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The elastocaloric effect in the vicinity of the martensitic transition of a Cu-Zn-Al single crystal has been
studied by inducing the transition by strain or stress measurements. While transition trajectories show
significant differences, the entropy change associated with the whole transformation (�St) is coincident in
both kinds of experiments since entropy production is small compared to �St. The values agree with
estimations based on the Clausius-Clapeyron equation. The possibility of using these materials for
mechanical refrigeration is also discussed.
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Caloric effects are expected to occur under the applica-
tion of an external field to a given material. The elasto-
caloric effect [1] is the mechanical analogue of the
magnetocaloric effect that has received considerable atten-
tion in the recent years owing to its potential use for
environmentally friendly refrigeration [2]. The magneto-
caloric effect is related to the isothermal change of entropy
or the adiabatic change of temperature that takes place
within a material when a magnetic field is applied or
removed. This effect originates from the coupling between
the magnetic sublattice and an externally applied magnetic
field and thus occurs in any magnetic material. A large
effect is expected in the vicinity of field-induced, first-
order phase transitions where large entropy changes should
occur [3]. By analogy, the elastocaloric effect is defined
as the isothermal change of entropy or the adiabatic change
of temperature that takes place when a mechanical field
(stress) is applied or released in a given material. Indeed,
this effect is expected to be a consequence of the coupling
between an external applied stress and the lattice. Continu-
ing with the analogy, a large elastocaloric effect is also
foreseen in systems undergoing stress-induced, first-order
phase transitions. Good candidates to show this effect are
shape-memory alloys. These materials undergo a diffu-
sionless purely structural transition from a cubic to a lower
symmetry phase that can be stress induced [4]. Actually,
shape-memory properties are related to this transition and
refer to the ability of these systems to remember their
original shape after severe deformation [5].

In contrast to magnetism, instead of controlling the
applied stress (or force) which is the variable thermody-
namically equivalent to the magnetic field, in mechanical
experiments, the system is usually driven by controlling the
strain (generalized displacement) which is the conjugated
variable to the stress in the way that magnetization is the
conjugated variable of the magnetic field. In magnetic
systems, due to the difficulty in controlling magnetization,
magnetization-driven experiments aimed at studying the
magnetocaloric effect have not, to our knowledge, been
reported. Thus, comparing results from both field- or
stress-driven and magnetization or strain-driven experi-

ments is of general interest since constraining the (gener-
alized) displacement prevents free motion of the interfaces
and therefore field/stress fluctuation can occur. Indeed, this
is especially relevant in systems undergoing a phase tran-
sition leading to macroscopic instability. The study of
mechanical systems naturally opens up the possibility of
performing such kind of experiments. In a recent work [6]
we have shown that metastable trajectories exhibit a strong
dependence on the driving mechanism. In particular,
strain-driven trajectories are characterized by the occur-
rence of reentrant behavior and lower dissipation than
stress-driven trajectories.

The present Letter is aimed at studying the elastocaloric
effect in the vicinity of the martensitic transition in a
Cu68:13Zn15:74Al16:13 single crystal (molar volume �
7:52 cm3 mol�1) in both the stress-driven and the strain-
driven modes. The sample was mechanically machined
with cylindrical heads and the body has flat faces 35 mm
long, 4 mm wide and 1.4 mm thick. Its axis is close to the
[100] crystallographic direction of the cubic phase. This
orientation provides high transformation strains for rela-
tively low uniaxial applied tensile loads along this direc-
tion thus preventing the occurrence of irreversible plastic
effects. The sample was conveniently heat treated to en-
sure that it was free from internal stresses and that the
order state and vacancy concentration are close to their
ground state values [6]. In the absence of any applied
stress, the crystal undergoes a martensitic transition from
a cubic L21 phase to a multivariant 18R martensite at
TM � 234 K.

