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Abstract

Function optimization is a widely faced problem nowadays. Its interest, in particular, lies

in every learning algorithm in AI, whose achievements are measured by a Loss-Function.

On one hand, Multinomial Logistic Regression is a commonly applied model to engage

and simplify the problem of predicting a categorical distributed variable which depends

on a set of distinct categorical distributed variables. On the other hand, Gradient Descent

allows us to reach local extrema of a smooth function. Moreover, large datasets force the

use of online optimization.

Improving the convergence speed and reducing the computational cost of gradient based

online learning algorithms will automatically translate into a significant enhancement on

many machine learning processes.

In this text, we present a Stochastic Gradient Descent algorithm variant, specifically

designed for Multinomial Logistic Regression learning problems by taking advantage of the

geometry and the intrinsic metric of the space. We compare it to current most advanced

stochastic algorithms, and we provide the favorable experimental results obtained.

Keywords: Function Optimization, Convex Function, Machine Learning, Linesearch,

Online Optimization, Stochastic Gradient Descent, Riemannian Geometry, Fisher Metric,

Natural Gradient, Exponential Family, Logistic Regression.
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1 Motivation and Introduction

Function optimization is mainly approached nowadays with two strategies: Linesearch,

which we will see in chapter 2, and Region Trust strategies [7]. We focus only on the first

one, that tries to decrease iteratively the value of the function by “updating the parameter

following a straight line with a chosen direction for a certain distance”. Gradient Descent

(GD) is an offline Linesearch algorithm that sets the direction to be the opposite of the

function gradient. That makes sense, since gradient points to the steepest direction.

It is known that the effectiveness of Gradient Descent algorithm is parametrization

dependent, as has been shown for example in [13]. This raises the question on how should

we select the parametrization, which leads us to a brief study in Riemannian Manifolds

in section 2.3, in order to understand the space metric we work on. Many texts showed

that taking into account the metric of the parameter space allows a more direct path

to the minimum [9, 11, 1]. They basically make use of the Natural Gradient, which is

a variation of the function gradient according to the metric of the manifold. This new

direction actually points to the steepest direction in the manifold [9]. We give our proof

of this fact in 2.3.2. Setting the Natural Gradient into the Linesearch algorithm speeds

up convergence in many problems. This different set up for the Linesearch gives rise to

the Natural Gradient Descent (NGD).

Commonly, there is no more than an approximation, after a sample of observations, of

the function we want to optimize. In these cases usually an online Linesearch is the best

option, especially if the sample is large. Stochastic Gradient Descent (SGD) is an online

Linesearch algorithm that iteratively computes the gradient of a piece of the function for a

single observation and it updates after the Linesearch equation. Similarly, the Stochastic

Natural Gradient Descent (SNGD) computes the Natural Gradient for every observation

instead.

We are interested in better understanding the characteristics and qualities of SNGD

for machine learning/stochastic applications.

Maximum Likelihood (ML) is a widely used estimation approach for density estimation

problem. In chapter 3 the exponential family manifold, the Fisher Information Metric

(FIM) and mean parametrization are defined to face the ML problem. Next, we prove

that, in the exponential family manifold, SNGD using the mean parametrization together

with FIM provides an online method for exactly assessing the ML estimator. Consequently,

Natural Gradient arises as an interesting concept to use in harder problems.

Similarly, for classification problems, the Maximum Conditional Likelihood (MCL) is a

common approach. An example is the well known Logistic Regression problem. In chap-
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ter 4 we formalize the MCL problem and we define the Multinomial Logistic Regression

manifold, the metric and β parametrization to use in last chapter.

Chapter 5 starts proposing online estimators for the MCL task: We adapt the SNGD

algorithm to the Multinomial Logistic Regression problem by selecting the parametriza-

tion and metric explained. This algorithm turns out to be too costly in computational

terms due to the need to compute the inverse of the metric matrix at each update of the

parameters. Moreover, it exploits the sample many more times than standard algorithms.

That’s why we define the MOD algorithm, a variation of SNGD which is much more ef-

ficient, since it computes the matrix inverse just once per epoch, and a fair competitor,

since it scans the sample as many times as other algorithms. Finally, one last Stochastic

Natural Gradient and really fast algorithm is defined, MEGD algorithm, that uses the

metric of the maximum entropy point of the manifold.

Then in the chapter, we evaluate the error of the SNGD, MOD and MEGD estimators.

First, we study how well SNGD, MOD and MEGD compare with standard approaches

such as SGD and AdaGrad in terms of conditional likelihood of the training sample. That

is, how well they perform as optimizers. We show that SNGD, MOD and MEGD improve

over standard methods. Furthermore, we notice that MOD and MEGD are not only

more efficient han SNGD, but also more accurate. Hence, we ignore SNGD soon for the

remaining experiments.

Second, we compare MOD and MEGD with standard methods in terms of the expected

prediction error, showing that it sligthly improves in large data scenarios. This error can

be understood as the prediction capability of the estimator.
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2 Function optimization and Gradient Descent

This section introduces basic concepts and strategies used to solve optimization problems

[7, 2]. We start by giving a natural way to engage this kind of problems in which we can’t

find the solution analytically. Then, we are going to see what are the clever ways to apply

this intuition, also identifying the limitations encountered.

2.1 Linesearch

Let L(θ) be a smooth function from Rk to R. Function optimization problem asks about

the extrema of a function. More precisely, we try to find the point
∗
θ ∈ Rk for which the

function reaches a minimum. That is;

∗
θ := arg min

θ∈Rk

L(θ)

Due to the complexity of the function, we suppose
∗
θ can not be found analytically,

and we are forced to seek the solution numerically. The most used strategy to find
∗
θ is

called Linesearch, which is very intuitive: starting with a guess θ0 ∈ Rk of the solution

we update it into θ1 in the surroundings such that L(θ0) ≥ L(θ1). We then repeat the

process iteratively. Formally;

θi+1 = θi − ri · gi, ri ∈ R gi, θi ∈ Rk (1)

By looking equation 1, we can say that at iteration i we “update the parameter θi into

θi+1 by following a straight line with direction gi for a distance ri”. We call gi and ri the

direction and the learning rate of iterate i, respectively. Different settings on gi and ri

provide diferent Linesearch algorithms. More precisely, these are the steps;

Listing 1: Linesearch

beta := b e t a i n i t
for i :=0 to max it do

r := l e a r n i n g ra t e o f i t e r a t i o n i
g:= d i r e c t i o n at cur rent p o s i t i o n
beta = beta − r x g

end ;

It is important to notice that Linesearch may seek a local minimum instead of the

global minimum of the function. A study branch we will not discuss about dedicates the

effort to solve this hard problem. The issue disappears if the function is convex, and we

assume the function has this property from now on.
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2.2 Gradient Descent

Assume that L(θ) is differentiable. Since our goal is to reach a minimum of the function,

it’s natural to think about using the steepest direction as gi in the update, in order to

decrease the function value the fastest possible.

The gradient vector ∇L(θi) points to the steepest direction. To see this, first realize

that steepest direction is achieved by the normalized vector that maximizes the directional

derivative. So, normalized steepest direction is the solution to;

arg max
v∈Rk,||v||2=1

dθiL(v) (2)

now observe that the expression we want to maximize is;

dθiL(v) =< ∇L(θi), v >= ||∇L(θi)|| · ||v|| cos(α) = ||∇L(θi)|| cos(α)

where α is the angle between ∇L(θi) and v. In the latest expression, the only term that

depends on v is α, while ||∇L(θi)|| is constant. Since cos(α) ≤ 1, we reach a maximum

when cos(α) = 1, that is when α = 0, implying that the normalized steepest direction

vector and ∇L(θi) are proportional as we said.

Choosing the gradient as the direction gi in equation 1 ensures that Linesearch updates

accomplish L(θi) ≥ L(θi+1) for a small enought learning rate ri . There are several options

to choose as ri value – constant, a
1+bi , adaptive methods,... –. As suggested by [8], this

project assumes the learning rate to be ri = a
1+bi for some a, b ∈ R+ which will be decided

after a short training – see section 5.

Gradient Descent algorithm (GD) updates the parameter θi according to equation 1

using the following setting;

• gi = ∇L(θi)

• ri = a
1+bi for some a, b ∈ R+.

2.3 Natural Gradient Descent

In most occasions SGD is run, L(θ) is not really a function from Rk. We have instead;

L :M −→ R
p 7−→ L(p)

where M is a k-dimensional Riemannian manifold equipped with a metric Gp for every

p ∈M.
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To work on a manifold, we are forced to use a parametrization φ : Ů ⊂ Rk →M and

so work with the composition L(φ(θ));

Rk φ−→ M L−→ R
θ 7→ φ(θ) 7−→ L(φ(θ))

At this point we agree θ still belongs to Rk and we can still follow the direction given by

the gradient of L(φ(θ)) by means of the parametrization. However, this doesn’t coincide

with the steepest direction on the manifold in general. The parametrization doesn’t give

any information about the metric on M, and metric magnitudes of actual space M are

distorted viewed from Rk. The vector truly pointing the steepest direction inM is called

Natural Gradient and it is written as ∇̃L(φ(θ)) in the references [11, 9]. Let’s see an

example that shows the fact;

Example. Let S2 = {(x, y, z) ∈ R3 : x, y, z > 0, x+y+z = 1} be the open surface simplex

with the induced metric from R3. Consider the orthogonal projection parametrization of

S2 along axis z ;
φ : U ⊂ (0, 1)2 −→ S2

(a, b) 7−→ (a, b, 1− a− b)
(x, y) 7−→ (x, y, z)

where U = {(a, b) ∈ (0, 1)2 : a+ b < 1}.

Finally, let L(x, y, z) = y be a function defined on S2 that we try to maximize. Starting

at point p = (1
3 ,

1
3 ,

1
3) ∈ S2, we proceed to compute the gradient vector with respect to the

parametrization coordenates;

∇L(p) = ∇(a,b)b|φ−1(p) = (0, 1)

This vector is drawn in red continuous arrow in Figure 1, in both U and S2. However,

we can see in the actual space S2, that the best way to increase the value of L(x, y, z) = y

is to move towards y axis, represented by the blue discontinuous vector in Figure 1. Then,

the steepest direction actually is ;

∇̃L(p) = (−0.33, 0.66)

Intuitively, we see that Natural Gradient direction actually increases the value of L
faster. We will see a proof of this after we recall some basic definitions on Riemannian

Manifolds.
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φ−1(p)

a

b

(a) U

p
x

y

z

(b) S2

Figure 1: Two directions on the simplex. In red continuous, regular gradient. In blue
discontinuous, Natural Gradient.

2.3.1 Brief Introduction to Riemannian Manifolds

Some basic definitions on Riemannian Geometry are given now. We recall only the con-

cepts of [4] that are needed later on in this project, and we strongly recommend to check

the reference for a more extended material.

Definition 2.1. A differentiable manifold of dimension k is a set M and a family of

injective mappings φi : Ůi ⊂ Rk →M of open sets Ůi such that;

•
⋃
i φi(Ůi) =M

• for any pair φi, φj with φi(Ůi) ∩ φj(Ůj) = V 6= Ø, the sets φ−1
i (V ) and φ−1

j (V ) are

open sets in Rk and the mappings φ−1
j ◦ φi and φ−1

i ◦ φj are differentiable.

