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Abstract

Background & Aim—Acid sphingomyelinase (ASMase) is activated in nonalcoholic

steatohepatitis (NASH). However, ASMase’s contribution to NASH is poorly understood and
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limited to hepatic steatosis and glucose metabolism. Here we examined ASMase’s role in high fat

diet (HFD)-induced NASH.

Methods—Autophagy, endoplasmic reticulum (ER) stress and lysosomal membrane

permeabilization (LMP) were determined in ASMase−/− mice fed HFD. The impact of

pharmacological ASMase inhibition on NASH was analyzed in wild type mice fed HFD.

Results—ASMase deficiency determined resistance to HFD or methionine and choline deficient

diet-mediated hepatic steatosis. ASMase−/− mice were resistant to HFD-induced hepatic ER stress,

but sensitive to tunicamycin-mediated ER stress and steatosis, indicating selectivity in the

resistance of ASMase−/− mice to ER stress. Autophagic flux determined in the presence of

rapamycin and/or chloroquine was lower in primary mouse hepatocytes (PMH) from ASMase−/−

mice and accompanied by increased p62 levels, suggesting autophagic impairment. Moreover,

autophagy suppression by chloroquine and brefeldinA caused ER stress in PMH from ASMase+/+

mice but not ASMase−/− mice. ASMase−/− PMH exhibited increased lysosomal cholesterol

loading, decreased LMP and apoptosis resistance induced by O-methyl-serine dodecylamide

hydrochloride or palmitic acid, effects that were reversed by decreasing cholesterol levels by the

oxysterol 25-hydroxycholesterol. In vivo pharmacological ASMase inhibition by amitriptyline, a

widely used tricyclic antidepressant, protected wild type mice against HFD-induced hepatic

steatosis, fibrosis, and liver damage, effects indicative of early-stage NASH.

Conclusions—These findings underscore a critical role for ASMase in diet-induced NASH and

suggest the potential of amitriptyline as a treatment for patients with NASH.
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INTRODUCTION

Nonalcoholic steatohepatitis (NASH) is an advanced stage of fatty liver disease

characterized by steatosis, oxidative stress, fibrosis and hepatocellular death, which can

progress to cirrhosis and hepatocellular carcinoma [1, 2]. NASH is a major health concern

due to its association with obesity, insulin resistance and type-2 diabetes. NASH

pathogenesis is still incompletely understood, which has limited the availability of effective

treatments.

Ceramide regulates many cellular processes, including differentiation, apoptosis and

metabolism. Cells generate ceramide via de novo synthesis in the endoplasmic reticulum

(ER) beginning with the condensation of palmitic acid (PA) with serine catalyzed by serine

palmitoyl transferase (SPT) [3–5]. SPT inhibition prevents genetic and diet-induced hepatic

steatosis and de novo ceramide synthesis modulates insulin sensitivity [6,7]. Furthermore,

sphingomyelin (SM) hydrolysis by sphingomyelinases (SMases) generates ceramide [3–5].

Acid SMase (ASMase) is of particular relevance in metabolic liver diseases, as it is required

for TNF-induced hepatocellular apoptosis [8–10]. ASMase overexpression has been

reported in adipose tissue of ob/ob mice [11], in mice fed a methionine and choline deficient

diet (MCD) [12] and in liver of patients with NASH [13]. Moreover, ASMase promotes
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liver fibrosis by regulating lysosomal cathepsins in hepatic stellate cells [14, 15]. ASMase’s

contribution to NASH is incompletely understood. To the best of our knowledge only two

studies have focused on the role of ASMase in glucose/lipid homeostasis with controversial

findings [16, 17]. For example, ASMase deletion superimposed on the genetic background

of LDL receptor deficiency (ASMase/LDL receptor double knockout mice, ALDLRDKO)

prevented diet-induced hyperglycemia [16]. Intriguingly, these findings were accompanied

by a paradoxical increase in hepatic ceramide and de novo ceramide synthesis due to SPT

activation [16]. In contrast, ASMase overexpression improved glucose metabolism in

diabetic db/db mice, and accordingly, ASMase−/− mice exhibited higher blood glucose

levels than wild type mice upon glucose tolerance tests [17]. Moreover, although

ALDLRDKO mice are resistant to high fat diet (HFD) induced steatosis [16], the role of