For strain-driven experiments we used an Instron 4302
screw driven tensile machine in which the elongation is the
control parameter. For stress-driven experiments we used a
machine which enables control of the force applied to the
sample while elongation was continuously monitored [6].
The machine applies a dead load to the sample which can
be increased or decreased at a well controlled rate. A cryo-
furnace (with temperature stability �0:1 K) can be
adapted to both devices. All experiments have been per-
formed at low rates [�0:3 mm min�1 (strain-driven) and
�5 MPa min�1 (stress-driven)].
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Let us now consider a thermodynamic system described
by variables fX;Y; Tg, where X is a generalized displace-
ment and Y is the corresponding conjugated field (X and Y
have the same tensorial order), and T is the temperature. A
change in the generalized displacement gives rise to a
caloric effect. If this change is induced by an isothermal
change �Y of its conjugated field, the caloric effect must
be quantified by the corresponding induced entropy change
which is given by

 �S �
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where the generalized Maxwell relation �@S=@Y�T �
�@X=@T�Y has been taken into account. When the field is
an uniaxial tensile stress � for which the corresponding
strain (or relative elongation along the direction of the
applied force) is ", the induced isothermal entropy change
defining the elastocaloric effect, is given by
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This expression is formally analogous to the expression
giving the field-induced entropy change which defines the
magnetocaloric effect in a magnetic system [2]. If instead
of � the controlled variable is ", the entropy change
corresponding to an isothermal variation of the strain
from 0 to " is given by

 �S�0! "� � �
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where the Maxwell relation �@S=@"�T � ��@�=@T�" has
been used in this case. Of course, if " is the strain corre-
sponding to the stress �, in strict equilibrium �S�0!
�� � �S�0! "�.

Now assume a system subjected to an applied uniaxial
stress � that undergoes a first-order structural (martensitic)
phase transition in equilibrium at a temperature Tt. The
transition is in this case characterized by discontinuities in
variables such as strain and entropy that are thermody-
namically conjugated to the intensive variables stress and
temperature. In the vicinity of the transition the following
behavior of the strain is thus expected, "�T;���"0�
�"F ��Tt����T�=�T	, where F is a shape-function and
�T is a measure of the temperature range over which the
transition spreads. In strict equilibrium, �T ! 0 so that F
approaches the Heaviside step function. Using expression
(2) and assuming that "0 and �" are constant, in this
equilibrium case the elastocaloric effect in the vicinity of
the transition is given by

 �S�0! �� �
�
� �"

� for T 2 �Tt�0�; Tt���	
0 for T�Tt�0�; Tt���	

; (4)

where � 
 dTt=d� is assumed to be constant. Taking into
account the Clausius-Clapeyron equation, � � ��"=�St,
where �St is the transition entropy change. Therefore, as

expected, �S�0! �� � �St, and �T � T� � Tt�0� �
��. Indeed, the same result is obtained in this case from
Eq. (3).

Actually, these transitions are spread over a small range
of �, and, more importantly, they display hysteresis, which
reflects the existence of nonequilibrium dissipative effects.
In this case, taking into account the Clausius inequality,H
�q=T � 0, for an isothermal process, the entropy change

must satisfy, �S�0! � or"� � q
T � Si, where Si � 0 is

the entropy production and is expected to depend on the
actual trajectory followed by the system (strain- or stress-
driven in our case). The preceding equation indicates that
an estimation of the entropy change based on expression
(2) should differ from an estimation based on direct calo-
rimetric measurements. For the system of interest here, as
hysteresis is quite small, estimations of the entropy change
based on stress-driven and strain-driven curves should
provide reasonably good estimations of the elastocaloric
effect.

In Fig. 1 we show stress-strain curves obtained in the
stress-driven case at selected temperatures (well above the
transition temperature at zero-stress) across the martensitic
transition in the studied Cu-Zn-Al single crystal. The shift
of the transition to higher stresses with increasing tempera-
ture is clearly seen. Comparison of curves corresponding to
loading and unloading shows that the transition occurs with
weak hysteresis of about 10 MPa. From these curves the
elastocaloric effect (stress-induced entropy change) has
been obtained by numerically computing the integral in
Eq. (2). The stress-induced entropy change (elastocaloric
effect) is shown in Fig. 2.

