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Abstract 

At this moment, the global energy consumption in buildings is around 40% of the total energy 

consumption in developed countries. Thermal energy storage (TES) is presented as one way to 

address this energy-related problem proposing an alternative to reduce the gap between energy 

supply and energy demand. One way to store energy is using thermochemical materials (TCM). 

These types of materials allow accumulating energy through a chemical process at low 

temperature, almost without heat losses. In addition, it is a stable way to perform the heat 

storage and TCM can be implemented for seasonal storage or/and long term storage. This 

study compares the cyclability, from the thermophysical point of view, CaCl2 which follows a 

chemical reaction and zeolite which follows a sorption process to be used as TCM for 

seasonal/long term storage. The main results show that the chemical reaction TCM is more 

energy-efficient than the sorption TCM. The CaCl2 calculated energy density is 1.47 GJ/m3, 

being the best option to be considered to be used as TCM, even though the dehydration 

process of the zeolite is simpler and it occurs at higher temperatures its calculated energy 

density is only 0.2 GJ/m3. 
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1. Introduction 

In the current scenario, the importance of reducing energy consumption in the building 

sector is a key point as it involves more than 40% of total energy consumption implying 

up to 22% of CO2 emissions in Europe [1]. 

Thermal energy storage (TES) is presented as one way to address this energy problem 

proposing an alternative to reduce the gap between energy supply and energy demand 

[2,3]. Thermal energy storage has been investigated since 60’s by several researchers: 

e.g. Gupta and Garg [4] developed a model to predict the thermal performance of 

domestic solar water heaters; Buchberg [5] stated an annual simulation of system 

performance including the house, a flat plate solar collector, and a water heat storage 

unit incoroparting storage system. Moreover, Abhat in 1983 [6] wrote the first review on 

low temperature thermal energy storage materials.  

There are three methods to store thermal energy. The first one is using the sensible 

heat (SH-TES) when one thermal gradient is applied which was the first method to 

store energy investigated and e.g. Bauer reviewed in 2013 the material aspects of 

Solar Salt for sensible heat storage [7] and Rezaie at al. [8] performed an energy 

analysis of systems to store energy with grid configuration concluding that there is no 

restriction on the TES size for series configurations. The second method to store 

energy is using latent heat from phase change of several materials (LH-TES). The 

materials used to store energy using this method are known as phase change 

materials (PCM) [9] and have been investigated in several applications: solar cooling 

[10], solar power plants [11], buildings [12], cold storage [13], etc.   

Finally, the last and most efficient way to store energy is by using thermochemical 

materials (TCM). These types of materials allow accumulating energy through a 

chemical process at low temperature and almost without heat losses being the one with 

the highest accounted energy density. In addition, it is a stable way to perform the heat 

storage and TCM can be implemented for seasonal storage or/and long term storage 

[14]. 

TES systems containing TCM are being extensively investigated. Recently, Energy 

research Centre of the Netherlands - ECN [15] has developed a new system applying 

an open sorption concept where the volume used was a packed bed containing 17 dm3 

of sorption material. The ECN system is able to generate 150 W of thermal power and 



the effective energy storage density achieved is approximately 0.5 GJ/m3. In addition, 

Deutsches Zentrum fur Luft (DLR) [16] has developed a solar-heated rotary kiln using 

cobalt oxide as TCM. This system is able to provide high mass flow rates and high 

amounts of active material where thirty cycles were performed and results showed that 

this is a proper system for thermochemical storage.  

The main used materials to store energy as TCM are salt hydrates and sorption 

materials like zeolites. In a previous study [17], working principles and operating 

conditions were successfully tested in our zeolite-based reactor set-up. Muller et al. 

studied the water adsorption on zeolite NaA [18] and Bruce et al. studied and estimates 

of the thermochemical properties of zeolitic water at low temperature [19]. Moreover, 

Wilkins et al. studied the fat to store solar energy through calcium clorhide [20]. 

However, these kinds of materials have not been compared before in the issues 

concerning the thermochemical storage. Thermochemical storage was classified by 

N’tsoukpoe et al. [21] and it was shown that this method to store energy uses a 

chemical reaction, a sorption process or a combination of both routes, as shown in 

Figure 1. 