ASMase per se in HFD-mediated steatosis has not been addressed. Furthermore, ASMase’s

impact in key features of NASH, including ER stress and autophagy, critical players in lipid

and glucose metabolism [18–20], and lysosomal membrane permeabilization (LMP), an

important mechanism of saturated fatty acid-mediated lipotoxicity [21], has not been

previously examined. Here, we characterized the impact of HFD on hepatic steatosis, ER

stress, autophagy and LMP-mediated apoptosis in ASMase−/− mice. Moreover, in vivo

treatment of wild type mice with amitriptyline, a tricyclic antidepressant widely prescribed

for depression or neuropathic pain that inhibits the proteolytic processing of pro-ASMase in

endolysosomes, prevented HFD-induced obesity, glucose intolerance and NASH. These

findings suggest the potential of amitriptyline as an effective therapy in human NASH.

MATERIAL AND METHODS

Mice and treatments

The experimental protocols met the guidelines of the Animal Care Committee of the

Hospital Clinic-Universidad de Barcelona. ASMase−/− mice (C57BL/6 background) and

their ASMase+/+ littermates were propagated using heterozygous breeding pairs as

previously described [8, 9]. HFD (60%, Research Diets, Inc) was administered for 12 weeks

to ASMase+/+ mice and ASMase−/− mice. Moreover, mice were fed MCD diet (TestDiet,

Richmond, IN) for two weeks, as described [12]. Biochemical determinations, sphingolipids

analysis, mass spectrometry, H&E, Oil red and filipin staining are described in the

Supplemental Methods section.

Autophagy and lysosomal cholesterol and permeabilization assays

Primary mouse hepatocytes (PMH) were incubated with rapamycin (2µM) with or without

chloroquine (50µM) to examine autophagic flux. In some cases, PMH were incubated with

chloroquine and brefeldinA to block autophagy and examine the impact on of ER stress.

PMH were stained with Lysotracker and filipin and analyzed by confocal imaging. PMH

from ASMase−/− mice or ASMase+/+ mice fed a high cholesterol diet (HCD), as described

[22], were examined for susceptibility (6–12 hr) to the lysosomotropic detergent O-

methylserine dodecylamide hydrochloride (MSDH, 0–25µM) or palmitic acid (PA, 0.5–

1.0mM). Further, PMH were preincubated with U18666A (0.5µg/ml, 16 hr) to induce

lysosomal cholesterol accumulation and then challenged with PA. Cell death was examined

by propidium iodide staining and caspase-3 activation as described [8, 9].
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Statistical Analysis

Results were expressed as mean ± SD. Statistical significance of mean values was assessed

using Student t-test and one-way ANOVA followed by Bonferroni post-test. Statistics were

performed using GraphPad Prism 5 software.

RESULTS

Hepatic SM and ceramide homeostasis in ASMase−/− mice

We first examined the impact of ASMase deficiency on content of liver ceramide, which

regulates lipid and glucose metabolism [6, 7]. HFD stimulated the expression of ASMase

mRNA in ASMase+/+ mice (Supplementary Fig 1A) and increased total hepatic ceramide

content (Supplementary Fig 1B), reflected mainly in long-chain ceramide C24:0

(Supplementary Fig 1C). Total hepatic ceramide levels were reduced in ASMase−/− mice fed

RD or HFD but content increased slightly by HFD (Supplementary Figure 1B), particularly

C16:0 and C18:1 (Supplemental Fig 1C). HFD increased hepatic SM in ASMase+/+ mice,

which was associated with increased SM synthases (SMS) 1 and 2 expression

(Supplementary Figure 1D, 1E). ASMase deficiency increased hepatic SM levels both with

RD and HFD feeding without SMS upregulation (Supplemental Figure 1E). Hence, ASMase

regulates hepatic SM homeostasis and ceramide generation by HFD.

