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We argue that recent results in string perturbation theory indicate that the four-graviton amplitude of
four-dimensional N = § supergravity might be ultraviolet finite up to eight loops. We similarly argue that
the h-loop M-graviton amplitude might be finite for 7 <7 + M/2.

DOI: 10.1103/PhysRevLett.98.131602

Maximally extended supergravity has for a long time
held a privileged position among supersymmetric field
theories. Its four-dimensional incarnation as N = 8 super-
gravity [1] initially raised the hope of a perturbatively finite
quantum theory of gravity while its originin N = 1 eleven-
dimensional supergravity [2] provided the impetus for the
subsequent development of M theory, or the nonperturba-
tive completion of string theory. Maximal supergravities in
various dimensions arise as special limits within type II
string theory, which is free of ultraviolet divergences.
However, the fact that higher-dimensional maximal super-
gravity is not renormalizable means that it cannot be
quantized in any conventional manner in isolation from
string theory.

Another well-known problem with theories such as
type II supergravity is that it is notoriously difficult to
analyze the constraints implied by maximal supersymme-
try in a fully covariant manner since there is no practical
off-shell formalism that makes manifest the full supersym-
metry. For example, it has not yet been possible to deter-
mine the extent to which supersymmetry protects operators
against perturbative corrections. However, a number of
indirect arguments suggest that such protection may be
far greater than earlier estimates might suggest. For ex-
ample, a certain amount of evidence has accumulated over
the past few years that the sum of the Feynman diagrams of
maximal supergravity at a given number of loops may be
less ultraviolet divergent than expected [3]. This is largely
based on uncovering fascinating connections with the dia-
grams of N = 4 Yang-Mills theory, which are known to be
ultraviolet finite in four dimensions. A different approach
is to study implications of string/M-theory duality for the
scattering amplitudes of type II supergravity. In Ref. [4] we
considered the L-loop Feynman diagrams of the four-
graviton scattering amplitude in 11-dimensional super-
gravity compactified on a two-torus and its string theory
interpretation. The lack of information about the short-
distance structure of M theory is reflected by the non-
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renormalizability of supergravity and this ignorance was
parametrized by an unlimited number of unknown coeffi-
cients of counterterms. Nevertheless, requiring the struc-
ture of the amplitude to be consistent with string theory led
to interesting constraints. Among these were strong non-
renormalization conditions in the ten-dimensional type IIA
string theory limit—where the 11-dimensional theory is
compactified on a circle of radius R;;. This condition
followed from dimensional analysis together with the
fact that the string coupling constant is given by e? =
Rf{z, where ¢ is the dilaton. These conditions imply that
the genus-4 four-graviton amplitude has a low-energy limit
that begins with a power of SWR*, where S® is a sym-
metric monomial of power 4 made out of the Mandelstam
invariants s, ¢, and u. This was interpreted as an indication
that the i-loop amplitude obtained in the low-energy su-
pergravity limit has milder ultraviolet behavior than naive
expectations and four-dimensional N = 8 supergravity
might be free of ultraviolet divergences.

However, the arguments of [4] were rather indirect. Here
we will proceed more directly and more conservatively by
using perturbative string theory as a regulator of the ultra-
violet divergences of supergravity. We will see that the
nonrenormalization conditions of perturbative type II
string theory obtained by Berkovits [5], which are weaker
than those proposed in [4], point to the possible absence of
ultraviolet divergences in the four-graviton amplitude of
four-dimensional N = 8 supergravity amplitude up to
eight loops.

