curvy and the
transition zones become wider. This means that for a variation
of the parameters A 4p and A g, the state that is obtained varies
more slowly and is not as sensitive to interaction changes.
Another interesting feature is the area around Az = —S5,
which is the one explored in Fig. 6, because the difference
between species A and B becomes larger. We can see how
for Ayp =0, A4 =4,and Ap = —5, we have A-type bosons
condensed [see Fig. 7(e)] and B-type bosons experimenting
the transition. When |A 4p| is increased, a transition zone
to a condensate for the A bosons appears. Notice that this
transition is a consequence of the interspecies interaction. This
is observed also for the entropy [see Fig. 8(b)]. All of these
facts illustrate the effects of the interspecies interaction. The
different behavior of A and B is also reflected in Figs. 8(c)
and 8(d), where L-R entropies for A and B, respectively,
are represented. This entropy characterizes each kind of state
for each species. In accordance with Fig. 6, for Ap = —5
in Fig. 8(c) depending on A 45, we find seven differentiated
regions going from A, p < 0to Ayp > 0, corresponding to a
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FIG. 7. Properties of the ground state for A4 > 0 and varying
Ap and A 4p. Population imbalance (a) z4 and (b) z. Dispersion
of population imbalance for each species, (c) oz4 and (d) ozp.
Condensed fractions (e) n{' and (f) n®. Green spots mark where the
states of Fig. 6 are found. For all panels, A4 =4, Ny = Np = 20,
J =20,ande/J = 10710,

localized peak on the left [Fig. 6(a)], a catlike state [Fig. 6(b)],
a wide single peak, a binomial-like state [Fig. 6(c)], a wide
single peak, a catlike state [Fig. 6(d)], and a localized peak
on the right [Fig. 6(e)]. For the same interaction parameters
for type-B bosons, there are only three regions in Fig. 8(d),
corresponding to a localized peak on the left [Fig. 6(a)], a
catlike state [Figs. 6(b)-6(d)], and a localized peak on the
right [Fig. 6(e)].

B. Attractive intraspecies interaction A 4

In Figs. 9(a) and 9(e), we find similar types of states as
those found before in Figs. 6(a) and 6(e). For A p = 0 [see
Fig. 9(c)], we have a catlike state for type-A bosons and a
binomial-like state for type-B bosons. This situation is not
different from the previous one in Fig. 6 since it corresponds
to an exchange of roles of the A and B bosons. However, in
Figs. 10 and 11, we can observe this situation from a different
point of view because the variable parameter A g corresponds
to the species which does the transition from a binomial-like
to a highly localized state, whereas for Figs. 7 and 8, bosons
of type B experimented the other transition.

10 @
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FIG. 8. Properties of the ground state for A4 > 0 and varying A
and A 4p. (a) Energy gap, AE; . (b) The von Neumann entropy for
subsystem A (B), Sa(s), normalized to its maximum value. (¢) L-R
von Neumann entropy for subsystem A, S;;, and (d) for subsystem
B, Sy, both normalized to their maximum values. Green spots mark
where the states of Fig. 6 are found. For all panels, Ay =4, Ny =

Np =20,J =20,ande/J = 10717
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FIG. 9. Spectral decomposition of the ground state, |Cy, t, |*
plotted for different values of A 4. Here there is attraction between
A-type bosons (A, < 0) and repulsion between B-type bosons
(Ap > 0). We observe the transition from (a) a regime dominated
by the attraction between the different species to (e) a regime
dominated by the repulsion between species A and B, going through
intermediate regimes in (b)—(d). For all panels, Ay = —4, Ap =5,
N4y =Np=20,J =20,ande/J =107
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FIG. 10. Properties of the ground state for A4 < 0 and varying
Ap and A 4p. Population imbalance (a) z4 and (b) zp. Dispersion
of population imbalance for each species, (c) oz4 and (d) ozp.
Condensed fraction (e) n# and (f) n2. Green spots mark where the
states of Fig. 9 are found. For all panels, Ay = —4, Ny = Np = 20,
J=20,ande/J = 10710,

On the one hand, for type-A bosons, we clearly see three
zones in Figs. 10(a), 10(c), and 10(e). The top region is
the one corresponding to having all bosons of this type on
the right [see Fig. 9(e)] so its population imbalance is —1, the
dispersion is 0, and there is condensation. The bottom region
is similar to the top one, but with A bosons now confined
on the left site [see Fig. 9(a)]. The third region located on
the right is the one corresponding to the catlike states for
the A species. On the other hand, for type-B bosons [see
Figs. 10(b), 10(d), and 10(f)], the top and the bottom regions
are the ones associated, respectively, with Figs. 9(e) and 9(a),
and the right region is the transition where B bosons pass from
being confined in one side, to a catlike state, to a wide peak,
and finally to a binomial-like state for A 45 = 0.