ASMase−/− mice are resistant to HFD and MCD-induced liver steatosis

Hepatic steatosis is the first step in NASH and since the role of ASMase in diet-induced

fatty liver has been only examined in ALDLRDKO mice [16], we assessed the response of

ASMase−/− mice to both HFD and MCD-induced steatosis. Consistent with the findings in

the ALDLRDKO mice, ASMase−/− mice were resistant to HFD-induced steatosis (Figure

1A, 1B). HFD feeding increased the levels of liver cholesterol in ASMase+/+ mice (Figure

1C). The increase in hepatic SM due to the lack of ASMase results in secondary

accumulation of cholesterol and other glycosphingolipids in the liver [23]. Consequently,

basal hepatic unsterified cholesterol levels increased in ASMase−/− mice as evidenced by

filipin staining, which further increased upon HFD feeding (Figure 1C, 1D). Free fatty acids

(FFA) increased slightly in ASMase+/+ mice fed HFD, a trend not observed in ASMase−/−

mice (Figure 1E). HFD induced expression of Srebp1c, Dgat2, Fas and Acc in ASMase+/+

mice but not ASMase−/− mice, indicating that the resistance of ASMase−/− mice to HFD-

induced steatosis is associated with reduced activation of diet-induced lipogenesis pathways

(Supplementary Fig 2). In addition, basal mRNA levels of Srebp-2 and Hmg-CoA reductase

were higher in ASMase−/− mice than in ASMase+/+, which increased with HFD

(Supplementary Figure 2). Quite interestingly, feeding MCD also increased triglyceride

(TG) levels and triggered liver steatosis in ASMase+/+ mice, effects that were markedly

diminished in ASMase−/− mice (Figure 1F, G). Thus, ASMase deficiency ameliorates diet-

induced steatosis independent of the type of diet feeding.

ASMase−/− mice are resistant to HFD-induced ER stress

Since ER stress is a critical mechanism that promotes lipogenesis and fatty liver [18, 19], we

next analyzed the sensitivity of ASMase−/− mice to HFD-induced ER stress. Unlike
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ASMase+/+ mice, ASMase−/− mice were resistant to HFD-mediated increased mRNA

expression of Atf4, Pdi, Edem, BiP and IRE1α phosphorylation (Figure 2A-D) as well as

uXBP-1, sXBP-1 and ATF6α (Supplementary Figure 3). These findings suggest that

ASMase is required for the induction of the 3 arms of the UPR by HFD. Resistance was

specific for HFD as PMH from ASMase+/+ and ASMase−/− mice were equally sensitive to

cleavage of GRP78/BiP by SubAB (Figure 2E), a bacterial toxin that rapidly degrades

GRP78 causing ER stress [24]. For both cell types, SubAB increased expression of Pdi and

Edem at 6h post-treatment (Figure 2F, G). Moreover, in vivo tunicamycin (TM)

administration caused enhanced expression of Atf4 and Pdi (Figure 2H, I) as well as TG

accumulation (Figure 2J) and steatosis as determined by Oil-Red staining (not shown) to a

similar degree in ASMase+/+ and ASMase−/− mice. Similar to HFD, palmitic acid (PA)

induced ER stress in PMH from ASMase+/+ mice but not ASMase−/− mice (Supplementary

Figure 4). These results indicate that the ER of ASMase−/− mice is functional and that the

resistance of ASMase−/− mice to ER stress is specific for HFD. Moreover, the findings

indicate that ER stress causes hepatic steatosis in both types of mice.