We begin by noting that the /-loop contribution to the
four-graviton amplitude in ten-dimensional string theory
has the form

Ail = a’Bh*leZ(h*l)iﬁz:SE.Bh)Il('h)(als’ a’t, CYIM)R4, (1)

where R is the Weyl curvature and 853 ») are monomials of
power 3, in the Mandelstam invariants s, ¢, and u. Explicit
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one-loop [6] and two-loop [3] calculations show that 8; =
0 and B, = 2. In fact, recent perturbative superstring cal-
culations [5] determine that 8, = h up to five loops (h =
5). The less direct arguments of [4] make use of
string/M-theory dualities to argue that B, = h might
hold to all orders. In the following we will not specify
the value of B, until we need to. The functions I?h) are
given by integrals over the moduli space of the A-loop
string world-sheet. The number of such terms depends on
the genus. For example, at two loops (h = 2) there are
three terms,

3
2552)152)(62/5‘, a't, a'u) = s2[§2)(a1s’ a't, a'u)
i=1

+ tzlgz)(a’s, a't, a'u)

+ uzlgz)(a’s, a't, a'u). (2)

The detailed evaluation of the functions Ifh) forh>2isa
daunting task but here we will only be concerned with the
general structure of the amplitude.

We wish to consider the low-energy field theory limit of

A’ obtained by expanding the scalar functions 15’” in the
limit &’ — O while holding the ten-dimensional Newton
coupling &) = a"e*? fixed. Since 1™, which is an in-
tegral over world-sheet moduli, does not have poles in s, ¢,
u [5] its low-energy expansion starts with a constant or
logarithmic term. At low energies the amplitude (1) there-
fore takes the symbolic form

Al ~ K(zl(g)—l)a/3—4h+,8/,5(l3h)[1 + 0(a's)]IRY,  (3)

where we have not kept track of possible factors that are
logarithmic in the Mandelstam invariants but which are, in
principle, defined precisely by evaluating the amplitude.
The expression (1) is finite in ten-dimensional string theory
due to the presence of the string length that provides an
ultraviolet cutoff. Indeed, the divergence of the expression
(3) in the low-energy limit, &’ — 0, translates into the
ultraviolet divergence of the sum of all the contributions
to the supergravity A#-loop amplitude. After interpreting the
inverse string length as an ultraviolet momentum cutoff

A ~ Va7 (3) becomes

Al ~ K(Zl(g; DA8I=6-28:8BV[1 + O(a's)IR*.  (4)
So the presence of the prefactor S R* means that the
leading divergences A8"*2 of individual 4-loop Feynman
diagrams cancel and the ultraviolet divergence of the sum
of diagrams is reduced by a factor of A =825,

We are interested in the maximal supergravity limit in
lower dimensions so we will consider compactifying the
string loop amplitude on a (10 — d) torus (with the external
momenta and polarizations oriented in the d noncompact
directions). Now consider the low-energy limit ' — 0

with the radii of the torus proportional to JVa', so that all
the massive Kaluza-Klein states, winding-number states,
and excited string states decouple. This leads to an expres-
sion for the s-loop supergravity amplitude in d dimensions
with cutoff A,. For example, for a square torus with all
radii equal to rva', the expression for A’ behaves as

2h—1)  (d—2)h—28,—6
K(a) A, L

constant, given by «(, = @' @=2/22¢ pd=10 i held fixed.

, where the d-dimensional Newton

Consider the low-energy limit in a dimension d for which
the power of A, is positive, so that (d — 2)h > 28, + 6 >
0. We will make a ‘“‘smoothness assumption” that this
power of A, does not increase in the process of taking
the low-energy limit. Although this sounds plausible, it
remains unproven and would fail if the leading low-energy

behavior of the function Igh) (s, 1, u) in the compactified

theory were an inverse power of s, f, or u. With this

assumption it follows that ultraviolet divergences are ab-

sent in dimensions for which

2B, + 6
PR

d<2+ )

