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Abstract 14	

Energy consumption in buildings accounts for up to 34% of total energy demand in 15	

developed countries. Thermal energy storage (TES) through phase change materials 16	

(PCM) is considered as a promising solution for this energetic problem in buildings. 17	

The material used in this paper is an own-developed shape stabilized PCM with a 18	

polymeric matrix and 12% paraffin PCM, and it includes a waste from the recycling 19	

steel process known as electrical arc furnace dust (EAFD), which provides acoustic 20	

insulation performance capability. This dense sheet material was installed and 21	

experimentally tested. Ambient temperature, humidity, and wall temperatures were 22	

measured and the thermal behaviour and acoustic properties were registered. Finally, 23	

because of the nature of the waste used, a leaching test was also carried out. The 24	

thermal profiles show that the inclusion of PCM decreases the indoor ambient 25	

temperature up to 3 ºC; the acoustic measurements performed in situ demonstrate that 26	

the new dense sheet material is able to acoustically insulate up to 4 dB more than the 27	

reference cubicle; and the leaching test results show that the material developed 28	

incorporating PCM and EAFD must be considered a non-hazardous material. 29	

 30	
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1. Introduction 34	

Energy consumption in buildings represents 34% of total energy demand in developed 35	

countries [1] and this trend is remaining constant or increasing regardless of the new 36	

directives and legislation that have taken effect recently to increase the energy 37	

efficiency and reduce the energetic consumption in this sector [2,3]. 38	

In this scenario, worldwide there is considerable research effort to develop more 39	

sustainable and energy-efficient systems for implementing in the building sector [4]. 40	

Within this situation, thermal energy storage (TES) is considered as a promising 41	

solution for this energetic problem in buildings [2]. A TES system can store energy 42	

following three different mechanisms: using sensible heat (SHTES) when a 43	

temperature gradient is applied to a medium [5]; using latent heat (LHTES) when a 44	

phase change of state occurs  [5]; and using heat released during a thermochemical 45	

reaction (TCTES) [6]. Moreover, TES materials can be introduced in several parts of 46	

the building in order to increase the energy efficiency of the HVAC system or to reduce 47	

the energy demand of the building: TES materials can be included in the structure of 48	

the building [7], in the internal coatings of the walls [7], or in the façades of the building 49	

[8], all these three are examples of TES passive system, and finally they can be 50	

implemented in the heat pump to regulate the indoor part of the building as active TES 51	

system [9]. The study presented in this paper is focused on phase change materials 52	

(PCM) included in the internal layer of an intermediate wall of the building and it acts as 53	

a TES passive system.  54	

Several researchers have developed their own equipment in order to measure the 55	

thermal behaviour of the constructive system simulated using a water bath or 56	

heating/cooling systems real ambient conditions [10–13]. On the other hand, there are 57	

several research groups that have implemented and tested the thermal performance of 58	

passive system in building walls. For example, Farid et al. [14] analysed the thermal 59	

behaviour of implementing PCM in timber construction (this type of construction is 60	

common in climatic zones like New Zealand).  However, that study consisted of a 61	

single room cubicle and the experimental set-up presented in this paper consists of a 62	

double room cubicle with all the wall temperatures controlled as well as the internal and 63	

external ambient temperature and relative humidity. Moreover, Castellón et al. [15] 64	

demonstrated experimentally that it is possible to improve the thermal comfort and 65	

reduce the energy consumption of a building with the inclusion of PCM in several 66	

constructive systems using concrete, conventional brick and alveolar brick and 67	

recently, de Gracia et al. [9,16] tested experimentally the thermal performance of a 68	
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The main acoustic insulation value (Dnt,w(C,Ctr)) is calculated following the standard  163	

UNE-EN ISO 717-1 where C and Ctr are the correction of the acoustic spectra.  164	

 165	

Environmental impact: Leaching test 166	

Finally, a leaching test following the UNE-EN 12457-2 was performed to classify for the 167	

disposal of the product after its use. Moreover, the results concerning the heavy metal 168	

contents will be classified as inert, non-hazardous, or hazardous according to the 169	

European Directive. 170	

 171	

3. Materials 172	

The material implemented in the experimental set-up described in the above section 173	

was a dense sheet used as shape stabilised PCM. This shape was manufactured in a 174	

Banbury mixer and shaped in a hot-roll lamination and 500 kg were obtained [18]. 175	

This material is composed by 12% wt. paraffin PCM (RT-21 commercialized by 176	

Rubitherm, Tm = 21 ºC, Hm = 160 kJ·kg-1), 71% wt. of Electrical arc furnace dust 177	

(EAFD), which was characterized and described by Barreneche et al. [17], and 17% of 178	

polymeric matrix – EPDM. EAFD is considered as hazardous substance which must be 179	

landfilled with high caution. The main processes followed in the EAFD treatment 180	

previous landfill are the following: 181	

 Stabilization/solidification technologies complete with Portland cement is the 182	

cheapest alternative but some problems regarding metal dissolution arise from 183	

the elevated pH in the leachate. This process is the least used [19].   184	

 Encapsulation methods of toxic metals. These methods are not commercially 185	

interesting, as they involve important investments and there is no metal 186	

recovery. 187	

 Pyrometallurgical processes are used to remove lead and zinc from EAFD by 188	

fuming and then condensing the metals in relatively pure form. However, with 189	

pyrometallurgical processes there is no recycling of iron to the electrical arc 190	

furnace process [20,21]. 191	

 Caustic based processes in which the leaching and dissolving steps employ 192	

simple chemistry that takes advantage of the amphoteric nature of zinc, lead, 193	