The pair (Ů , φ ) – or just φ – is called a parametrization of M at any p ∈ φ(Ů). We

want now to meet the concept of tangent space TpM ofM at a point p ∈M. To do so, we

first notice that thanks to parametrization existence, we are able to define differentiable

functions between two manifolds.

Definition 2.2. Let M1,M2 be differentiable manifolds of dimension n and m. A map-

ping f : M1 → M2 is differentiable at p ∈ M1 if given a parametrization φ2 : V ⊂
Rm → M2 at f(p) there exists a parametrization φ1 : U ⊂ Rm → M1 at p such that

f(φ1(U)) ⊂ φ2(V ) and the mapping φ−1
2 ◦ f ◦ φ1 : U ⊂ Rn → Rm is differentiable at

φ−1
1 (p). f is differentiable on an open set ofM1 if it is differentiable at all of the points in

this open set.
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Definition 2.3. LetM be a differentiable manifold. A differentiable function λ : (−ε, ε)→
M is called a ( differentiable ) curve in M. Suppose that λ(0) = p ∈ M, and let D be

the set of functions on M that are differentiable at p. The tangent vector to the curve λ

at t = 0 is a fucntion λ′(0) : D → R given by;

λ′(0)f =
d(f ◦ λ)

dt
|t=0, f ∈ D

Definition 2.4. With the same notation as in previous definition, a tangent vector at p

is the tangent vector at t = 0 of some curve λ : (−ε, ε)→M with λ(0) = p. The set of all

tangent vectors to M at p is TpM.

Note that in the above definitions, if φ : U ⊂ Rn →M is a parametrization, then;

• f ◦ φ(θ) = f(θ1, ..., θn), where θ = (θ1, ..., θn) ∈ U

• φ−1 ◦ λ(t) = (λ1(t), ..., λn(t))

So we can express the tangent vector λ′(0) at p in this parametrization;

λ′(0)f =
d(f ◦ λ)

dt
|t=0 =

d

dt
f(λ1(t), ..., λn(t))|t=0 =

(
n∑
i=1

λ′i(0)

(
∂

∂θi

)
0

)
f

Definition 2.5. A Riemannian metric ( or Riemannian structure ) on a differentiable

manifold M is a correspondence which associates to each point p ∈ M an inner prod-

uct < ·, · >p that is, a symmetric, bilinear, positive-definite form, on the tangent space

TpM, which varies differentiably in the following sense: If φ : U ∈ Rn → M is a

parametrization around p, with φ(θ1, ..., θn) = q ∈ φ(U) and ∂
∂θi

(q) = dφq(0, ..., 1, ..., 0)

then < ∂
∂θi

(q), ∂
∂θj

(q) >q= gij is a differentiable function on U .

Observe that if we define the matrix Gq = gij then the inner product of two vectors

u, v ∈ TqM is < u, v >q= (u1, ..., un)T ·Gq · (v1, ..., vn) where both vectors are expressed in

the base { ∂
∂θi

(q)}i. Previous definition does not depend on the choice of parametrization,

so for all p ∈M we will say Gp even if no parametrization is specified.

The pair (M, {Gp}p∈M) is known as a Riemannian Manifold, where the inner product

of two vectors u, v ∈ TpM is < u, v >p= uTGpv. Whenever there is no confusion, we will

just write < u, v >= uTGv.

Previous definition gives a way to measure vectors of TpM;

Definition 2.6. The length – or norm – ||v|| of any vector v ∈ TpM is ||v|| :=< v, v >1/2=

(vTGv)1/2.
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Definition 2.7. Let (M, {Gp}p∈M) be a Riemannian Manifold. The Riemannian Man-

ifold with the dual metric – or inverse metric – is (M, {G−1
p }p∈M). Notice this is well

defined since G−1
p is also a symmetric, bilineal and positive-definite form. If u, v ∈ TpM,

we denote the inner product with respect to the inverse metric as < u, v >∗:= uTG−1v,

and the norm as ||v||∗ :=< v, v >
1/2
∗ = (vTG−1v)1/2.

2.3.2 Natural Gradient

Let L :M→ R be a differentiable function defined in a Riemannian Manifold (M, {Gp}p∈M).

We know that if p ∈M then;

< u, v >= uT ·G · v, u, v ∈ TpM

and

||u||2 :=< u, u >, u ∈ TpM

We define the Natural Gradient ∇̃L(p) ∈ TpM as a vector that points to the direction

that increases the fastest the function L(p) in M. That is, Natural Gradient is achieved

by the normalized vector that maximizes the directional derivative;

arg max
v∈TpM,||v||2=1

dpL(v) = arg max
v∈TpM,||v||2=1

∇L(p)T · v

similar to equation 2 but paying attention to the metric of M when normalizing. In

particular, we will see that the Natural Gradient is obtained by the inverse of G;

∇̃L(p) = G−1 · ∇L(p)

To be entirely convinced of this fact, check the proof in [9] or see our next result.

Proposition 2.1. Let (M, {Gp}p∈M) be a Riemannian Manifold and L : M → R be a

smooth function defined on M. Let p ∈M, then

∇̃L(p) = G−1 · ∇L(p)

Proof. We need to find the steepest normalized vector of TpM, by solving;

ṽ = arg max
||v||2=1

∇L(p)T · v, v ∈ TpM

which can be rewritten as;

ṽ = arg max
v∈TpM

∇L(p)T · v

||v||2
= arg max

v∈TpM

∇L(p)T · v
< v, v >p
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Recall that G and G−1 are in particular symmetric invertible matrices. Furthermore,

G−1 can be seen as an automorphism in the vector space TpM. So equivalently we can

solve

ũ = arg max
u∈TpM

∇L(p)TG−1u

< G−1u,G−1u >

where we can recover the solution to our original problem by doing ṽ = G−1ũ. We continue

ũ = arg max
u∈TpM

∇L(p)TG−1u

(G−1u)TG(G−1u)
= arg max

u∈TpM

∇L(p)TG−1u

uT (G−1)Tu

Again G−1 is symmetric and (G−1)T = G−1;

ũ = arg max
u∈TpM

< ∇L(p), u >∗
< u, u >∗

= arg max
u∈TpM

< ∇L(p),
u

||u||∗
>∗=

= arg max
u∈TpM,||u||2∗=1

< ∇L(p), u >∗

Then, by the same reasoning we applied to equation 2 in 2.2, this implies the solution

of the problem is ũ = ∇L(p)
||∇L(p)||∗ , wich finally implies that ṽ = G−1ũ = G−1∇L(p)λ and

then ∇̃L(p) = G−1∇L(p) as we wanted to prove. �

2.3.3 Natural Gradient Descent

Now that the natural gradient has been introduced, and considering its nice properties, a

new and interesting setting for the Linesearch scheme of listing 1 is available;

• gi = ∇̃L(p) = G−1∇L(p)

• ri = a
1+bi for some a, b ∈ R+.

2.4 Stochastic Gradient Descent

Previous algorithms are offline, which means they are fed with the function L(θ) in every

iteration to compute the gradient. Online algorithms instead, they are fed with a piece

L(si, θ) of the whole function that depends on observation si of iteration i.

This project focuses on this later case, where the function we want to optimize LS(θ)

depends on a sample S. The function is a sum over the sample points, and that allows us

to set differently the direction g in the Linesearch strategy. Let’s formally state everything.

Let S := {s0, s1, ..., sn} with si ∈ Ω be a sample observed and let LS(θ) be a smooth

convex function from Rk to R such that;

12



LS(θ) :=
n∑
i=0

L(si, θ), θ ∈ Rk

Similarly as before, our objective is finding

∗
θ := arg min

θ∈Rk

LS(θ)

but here we are not going to use GD on LS(θ). The idea is updating after every observation

using ∇L(si, θ) instead of ∇LS(θ) as gi, so we read equation 1 sligthly different. With

this set up, we are running Stochastic Gradient Descent (SGD) and it is asymptotically

equivalent to GD. To see this, we show next result.

Lemma 2.2.

EΩ[∇L(s, θ)] ≈ 1

n+ 1
∇LS(θ)

Proof. To start with, notice that;

LS(θ) =
n∑
i=0

L(si, θ) =
∑
s∈Ω

L(s, θ) · ns =⇒ ∇LS(θ) =
∑
s∈Ω

∇L(s, θ) · ns

where ns = #{i : 0 ≤ i ≤ n, si = s}. Also ns
n+1 ≈ p(s) and then;

EΩ[∇L(s, θ)] =
∑
s∈Ω

∇L(s, θ) · p(s) ≈
∑
s∈Ω

∇L(s, θ) · ns
n+ 1

=
1

n+ 1
∇LS(θ)

�

So SGD is basically following the same direction as GD, nevertheless it’s way easier

to compute ∇L(s, θ) than ∇LS(θ). It has been proved that the convergence of SGD is

asymptotically as good as GD [8] or Batch Gradient Descent – that is, when every si

represents a set of observations instead of a single observation – .

We define the setting on equation 1 for SGD;

• gi = ∇L(si, θ
i)

• ri = a
1+bi for some a, b ∈ R+.

Observe that in this case, the gradient is only defined when i ≤ n. Once it is i = n, the

algorithm has run over an epoch. Then usually a permutation of the indices of elements

in S is applied and the algorithm continues to run with the same but reordered set. This

is repeated after every epoch. The next schema shows this;
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Listing 2: Stochastic Gradient Descent scheme

beta := b e t a i n i t
for e := 0 to max epochs do

for i := 0 to n do
i t = i+n∗e
r := l e a r n i n g ra t e o f i t e r a t i o n i t
g:= grad i en t ( obse rvat i on i o f S )
beta = beta − r x g

permute e lements on set S
end ;

end ;

Many problems fit in better with online algorithms. For example, the Maximum Like-

lihood problem (ML), that aims to find the maximum of known likelihood function LS(θ)

that depends on a sample S observed after an unknown probability distribution deter-

mined by the parameter θ. In fact, the point
∗
θ that maximizes LS(θ) defines the proba-

bility distribution that most likely generated the sample S. In these cases, the objective

is normally to approach the unknown parameter θ by doing an online optimization of the

known function LS(θ) since
∗
θ
|S|→∞−→ θ

2.5 Stochastic Natural Gradient Descent

If L : M → R is a differentiable function as in 2.4 defined in a Riemannian Manifold

(M, {Gp}p∈M) that we want to optimize, we may redefine the SGD algorithm to obtain

the Stochastic Natural Gradient Descent (SNGD). This takes into account the metric of

M. Using the same schema as in listing 2, the algorithm is set;

• gi = ∇̃L(si, p) = G−1∇L(si, p)

• ri = a
1+bi for some a, b ∈ R+.

Thus, the main difference between SGD and SNGD is that whilst SGD assumes that we

are optimizing a function from Rk to R and uses the Euclidean metric as default, SNGD

assumes we are optimizing a function defined over a specific Riemannian manifold and

uses the metric provided by that manifold. Hence SNGD is a generalization of SGD to

manifolds different from the classic Rk with the Euclidean metric.
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3 ML problem and Exponential Families

Previous section introduced the SNGD algorithm, a variant of the SGD algorithm that

can be run in a Riemannian Manifold. The difference is that SNGD computes the Natural

Gradient instead of the gradient, which we have seen that points to the trully steepest

direction in the manifold. Is it then a good idea to use SNGD to optimize a differentiable

function defined on a manifold? For a particular set of ML problems, we are going to see

it’s the best idea.