In dimensions that satisfy this bound the expression (4) is
ill defined since it contains a negative power of the cutoff,
which vanishes, whereas finite and infrared divergent terms
that are nonvanishing are not exhibited. In this case the
negative power of A, is replaced by a negative power of s,
t, and u of dimension [s]@~2"/2=81=3  together with pos-
sible logarithmic factors. Infrared divergences arise for
dimensions d = 4 and presumably sum up in the usual
fashion to cancel the divergences due to multiple soft
graviton emission [7]. These features of the field theory
limit are seen explicitly in the compactified one-loop (h =
1) amplitude, which has B; = 0 [8]. In that case the
amplitude has the form of a prefactor of R* multiplying a
¢ scalar field theory box diagram. This is ultraviolet
divergent when d = 8, and finite for 4 < d < 8. The low-
energy limit of the two-loop (2 = 2) string theory expres-
sion reduces to the supergravity two-loop amplitude which
was considered in detail in [3,9]. There it was shown that a
power of s2, 2, or u® factors out of the sum of all super-
gravity Feynman diagrams, so that 8, = 2. In this case the
sum of Feynman diagrams has the form of prefactor s>R*
multiplying the sum of planar and nonplanar s-channel
double box diagrams of ¢3 scalar field theory, together
with corresponding #-channel and u-channel terms. More
recently the fact that 8, = 2 has been confirmed by ex-
plicit two-loop calculations in string theory [10]. In this
case ultraviolet divergences arise when d =7 and the
amplitude is finite for 4 <d <7.

The value of B, for & > 2 has not been established from
direct supergravity calculations beyond two loops, but it is
strongly suspected that B;, = 2 for 4 > 2. Furthermore, in
contrast to the 4~ = 1 and & = 2 cases, the sum of Feynman
diagrams for A > 2 is unlikely to reduce to a prefactor
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multiplying diagrams of ¢* scalar field theory. That would
require B, = 2(h — 1), which would lead to finiteness in
d < 6 dimensions (for 2 = 3 it would also contradict the
presence of a three-loop term in DSR* found in [11]).
Using the value B;, = 2 (the least possible value) in (5)
leads to the absence of ultraviolet divergences when

d<2+10/h, h>1, (6)

which appeared in [3]. This shows that the first ultraviolet
divergence in four dimensions cannot arise until at least
five loops.

The full extent to which the four-graviton amplitude is
protected from ultraviolet divergences should become
clearer with a more complete understanding of the con-
straints implied by maximal supersymmetry. These are
difficult to establish in the absence of an off-shell super-
symmetric formalism. In theories with less supersymmetry
such protection is typically afforded to F terms, which can
be expressed as integrals over a subspace of the complete
superspace. One might estimate the extent to which the
derivative expansion of the four-graviton amplitude is
protected by using on-shell superfield arguments. This is
explicit in the pure spinor formalism of the superstring
developed by Berkovits [5], in which terms of the form
S®R* are F terms for k = 5 and get vanishing contribu-
tions from A > k loops. Such terms arise from integration
over a subset of the 32 components of the left-moving and
right-moving Grassmann spinor world-sheet coordinates,
0; and 6j. As a result, the low-energy limits of both
type IIA and type IIB superstring theories at /& loops
have B, = h for h=2, 3,4, 5, and 8, =6 for h = 6.
Since S"”R* terms are protected for h =5 the SOR*
interaction can only arise for h = 6. If we once more
make the assumption that the power of A, does not in-
crease in the process of taking the low-energy limit in d
dimensions, we can see from (5) that ultraviolet divergen-
ces are absent for the following cases:

d<2+18/h, h>5, @)

d<4+6/h,  h=2..,5 (8)

This indicates that the nonrenormalization conditions in
type II string theory [5] lead to the ultraviolet finiteness of
the four-dimensional N = 8 supergravity four-graviton
amplitude up to at least eight loops (4 = 8). Note that
although types IIA and IIB four-graviton string theory
amplitudes are equal only up to four loops (A = 4) in ten
dimensions [5], they are identical at all loops in the
d-dimensional low-energy supergravity limit.

One of the benefits of the superfield description of F
terms is that it includes all terms related by supersymmetry.
For example, interactions involving higher powers of the
curvature tensor of the form S®RM are F terms if 2k +
M <16 [5] (where S® is a monomial made of
Mandelstam invariants of the M-particle amplitude). In

this case an extension of the fermionic mode counting in
[5] shows that there are no corrections beyond h =
k + M — 4 loops. Generalizing our earlier analysis, this
means that the h-loop M-graviton amplitude behaves as
SUF4=MRM for M < h + 4. It follows that the cutoff
dependence of this amplitude is Afl‘i_4)h_6 for h <4+
M/2 and A(ddfz)thfM for h = 4 4+ M/2. Given the pre-
vious analysis, this would imply that the M-graviton am-
plitude is finite in four dimensions (d =4) if
h <7+ M/2. It is notable that these arguments suggest
the absence of divergences that might have arisen accord-
ing to various superspace arguments [12-15].