Additionally, Yu et al. [22] compare the volume needed to implement a system 

containing different materials for thermal energy storage using sensible, latent, 

sorption, and chemical reaction heat. This classification is shown in Figure 2 and it 

highlights that a thermochemical storage following a chemical reaction will need 10 

times less volume to operate as storage system in comparison with a thermochemical 

storage using a sorption process. Therefore, we turn our attention to reaction storage 

technology. 

The study presented in this paper, one substance that undergoes a chemical reaction 

with water and one substance that uses a chemisorption process with water are 

compared. Thereby, the main objective of this study is to compare and discern the 

most appropriate material to be used as TCM under the defined analysis conditions, 

taking into account its cyclability. Thermophysical properties were analysed using 

thermogravimetrical analysis (TGA) and differential scanning calorimetry (DSC). 

 

 

 



2. Materials and Methodology 

 

2.1. Materials 

In this study, two of the most studied TCM are compared. The first material analyzed is 

CaCl2. It is a salt hydrate and the most stable crystalline structures of this substance 

have 2, 4 or 6 coordination water molecules (showing orthorhombic – Tm=176ºC, 

monoclinic – Tm=43.5 ºC or trigonal structure – Tm=29.9 ºC, respectively) [23]. 

Furthermore, CaCl2 used in this study has 1830 kg·m-3 [24]. CaCl2 follows a chemical 

reaction during its hydration/dehydration process. 

On the other hand, zeolites are ceramic sorption materials that do not present 

corrosion problems when are put in contact with metals and its sorption process is 

extremely stable. The zeolite used in this study is zeolite 5A commercialized by Sigma 

Aldrich. Moreover, zeolite follows a sorption/desorption process to hold/release water 

molecules [25]. 

During the charge process (which is the process studied in this paper), the hydrated 

TCM is heated up and the energy stored is absorbed by the TCM being an 

endothermic reaction/process. Figure 3 presents a schematic description of the basic 

mechanism that TCM under study follows, being a chemical reaction in the case of 

CaCl2 and a sorption process for zeolite. 

 

2.2. Methodology 

Several researchers have been studied and characterized the substances here 

selected to be used as TCM which are under study [24,25].  

Thermogravimetrical analysis – TGA 

TGA is a widely used technique to characterize thermally TCM as it provides 

information on whether a material is stable or it decomposes when it is cycled, how the 

reaction products are charged and discharged, if the reaction is completely reversible, 

if the material has the same number of water moles before each cycle, etc. 

The analyses for the thermogravimetrical material characterization were performed 

using a TGA/SDTA 851e device from Mettler Toledo under 20 ml·min-1 N2 flow. The 

crucibles used to contain the samples were 100 l aluminium crucibles. In addition, the 



TCM samples fully filled the crucible volume. A dynamic mode was applied by using a 

10 K·min-1 heating rate between 40 ºC and 240 ºC for CaCl2 and from 50 ºC to 400 ºC 

for zeolite, because in a preliminary test, it was observed that the zeolite did not finish 

the dehydration process under the described conditions. The accuracy of TGA 

equipment is ± 0.02 mg. 

Furthermore, both TCM under study were cycled 4 times each and  sample preparation 

was required before reaching the thermophysical characterization in order to guarantee 

the TCM rehydration achieving a stable/constant composition, because their sample 

mass is strongly  dependent on ambient humidity. For that reason, the samples were 

prepared and left for at least three days in experiments tray before being analyzed. 

Moreover, analyses were performed in triplicate in order to confirm the reproducibility. 

On the other hand, the moles of water lost per mole of dried TCM were calculated 

taking into account the Eq. (1) where nw is the moles of water lost, mw is the mass of 

water lost, MTCM,dry is the molecular weight (zeolite: 398 g·mol-1; CaCl2: 110 g·mol-1), 

mTCM,dry is the mass of the dried salt and Mw is the molecular weight of water (18 g·mol-

1). 
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Differential Scanning Calorimetry - DSC 

Differential Scanning Calorimetry - DSC is one of the most powerful techniques to 

characterize thermally substances in order to obtain their melting point, melting 

enthalpy as well as the specific heat capacity. DSC has been widely used to 

characterize TES materials as e.g. in the study performed by Günter et al. [26] and 

Barreneche et al. [27]. 

