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We study dynamics of domain walls in pattern forming systems that are externally forced by a moving
space-periodic modulation close to 2:1 spatial resonance. The motion of the forcing induces nongradient
dynamics, while the wave number mismatch breaks explicitly the chiral symmetry of the domain walls.
The combination of both effects yields an imperfect nonequilibrium Ising-Bloch bifurcation, where all
kinks (including the Ising-like one) drift. Kink velocities and interactions are studied within the generic
amplitude equation. For nonzero mismatch, a transition to traveling bound kink-antikink pairs and chaotic

wave trains occurs.
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The effects of external forcing on pattern forming sys-
tems exhibit fascinating nonlinear behavior from a funda-
mental point of view and at the same time provide a
valuable tool for the control of pattern forming systems.
While the cases of purely temporal [1-3] and spatial forc-
ing [4—-6] have been considered for many years, the spa-
tiotemporal modulation of control parameters has been
introduced only recently [7—13]. Simultaneously, both fun-
damental questions [14] and interesting applications of
pattern control have arisen for possible information pro-
cessing devices based on nonequilibrium patterns [15,16].

In the simplest case of a spatiotemporal forcing, using
the form of a traveling wave, one allows for a periodic
dependence on both space and time. The consequences of
spatial resonance of such a forcing with a Turing-like mode
were studied in terms of the frequency, or velocity, w, of
the traveling-wave forcing and the deviation g from exact
spatial resonance. A central finding was the occurrence of
kinks or domain walls [7], which, similar to the case of
purely spatial forcing [5], mediate the competition between
the inherent and imposed wavelength.

In this Letter we study how a mismatch ¢ and the motion
of the forcing affect domain walls. We show that a combi-
nation of both effects, studied in the exemplary case of 2:1
resonance, provides a new scenario of complex spatiotem-
poral dynamics. Beginning with exact spatial resonance,
q = 0, an illuminating analogy with the resonance of a
subharmonic temporal forcing of an extended oscillatory
system appears. For the latter system it is well known that
the resonance generates stable walls and a transition be-
tween Ising and Bloch walls. The motion of the forcing
pattern—playing the role of the frequency detuning in
oscillatory systems—endows the system with nongradient
dynamics. This transition is called nonequilibrium Ising-
Bloch (NIB) transition [17-21].

The effects of a spatial resonance mismatch are more
difficult to analyze. While for large bifurcation parameter
p (or, equivalently, for small forcing) the effect of the
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mismatch becomes negligible and a phase approximation
can be used [11], we here focus on intermediate values of
M. We employ numerical continuation methods to calcu-
late kink solutions and show that the mismatch ¢ renders
the NIB bifurcation imperfect. A mismatch not only shifts
the existence range of certain kinks, but also breaks their
chiral symmetry, which results in inherently different dy-
namical properties, with, for instance, different drift veloc-
ities for the three types of kinks. The complexity of kink
interaction characteristic for the spatial forcing with wave
number competition (oscillatory interaction and locking of
Shilnikov defects, which is at the root of purely spatial
chaos [22]) is now present but with nontrivial dynamical
properties. In particular, we observe that spatially chaotic
locked states turn into chaotic wave trains, propagating
with a nontrivial velocity.

Our starting point is a generic amplitude equation for
the slow envelope A of a pattern A(x, 1) exp[i(k, + q)x —
iwt/2] + c.c.. The system, if unforced, undergoes a sta-
tionary, supercritical bifurcation with critical wave number
k., and is subjected to a traveling-wave modulation of the
control parameter of the form cos(kfx — wt), close to 2:1
resonance, that is, k; = 2(k. + ¢). Here g denotes a
(small) wave number mismatch. The corresponding ampli-
tude equation with proper normalization reads [5,11]
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where the star denotes complex conjugation. With ¢ = 0,
Eq. (1) coincides with that for an oscillatory extended
system under subharmonic forcing, where w plays the
role of frequency detuning. Therefore, sufficiently near
threshold, the case ¢ = 0 can be exactly mapped to that.
Homogeneous and localized solutions of this system were
extensively studied in recent years [3]. The mismatch ¢,
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however, introduces a new symmetry breaking, which has
no analogue in the oscillatory system.

We first look for homogeneous solutions of (1). These
fixed point solutions represent periodic locked patterns of
wave number k. + g = k;/2 moving with velocity w/k;
in the laboratory frame. To study the stability of the fixed
point A = 0 we distinguish the cases || <2 and |w| > 2.
If |w| <2 the zero solution loses stability at a pitchfork

bifurcation at g = —/1 — w?/4 (where we have intro-
duced & = u — g?). Writing A in polar variables A =
Rexpi®, the two stable fixed points that bifurcate are
Ay =R, expi®, with O, =larcsinw/2, 0, =

m + 1 arcsinw/2, and (Ry)? = i ++/1 — w?/4.