In this section we restrict ML problem to a specific subset; the manifold is a Statistical

Manifold containing distributions in the exponential family M = {P (X, θ)|θ ∈ Θ ⊂ Rk},
and clearly the function to optimize is the likelihood function obtained from a sample

{s1, ..., sn} where si ∈ X. There are a lot of different probability distributions belonging

to this set, such as Bernoulli, Normal, Gamma, Poisson, Categorical, Dirichlet and Chi-

squared distributions among others.

This is a too easy problem to use numerical algorithms, since in this case the analytic

solution exists, and so the ML estimator can be obtained. However, we use this kind

of problem to prove that SNGD algorithm together with the FIM imitates ML estima-

tor, making it insuperable, providing to SNGD a solid basis, and showing SNGD as an

interesting option to use for some harder problems.

3.1 ML problem

The problem we want to answer is: Given M a set of probability distributions and a

sample S observed from a probability distribution of M, find the member of M that

maximizes the probability of generating the sample. As mentioned in 2.4, this is equivalent

to maximize the likelihood function. Or, instead of maximizing the likelihood function

LS(θ), we equivalently can minimize the log-likelihood function LS(θ) := − log(LS(θ)).

Definition 3.1. LetM = {P (X, θ)|θ ∈ Θ ⊂ Rk} be a set of probability distributions and

S = {s0, ..., sn} a sample with si ∈ X. Then the likelihood function is

LS(θ) =
n∏
i=0

P (si, θ)

and the log-likelihood function is

LS(θ) = − log(LS(θ)) = −
n∑
i=0

logP (si, θ)

Regarding the notation in 2.4, L(s, θ) = − logP (s, θ). Minimizing LS(θ) is equivalent

to maximize LS(θ) because logarithm is a monotonic and increasing function.
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3.2 Exponential Family Manifold

When solving the ML problem, each point p in M describes a probability distribution

P (X, p) defined in the same probability space. This is what we call a Statistical Manifold.

We restrict now M to be in the Exponential Family. The definition already gives a

parametrization and introduces M as a manifold.

Definition 3.2. A set – or family – of probability distributions M = {P (X, θ)|θ ∈ Θ ⊂
Rk} is in the exponential family if there exists;

φ : Θ ⊂ Rk −→ M
θ 7−→ φ(θ) := P (X, θ) : X −→ R

s 7−→ P (s, θ) = h(s) · e<η(θ),T (s)>−ψ(θ)

where h(s) and ψ(θ) are known real valued functions, η(θ) ∈ Rk and T (s) ∈ Rk is a

sufficient statistic. We will consider h(s) = 1 ∀s ∈ X from now on.

Definition 3.3. A set of probability distributions in the Exponential Family is in canonical

form if;

P (s, θ) = e<θ,T (s)>−ψ(θ), ∀θ ∈ Θ,∀s ∈ X

We can always assume we are in this later case, by using η(θ) as parameter – we will

keep using the notation θ for the parameter –.

Definition 3.4. A statistic T is minimal if it satisfies:

< θ, T (s) > is constant for all s ∈ X if and only if θ = 0.

We always can also find a statistic T that is minimal. AskingM to be a manifold with

parametrization φ is equivalent to ask for T to be minimal. By looking the definition 2.1

it suffices to check that φ is an injective map;

φ(θ1) = φ(θ2)⇔ P (X, θ1) = P (X, θ2)⇔< θ1 − θ2, T (s) >= c ∈ R ∀s ∈ X

Last expression and the fact that T is a minimal statistic implies that θ1 = θ2 and

φ is injective. Then φ is a parametrization of the manifold and it is known as natural

parametrization.

3.3 Mean parametrization

Departing from previous parametrization, it derives a new one that is known as mean

parametrization, denoted by ξ ∈ Rk;

ξ(θ) = ∇ψ(θ) = E[T (s)]
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Moreover, the ML problem is way easier to solve with this parametrization, since we

have the analytic solution of ML estimator. The ML estimate for a single observation

s ∈ X of the mean parametrization is
∗
ξ = T (s) and the ML estimator for an observed

sample S = {s0, ..., sn} is the mean of the ML estimates for single observations, that is
∗
ξ = mn+1

n+1 with mn+1 =
∑n

j=0 T (sj).

3.4 Metric for Exponential Family Manifold

The metric that we set for the manifold is the Fisher Information Metric (FIM). We are

going to give the expression of the matrix according to this metric afterwards, but first

let’s go through the definitions.

3.4.1 Fisher Information Metric

Here we present the metric that we will use in the manifolds we will work on. RecallM is

a Statistical Manifold. This kind of manifold can be enriched with the Fisher Information

Metric ( FIM ) to obtain a Riemannian Manifold (M, {Gp}p∈M).

Definition 3.5. Let p be a point of a Statistical Manifold M. The Fisher Information

Metric ( FIM ) is defined as;

Gp = gij =

∫
X

∂ logP (s, p)

∂i

∂ logP (s, p)

∂j
P (s, p)ds = EX

[
∂ logP (s, p)

∂i

∂ logP (s, p)

∂j

]
In that case, (M, {Gp}p∈M) is a Riemannian Manifold.

So if we choose a parametrization φ : U ∈ Rn → M around p, with φ(θ) = p and
∂
∂θi

= dφp(0, ..., 1, ..., 0), then Gp = Gθ = gij =
∫
X

∂ logP (s,θ)
∂θi

∂ logP (s,θ)
∂θj

P (s, θ)ds. It can be

easily proved that another equivalent definition is;

Gθ = gij =

∫
X

∂2(− logP (s, θ))

∂θi∂θj
P (s, θ)ds = EX

[
∂2(− logP (s, θ))

∂θi∂θj

]
An alternative way to understand the FIM is to define the Kullback-Leibler divergence

and then calculate its Hessian. Basically, a divergence is a relaxed version of distance,

in which the divergence from a to b has not to be equal to the one from b to a. Hence,

usually the triangle inequality doesn’t hold either.

Definition 3.6. LetM be a Manifold. A divergence is a function D :M×M→ R such

that;

• D(P (X,
∗
θ), P (X, θ)) ≥ 0 ∀P (X,

∗
θ), P (X, θ) ∈M .
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• D(P (X,
∗
θ), P (X, θ)) = 0 if and only if P (X,

∗
θ) = P (X, θ).

Definition 3.7. Let P (X,
∗
θ), P (X, θ) be two probability distributions. Kullback-Leibler

divergence DKL is the divergence defined as;

DKL(P (X,
∗
θ), P (X, θ)) =

∫
X

log
P (s,

∗
θ)

P (s, θ)
P (s,

∗
θ)ds

Change the integral by a summation if the probability space is discrete. From here, it

is clear that ∂2

∂θi∂θj
DKL(P (s,

∗
θ), P (s, θ))

|
∗
θ=θ

= gij and this gives another intuition about

the FIM.

When we work over a set in the exponential family in canonical form, and according

to previous definitions, the Fisher Information Metric can be easily computed;

gij =

∫
X

∂2(− logP (s, θ))

∂θi∂θj
P (s, θ)ds =

∫
X

∂2(− < θ, T (s) > +ψ(θ))

∂θi∂θj
P (s, θ)ds =

∂2ψ(θ)

∂θi∂θj

∫
X
P (s, θ)ds =

∂2ψ(θ)

∂θi∂θj
=⇒

Gθ = Hψ(θ) = D∇ψ(θ) = Dξ(θ)

If the parametrization used is the mean parametrization, we use the fact that ξ and θ

are dually flat parametrizations, which in particular means Gθ|−1
θ(ξ) = Gξ. Then the FIM

with respect to ξ is related to the inverse metric with respect to θ. This directly proves

next lemma.

Lemma 3.1. Let θ(ξ) be the inverse function of ξ(θ) = ∇ψ(θ). Then Dθ(ξ) = Gξ

Proof.

Dθ(ξ) = D(ξ(θ)−1) = Dξ(θ)|−1
θ(ξ) = D∇ψ(θ)|−1

θ(ξ) = Gθ|−1
θ(ξ) = Gξ

�

3.5 Solving exactly the ML problem in Exponential Families with SNGD

The following lemmas are tools that will serve us after to prove that SNGD on the manifold

of exponential families equipped with the FIM using the mean parametrization ξ solves

exactly the ML problem.

Lemma 3.2. In the ξ coordinate system, ∇̃L(s, ξ) = ξ − T (s)
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Proof. Note that in the natural parametrization L(s, θ) = ψ(θ)− < θ, T (s) > . Thus,

∇L(s, θ) = ∇ψ(θ)− T (s) = ξ(θ)− T (s)

Then, ∇L(s, θ(ξ)) = Dθ(ξ)∇L(s, θ)|θ(ξ) = Dθ(ξ)(ξ − T (s)) = Gξ(ξ − T (s))

∇̃L(s, ξ) = G−1
ξ ∇L(s, ξ) = G−1

ξ ∇L(s, θ(ξ)) = G−1
ξ Gξ(ξ − T (s)) = ξ − T (s)

�

Theorem 3.3. Let M = {pθ | θ ∈ Θ} be a k-dimensional Manifold in the exponential

family and S = {s0, . . . , sn} a data sample. Then SNGD on the mean parametrization

with learning rate ri = 1
1+i imitates ML estimator. This means that at each step i for

i > 0, ξi is the ML estimate for {s0, . . . , si} (if it exists).

Proof. By induction. Assume ξi coincides with the maximum likelihood estimate for

{s0, . . . , si}. We will prove that the same holds for ξi+1. By induction hypothesis we have

that ξi = mi
i where mi =

∑i−1
j=0 T (sj). From the SNGD update equation and Lemma 3.2,

we have that;

ξi+1 = ξi − ri∇̃L(si, ξ
i)

3.2
= ξi − ξi − T (si)

i+ 1
=
iξi + T (si)

i+ 1
=
I.H.
=

mi + T (si)

i+ 1
=
mi+1

i+ 1

proving the theorem. �

3.6 Example: Solving ML in Categorical distributions

The categorical distribution is a set of probability distributions belonging to the exponen-

tial family. It describes, for instance, the probability space obtained by a die of unknown

probabilities. We show all concepts seen in this section for this particular example.

For this example, ML problem objective seeks the most likely probabilities of each

face of the die, regarding a set of observations. That means, the goal is to maximize the

Likelihood function. That’s obtained by the ML estimator. By looking all results seen in

the chapter, it should be possible to perform as well as ML estimator using the SNGD

algorithm with the mean parametrization and the FIM. To run SNGD, it’s necessary to

findthe mean parametrization, the function to optimize, the FIM matrix inverse and the

Natural Gradient. Each of those are described below.

Mean parametrization

Let D = {0, 1, ..., k} be a (k+1)-faces die and let ξ = (ξ0, ..., ξk) be the vector where ξi is

the probability of face i to happen for i ∈ D. As we know, the sum of all face probabilities
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adds up to 1. This means the manifold described is easily parametrized by the k-simplex

Sk. Previously appeared the natural and mean parametrizations of exponential family

manifold – θ and ξ parametrizations respectively. For this particular example, these are;

φ1 : Rk −→ M
θ 7−→ P (D, θ) : D −→ R

s 7−→ P (s, θ) = e<θ,T (s)>−ψ(θ)

where T (s) =

{
es+1 ∈ Rk if s 6= k
(0, ..., 0) if s = k

is a sufficient statistic and ψ(θ) = log
∑k

s=0 e
<θ,T (s)>.