Autophagy-lysosome degradation pathway in ASMase−/− mice

The autophagy-lysosome is a proteolytic pathway involved in the turnover of organelles and

cellular debris, and has been shown to regulate lipid metabolism and steatosis [20, 25].

Given the resistance of ASMase−/− mice to HFD-induced hepatic steatosis, we next

analyzed the integrity of the hepatic macroautophagy pathway. Liver extracts from

ASMase−/− mice exhibited increased basal LC3BII/LC3BI ratio compared to ASMase+/+

mice, an outcome that was maintained upon HFD feeding (Figure 3A). Interestingly, livers

from ASMase−/− mouse exhibited decreased expression of Atg7 (Figure 3A), an essential

autophagy gene regulating conjugation of LC3 with phosphatidylethanolamine. These

findings were accompanied by a higher expression of the lysosomal marker LAMP2 (Figure

3A). As the ubiquitin-independent proteasome REGγ and SIRT1 regulate autophagy [26],

we examined their expression. Livers from HFD-fed ASMase−/− mice exhibited increased

REGγ expression but reduced SIRT1 levels compared to ASMase+/+ samples

(Supplementary Figure 5). To determine whether these effects in hepatic extracts reflect the

status of parenchymal cells and to delineate the autophagic flux, we used PMH in the

presence of rapamycin (RAPA) with and without chloroquine (CHQ). As expected, CHQ

increased LC3BII levels in PMH from AMase+/+ mice (Figure 3B), as autophagy is blocked

after autophagosome formation and before the autophagosome can fuse with lysosomes.

However, the fold increase in LC3BII levels induced by CHQ (basal degradation) was lower

in PMH from ASMase−/− mice compared to ASMase+/+ mice (Figure 3B). RAPA increased

LC3BII levels in PMH from both types of mice, although the increase in ASMase−/− PMH

was somewhat lower than that seen in ASMase+/+ PMH (Figure 3B). Moreover, RAPA-

induced LC3BII degradation in the presence of CHQ was significantly lower in PMH from

ASMase−/− mice compared to PMH from ASMase+/+ mice. For all conditions, PMH from

ASMase−/− mice exhibited increased p62 levels, indicating impaired lysosomal degradation

(Figure 3B). Consistent with liver extracts, the protein levels of Atg7 were lower in PMH

from ASMase−/− mice with respect to ASMase+/+ mice (Figure 3B). Thus, ASMase

deficiency impairs the autophagy-lysosomal degradation pathway.
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Impaired autophagy-induced ER stress requires ASMase

In addition to the regulation of lipid metabolism and steatosis, autophagy suppression has

been shown to cause ER stress [27]. This finding implies that the onset of hepatic steatosis

due to defective autophagy could reflect the combination of decreased fat degradation by

autophagy and increased fat synthesis by ER stress. Thus, we next examined the

susceptibility of ASMase−/− mice to impaired autophagy-mediated ER stress. Chloroquine

and brefeldinA increased the expression of ER stress markers in PMH from ASMase+/+

mice (Figure 2 K–N), in agreement with previous findings [27]. However, this response was

blunted in PMH from ASMase−/− mice. Chloroquine/brefeldin increased p62 levels and

expression of LC3BII in both types of PMH (Figure 3C). Thus, similar to HFD, ASMase is

required for ER stress caused by autophagy suppression.

Lysosomal cholesterol and resistance to LMP and cell death increase in ASMase−/− mice

We next analyzed the distribution of the increased hepatic cholesterol levels observed in

ASMase−/− mice (Figure 1C, 1D). Confocal imaging of ASMase−/− PMH stained with

Lysotracker and filipin revealed increased lysosomal mass and a significant increase in

lysosomal cholesterol content compared to ASMase+/+ PMH (Figure 3D). No colocalization

of cholesterol with mitochondria was found, in agreement with previous results [28]. This

outcome paralleled the increase of cholesterol in isolated lysosomes and was reproduced in

PMH from wild type mice fed a high cholesterol diet (HCD) (Supplementary Figure 6).