Finally, we return to the suggestion [4] that 8, = h. This
was motivated by an indirect argument based on consid-
erations of M-theory duality rather than direct string cal-
culations and is therefore less well established. In
particular, it is not yet apparent how this condition can
be motivated by supersymmetry. In this case there is an
extra power of s, ¢, or u for every additional loop and the
divergence of the h-loop integral is markedly reduced.
Substituting 8, = h in (5), and making the earlier smooth-
ness assumption, it follows that ultraviolet divergences are
absent when

d<d4+6/h  h=2 9)

If correct, this would imply that ultraviolet divergences are
absent to all orders in the four-graviton amplitude of four-
dimensional maximal supergravity. Finiteness of the four-
graviton amplitude suggests finiteness of all M-point func-
tions since they are interconnected by unitarity. Indeed, the
arguments in [4] have an obvious extension to multigravi-
ton amplitudes, which suggests that the S®¥RM interactions
again have a dependence on the cutoff of the form
Aﬁid_“)h_é. This leads to the same condition, (9), for ultra-
violet finiteness of M-graviton amplitudes as in the four-
graviton case.

The bound (9) is the same as the condition for the
absence of ultraviolet divergences in maximally supersym-
metric Yang-Mills theory, which is known to be finite in
four dimensions. Indeed, the work of [3] points to con-
nections between loop amplitudes of maximal supergravity
and those of maximal super Yang-Mills motivated in part
by the Kawai-Lewellyn-Tye relations [16] that connect
tree-level open and closed string theory. This suggests
that N = 8 supergravity may be more finite than previ-
ously expected [17,18].

To summarize, in this Letter we have considered the
implications for low-energy d-dimensional supergravity of
the recently discovered nonrenormalization properties of
higher-genus contributions to the four-graviton amplitude
in type II superstring theory [5]. The relevant limit involves
compactification of string theory on a (10 — d) torus fol-
lowed by a low-energy expansion at fixed Newton constant
Kﬁ. We argued that, subject to an important smoothness
assumption, the four-graviton amplitude of N = 8 super-
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gravity has no ultraviolet divergences up to at least eight
loops. The nonrenormalization conditions were obtained in
[5] by using the pure spinor formulation of string pertur-
bation theory, in which S"R* is an F term and gets no
corrections beyond 4 loops if 4 = 5. Similarly, we also
argued that the M-graviton amplitude is ultraviolet finite
when h <7+ M/2.

An important further issue that remains to be resolved is
the fact that, in the low-energy limit under consideration,
infinite towers of states in the nonperturbative sector of
string theory (wrapped D p branes, Neveu-Schwarz branes,
Kaluza-Klein charges, and Kaluza-Klein monopoles) be-
come massless. These are likely to give singular contribu-
tions that may cast doubt on the validity of the perturbative
approximation, which only takes into account the pertur-
bative states [19].

It would obviously be of interest if this understanding
could be extended to derive the all-orders nonrenormaliza-
tion conditions proposed in [4]. Interestingly, there are
similar situations in highly supersymmetric theories in
which an infinite number of higher-dimension operators
are protected from renormalization even though a naive
application of supersymmetry would suggest that only a
finite number should be [20,21].

A priori, finiteness of N = 8 seems very unlikely and, if
true, would cry out for a natural explanation. One possible
framework for such an explanation might be a variant of
twistor string theory [22], which naturally describes N = 4
Yang-Mills theory coupled to superconformal gravity
[23,24]. Perhaps one of the proposals for a N = 8 twistor
string theory in [25] is on the right track.
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