φ2 :
o
Sk −→ M

(ξ0, ..., ξk−1) 7−→ P (D, ξ) : D −→ R
s 7−→ P (s, ξ) = ξs

such that, recalling 3.3, (ξ0, ..., ξk−1) = E[T (D)] = ∇ψ(θ)

Loglikelihood function

Consider we throw the die several times and we write down the results in a set of

observations S = {si}ni=0, where si ∈ D is the face occurred in i-th throw. By 3.1, the

Likelihood function in this case is;

L(φ2(ξ)) =
∏n
i=0 P (si, ξ) =

∏n
i=0

{
ξsi if si 6= k

1− (ξ0 + ...+ ξk−1) if si = k

and the log-Likelihood function to minimize is;

L(φ2(ξ)) =
∑n

i=0

{
− log(ξsi) if si 6= k

− log(1− (ξ0 + ...+ ξk−1)) if si = k

FIM matrix inverse

The FIM matrix G and its inverse for this example are the following;

G =


1
ξk

+ 1
ξ0

1
ξk
· · · 1

ξk

1
ξk

. . .
. . .

...
...

. . .
. . . 1

ξk
1
ξk

· · · 1
ξk

1
ξk

+ 1
ξk−1

→

G−1 =


ξ0(1− ξ0) −ξ0ξ1 · · · −ξ0ξk−1

−ξ0ξ1
. . .

. . .
...

...
. . .

. . . −ξk−2ξk−1

−ξ0ξk−1 · · · −ξk−2ξk−1 ξk−1(1− ξk−1)


Natural Gradient

Finally, we compute the Natural Gradient. Notice the gradient is

∇L(si, ξ) =

{
−1
ξsi
esi+1 if si 6= k

1
ξk

(1, ..., 1) if si = k
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Then, the Natural Gradient is

∇̃L(si, ξ) = G−1∇L(si, ξ) =

{
(ξ0, ..., ξsi − 1, ..., ξk−1) if si 6= k

(ξ0, ..., ξk−1) if si = k
= ξ − Tk(si)

as lemma 3.2 states.

Tools to run SNGD are found. The answer we are looking for is
∗
ξ := arg minξ∈Sk

L(φ2(ξ))

and it’s the ML estimator. Section 3.3 specifies for the mean parametrization that
∗
ξ = mn+1

n+1 , where mn+1 =
∑n

j=0 T (sj). By induction, suppose that we have run the

algorithm until iteration i and SNGD has imitated ML estimator, that is ξi = mi
i . The

idea now is to run one step of SNGD and check that it actually updates identically as ML

estimator does. This is a particular example of theorem 3.3.

ξi+1 = ξi − ri · ∇̃Lsi(ξi) = ξi − ri · (ξi − Tk(si)) = mi
i −

1
1+i · (

mi
i − Tk(si)) = mi+1

i+1 .
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4 MCL problem and Logistic Regression

In previous section we have shown that, for the ML problem, running SNGD algorithm

in a specific Riemannian Manifold carrying the FIM is an unsurpassable method. We

wonder about SNGD yield in harder problems. In this section we will introduce another

Riemannian Manifold M and the MCL problem in it, as well as a parametrization and

the matrix computation of the metric of M.

4.1 MCL problem

Similar to section 3.1, the problem we want to solve is: GivenM a manifold of conditional

probability distributions and a sample S obtained from a conditional probability distribu-

tion ofM, find the member ofM that maximizes the probability of generating the sample.

This is equivalent to maximize the conditional likelihood function CLS(β). Or, instead, we

equivalently can minimize the conditional log-likelihood function LS(β) := − log(CLS(β)).

Definition 4.1. Let M = {P (y|X, θ)|θ ∈ Θ ⊂ Rk} a set of conditional probability

distributions and S = {(y1, x1), ..., (yn, xn)} with (yi, xi) ∈ y × X. Then the conditional

likelihood function is

CLS(θ) =

n∏
i=0

P (yi|xi, θ)

and the conditional log-likelihood function is

LS(θ) = − log(CLS(θ)) = −
n∑
i=0

logP (yi|xi, θ)

Following the notation in 2.4, it is L((yi, xi), θ) = − logP (yi|xi, θ).

4.2 Multinomial Logistic Regression Manifold

We want to describe the Manifold in which we will work from now on. First of all, some

definitions needed are presented before the Manifold is specified.

Definition 4.2. Let (Ω, F , P ) be a probability space, X = (x1, ..., xk) be a random

variables vector and y a random variable. We define the conditional probability of Y given

X as follows;

P (y|X) :=
P (y,X)

P (X)

In our case, the variables y and X will be discrete random variables.

Notation. Let y be a discrete random variable. If y has s + 1 different values then we

write |y| = s+ 1.
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Observation. If |xl|, |y| = 2 ∀l, conditional probability space has dimension 2k. If |xl| =
t+ 1 ∀l, |y| = s+ 1, conditional probability space has dimension s · (t+ 1)k

Observation. For us, it is |xl| = |xj | for all 1 ≤ l, j ≤ k, however everything in the text

can easily be extended to the more general case.

Definition 4.3. We say X is component wise conditionally independent random variable

given y, denoted X ccig. y, if;

∀xi, xj ⊂ X,P (xi, xj |y) = P (xi|y)P (xj |y) (3)

Definition 4.4. Let X = (x1, ..., xk) be a random variables vector, |xl| = t + 1, and

y a random variable, |y| = s + 1. The Multinomial Logistic Regression manifold M is

the manifold of conditional probability spaces P (y|X) such that X is component wise

conditionally independent random variable given y, that is

M = {P (y|X) : X ccig. y}

We have not given yet a correct parametrization for this manifold. That will be the

goal of next section.

4.3 β Parametrization

Now it’s time to find a parametrization for the manifold described in 4.2. We start recalling

the well known Bayes Theorem;

Theorem 4.1 (Bayes).

P (y|X) =
P (y) · P (X|y)∑

y′∈y P (y′) · P (X|y′)
(4)

By using equations 3 and 4, if we work with the Manifold M, we can rewrite the

conditional probability of y given X as:

P (y|X) :=
P (y,X)

P (X)
=

P (y) · P (x1, ..., xk|Y )∑
y′∈y P (y′) · P (x1, ..., xk|y′)

=
P (y) · P (x1|y) · ... · P (xk|y)∑

y′∈y P (y′) · P (x1|y′) · ... · P (xk|y′)
(5)

In 5, we can describe our space using P (xi|y) and P (y) as parameters. However, that would

not be a correct parametrization of the Manifold M, since we are overparametrizing M,

that is, injectivity is not fullfilled. The parametrization we describe below can be found in

[6]. To simplify, we give the parametrization separating the Bivalued Logistic Regression

case (BLG) – that is, when |xl|, |y| = 2 – from the Multivaliued Logistic Regression one

(MLG) – when |xl| = t+ 1, |y| = s+ 1.
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Case 1: BLG

{
β0 = log(P (y=1)

P (y=0)) + log(C)

βl = log(P (xl=1|y=1)
P (xl=0|y=1)

)− log(P (xl=1|y=0)
P (xl=0|y=0)

)

with 1 ≤ l ≤ k and

logC =
∑
i

log(P (xi = 0|y = 1)− logP (xi = 0|y = 0))

Case 2: MLG

{
βy
′

0 = log(P (y=y′)
P (y=0) ) + log(Cy′)

βy
′

xl,x′
= log(P (xl=x′|y=y′)

P (xl=0|y=y′)
)− log(P (xl=x′|y=0)

P (xl=0|y=0)
)

with 1 ≤ y′ ≤ s, 1 ≤ x′ ≤ t, 1 ≤ l ≤ k and

logCy′ =
∑
i

log(P (xi = 0|y = y′)− logP (xi = 0|y = 0))

That is the parametrization used further on for the Multinomial Logistic Regression

manifold M of conditional probabiliy spaces.

Observation. If |xl|, |y| = 2, then the manifold M has dimension k + 1. If |xl| = t + 1,

|y| = s+ 1, then M has dimension (k · t+ 1) · s

Using the β’s, we are able to write the parametrization of the manifold M as;

φ : R(k·t+1)·s −→ M
β 7−→ φ(β) := P (y|X,β) : y ×X −→ R

(y′, x′) 7−→ P (y′|x′, β)

with

P (y′|x′, β) =
δy′=0 + eβ

y′ ·T (x′) · δy′ 6=0

1 +
∑

06=y′′∈y
eβy′′ ·T (x′)

(6)

where
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βy
′

=



βy
′

0

βy
′

x1,1

βy
′

x1,2
...

βy
′

x1,t

βy
′

x2,1
...

βy
′

x2,t
...

βy
′

xk,t



and T (x′) =



1
−

T (x′1)
−
...
−

T (x′k)


with T (x′i) =

 δx′i=1
...

δx′i=t



4.4 Metric for Multinomial Logistic Regression Manifold

The task right now is to enrich the manifold M with a metric to have a Riemannian

Manifold. Considering that FIM worked perfectly for the ML problem in the exponential

family manifold, it seems a good idea to keep on that track. However, FIM is not actually

defined in our manifold, which contains conditional probability distributions instead of

probability distributions. We decide to use a close metric to that one [12], and we will

still name it FIM. Just as we explained in 3.4.1, we have two different points of view to

understand this metric. Nevertheless the computations are the same. Let’s see a variation

of definitions in 3.4.1 to use them in the current manifold.

Definition 4.5. Let p be a point ofM. The Fisher Information Metric ( FIM ) is defined

as;

Gp = gij = Ex∈X
[∫

y′∈y

∂ logP (y′|x, p)
∂i

∂ logP (y′|x, p)
∂j

P (y′|x, p)dy′
]

=∫
x∈X

P (x)

[∫
y′∈y

∂ logP (y′|x, p)
∂i

∂ logP (y′|x, p)
∂j

P (y′|x, p)dy′
]
dx

This definition works not only for the discret case. We now can consider the Riemannian

Manifold (M, {Gp}p∈M). An alternative and equivalent reasoning to obtain the same

Riemannian Manifold starts by defining the following divergence in M.

Definition 4.6. Kullback-Leibler divergence DKL in M is the divergence defined as;

DKL(P (y|X,
∗
β), P (y|X,β)) =

∫
x∈X

P (x)

∫
y′∈y

P (y′|x,
∗
β) · log

P (y′|x,
∗
β)

P (y′|x, β)
dy′

 dx
Again, as we mentioned in 3.4.1, the Hessian Matrix of the KL divergence coincides

with the matrix of the Fisher Information Metric (FIM). Then, finding the FIM matrix

can be done by finding the Hessian of DKL with respect to β and evaluating
∗
β = β –

remember the parametrization taken with equation 6 in section 4.3 –.
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4.4.1 Matrix Gβ computation

Below there is the proposition that expresses the metric matrix Gβ with the FIM and the

β parametrization defined previously. The proof of the result can be found in the annex,

section 6.1.