The DSC characterization of TCM under study was performed applying a 10 K·min-1 

dynamic heating rate between 40 ºC and 240 ºC for CaCl2 and between 50 ºC and 400 

ºC for zeolite. The study was performed by using 40 l aluminium crucibles containing 

10 mg CaCl2 ·4H2O mass.  The crucibles were pierced by using a robot at the same 

moment that the experiment started. The experiments were carried out under 20 

ml·min-1 N2 flow by using a DS 822e device from Mettler Toledo. In addition, the 



heating rate used was switch to 2 K/min and 5 K/min in order to measure the thermal 

behaviour changes when the final application uses a different heating/cooling rate.  

The measurements were performed under controlled room conditions: 21 ºC and 34% 

humidity). The accuracy of this equipment is ± 0.5 ºC and ± 3 J·g-1. 

 

3. Results 

TGA results of one sample cycled 4 times are shown in Figure 4, where normalized 

mass loss (%) vs. temperature is presented. The four cycles follow similar profile and 

the final result is the same: around 38% of anhydrous CaCl2 remains inside the 

crucible. Therefore, thermal measurements of the CaCl2 are repeatable as the reported 

results show (see Figure 4, Figure 5, and Table 1), presenting equal mass loss (%). 

In addition the same thermal dehydration behaviour was followed by zeolite: all 

samples followed exactly the same profile and the final result was identical: 87.7% wt 

zeolite mass remained in the crucible at the end of the fourth experiment. 

On the other hand, triplicate analyses were performed in order to assure the 

reproducibility of the TGA results. In this case, Figure 5 shows the zeolite thermal 

performance for three different samples during the first cycle. Results obtained for 3 

different samples of CaCl2 followed the same TGA curve. 

The obtained mass loss results for CaCl2 and zeolite are summarized in Table 1. Note 

that the standard deviation is lower than 2% showing that CaCl2 is cyclable under the 

studied conditions (T = 21 ºC, 34% humidity). 

DSC results are shown in Figure 6 for both TCM under study. The difference between 

TCM is important because DSC curves of zeolite are quite flat but an energy-related 

process is taking place. 

However, CaCl2 results show that there are two different peaks which correspond to 

two energy-related processes. The peak integration corresponds to energy involved in 

those processes. The first peak is related to the solid-liquid phase change from 

CaCl2·6H2O, TGA curves (see Figure 4) show that there is not mass loss at 50 ºC. The 

expected phase change temperature is 45.3 ºC, however, the obtained one is higher, 

around 50 ºC. This result is due to the experimental conditions used: the heating rate is 

not slow enough to achieve the thermal equilibrium in the sample. Moreover, the 



second peak regards to dehydration water loss which takes place applying heat to 

CaCl2.  

On the other hand, zeolite has only one peak which corresponds to the zeolite 

dehydration; besides this process shows a broad peak. Note that this energy-related 

process is almost finished at 400 ºC. 

The energy involved in these processes was calculated following Eq. 2, where en 

(GJ·m-3) is the energy density, is the material density (kg·m-3) and H is the energy 

involved in the process (kJ·kg-1): 

 

 

For both materials, the temperature and the theoretical energy density are listed in 

Table 2 yielding both endothermic processes (chemical reaction and sorption process). 

In addition, the main results showed that the investigated salt hydrate has a much 

higher energy density than the investigated sorption material. 

The effect of the heating rate was evaluated performing DSC analyses using three 

different heating rates (2 K·min-1, 5 K·min-1 and 10 K·min-1) between 40 ºC and 240 ºC 

for CaCl2 and between 50 to 400 ºC for zeolite. Resultant DSC curves (Cp vs. 

temperature) are shown in Figure 7 and Figure 8, respectively. 