Moreover, autophagy inhibition by chloroquine in ASMase+/+ PMH increased total

cholesterol levels but, unlike ASMase−/− PMH, the increase in free cholesterol did not

accumulate in lysosomes (Supplementary Figure 7), in agreement with previous findings

[20]. To examine the functional impact of increased lysosomal cholesterol in LMP, we

challenged PMH with O-methyl-serine-dodecylamide hydrochloride (MSDH), a known

lysosomotropic detergent that induces cell death following LMP [29]. MSDH dose-

dependently killed ASMase+/+ PMH (Figure 3E). Importantly, ASMase−/− hepatocytes were

resistant to MSDH-induced cell death (Figure 3E) and these effects were reproduced in

PMH from mice fed HCD (Supplementary Figure 8). The resistance of ASMase−/− PMH or

PMH from wild type mice fed HCD to MSDH correlated with decreased caspase-3

activation (Figure 3F, Supplementary Figure 8). Decreasing cholesterol content by the

oxysterol 25-hydroxycholesterol [29], reversed the resistance of ASMase−/− PMH to

MSDH-induced cell death (Figure 3G). Since LMP has been shown to contribute to PA-

induced lipotoxicity [21], we examined the susceptibility of ASMase−/− PMH to PA.

Consistent with MSDH, PMH from ASMase−/− mice were less sensitive to PA-induced cell

death (Figure 3H). PA increased total cholesterol levels but did not cause lysosomal

cholesterol accumulation (Supplementary Figure 9). To pinpoint whether the resistance to

PA was due to lysosomal cholesterol accumulation, we explored whether U18666A, an

amphiphile that disrupts cholesterol homeostasis and causes lysosomal cholesterol

accumulation [30], mimics the resistance to PA in PMH from wild type mice. U18666A

reproduced the lysosomal cholesterol accumulation, and more importantly, the resistance to

PA observed in ASMase−/− mice (Figure 3I, 3J). In agreement with previous results [29],

U18666A increased p62 and LC3BII levels (Figure 3K) amd similar effects were observed

upon MSDH treatment (not shown). Consistent with these findings in PMH, ASMase−/−

mice exhibited reduced liver injury determined by serum ALT levels in response to HFD as
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well as decreased HFD-mediated susceptibility to LPS (Supplementary Fig 10). Thus,

ASMase deficiency increases lysosomal cholesterol, which determines decreased LMP and

resistance to saturated fatty acid-induced lipotoxicity.

ASMase inhibition protects against HFD-induced NASH

To examine the relevance of the preceding findings on HFD-induced NASH, we explored

the use of amitriptyline, which prevents the proteolytic activation of ASMase [31], to inhibit

in vivo ASMase in wild type mice. HFD stimulated ASMase activity compared to mice fed

control diet (from 5±0.2 to 12±1.6 pmol/min/mg protein) and amitriptyline significantly

inhibited ASMase activation in both cases by 83% and 78%, respectively. Amitriptyline did

not affect food intake but significantly ameliorated the body weight gain in response to HFD

(Supplementary Fig 11) as well as the hepatomegaly and the epidydimal white adipose

weight gain (Supplementary Fig 11). Moreover, amitriptyline normalized the hyperglycemia

induced by HFD (Supplementary Fig 11) and reduced blood glucose levels during glucose

(GTT) and insulin tolerance tests (ITT) following HFD feeding (Supplementary Figure 11).

The beneficial effects of amitriptyline on body weight and glucose tolerance seen in HFD-

fed wild type mice were abrogated in ASMase−/− mice (not shown), indicating the

dependence of amitriptyline on ASMase to regulate body weight and glucose homeostasis.

Interestingly, the effects of HFD feeding in blood glucose homeostasis following GTT and

ITT were aggravated in ASMase−/− mice compared to ASMase+/+ mice despite similar

hepatic insulin signaling in both cases (unpublished observations).