Proposition 4.2. Let β1 := βy
1

xi,u
and β2 := βy

2

xj ,v
. Let β3 := βy

3
and β4 := βy

4
. Then

the metric matrix Gβ according to FIM is such that

if y2 = y1:

gβ1,β2 =
∑

x∈X|xi=u,xj=v

P (x) · P (y1|x) · (1− P (y2|x))

if y2 6= y1:

gβ1,β2 = −
∑

x∈X|xi=u,xj=v

P (x) · P (y1|x) · P (y2|x)

if y2 = y3:

gβ3,β2 =
∑

x∈X|xj=v

P (x) · P (y3|x) · (1− P (y2|x))

if y2 6= y3:

gβ3,β2 = −
∑

x∈X|xj=v

P (x) · P (y3|x) · P (y2|x)

if y3 = y4:

gβ3,β4 =
∑
x∈X

P (x) · P (y3|x) · (1− P (y4|x))

if y3 6= y4:

gβ3,β4 = −
∑
x∈X

P (x) · P (y3|x) · P (y4|x)

Observation. Proposition 4.2 uses β1, β2, β3 and β4 to express matrix Gβ because they

serve as coordinates. More precisely, Gβ matrix rows and columns are sorted following

the vector

(β1, β2, · · · , βs) with βy
′

=
(
βy
′

0 β
y′

x1,1
βy
′

x1,2
· · ·βy

′

x1,t
βy
′

x2,1
· · ·βy

′

x2,t
· · ·βy

′

xk,t

)
4.4.2 Gβ matrix vectorization

Regarding last work, we do some remarkable considerations. Since the definition of the

metric Gβ involves Ex∈X , then the metric is not defined until the probability distribution

P (X) is stablished, which at first remained unknown and irrelevant before. Suppose then,

that P (X) is fixed. The goal here is to provide a fast and vectorized way to compute matrix
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Gβ. For that purpose, define A the matrix having T (x) ∈ Rkt+1 as columns ∀x ∈ X and

B the diagonal matrix having P (x) in the diagonal ∀x ∈ X;

A =
(
T (x1) | T (x2) | · · · | T (xi) | · · ·

)
B = {P (x)|∀x ∈ X}

Now let the diagonal matrices qj , ∀j ∈ {0, 1, ..., s} defined by its diagonal terms

qj = {P (y = j|x, β)|∀x ∈ X}

and let M be the diagonal blocks matrix;

M =


q1 0 · · · 0

0 q2
. . .

...
...

. . .
. . . 0

0 · · · 0 qs

−

q1

q2
...
qs

 · (q1 q2 · · · qs
)

Notation. We will write for example AM the product of the matrix A and M . Notice

that the matrices dimensions don’t match to multiply them. The notation in fact expresses

the product of A from the left by every block of M . Similarly, the product from the right

MAt.

Then next result has a straightforward proof, annexed in 6.2.

Proposition 4.3.

Gβ = AMBAt,

4.4.3 Maximum entropy distribution metric

Following lines present the metric of a specific and special point of the manifold. Before any

of the stochastic algorithms has started running, and before any sample has been observed,

the uncertainty is the highest possible. The best guess we can do about the probability

distribution that is about to generate the samples is that every event (y′, x) ∈ y ×X has

the same probability to happen.

This corresponds to the parametrized point of M as β = 0 ∈ R(kt+1)s, because then

P (y′|x, β) = 1
s+1 is constant. This point describes the maximum entropy distribution.

Moreover, consider the maximum entropy distribution of P (X), that is, P (x) = 1
n+1

∀x ∈ X with |X| = n + 1. Then it is possible to compute the metric matrix inverse G−1
0

really fast, by saving the cost of doing any matrix inversion. Proposition below shows

how, but before see a needed technical lemma with its proof in section 6.3.
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Lemma 4.4. Suppose the maximum entropy distribution of P (X) is selected. Let Kt be

a t× t matrix with ones at every entry and |X| = n+ 1. So then, if Lt = Kt + Idt,

(
AAt

n+ 1

)−1

= (t+ 1)



1+tk
t+1 −1 · · · · · · −1

−1 Lt 0 · · · 0
... 0 Lt

. . .
...

...
...

. . .
. . . 0

−1 0 · · · 0 Lt


Corolary 4.5. In the more general case where |xl| = tl + 1 ∀l ∈ {1, ..., k}, it is

(
AAt

n+ 1

)−1

=


1 +

∑
ti −t1 − 1 · · · · · · −tk − 1

−t1 − 1 (t1 + 1)Lt1 0 · · · 0
... 0 (t2 + 1)Lt2

. . .
...

...
...

. . .
. . . 0

−tk − 1 0 · · · 0 (tk + 1)Ltk


Next result shows how to compute the metric matrix inverse saving the cost of com-

puting the matrix G0 and also saving the matrix inversion cost, using the lemma 4.4. The

reader can find the proof annexed in section 6.4.

Proposition 4.6. Suppose the maximum entropy distribution of P (X) and P (y|X) are

selected and |X| = n+ 1. Then

G−1
0 = (s+ 1)

(
AAt

n+ 1

)−1


2Id Id · · · Id

Id 2Id
. . .

...
...

. . .
. . . Id

Id · · · Id 2Id


with Id = Idkt+1

4.4.4 Selecting P (X)

Proposition 4.3 shows a vectorized way to compute Gβ. However, as we said, the distri-

bution P (X) must be fixed previously. Furthermore, notice that if the dimension of the

manifold is huge, then the products AM and BAt may become also huge in computation

cost.

However we don’t have any hint about what’s the best distribution to choose, since the

manifold ignores completly that space – P (X) is irrelevant from the manifold viewpoint

–. So when deciding what distribution to pick, a good choice can be, for example, the

empirical distribution oberved from the sample. That way, an estimation of the actual

underlying P (X) distribution comes available. Furthermore, it may decrease a lot the
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amount of operations done since P (xi) = 0 if xi has not ocurred in the sample S =

{(y0, x0), ..., (yn, xn)}, allowing the saving of many trivial operations. To see how, redefine

matrix A of section 4.3 as;

A∗ =
(
T (x0) | T (x1) | · · · | T (xn)

)
Now let the diagonal matrices pj ,∀j ∈ {0, 1, ..., s} defined by its diagonal terms

pj = {P (y = j|xi, β)|∀i ∈ {0, ..., n}}

and define M∗ identically, but using these new matrix instead;

M∗ =


p1 0 · · · 0

0 p2
. . .

...
...

. . .
. . . 0

0 · · · 0 ps

−

p1

p2
...
ps

 · (p1 p2 · · · ps
)

Notice that A∗ and M∗ are way smaller matrices now. Finally rewrite proposition 4.3

as follows and see its proof in section 6.5;

Proposition 4.7 (AMAT). Let P (X) be the empirical distribution given a sample S =

{(y0, x0), ..., (yn, xn)}. Then

Gβ =

∗
A
∗
M
∗
A
t

n+ 1

4.5 Gradient computation

Since this project describes stochastic gradient algorithms – see section 2.4 –, the compu-

tation of the gradient of L((yi, xi), β) = − logP (yi|xi, β) is needed. It’s enough to compute

the partial derivatives of the function. If β1 := βy
1

xj ,u
, then the derivative with respect to

β1 is

− ∂
∂β1

logP (yi|xi, β) =


0 if (xi)

j 6= u

P (y1|xi, β) if (xi)
j = u, yi 6= y1

−1 + P (y1|xi, β) if (xi)
j = u, yi = y1
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5 Experiments

The objective of this chapter is implementing previous chapter 4, and using Natural Gra-

dient algorithms to solve the Maximum Conditional Likelihood problem (MCL) with the

Logistic Regression model. The intention is to test 3 algorithms that use the Natural

Gradient against standard SGD and AdaGrad algorithms that we will explain later.

Two problems are faced. The first one, is obviously to compare the behavior of Natural

Gradient algorithms with the results given by SGD and AdaGrad when solving the MCL

problem. The second one, is assessing the estimates and evaluate the error they provide

in terms of the expected prediction error that will be defined. This value helps us to judge

the estimates as predictors. Our programming can be found in [3].

We are going to run increasingly complex problems – increasing the dimension ofM –

in the following subsections. Table 1 shows the different experiment settings used;

Table 1

Experiments Dimension n Epochs Instances

Bivalued |y| = 2, X = (x1, x2, x3, x4), |xi| = 2 20 100 100

Small |y| = 3, |x1| = 2, |x2| = 3 100 100 100

Medium |y| = 4, |x1| = 2, |x2| = 4, |x3| = 7 100 100 100

Large |y| = 7, |x1| = 2, |x2| = 3, |x3| = 4, |x4| = 5 100 100 100

We proceed like this: We set the dimension ofM – that is |X| and |y| values – and then

pick up β a coordinate point ofM. Each coordenate βj of β will be randomly drawn from

a Normal Distribution N(0, 0.5). We then obtain a sample S out of P (y|X,β) ∈ M and

our goal is to find the parameter
∗
β so that P (y|X,

∗
β) ∈ M is the most likely conditional

probability distribution to generate S. That’s equivalent to minimize function LS(β)

specified in 4.1.

The learning rate ri = a
1+bi depends on two positive real numbers a, b. We decide the

constants a, b ∈ R+ by doing a fast test in a small sample. We run every algorithm over a

few epochs and during about 10 seconds we pick the constants that worked better when

optimizing the function. AdaGrad learning rate works differently, we specify it later in

this section.

Every algorithm starts with the initial point β0 = 0 ∈ R(kt+1)s since it describes the

maximum entropy conditional distribution and therefore the maximum uncertainty point

of M, as reasonable.
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5.1 Algorithms

This section provides the description of the algorithms that will be tested, all of them using

the Linesearch strategy to optimize a function. There are 5 algorithms in total. First 2

algorithms are standard and commonly used, SGD and AdaGrad. They apply the gradient

in its updates and they are chosen very often to optimize because of its low computational

complexity. 3 next algorithms make use of the Natural Gradient, or a variation of it,

instead of the regular gradient. For every algorithm it appears its pseudocode and its

computational complexity assessment. To do so, let d be the dimension of the manifold,

e the total number of epochs and n the sample length. Moreover, M(a, b, c) denotes

the number of operations needed in a 2 matrices product of dimensions a × b and b × c.
The inversion of a squared matrix of dimension d is represented with I(d). If standard

algorithms to multiply and invert matrices are applied, then it is O(M(a, b, c)) = O(abc)

and O(I(d)) = O(d3).

SGD

This algorithm is the usual SGD described in section 2.4. Its pseudocode appears in

Listing 2, which allows the analysis of its complexity below.

The complexity of SGD is the lowest in this project, having to compute the gradient,

a vector-scalar product and a vectors addition per iteration. The vector operations have

linear complexity with respect to d. To compute the gradient in iteration i, it is enough

to calculate βy
′ · T (xi) for every y′ ∈ y – see 4.5 and equation 6 of section 4.3. The

complexity of computing βy
′ · T (xi) is (1 + kt) so gradient computational complexity is

also O(s(1 + kt)) = O(d). Since the total iterations is e · n, the complexity of SGD is

O(en(d+ d+ d) = O(end)

AdaGrad

Here there is the description of AdaGrad algorithm. Its structure is exactly the same as

SGD – see scheme 2 –, except the fact that the learning rate r is different. To begin with,

it works every coordenate separately. So by just looking the coordenate j of β, at iteration

i, this is how ri for coordenate j looks like;

ri,j =
a√

ci,j + f

where ci,j =
∑i

t=0(∇L(st, β)j)2 and f is a fudge factor. This final algorithm is an

adaptive learning rate algorithm very used nowadays due to its simplicity and good results.
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We are not going to study this kind of algorithms, but we will include it in the experiments

to compare. Read [5, 14] for a more detailed information about adaptive learning rate

algorithms .