25 tin, arsenic, selenium and aluminium can be used to treat EAFD [22]. 194	

The process of incorporating EAFD as filler into a polymer matrix, in order to obtain a 195	

composite formulation is  followed in the Barreneche PhD thesis [23] to obtain the 196	



material used in this study and previously investigated for automotive industry by Niubó 197	

et al. [24,25].  198	

However, the inclusion of this dust inside an elastomeric matrix implies the isolation of 199	

the dust as the leaching test performs will discern [26]. This rubber dense sheet has 200	

1230 kg·m-3 density.  201	

On the other hand, the dense sheet installed in the other cubicle is the TECSOUND 35 202	

commercialized by TEXSA and used as a reference in this study which has 2300 kg·m-203	
3 and 30 N·cm-2 of tensile strength (UNE	104-281/6.6). 204	

 205	

4. Results 206	

In-situ thermal measurements 207	

The thermal profile of the materials implemented in both cubicles were registered over 208	

several consecutive days applying the same thermal conditions by controlling the 209	

temperature inside one chamber and leaving free floating conditions inside the other 210	

chamber. 211	

The temperature profiles of the dense sheet temperatures are presented in Figure 7. 212	

Moreover, the temperature profiles of the south wall (top and bottom parts of the south 213	

wall) are also overlapped in Figure 7.  A period of three consecutive days during the 214	

summer season is represented in the Figure 7  215	

As it can be seen, the peak temperature on the wall containing PCM dense sheet was 216	

reduced up to 4 ºC). 217	
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 231	

Figure 8. Indoors ambient temperature profile registered inside the PCM cubicle and the 232	
reference cubicle and the directly measured temperature on dense sheets 233	

Note that the indoor temperature is higher than 28 ºC due to the outdoor temperature. 234	

 235	

In-situ acoustic measurements 236	

The difference between levels considering the emitter chamber and the receptor one 237	

for both cubicles (PCM cubicle and reference cubicle) are listed in Table 1 and the dB 238	

of acoustic insulation vs. Frequency [Hz] are shown in Figure 9.  239	

 240	

 241	

 242	

Table 1. Acoustic difference between levels measured into PCM cubicle and reference 243	
cubicle 244	

 DnT,w (C:Ctr)  
[dB] 

PCM cubicle 35  (-1;0) 
Reference cubicle 31  (-1;0) 

 245	
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metal. Zn and Cd concentrations are within the limits of non-hazardous materials. 270	

Finally, the other metal concentrations are within the limits of inert materials. Therefore, 271	

according to this test, both dense sheets may be classified as non-hazardous materials 272	

[28]. 273	

 274	

Table 2. Leaching test result of the materials installed in experimental set-up 275	

Element 
PCM dense 

Sheet (mg/kg) 
TECSOUND 35 

Classification 
Inert Non-hazardous Hazardous 

Pb 0.1 <0.04 0.5 10 50 
Zn 8.6 17.7 4 50 200 
Cd 0.21 0.19 0.04 1 5 
Cr <0.02 <0.02 0.5 10 70 
Ni 0.1 0.07 0.4 10 40 
As <0.04 <0.04 0.5 2 25 
 276	

In addition, it is well known that the leaching behaviour of heavy metals like Zn, Cd and 277	

Pb is pH dependent, and is possible to stabilize them and reduce their leaching [28]. 278	

 279	

5. Discussion 280	

The peak temperature reduction on the wall containing PCM of 4 ºC agrees very well 281	

with those obtained previously in other in-situ studies. In them, PCM was included 282	

either microencapsulated in a concrete wall [15] or macroencapsulated (using CSP 283	

panels) in brick and alveolar brick construction systems [29]. Moreover, these results 284	

are in accordance with laboratory testing of the dense sheet [17,18]. 285	

Similarly, in-situ acoustic measurements achieved 4 dB higher value in acoustic 286	

insulation index compared to the commercial reference product considered 287	

(TECSOUND 35), showing an analogous behaviour to that measured in the laboratory 288	

[18]. 289	

All these results, plus the leaching tests presented in this paper show that the newly 290	

developed dense sheet compiles with all the necessary properties to be used in real 291	

applications and to be produced at industrial scale. Further work would be to carry out 292	

the required steps to achieve full commercialization. 293	

 294	

 295	

 296	



6. Conclusions 297	

The thermal and acoustic behaviour of an intermediate wall as well as the 298	

environmental impact have been measured inside two cubicles of the experimental set-299	

up located in Puigverd de Lleida (Spain). The first cubicle contains a PCM dense sheet 300	

that incorporates EAFD and the second one is considered the reference because a 301	

commercial dense sheet (TECSOUND 35) was installed. 302	

The thermals profiles expound that the inclusion of PCM decreases the ambient 303	

temperature up to 3 ºC and the temperature on the south part of the intermediate wall 304	

(the one exposed to solar insolation) under thermal experiments.  305	

Moreover, the acoustic measurements performed in situ illustrate that the PCM cubicle 306	

(where the PCM dense sheet is installed) is able to insulate up to 4 dB more than the 307	

reference cubicle thanks to EAFD content (due to the heavy metals).  308	

The leaching test performed show that the material developed incorporating PCM and 309	

EAFD does not leach heavy metals with higher contents than the limits to consider the 310	

materials as hazardous material. Therefore, EAFD which is considered as special 311	

waste is very nearly isolated inside the EPDM matrix with PCM. 312	

In summary, the PCM dense sheet present better thermal behaviour (remaining the 313	

ambient temperature 3 ºC lower), better acoustic insulation properties (4 dB higher) 314	

and the leaching test show similar results, therefore, it can be applied in real building 315	

as part of walls where acoustic and thermal aspects need to be improved. 316	
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