If || > 2 the trivial solution becomes Hopf unstable at

i = 0 with Hopf frequency /w?/4 — 1. Nonzero fixed
points do not exist and the system will be time dependent

or nonhomogeneous.

Next we study domain walls for |w| < 2, which connect
the two stable fixed points. For ¢ = 0 one finds two quali-
tatively different types of wall solutions [17]. Let us first
look at the case w = 0. For small & one finds Ising walls
for which the amplitude crosses the origin [see Fig. 1(a)].
This is not the case for Bloch walls [Fig. 1(c), solid lines].
A pitchfork bifurcation between Ising and Bloch walls
occurs at a critical i, = 3 (see Fig. 2). Nonzero w does
not destroy the basic structure of Ising and Bloch walls and
their transition, but it shifts the location of fixed points
[Fig. 1(b) and 1(d)] and introduces nongradient dynamics,
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FIG. 1. Projections of domain walls into the complex plane of
A. The kinks approach fixed points (gray dots) in the limit of
infinite |x|. Dotted curves correspond to unstable solutions. The
dashed and dotted curves in (e), (f) are kinks created in the
saddle node bifurcation of the imperfect Ising-Bloch transition.

conferring the inherently nonequilibrium character of the
NIB transition [17,23].

For g # 0 the only types of walls are Bloch walls in the
sense that the amplitude is always nonzero [Fig. 1(e) and
1(f)]. The introduction of a mismatch acts as an imperfec-
tion to the pitchfork bifurcation between Ising and Bloch
walls. To calculate the corresponding bifurcation diagram
we used numerical continuation by the HOMCONT routine
of AUTO, XPPAUT [24]. This method obtains kinks as het-
eroclinic connections in the spatial ordinary differential
equation derived from Eq. (1) [25].

For w =0 and g = 0.1 the three branches of kinks
connecting A; with A; are shown by solid lines in
Fig. 2. For small & only one kink exists. We denote this
branch (and the related branch of kinks which connect A,
to A;) by B1. Bl is generated at i = —1 together with the
fixed points A;-. We note that all B1 kinks possess the same
unique chirality. The branches B2 and I are created in a
turning point at & = 5 leading to the kinks projected in
Fig. 1(e). Numerical simulation of the full Eq. (1) shows
that the branches B1 and B2 are stable and the branch I is
unstable. Similar behavior is found for any nonzero |w| <
2.

As shown by the dashed line in Fig. 4 the location of the
turning point is shifted to larger values of j for increasing
g. Intuitively it is clear that for increased spatial mismatch
g one of the two Bloch branches (B2) is shifted to higher .
B1 reduces the wave number of the underlying pattern
from k. + g to smaller values by reducing the phase by
7r. It will then be closer to the natural wave number k.. On
the other hand, B2 increases the wave number beyond k. +
g such that for large ¢ this wave number becomes increas-
ingly unfavorable.

If w # 0, all walls, except for Ising walls for g = 0,
break spatial reflection symmetry and consequently drift
[17]. In general, the drift velocity of isolated walls depends
in a nontrivial way on w, w, and g. The absolute velocities
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FIG. 2. Plot of the NIB transition (¢ = 0, dashed lines) and the
imperfect transition (¢ = 0.1, solid lines) for @ = 0. The graphs
show the imaginary component of A at the center of each kink
that connects A;” with A; . Thick lines correspond to stable
kinks.
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of the three branches of kinks for i = 8 and ¢ = 0.1 are
shown in Fig. 3. The unstable I branch has the smallest
velocity. We also note that B2 and I kinks propagate in a
direction opposite to B1 kinks.

Several analytical approximations were used to deter-
mine the drift velocity [11,17,23]. Here we mention the
result for the phase regime [u > (1, g%)]. In this case the
drift velocity v is a function of w only. A nontrivial
characteristic curve v(w), similar to that of Bl in Fig. 3,
can be obtained as the location of a heteroclinic connection
in the phase equation [11]. For small  this curve can be
approximated linearly by v = w/+/32 (dashed line).

Next we consider interactions of traveling kinks. In nu-
merical simulations it is easy to find bound pairs and
aperiodic arrays of kinks of equal chirality (see supple-
mentary online material [26]). Counterpropagating kinks
(i.e., kinks of opposite chirality) annihilate each other. As
discussed above, counterpropagating kinks only exist
above the kink saddle node to the right of the dashed curve
in Fig. 4.

To find the existence range of stable kink pairs we
determined the asymptotic spatial decay of kinks, which
dominates the interaction for distant kinks [22]. The decay
is given asymptotically by the spatial eigenvalues of the
linearization around fixed point. For complex eigenvalues
the interaction is repulsive or attractive depending on the
distance of kinks.