The computational complexity of AdaGrad is the same as SGD, since the complexity

of above calculations is linear with respect to d. So the total complexity of AdaGrad is

O(end)

SNGD

This algorithm is the same SNGD defined in 2.5 but fixing the metric to be the FIM and

P (X) to be the empirical one. It uses AMAT result in 4.7 to compute matrix Gβ. Next

there is SNGD scheme.

Listing 3: SNGD scheme

n:= sample l ength
beta := 0
for e := 0 to max epochs do

for i :=0 to n do
i t = i+n∗e
r := l e a r n i n g ra t e o f i t e r a t i o n i t
g:= grad i en t ( obse rvat i on i o f S)
G:= AMAT / n w. r . t beta
inverseG := i n v e r s e o f G
ng:= inverseG X g
beta := beta − r x ng

permute e lements on set S
end ;

end ;

This is computationally expensive since it requieres, in addition to SGD operations, the

assessment of the Gβ matrix, its inverse and a matrix-vector product after each observation

– after each iteration – in the dataset.

Starting with Gβ matrix computation using the vectorized form AMAt in 4.7, the

task asks for matrix M computation and clearly the matrix product AMAt. Section

4.4.4 describes M and it can be computed with complexity O(n(d + s2)). Next, AMAt

matrix product complexity is of order O(s2M(1 + tk, n, 1 + tk)). Since O(n(d + s2)) ≤
O(s2M(1+tk, n, 1+tk)), the complexity of the whole task is just O(s2M(1+tk, n, 1+tk)).

Notice that many matrix operations needed involve diagonal matrices, and this fact has

been taken into account for the computational complexity analysis.

Secondly, the dimension of the matrix the algorithm inverts is d, so it needs I(d)

operations to be inverted at every iteration.
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Lastly, the product of the squared d dimensional inversed matrix and the gradient

vector has computational complexity of order O(d2).

Then, the computational complexity of SNGD is

O(en(3d+ s2M(1 + tk, n, 1 + tk) + I(d) + d2) = O(en(s2M(1 + tk, n, 1 + tk) + I(d))

because O(3d) < O(d2) ≤ O(I(d)).

For example, with standard algorithms to multiply and invert matrices, the computa-

tional complexity of SNGD is

O(end2(n+ d))

.

MOD

SNGD algorithm becomes terribly slow when the problem complexity and the number of

iterations is large. The reason is the inverse matrix computation needed to compute the

Natural Gradient. That’s why we build a variation of SNGD algorithm that we call MOD

– Manifold Optimized Descent – . This is similar to SNGD but it inverts a matrix just

once per epoch, and it uses the same inverse matrix for the whole epoch.

Observe that once P (X) is fixed to be the empirical distribution, when the algorithm

MOD updates Gβ once per epoch, it needs to run again over the sample S to compute it.

If we want to compare algorithms, it doesn’t seem fair that MOD scans the sample twice

in comparison to the standard algorithms.

To fix it, the update of the matrix Gβ will be computed with respect to first β of the

epoch, and moreover, we do an average of past epochs Gβ matrices. MOD algorithm visits

every observation of S as much times as other algorithms, making it a fair competitor.

This is represented in the next schema;
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Listing 4: MOD scheme

n:= sample l ength
beta := 0
inverseOfG := inverseG 0
previousG := 0
for e := 0 to max epochs do

betaG := beta copy
for i :=0 to n do

i t = i+n∗e
r := l e a r n i n g ra t e o f i t e r a t i o n i t
g:= grad i en t ( obse rvat i on i o f S )
ng := inverseOfG X grad i en t
beta = beta − r x ng

G := AMAT/n w. r . t betaG
alpha := 1 − ( 1/( e+1 ) )
G = previousG x alpha + G x ( 1−alpha )
previousG := G
inverseOfG := i n v e r s e o f G
permute e lements on set S
end ;

end ;

Recall the complexity analysis of algorithm SNGD, since the computations done are the

same. The difference, as said previously, is that the matrix computation ofGβ using AMAT

and its inversion is done just once per epoch. That is, the computational complexity of

MOD is

O(e(s2M(1 + tk, n, 1 + tk)) + I(d) + n(3d+ d2))) = O(e(I(d) + nd2)),

because O(s2M(1 + tk, n, 1 + tk)) ≤ O(s2(1 + tk)2n) = O(nd2). Observe that for

MOD, the cost of computing Gβ doesn’t affect to the final computational complexity of

the algorithm.

If schoolbook matrix inversion algorithm is used, then it is

O(e(d3 + nd2) = O(ed2(n+ d))

MEGD

One last algorithm is described, computationally close to the regular SGD algorithm. We

call it MEGD – standing for Maximum Entropy Gradient Descent – and it uses g =

G−1
0 ∇L(si, β) in every iteration so it is set;

• gi = G−1
0 ∇L(si, β)

34



• ri = a
1+bi for some a, b ∈ R+.

The reason we thought about this is the following: SGD doesn’t do any modification

to the gradient. That can be understood as using the identity matrix Id as metric matrix.

However it doesn’t really describe the metric of any point of the manifold. The manifold is

never as flat as that, but it reaches its most flattened state when β = 0, when the entropy

is the highest. We can apply instead this metric information. Also, the inverse of the

metric matrix at β = 0 can be done without paying the cost of any matrix inversion by

result 4.6.

MEGD follows schema below;

Listing 5: Maximum Entropy Gradient Descent scheme

beta := 0
inverseG0 := i n v e r s e o f maximum entropy G 0 matrix
for e := 0 to max epochs do

for i :=0 to n do
i t = i+n∗e
r := l e a r n i n g ra t e o f i t e r a t i o n i t
g:= grad i en t ( obse rvat i on i o f S)
g= inverseG0 X g
beta := beta − r x g

permute e lements on set S
end ;

end ;

Recall the computational complexity study of SGD. Observe that additionally a matrix-

vector product is computed at every iteration. So then, the computational complexity of

MEGD is

O(en(3d+ d2)) = O(end2))
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5.2 Multinomial Logistic Regression problem

We want to answer two questions in this section;

• Does natural gradient lead to higher quality solutions than those provided by SGD

and AdaGrad?, and

• At which percentage of the data does the winning algorithm reach the quality of the

losing ones?

5.2.1 Normalized Loglikelihood Difference

If βm is the best approximation we got when minimizing LS(β), let define the Normalized

Loglikelihood Difference, NLSD(β), as;

Definition 5.1.

NLSD(β) =
LS(β)− LS(βm)

LS(0)− LS(βm)

This function reflects how far a point of the manifold is from the best approximation in

terms of its Loglikelihood function value, normalizing by the error made with the starting

point β0 = 0. Since the goal is to compare algorithms and their convergence to the

Loglikelihood function minimum, we will run 100 instances of an experiment and compute

the mean of the NLSD(βi) values, to approximate E
β
[NLSD(βi)].

Figure 2

(a) Bivalued (b) Small

As we can see in figure 2a, Natural Gradient algorithms – SNGD and MOD – optimize

the function much faster. However, just for this chart, we had to remove 6 experiments

out of the total 100, because SNGD failed to give any result, falling into numerical errors.

The lack of robustness shows up because in every stochastic gradient descent algorithm,

first steps are wider and erratic, due to the lack of data. So, since SNGD updates the
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metric at every iteration, computing and using the metric matrix at some bizarre point βi

in fact slows convergence at the beginning, and it may even cause numerical incorrections.

In addition, we find that SNGD is terribly slow and, as we know, it actually checks the

sample S many more times, which obstructs comparison. Then, we forget about SNGD

from now on, and we just test MOD as a Natural Gradient algorithm.

In the same figure, it’s important to notice that the curves and their tendency are

favorable for SNGD, MOD and AdaGrad, because they descend faster. That means, these

algorithms will keep optimizing faster for next epochs. The slopes of SGD and MEGD

end to be close to 0, which translates into a really slow convergence towards the minimum.

The fact that y axis is log scaled only intensificates this property. We can deduce the same

in Figure 2b since the charts are similar, except that SNGD is discarded.

Figure 3

(a) Medium (b) Large

The charts of figure 3 really look alike. Natural gradient algorithm MOD surpasses

extendedly the rest of the options. We emphasize the good results of MEGD: the curve

it draws behaves just like SGD curve, imitating it, but it is situated in a lower position

reaching much faster a nice answer but then stopping rapidly its convergence, as mentioned

for Experiments Bivalued and Small.

Results convince about the convergence improvement of Natural Gradient algorithms.

Nevertheless, the complexity is higher. That’s why it’s interesting to ask about the data

exploitation, which is treated next.

The second question is about the percent of data that the winning algorithm needs to

surpass the best achievement of the rest. In figure 4 we compare the best algorithm (y

axis) against the others (x axis). In both axis the total epochs is represented, and we draw

the points where algorithms reach the same optimization successes. It is considered that

an algorithm has secured an error level ε at iteration i if its error level at any iteration

j > i is smaller than ε. That way we make sure achievements aren’t reached by luck.
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Figure 4

(a) Bivalued (b) Small

(c) Medium (d) Large

Start by looking at Figure 4a. In the vertical axis there is SNGD, which means SNGD

minimizes better the function, and it secures smaller error levels completing less epochs

of the process. The diagonal line standardizes SNGD achievements. This means, for

example, that algorithm MOD, because of its flatter slope than diagonal, it secures error

levels with the need for scanning more epochs in comparison with SNGD. Also, MOD’s

curve finishes with a value around 48 when the total 100 epochs have been run. This

means that the error level MOD secures after 100 epochs is achieved by SNGD with just

scanning 48 epochs. A strong improvement is made if we compare now the rest of the

algorithms. SNGD and MOD only need about 10 epochs to surpass the best achievements

that AdaGrad, SGD and MEGD ever get to get. Moreover, the slopes of AdaGrad, SGD

and MEGD never seem to rise, which translates into a slower convergence to the optimum,

even when the achievements request for them is softer.

Look now all charts in Figure 4. The savings of data are huge. About 10% of the whole

process is what Natural Gradient algorithm MOD needs to obtain the best result other

algorithms eventually reach in their whole process.
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5.3 Natural Gradient algorithms as estimators

The questions we want to answer are:

• Do Natural Gradient estimates lead also to better optima for the conditional likeli-

hood of a new sample?, and

• At which percentage of the data does the winning algorithm reach the quality of the

losing one?

5.3.1 Expected Prediction Error

We have to make the point that chasing the MCL solution for a given sample doesn’t

work in general when we want good estimates for the MCL of a new sample drawn from

the same distribution – or if we want estimates for the actual parameter β that generated

both samples –. This fact becomes more accentuated if the sample is small in relation

with the manifold dimension. To understand this, think about a 6 faces die rolled just 3

times. The ML estimator will set atleast 3 faces as not possible to occur, which in turn

translates into a fatal error whenever a new sample contains any observation out of the 3

impossible faces.

Once we realize that solving MCL problem is a totally different task from the one we

try to solve now, we modify a bit some settings. In most occasions that we use this kind

of optimization tool, the dimension of the parameter space is really huge. However, we

commonly have a lot of data.

As mentioned in [2], the problem of minimizing this error can be adressed by running

an online gradient descent algorithm without the use of a training set. That is, the

observations used don’t belong to a fixed sample, but they are each time drawn from the

distribution defined by β instead. So, the most important change is getting new samples

once we observed it once, instead of reordering the sample S at the end of every epoch as

we have done untill now. That way we take profit of the large amount of data that we

have. We change the name epoch by era to make the difference between both situations –

epoch setting repeats samples, era setting draws new samples –.