It is interesting to point out that the maximum stress-
induced entropy change (which corresponds to the whole

FIG. 1 (color online). Stress-strain curves at selected tempera-
tures. Continuous curves correspond to loading runs (from right
to left) at T � 310:5, 309.4, 307.5, 306.0, 305.4, 303.1, 302.0,
299.9, 298.8, 297.9, 296.1, 295.3, and 294.6 K. The left discon-
tinuous curve corresponds to the unloading branch at T �
294:6 K. It illustrates an example of stress-induced hysteresis
loops. The inset shows the transition stress as a function of
temperature. The line is a linear fit � � 2:01�T � 242�.
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entropy change of the martensitic transformation) remains
almost constant (thus independent of temperature and ap-
plied stress) over a very broad temperature range [7]. This
is usually not the case for the magnetocaloric effect in
field-induced, first-order phase transitions for which large
�S�T� is only obtained in a relatively narrow temperature
interval (which depends on the applied field). Such a
difference is a consequence of the fact that here tensile
experiments are performed at temperatures well above ( �
60 K) the transition temperature at zero stress. This is
possible due to the strong dependence of the transition
stress with temperature. The upper bound is imposed by
the elastic limit of the cubic phase. By contrast, in mag-
netic experiments the field is always applied close to the
transition temperature at zero field. Indeed, at higher tem-
peratures metamagnetic transitions are difficult to be in-
duced either because intense magnetic fields that are too
large are required or simply because this leads the system
above the critical point, where no transition occurs. The
continuous lines in Fig. 2 are fits which assume a shape-
function F �x� � tanh�1�x�. In the strain-driven case we
can proceed similarly starting with strain-stress curves
recorded at selected temperatures. Figure 3 displays the
strain-stress curves obtained at selected temperatures. The
strain-induced entropy change (elastocaloric effect) as a
function of T has then been obtained using Eq. (3). Results
are shown in Fig. 4. The variation of �S with temperature
reflects a small variation of �" with temperature.

From the previous results the estimated [8] entropy
change corresponding to the whole transition is �St �
�1:20� 0:15 J=mol K consistent in both strain- and
stress-driven cases. It is interesting to compare this result
with estimations based on the use of the Clausius-
Clapeyron equation. From the stress-driven curves in
Fig. 1 we can define a transition stress, �t, at each tem-
perature, as the stress at the inflection point of the iso-
therms. The strain change, �", at the transition can also be
estimated from these curves. The transition entropy change
is then obtained as �St ’ �d�t=dT��". In the inset of

Fig. 1 we show �t vs T. We see that �t rises linearly
with increasing T, with a slope d�t=dT � 2:01 MPa=K.
Taking an average value �" � 0:080� 0:005 we obtain
�St � �1:21� 0:05 J=mol K. This value is compatible
with the estimations based on elastocaloric effect. It is
interesting to compare this value with a calorimetric mea-
surement. To this end, we have carried out calorimetric
measurements of the transition entropy change at zero
stress, using a small specimen cut from the same original
ingot. These experiments give a value �St � �1:37�
0:10 J=mol K, slightly higher (as an absolute value) than
that derived from mechanical experiments. Such a differ-
ence should not, in principle, be attributed to nonequilib-
rium effects which have been estimated from the area of
the hysteresis loops to be of the order of 0:01 J=mol K in
the stress-induced case and less than 0:001 J=mol K in
strain-induced experiments. However, it must be pointed
out that calorimetric measurements are performed in the
absence of an external field and thus a multivariant mar-
tensite is reached. Kinematic constraints which occur dur-
ing the transformation and yield extra dissipative effects
could explain the difference. This is consistent with the fact

FIG. 3 (color online). Strain-stress curves obtained at selected
temperatures. Continuous curves correspond to loading runs at
(from top to bottom): T � 307.8, 303.1, 297.8, and 295.0 K. The
lower discontinuous curve corresponds to the unloading branch
at T � 295.0 K. It illustrates an example of a strain-induced
hysteresis loop.

FIG. 4 (color online). Strain-induced entropy change (elasto-
caloric effect) at selected values of � from 0.01 to 0.08.

FIG. 2 (color online). Stress-induced entropy change (elasto-
caloric effect) at selected values of � ranging from 105 to
143 MPa. The continuous lines are fits based on the model
F �x� � tanh�1�x�.
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that the transition temperature in the multivariant case
(234 K) is significantly lower than the extrapolation to
zero stress of the � vs T curve (242 K) which corresponds
to the transition to a single variant martensite (see inset of
Fig. 1).