As it is observed for the CaCl2, the peak reaction temperature applying 10 K·min-1 

heating rate is 186 ºC. However, this reaction temperature for analyses performed 

using slower heating rate is 165 ºC. Thus, the measured temperature of reaction 

depends on the heating/cooling rate applied and this fact has to be taken into account 

during the design step. In addition, the energy density (calculated following Eq. 1) is 

varied depending on the heating rate used. The calculated energy density is 1.47 

GJ·m-3 applying 10 K·min-1, 1.50 GJ·m-3 applying 5 K·min-1 and 1.31 GJ·m-3 applying 2 

K·min-1. Thereby, the energy density also decreases when the heating rate is slower. 

On the other hand, results obtained for zeolite showed that the highest heating rate the 

lowest process temperature: 279.3 ºC (10 K·min-1), 251.2 ºC (5 K·min-1), and 225.6 ºC 

(2 K·min-1). The process of release and uptake of water is a key point during the 

selection of TCM because final dehydration temperature will determine the total energy 

௘௡ߩ ൌ ߩ	 ൉  (2)  ܪ∆	



stored by a certain application, then, this fact is a key point to take into consideration 

during the TCM selection step. 

Finally,  the peak is sharper when the slower heating rate is used and the calculated 

energy density decrease when the heating rate is slower (0.18 GJ·m-3 when 10 K·min-1 

is applied, 0.17 GJ·m-3 working with 5 K·min-1, and 0.15 GJ·m-3 when 2 K·min-1 heating 

rate is applied. 

In summary, from the thermophysical point of view the chemical reaction TCM is more 

energy efficient than the sorption TCM as shown by the much higher calculated energy 

density as was state by N’tsoukpoe et al [21] (see Figure 9). Moreover, the heating rate 

used will change the thermal performance of the material. Therefore, the realest 

heating rate must be used to characterize thermally the materials. The closer to real 

condition, the better characterization.  

Thereby, the salt hydrate is the best substance to be considered to be used as TCM 

(see right upper corner of Figure 9), even though the dehydration process of the zeolite 

is simpler but it will be completed at higher temperatures. 

 

4. Conclusions 

Based on the results presented in the previous section it can be concluded that both 

materials tested had no change after being performed four thermal cycles.  

In addition, three repetitions were carried out of each sample and the results showed 

that the reproducibility of the charging/discharging process is assured under analysis 

conditions obtaining a standard deviation of mass loss lower than 0.6%. 

On the other hand, the energy involved in the CaCl2 dehydration process is almost 10 

times higher than the energy obtained for zeolite being 1.47 GJ·m-3 and 0.18 GJ·m-3 

(one order of magnitude higher), respectively. Thereby, salt hydrates lose more water 

moles during chemical reaction than sorption materials. Final process temperatures for 

all these materials are different and it is a key point to take into account for the 

selection of the energy storage material for a given application. 

Moreover, applying different heating rates to perform the DSC analyses, it was 

observed that the peak reaction temperature for CaCl2 applying 10 K·min-1 heating rate 

is 186 ºC. However, the lower the heating rate applied the lower the peak reaction 



temperature. Thus, the measured temperature of reaction depends on the 

heating/cooling rate applied and this fact has to be taken into account during the design 

step of the storage system. The same trend was obtained for zeolite. 

Finally, considering the materials under study, CaCl2 is the best candidate because 

present better thermophysical properties (ρen).. However, other parameters as the 

corrosion behaviour as well as de degradation process must be studied for this 

substances in order to discern which is the best candidate to be implemented in a 

storage system. 
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Table 1. Results obtained with TGA measurements: mass loss and moles of water lost 

 

 

Table 2. DSC results and calculated energy density obtained for CaCl2 and zeolite 

Material 
Energy 
(J·g-1) 

T 
(°C) 

Energy
(J·g-1) 

Tpeak 

(°C) 
Energy density

(GJ·m-3) 

CaCl2 - 32 50.1 801 190.0 1.47 

Zeolite --- --- 141 274.0 0.18 

 

 

 

 

 

 

 

 
Mass loss 

(%) 
Moles of water lost 

(moles) 
Final process temperature 

(ºC) 

CaCl2 61.1 ± 0.6 9.7 ± 0.2 200 

Zeolite 13.1 ± 0.2 3.4 ± 0.1 400 