Definition 5.2 (Expected Prediction Error).

Err(β) = E
β

[
ES
[
DKLβ, β(S))

]]
=

∫ [∫
P(Ω)

DKL(β, β(S)) · P (S|β)dS

]
P (β)dβ

The expected prediction error can be understood as the average divergence that the

estimator would take against the real parameter if a new sample is drawn.
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We approximate ES by Montecarlo and as before, we run many instances and compute

the mean to approximate E
β
. So more precisely we do:

Err(β) ≈
∑m

i=0DKL(βi, β(S))

m+ 1

where m is the number of instances ran. We need to also approximate DKL(βi, β(S))

since the probabilities of P (X) are unknown. We do so by taking a 10 times larger sample

from P (y|X,β) to empirically estimate the distribution P (X).

In addition, the charts that computeNLSD(β) are shown to see how well the algorithms

respond to the optimization question of past section – remember that now algorithms run

over eras instead of epochs–.

Figure 5: Small

(a) Err(β) (b) NLD(β)

Figure 6: Medium

(a) Err(β) (b) NLD(β)
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Figure 7: Large

(a) Err(β) (b) NLD(β)

Table 2

Err(β) AdaGrad SGD MEGD MOD

Experiment Small 181.3684 143.4095 62.5183 41.6386

Experiment Medium 535.9469 466.0853 262.0726 185.0822

Experiment Large 1112.7022 856.8210 626.9184 365.6101

No matter the Experiment we run, the resulting graphs show more or less the same.

When testing Err(β) in figures 5,6 and 7 it is clear that AdaGrad fails to reduce the error

against regular SGD. Notice also that the curve drawn by AdaGrad is not as smooth as

other ones, which implies a higher variance in its response. We can see a big improvement

with MEGD with respect to standard algorithms. But again, MOD algorithm arises as

the best option.

Table 2 lists the errors of final estimators for every algorithm. MEGD decreases signifi-

cantly the Err(β) compared to SGD and AdaGrad. In particular, MOD error is especially

lower than MEGD in Experiment Large. This advises to use MOD algorithm over eras if

we want to find a good predictor parameter.

Moreover, we added the graphs reflecting convergence when solving the MCL problem.

We conclude that if we run over eras, Natural Gradient algorithms provide good results

for NLD(β) and for Err(β).

Let’s try to answer last question of this section. We build the same comparison charts

explained previously. This tells for example how much sample percent could be saved in

order to reach the same answers regular algorithms find exploiting the whole sample.

Curves in figure 8 are quite straight lines, so the convergence of all algorithms is pro-

porcional to the one of MOD. That means, other algorithms don’t seem to ever get better

than MOD.
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Figure 8

(a) Small

(b) Medium (c) Large

Now we comment the data savings that MOD can afford . MOD needs between 60%

and 70% of the sample to improve MEGD best result. MEGD and MOD need about the

35%-45% of the sample for beeing able to surpase the best results standard algorithms

reach scanning the whole sample.

MEGD is interesting, since the sample percent reduction made by MOD is not large,

however it has a much lower computational complexity.
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6 Annex

6.1 Proof of Proposition 4.2

Proof.

Notation. To alleviate the notation, we let P (y|x) denote P (y|x,
∗
β) and Q(y|x) denote

P (y|x, β).

Recall section 4.4. A possible strategy to obtain Gβ is to differentiate twice the diver-

gence;

DKL(P (y|X), Q(y|X)) =
∑
x∈X

P (x)
∑
y′∈y

P (y′|x) · log
P (y′|x)

Q(y′|x)

with respect to β, so only Q(y′|x) term is actually affected by the differentiation. As

always, |xl| = t+ 1, |y| = s+ 1

Ignore the term P (y′|x) · log(P (y′|x)) since it is not afected by differentiation. Derivate

with respect to β1 := βy
1

xi,u
and β2 := βy

2

xj ,v
– check equation 6 in section 4.3 –. First,

calculate the 2 next derivatives;

• ∂
∂β1

logQ(y′|x) = 1
Q(y′|x) ·

∂
∂β1

Q(y′|x) =


0 if xi 6= u

−Q(y1|x) if xi = u, y′ 6= y1

1−Q(y1|x) if xi = u, y′ = y1

• ∂
∂β2

Q(y′|x) =


0 if xj 6= v

−Q(y′|x) ·Q(y2|x) if xj = v, y′ 6= y2

Q(y′|x) · (1−Q(y2|x)) if xj = v, y′ = y2

Now proceed to compute the derivatives of −P (y′|x) · log(Q(y′|x)). We will end up having

to distinguish cases when y1 6= y2 and when y1 = y2 ;

∂2

∂β1∂β2
− P (y′|x) · log(Q(y′|x)) = −P (y′|x) · ∂

∂β2
(
∂

∂β1
logQ(y′|x)) =


0 if xi 6= u

−P (y′|x) · ∂
∂β2

(−Q(y1|x) if xi = u, y′ 6= y1

−P (y′|x) · ∂
∂β2

(1−Q(y1|x) if xi = u, y′ = y1

=

{
0 if xi 6= u

P (y′|x) · ∂
∂β2

(Q(y1|x) if xi = u
=


0 if xi 6= u or xj 6= v

P (y′|x) · (−Q(y1|x) ·Q(y2|x) if xi = u, xj = v, y2 6= y1

P (y′|x) ·Q(y1|x) · (1−Q(y2|x) if xi = u, xj = v, y2 = y1

43



As we can see, once we bring back the sum for y′ ∈ y of the KL-divergence, the only

term inside the sum that depends on y′ is P (y′|x), wich means that we can factor out the

other terms and we can do the simplification
∑

y′∈y P (y′|x) = 1.

Then substitute
∗
β = β and conclude that the FIM is given by;

if y2 = y1:

gβ1,β2 =
∑

x∈X|xi=u,xj=v

P (x) · P (y1|x) · (1− P (y2|x))

if y2 6= y1:

gβ1,β2 = −
∑

x∈X|xi=u,xj=v

P (x) · P (y1|x) · P (y2|x)

As wanted. The parts involving β3 := βy
3

and β4 := βy
4

of the proposition follow

analogously. �

6.2 Proof of Proposition 4.3

Proof. Let β1 := βy
1

xi,u
and β2 := βy

2

xj ,v
. Recall 2 equations for the expression of matrix Gβ

of proposition 4.2;

if y2 = y1 = r:

gβ1,β2 =
∑

xp∈X|xip=u,xjp=v

dr,p (7)

if y2 6= y1:

gβ1,β2 = −
∑

xp∈X|xip=u,xjp=v

ey2,y1,p (8)

with

dr,p = P (xp)P (y = r|xp)(1− P (y = r|xp))

er1,r2,p = P (xp)P (y = r1|xp)P (y = r2|xp)

Observation. Proposition 4.2 uses β1, β2, β3 and β4 to express matrix Gβ because they

serve as coordinates. More precisely, Gβ matrix rows and columns are sorted following

the vector

(β1, β2, · · · , βs) with βy
′

=
(
βy
′

0 β
y′

x1,1
βy
′

x1,2
· · ·βy

′

x1,t
βy
′

x2,1
· · ·βy

′

x2,t
· · ·βy

′

xk,t

)
Let the matrices A,M and B of section 4.4.2. Supose B has dimension n+ 1× n+ 1.

Let’s develop the product AMBAt;
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AMBAt = A



q1 0 · · · 0

0 q2
. . .

...
...

. . .
. . . 0

0 · · · 0 qs

−

q1

q2
...
qs

 · (q1 q2 · · · qs
)
BAt

=


A(q1 − q2

1)BAt −Aq1q2BA
t · · · −Aq1qsBA

t

−Aq1q2BA
t A(q2 − q2

2)BAt
. . .

...
...

. . .
. . . −Aqs−1qsBA

t

−Aq1qsBA
t · · · −Aqs−1qsBA

t A(qs − q2
s)BA

t


Distinguish between blocks in the diagonal and the other blocks.

Case 1: blocks in the diagonal

The r-th block in the diagonal should correspond with the equation 7 where y2 = y1 =

r. Let’s check the matching by developing the block expression;

Aqr(Id− qr)BAt = ADrA
t

with

Dr =

dr,0 0
. . .

0 dr,n



Notice thatAAt =

( ∑
x∈X 1 N

N t M∗

)
withM∗ =


∑x∈X

x1=1,x1=1 1 · · ·
∑x∈X

x1=1,xk=t 1
...

. . .
...∑x∈X

xk=t,x1=1 1 · · ·
∑x∈X

xk=t,xk=t 1

 ,

N =
(∑xp∈X

x1p=1
1 · · ·

∑xp∈X
x1p=t

1
∑xp∈X

x2p=1
1 · · · · · ·

∑xp∈X
xkp=t

1
)

This implies ADrA
t =



∑
xp∈X dr,p Nd

N t
d

∑xp∈X
x1p=1,x1p=1

dr,p · · ·
∑xp∈X

x1p=1,xkp=t
dr,p

...
. . .

...∑xp∈X
xkp=t,x1p=1

dr,p · · ·
∑xp∈X

xkp=t,xkp=t
dr,p


with Nd =

(∑xp∈X
x1p=1

dr,p · · ·
∑xp∈X

x1p=t
dr,p

∑xp∈X
x2p=1

dr,p · · · · · ·
∑xp∈X

xkp=t
dr,p

)
which is exactly the same as equation 7 and this part is checked. The equations

involving β3 := βy
3

and β4 := βy
4

with y2 = y3 and y3 = y4 of proposition 4.2 correspond

to the first row and/or first column of the blocks which are also matching perfectly.

Case 2: blocks outside the diagonal

The r1 row r2 column block, with r1 6= r2, is outside the diagonal. Similarly, it perfectly

matches with equation 8 where r1 = y1 and r2 = y2. Proceeding equivalently, develop the

block −Aqr1qr2BAt to check the matching with equation 8. This finishes the proof.
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6.3 Proof of Lemma 4.4

Proof. Proof begins showing that;

ABAt =
AAt

n+ 1
=

1

(t+ 1)2


(t+ 1)2 t+ 1 · · · · · · t+ 1
t+ 1 (t+ 1)Idt Kt · · · Kt

... Kt (t+ 1)Idt
. . .

...
...

...
. . .

. . . Kt

t+ 1 Kt · · · Kt (t+ 1)Idt


where Kt is a t× t matrix with ones at every entry and |X| = n+ 1. Notice that if the

maximum entropy distribution of space P (X) is selected, then P (x) = 1
n+1 ∀x ∈ X. This

implies that B = 1
n+1Id, which proves first equality ABAt = AAt

n+1 .

For the second equality, recall that proof 6.2 says

AAt =

( ∑
x∈X 1 N

N t M∗

)
with M∗ =


∑x∈X

x1=1,x1=1 1 · · ·
∑x∈X

x1=1,xk=t 1
...

. . .
...∑x∈X

xk=t,x1=1 1 · · ·
∑x∈X

xk=t,xk=t 1

 ,

N =
(∑xp∈X

x1p=1
1 · · ·

∑xp∈X
x1p=t

1
∑xp∈X

x2p=1
1 · · · · · ·

∑xp∈X
xkp=t

1
)

Since |xi| = t+ 1 ∀i ∈ {1, ..., k}, then;

∑x∈X
xi=u,xj=v =


0 if i = j and u 6= v
n+1
t+1 if i = j and u = v
n+1

(t+1)2
if i 6= j

and therefore

AAt =



n+ 1 n+1
t+1 · · · n+1

t+1

n+1
t+1
...

n+1
t+1

n+1
t+1 Idt

n+1
(t+1)2

Kt · · · n+1
(t+1)2

Kt

n+1
(t+1)2

Kt
n+1
t+1 Idt

. . .
...