Moreover, amitriptyline abolished HFD-induced hepatic steatosis, reflected by lower Oil-red

staining and the biochemical determination of liver TG and FFA (Figure 4A-D). In contrast

to ASMase−/− mice, ASMase inhibition by amitriptyline reduced both liver SM content (not

shown) and hepatic cholesterol levels in response to HFD (Figure 4C). Importantly,

amitriptyline normalized liver histology and prevented liver injury as determined by the

release of serum ALT (Figure 4E, F). Moreover, fibrosis estimated by Sirius-red staining

(Figure 4G) and expression of markers such as Col1A mRNA (Figure 4H) increased in

HFD-fed control mice and these effects were ameliorated by amitriptyline, in agreement

with previous findings [13]. In addition, although the increase in inflammatory markers,

including MCP-1 mRNA, in control mice fed HFD was prevented by amitriptyline (Figure

4I), there was not significant inflammatory infiltrates at histological examination, indicating

minimal inflammation in mice fed HFD for 16 weeks. As expected HFD increased the

expression of ER stress markers in control mice but not in HFD-fed mice treated with

amitriptyline (Supplementary Fig 12). Thus, these findings indicate that ASMase inhibition

by amitriptyline prevents diet-induced NASH.

DISCUSSION

Here, we report a novel role of ASMase in key events in NASH. Specifically, ASMase

regulates diet-induced steatosis and ER stress, lysosomal cholesterol homeostasis, autophagy

and LMP-mediated apoptosis (Figure 4J). More importantly, ASMase inhibition in wild type

mice prevents HFD induced liver injury, inflammation and fibrosis, characteristic of NASH.
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Resistance to diet-induced hepatic steatosis in the absence of ASMase

A novel finding is the resistance of ASMase−/− mice not only to HFD but also to MCD-

mediated fatty liver. This finding is surprising, as MCD is known to induce steatosis by

preventing hepatic phosphatidylcholine (PC) synthesis, which in turn, impairs VLDL

secretion to the circulation resulting in liver TG loading and subsequent fatty liver. Previous

findings reported that ASMase deficiency results in higher PC levels both in brain and liver

compared to ASMase+/+ tissues [32]. In line with these findings, we observed that

ASMase−/− mice fed MCD exhibited higher liver PC levels than ASMase+/+ mice,

suggesting that ASMase deficiency spares PC to prevent VLDL accumulation in the absence

of methionine and choline. Although the increased hepatic SM is the direct consequence of

ASMase deficiency, the reason for the maintenance of liver PC content in ASMase−/− mice

remains to be characterized. As SM is synthesized from ceramide and PC by SMS in the

Golgi, the maintenance of PC in the absence of ASMase implies that de novo SM synthesis

is a major pathway of PC consumption in the liver. However, it could also reflect the lack of

inhibition of PC synthesis at the CTP:cholinephosphate cytidylyltransferase level, as

suggested in rat lung [33]. In line with this possibility, it has been shown that C2-ceramide

inhibits PC neosynthesis in neuroblastoma cells [34].

ER stress-autophagy interplay in the regulation of hepatic steatosis

A key finding is that PMH from ASMase−/− mice exhibit defective autophagic flux, in

agreement with recent findings in coronary arterial smooth muscle cells from ASMase−/−

mice [35]. In both cell types, the defect of autophagy translated in increased LC3BII and

enhanced p62 levels, reflecting impaired formation of autophagolysosomes. The association

between defective autophagy and the resistance to diet-induced steatosis in ASMase−/− mice

is intriguing. Previous findings demonstrated that lipid droplets and autophagic components

colocalized during nutrient deprivation and that mice with liver Atg7 deletion (Atg7Δhep)

exhibited defective autophagy and increased TG storage and hepatic steatosis [20]. In

addition to this novel pathway of autophagy regulation of hepatic steatosis by fat digestion,