To obtain the eigenvalues we linearize the ordinary
differential equations obtained from (1) and a traveling-
wave ansatz, A(x, r) = A(x — vt). Here v is the velocity of
the defect solution. For the fixed points A the character-
istic equation with eigenvalues p reads:

p*r—2up® + (4¢* — 24 — W4 — w? + v?)p?
+ Qwqg — 2vfi — 4vg® + 2vV4 — 0?)p
t4—w?+20A— g =0. ()

This equation has been evaluated using the velocity v
obtained from numerical continuation. To locate transi-
tions of eigenvalues from real to complex values for fourth
order equations, one can conveniently use the discriminant
of its cubic resolvent.

B2
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FIG. 3. Velocity of all three types of kinks for 4 = 8 and ¢ =
0.1. The two stable branches B1 and B2 end in a saddle node at
o = 2, where |v| = 1.652 and |v| = 1.592, respectively.

For w = 0 two pairs of eigenvalues are always related
by an opposite sign: A;, Ay, —A;, —A,. Consequently, all
eigenvalues become complex at the same location—the
thick line in Fig. 4. For comparison, the stable distance of
defects was determined by numerical simulations of
Eq. (1) and is shown for w = 1 in Fig. 5 (stars; diamonds
show the minimal distance of two kinks to repel each
other). No bound states were found for g below 0.28, in
accordance with the results in Fig. 4.

For nonzero w the coupling of eigenvalues is lost and
eigenvalues can, in general, have different absolute values.
Figure 4 contains results for o = 0.1. We found two curves
of zero discriminant (thin solid and dotted lines) indicating
a transition from real to complex eigenvalues. Now pairs of
eigenvalues become complex at these two different loca-
tions. Between the thin solid and the dotted curves two
complex and two real eigenvalues exist. Above the dotted
curve all four eigenvalues are complex.

We have repeated the numerical simulations of the stable
distance of two defects for w = 0.1 and . = 4 for various
q. Stable pulses consisting of two walls exist for g > 0.8.
This location is shown by the box symbol in Fig. 4. The
position of the critical g close to the upper zero discrimi-
nant line suggests that all four eigenvalues must be com-
plex to allow bound propagating kinks.

In conclusion, we have shown that traveling-stripe forc-
ing produces kinks with dynamical behaviors which differ
fundamentally from those of a Hopf unstable system under
oscillatory forcing. With no spatial mismatch (and thus in
the oscillatory case) traveling kinks emerge in a sponta-
neous symmetry breaking of Ising kinks. With ¢ # 0 the
spatial reflection symmetry is broken externally. This leads
to the occurrence of kinks of preferred chirality and, below
the kink saddle node, to the motion of kinks in a preferred
direction. Remarkably, this perturbation also generates
complex kink interaction and thus chaotic wave trains
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FIG. 4. Complex asymptotic eigenvalues exist above the bold
line for w = 0. For @ = 0.1 the thin solid and the dotted lines
show the location of zero discriminant (numerical convergence
was not sufficient for the dotted line close to i = —1). The
dashed line represents the kink saddle node for w = 0.
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FIG. 5. The stable distance of kinks (stars) and the critical
distance for repulsion (diamonds) for © = 1 and @ = 0. The
transition to oscillating wall interaction occurs at ¢ = 0.28.

[22]. We have shown that drift of the forcing affects the
kink interaction by uncoupling eigenvalues with positive
and negative real parts and shifting the location of kink
“gluing” in parameter space. This transition is an interest-
ing point of contact to dynamical systems theory, which
requires different modulus of eigenvalue real parts for
chaotic orbits [27] and could be crucial for existence and
stability arguments on chaotic solutions in our system.
Similar behavior is expected for different resonances,
such as 1:1.

We have tested our findings in a mathematical model for
the chlorine dioxide-iodine-malonic acid reaction, which
exhibits Turing patterns and allows for a spatiotemporal
forcing through illumination. Numerical simulations dem-
onstrated the stability of walls for a spatial resonance close
to 2:1 [28] (also see online material [26]). Parameter
values were chosen to reproduce experimental conditions.
This system is thus very adequate to test our predictions
experimentally and to explore the problem in 2d. Other
systems in hydrodynamics, nonlinear chemistry, liquid
crystals, or nonlinear optics could also probe the predic-
tions and possibly enrich the scenarios by including effects
such as linear and nonlinear dispersion through traveling
forcing of a traveling wave. Finally, the control of patterns
is a possible use of our study. Spatiotemporal forcing
provides a natural tool for defect control or for displace-
ment of nontrivial locked states. These aspects open new
possibilities in the context of the recently proposed mecha-
nisms of information storage and transmission in nonequi-
librium media [14], with practical applications for instance
in nonlinear optics [15] or reaction-diffusion systems [16].
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