In the present case, A4 = —4, we observe large regimes of
A g and A 4 for which there is degeneracy, as we can observe
in Fig. 11(a), where we report the energy gap between the
ground and the first excited state. Moreover, the presence of
catlike states with entanglement exists for a wide range of
A 4B, corresponding to the yellow zone in the entropy; see
Fig. 11(b).
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VI. DIFFERENT NUMBER OF BOSONS

In Secs. IV and V, we have reported results for the Ny = Np
case. Now, we relax this condition and discuss the effect of
having unequal populations, but in order to remain in the same
interspecies interaction range A 4p for both species, we limit
ourselves to the case Ny/J4 = Np/Jp.

The effect of having different numbers of bosons is shown
by comparing Figs. 12 and 13 with Figs. 3 and 4. In Figs. 12(a)
and 12(b), we can see that the population imbalance does not
present differences from the corresponding ones of Fig. 3, but
the unequal number of bosons of each kind is reflected in the
dispersion of the population imbalance [Figs. 12(c) and 12(d)]
and in the condensed fraction [Figs. 12(e) and 12(f)]. Now
these two last quantities are not the same for both species
as they were in Figs. 3(c) and 3(d) for the same number of
bosons. For species A, we observe a domination of yellow in
the transition region in Fig. 12(c) and a domination of purple
in Fig. 12(e), which indicates the predominance of a catlike
state, but for B [Figs. 12(d) and 12(f)], the region is mainly red,
which indicates a wider peak in the spectral decomposition
for this species. The tiny region that is red for both species
in these figures is when there is a major spread in the Fock
space and it corresponds to the maximum A-B von Neumann
entropy region in yellow in Fig. 13(b). The L-R von Neumann
entropy for each species also reflects that for the same values
of the inter- and intraspecies interaction parameters, we have
different types of states depending on the number of particles.
The observables studied indicate that if, for example, it is
desired to have a L-R catlike state as a ground state, we can
achieve it with this kind of mixture focusing on the species
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FIG. 12. Properties of the ground state, varying A and A,p.
Population imbalance (a) z4 and (b) zp. Dispersion of population
imbalance for each species, (c) 0z4 and (d) o z5. Condensed fraction
(e) n{ and (f) n®. For all panels, Ny = 8, Np = 20, J4 = 8, Jp = 20,
and€/Jp = 10719,

with less number of particles. In this way, the range of values
of A and A 4 where this happens is wider than it was for same
number of particles.

VII. SUMMARY AND CONCLUSIONS

In this work, we have discussed the ground-state properties
of a binary mixture of Bose-Einstein condensates in two spatial
sites. The system has been described by means of a two-site
two-component Bose-Hubbard Hamiltonian. Taking the same
fixed number of particles for each component, we have studied
the properties of the ground state of the system in different
interaction regimes, i.e., varying the intra- and interspecies
interactions, and we have also studied the case of different
numbers of particles of each species. The numerical tool used
has been a direct diagonalization of the Hamiltonian, which is
feasible for the small number of particles considered, i.e., 20
for each component at most. In regimes where the interactions
are much larger than the tunneling, the analytical ground state
of the system can be obtained and can be used as a first
approximation to the exact results. We have also considered
a regime in which the interactions are of the order of the
tunneling. In this case, sizable quantum correlations are built
in the system. First, we have discussed the symmetric case in
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FIG. 13. Properties of the ground state, varying A and A 4. ()
Energy gap, AE, . (b) The von Neumann entropy for subsystem A
(B), Sa(g), normalized to its maximum value. (c) L-R von Neumann
entropy for subsystem A, S#, and (d) for subsystem B, SZ;, both
normalized to their maximum values. For all panels, Ny = 8, N =
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which both components have the same intraspecies interaction
and number of particles, finding quantum correlations arising
as the interspecies interaction is tuned. Finally, we have also
analyzed more general cases, first considering the case in
which both species have a different intraspecies interaction
and second the situation in which the number of particles of
each type is not the same.

Different states that cannot be found in a single-component
condensate have been found and studied as the catlike ones
that are of interest for having entanglement between the two
species bosons. We have discussed how the ground state
can be characterized and how one can differentiate different
qualitative ground states depending on A4, Ap, and Aap
using their properties. The population imbalance provides an
average information that is complemented by the calculation
of its dispersion. To determine the degree of entanglement, it
has been shown that the von Neumann entropy gives detailed
information about the state, clearly distinguishing among
interesting correlated states.

Even if the phenomenology associated to a binary bosonic
mixture in a double well is very broad, we have tried to explore
the most significant region of parameters with the hope that the
detailed analysis reported in the paper can be helpful for the
design and understanding of future experiments with mixtures,
especially to identify where we can expect states with strong
quantum correlations.
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