The elastocaloric effect has been reported in the Fe-Rh
alloy [9]. In this case the entropy change has a magnetic
origin associated with a reorientation of spins taking place
at the first-order antiferromagnetic to ferromagnetic mag-
netostructural transition which is induced by the applica-
tion of a tensile stress due to strong magnetoelastic
coupling. Similar effects (termed the barocaloric effect)
have been reported for a number of rare-earth compounds
subjected to uniaxial pressure [10]. In the present study,
however, the elastocaloric effect is associated with a purely
structural transition. In this case, the entropy change is
predominantly vibrational and originates from the very
low energy TA2 transverse ([110] propagation and �1�10	
polarization) phonon branch of the cubic phase [4]. It is
also worth noticing that in Fe-Rh the entropy change is
positive when the stress is isothermally applied, and thus
the sample cools down when the stress is adiabatically
applied. This corresponds to an inverse elastocaloric effect
which is the analog of the inverse magnetocaloric effect
reported in Heusler martensitic alloys [11]. Notice that
inverse effects are only possible when there is strong
coupling between magnetic and structural degrees of
freedom.

The adiabatic temperature change associated with the
elastocaloric effect can be estimated as �T ’ � T

C�S,
where C is the specific heat which is assumed to be stress
independent. For Cu-Zn-Al, the value for the specific heat
close to room temperature is approximately 25 J=K mol in
both martensitic and cubic phases [12]. For an adiabatic
drop involving the whole transition, the maximum ex-
pected temperature change is 15 K. Notice that this value
is orders of magnitude larger than the typical values in
elastic solids far from any phase transition. The effect of
strain rate on the martensitic transition of several Cu-based
shape-memory alloys was studied by means of direct mea-
surements of the temperature changes associated with the
transition. For Cu-Al-Ni [13] and Cu-Zn-Sn [14] crystals
(with the same martensitic structure as our Cu-Zn-Al crys-
tal), the measured temperature changes at high strain rates
(close to the adiabatic limit) are 14 and 12 K, respectively,
for a strain rate of 25 min�1. These temperature values
compare well to the value indirectly computed here for Cu-
Zn-Al. On the other hand, present values for Cu-Zn-Al are
comparable to those reported for other elastocaloric mate-
rials undergoing first-order magnetostructural phase tran-
sitions: maximum changes of 8.7 and 14 K are computed
for Fe-Rh [9] and Eu-Ni-Si-Ge [10], respectively.

The elastocaloric effect associated with the martensitic
transition in a Cu-Zn-Al single crystal has been studied. It
is formally equivalent to the magnetocaloric effect in a

magnetic system and in our case it should be comparable to
the magnetocaloric effect in the vicinity of a first-order
metamagnetic transition. However, while the magneto-
caloric effect is always determined by the field inducing
the metamagnetic transition, for the mechanical case it has
been possible to obtain the isothermal entropy change by
inducing the structural transition using both strain and
stress. While the transition path is essentially different in
both cases, the corresponding isothermal entropy changes
are the same to within errors. This is due to the fact that
hysteresis is small independent of the driving mechanism.
For practical applications of caloric effects, the refrigerant
capacity is a central parameter to be considered [3]. It is
defined as R �

R
�T �S�T�dT ’ �S�T � ��"��,

where �� is the change of � necessary to change the
transition temperature by �T (�S and �" are assumed
constants). The interest in our case is that �� can be
chosen in a broad range of values which opens up interest-
ing opportunities in refrigeration applications based on the
elastocaloric effect.
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[4] A. Planes and Ll. Mañosa, in Solid State Physics, Vol. 55
(Academic, New York, 2001), p. 159.

[5] K. Otsuka and C. M. Wayman, in Shape Memory
Materials, edited by K. Otsuka and C. M. Wayman
(Cambridge University Press, Cambridge, 1998), p. 1.

[6] E. Bonnot et al., Phys. Rev. B 76, 064105 (2007).
[7] The isothermal entropy change will significantly decrease

below the martensitic transition temperature at zero stress.
[8] Error limits are based on reproducibility of experiments.
[9] S. A. Nikitin et al., Phys. Lett. A 171, 234 (1992); M. P.

Annaorazov et al., J. Appl. Phys. 79, 1689 (1996).
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