...
. . .

. . . n+1
(t+1)2

Kt
n+1

(t+1)2
Kt · · · n+1

(t+1)2
Kt

n+1
t+1 Idt


which finally implies

AAt

n+ 1
=

1

(t+ 1)2


(t+ 1)2 t+ 1 · · · · · · t+ 1
t+ 1 (t+ 1)Idt Kt · · · Kt

... Kt (t+ 1)Idt
. . .

...
...

...
. . .

. . . Kt

t+ 1 Kt · · · Kt (t+ 1)Idt


as wanted.

Notice that AAt is a square matrix of dimension 1 + tk. The lema gives the expression
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of the inverse of AAt

n+1 . Last step of the proof just checks that it actually is the inverse

matrix;

AAt

n+1

(
AAt

n+1

)−1
=

1

t+ 1


(t+ 1)2 t+ 1 · · · · · · t+ 1

t+ 1 (t+ 1)Idt Kt · · · Kt
... Kt (t+ 1)Idt

. . .
...

...
...

. . .
. . . Kt

t+ 1 Kt · · · Kt (t+ 1)Idt





1+tk
t+1 −1 · · · · · · −1

−1 Lt 0 · · · 0
... 0 Lt

. . .
...

...
...

. . .
. . . 0

−1 0 · · · 0 Lt


=

(
B1 B2

B3 B4

)
such that;

B1 = (t+1)2

t+1
1+tk
t+1 −

t+1
t+1 tk = 1

B2 =
(
b2 · · · b2

)
with b2 = − (t+1)2

t+1 + 2 +
∑t−1

i=1 1 = −(t+ 1) + (t+ 1) = 0

B3 =

 b3
...
b3

 with b3 = 1+tk−(t+1)−(k−1)t
t+1 = 1+tk−t−1−tk+t

t+1 = 0

B4 = 1
t+1


t+ 1 (t+ 1)Idt Kt · · · Kt

... Kt (t+ 1)Idt
. . .

...
...

...
. . .

. . . Kt

t+ 1 Kt · · · Kt (t+ 1)Idt




−1 · · · · · · −1

Lt 0 · · · 0

0 Lt
. . .

...
...

. . .
. . . 0

0 · · · 0 Lt



= −Ktk +


Lt

KtLt
t+1 · · · KtLt

t+1

KtLt
t+1 Lt

. . .
...

...
. . .

. . .
...

KtLt
t+1 · · · KtLt

t+1 Lt

 = −Ktk +


Lt Kt · · · Kt

Kt Lt
. . .

...
...

. . .
. . .

...
Kt · · · Kt Lt

 = −Ktk +

Ltk = Idtk

Then, finally

AAt

n+1

(
AAt

n+1

)−1
=

(
B1 B2

B3 B4

)
=

(
1 0

0 Idtk

)
= Id1+tk and the result is proved.

�

6.4 Proof of Proposition 4.6

Proof. Since β = 0 and P (y′|x, β) = 1
1+s and then pj = Idn+1

s+1 . That means matrix M

takes the shape;
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M =
1

(s+ 1)2


sIdn+1 −Idn+1 · · · −Idn+1

−Idn+1 sIdn+1
. . .

...
...

. . .
. . . −Idn+1

−Idn+1 · · · −Idn+1 sIdn+1


As a particular case of proposition 4.3, it is G0 = AMBAt. In fact

G0 = AMBAt =
1

(s+ 1)2


sABAt −ABAt · · · −ABAt

−ABAt sABAt
. . .

...
...

. . .
. . . −ABAt

−ABAt · · · −ABAt sABAt

 =

=
1

(s+ 1)2


sId −Id · · · −Id

−Id sId
. . .

...
...

. . .
. . . −Id

−Id · · · −Id sId

ABAt

with Id = Idkt+1. As indicated in proof 6.3, notice that if the maximum entropy

distribution of space P (X) is selected, then P (x) = 1
n+1 ∀x ∈ X. This implies that

B = 1
n+1Id, which proves the equality ABAt = AAt

n+1 . Finally, verify that the matrix of the

proposition is actually the inverse of G0;

G0 ·G−1
0 =

1

s+ 1


2Id Id · · · Id

Id 2Id
. . .

...
...

. . .
. . . Id

Id · · · Id 2Id

 ·

sId −Id · · · −Id

−Id sId
. . .

...
...

. . .
. . . −Id

−Id · · · −Id sId

 = Id

�

6.5 Proof of Proposition 4.7

Proof. The goal is to prove that AMBAt =
∗
A
∗
M
∗
A

t

n+1 . It’s enough to prove the equality for

a block of matrix M and
∗
M . That is, the proof is based on checking that

Aqi(Id− qi)BAt =

∗
Api(Id− pi)

∗
A
t

n+ 1
(9)

On the one hand, we develop left hand side of equation 9. Notice that if P (X) is

the empirical distribution observed given the sample S = {(y0, x0), ..., (yn, xn)}, then

P (xi) = ni
n+1 with ni the number of apparitions of xi in S. Therefore
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B = 1
n+1

n0 0
. . .

0 ns

→

Aqi(Id− qi)BAt =



∑
xp∈X dr,p Nd

N t
d

∑xp∈X
x1p=1,x1p=1

dr,p · · ·
∑xp∈X

x1p=1,xkp=t
dr,p

...
. . .

...∑xp∈X
xkp=t,x1p=1

dr,p · · ·
∑xp∈X

xkp=t,xkp=t
dr,p


with Nd =

(∑xp∈X
x1p=1

dr,p · · ·
∑xp∈X

x1p=t
dr,p

∑xp∈X
x2p=1

dr,p · · · · · ·
∑xp∈X

xkp=t
dr,p

)
and

dr,p = P (xp)P (y = r|xp)(1 − P (y = r|xp)) =
np

n+1P (y = r|xp)(1 − P (y = r|xp)). Let

d∗r,p = P (y = r|xp)(1 − P (y = r|xp)) then dr,p =
np

n+1d
∗
r,p. Moreover, observe that if xi

has not appeared in S, then P (xi) = 0 and then all summations can be simplified. Let

SX = {x ∈ X|x appears in S}. Let’s apply these modifications to last expression;

Aqi(Id−qi)BAt =
1

n+ 1



∑
xp∈SX

npd
∗
r,p Nd

N t
d

∑xp∈SX

x1p=1,x1p=1
npd

∗
r,p · · ·

∑xp∈SX

x1p=1,xkp=t
npd

∗
r,p

...
. . .

...∑xp∈SX

xkp=t,x1p=1
npd

∗
r,p · · ·

∑xp∈SX

xkp=t,xkp=t
npd

∗
r,p


with Nd =

(∑xp∈SX

x1p=1
npd

∗
r,p · · ·

∑xp∈SX

x1p=t
npd

∗
r,p

∑xp∈SX

x2p=1
npd

∗
r,p · · · · · ·

∑xp∈SX

xkp=t
npd

∗
r,p

)
.

On the other hand, consider right hand side of equation 9. It is

∗
Api(Id− pi)

∗
A
t

n+ 1
=

1

n+ 1


∑

0≤p≤n d
∗
r,p Nd

N t
d

∑0≤p≤n
x1p=1,x1p=1

d∗r,p · · ·
∑0≤p≤n

x1p=1,xkp=t
d∗r,p

...
. . .

...∑0≤p≤n
xkp=t,x1p=1

d∗r,p · · ·
∑0≤p≤n

xkp=t,xkp=t
d∗r,p



with Nd =
(∑0≤p≤n

x1p=1
d∗r,p · · ·

∑0≤p≤n
x1p=t

d∗r,p
∑0≤p≤n

x2p=1
d∗r,p · · · · · ·

∑0≤p≤n
xkp=t

d∗r,p

)
. Remember

that ni is the number of apparitions of xi in S, so it is possible to simplify the summations.

∗
Api(Id− pi)

∗
A
t

n+ 1
=

1

n+ 1



∑
xp∈SX

npd
∗
r,p Nd

N t
d

∑xp∈SX

x1p=1,x1p=1
npd

∗
r,p · · ·

∑xp∈SX

x1p=1,xkp=t
npd

∗
r,p

...
. . .

...∑xp∈SX

xkp=t,x1p=1
npd

∗
r,p · · ·

∑xp∈SX

xkp=t,xkp=t
npd

∗
r,p
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with Nd =
(∑xp∈SX

x1p=1
npd

∗
r,p · · ·

∑xp∈SX

x1p=t
npd

∗
r,p

∑xp∈SX

x2p=1
npd

∗
r,p · · · · · ·

∑xp∈SX

xkp=t
npd

∗
r,p

)
and equation 9 holds. This directly implies

AqiqjBA
t =

∗
Apipj

∗
A
t

n+ 1

and so the result follows. �
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7 Conclusions

Natural gradient may improve a lot the convergence speed of Linesearch strategy to op-

timize a smooth function. We have even seen how ML problem can be solved perfectly,

imitating the ML estimator, by the SNGD algorithm over a specific Riemannian Manifold

with the Fisher Information Metric (FIM). The results have been really positive when we

tried to solve the MCL problem too, which is a way harder and more interesting problem.

We compared Natural Gradient algorithms against the classic SGD algorithm and Ada-

Grad, which is an adaptive learning rate algorithm very used nowadays. We concluded

that Natural Gradient algorithms, together with the Riemannian Manifold equipped with

the FIM, solves with a faster convergence the ML problem and the MCL problem.

When the data is scarce compared to the manifold dimension, approaching MCL doesn’t

translate into finding the underlying conditional probability distribution generating of the

sample observations. That’s why, we proceed to run the algorithms over a slighlty different

setting. We fed the algorithms with abundant data, never replicating the sample. At this

point, Natural Gradient algorithms showed to be better optimizers and provide better

estimates of new samples as well.

A deeper study of the relation between Riemannian manifolds and Linesearch opti-

mization appears as a promising future work research line. Recall the Linesearch strategy

is “update the parameter following a straight line with direction gi for a distance ri”.

Let us highlight the concepts “straight line”, “direction gi” and “distance ri”, which are

concepts directly related to the metric and connection of a Riemannian Manifold. This

strategy, even though it is reasonable, it is parametrization dependent. We can say that

in this project, as well as in most literatures in the references, the concept “direction gi”

becomes independent of the parametrization thanks to the Natural Gradient. However,

every Natural Gradient algorithm still depends on the parametrization. That means, we

could probably find a parametrization where the Natural Gradient performs worse, still

using the FIM. A wider study of connections in Riemannian Manifolds is needed to have

an algorithm that doesn’t deppend at all on the parametrization taken [10, 1].

This project focused on Riemannian Manifolds enriched with the FIM, since the func-

tion we want to optimize is the likelihood or the conditional likelihood function. And

as we have seen, these Riemannian Manifolds seem to be really appropriate options. We

are interested on an abstraction of this. If we have some other kind of smooth function

to optimize, we wonder about a generic way to select which Riemannian Manifold and

parametrization are the most advantageous to use, and why.
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