ER stress is also known to trigger hepatic steatosis by activation of transcription factors that

stimulate the expression of enzymes involved in lipogenesis [18, 19]. ER stress and

autophagy exhibit mutual regulation. Autophagy antagonizes ER stress and autophagy

stimulation improves ER stress and its metabolic consequences [36]; consequently, defective

autophagy causes ER stress [27]. Therefore, fat degradation by autophagy opposes while fat

synthesis by ER stress promotes hepatic steatosis. We show that ASMase−/− mice exhibit a

selective resistance to ER stress induced by HFD, while the sensitivity of ASMase−/− PMH

to ER stress caused by TM or SubAB argues that ASMase deficiency does not preclude the

ER from sensing stress. Importantly, we also show that autophagy suppression by

chloroquine/brefelfinA results in ER stress, as expected [27], only in ASMase+/+ PMH,

indicating that in addition to HFD, ASMase is required for autophagy-induced ER stress.

These findings suggest that in the context of impaired autophagy due to the lack of ASMase,

defective onset of ER stress-induced lipogenesis may be more significant in the regulation of

hepatic steatosis (Figure 4J). Moreover, the findings highlight a critical role for ASMase in

regulating the ER stress in response to a variety of stimuli, including HFD, PA and

autophagy suppression, as shown here, or chronic alcohol feeding, as described recently
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[28]. Diet and genetic obesity have been shown to alter ER lipid composition, which in turn,

regulates SERCA-mediated ER Ca2+ homeostasis [19]. As ASMase per se induces ER stress

by disrupting ER Ca2+ regulation [28], our data suggest that ASMase is required for HFD-

mediated ER Ca2+ disruption and subsequent ER stress. While further understanding is

needed as to how ASMase regulates ER Ca2+ homeostasis, our findings showing hepatic

steatosis resistance despite autophagy impairment are in agreement with recent findings.

Mice with liver-specific deletion of FIP200, a core subunit of the Atg1 complex, were

protected from starvation and HFDinduced hepatic steatosis [37]. Importantly, FIP200

mutant mice exhibited defective diet-induced activation of lipogenic pathways. Consistent

with these findings, ASMase−/− mice are resistant to HFD-induced expression of Srebp1c,

Dgat2, Fas and Acc. Moreover, autophagy disruption by shRNA-mediated suppression of

Atg7 failed to cause hepatic steatosis in lean mice [27], while lower hepatic lipid content has

been reported in Atg7Δhep mice fed HFD [38]. Although the reasons for the discrepancy

between the latter findings [38] and the previous report in Atg7Δhep mice [20] are unknown,

it is clear that that role of autophagy in lipid metabolism and hepatic steatosis is complex

and may be influenced by a number of factors including experimental conditions, genetic

background or age of mice.

Hepatic cholesterol and NASH: contrast between ASMase−/− mice and amitriptyline
treatment in wild type mice

An important aspect of the increase in hepatic cholesterol content in the ASMase−/− mice is

that the bulk of it is free and sequestered in lysosomes. This phenotype in hepatocytes is in

agreement with findings described in macrophages from ASMase−/− mice [39]. The

localization of cholesterol in this compartment reflects the high affinity of SM to bind

cholesterol [40, 41], which decreases the efflux/trafficking of cholesterol out of lysosomes.

This trafficking defect impairs the sterification of cholesterol in the ER by acyl-

CoA:cholesterol acyl transferase, as shown in ASMase−/− macrophages, which can further

contribute to the increase in liver free cholesterol seen in ASMase−/− mice. Interestingly,

enrichment of wild type macrophages with exogenous SM reproduces the increased

lysosomal cholesterol seen in macrophages from ASMase−/− mice due to decreased

cholesterol efflux [39]. A crucial difference that accounts for this contrast is the residual

ASMase activity in both paradigms (0% activity in the ASMase−/− mice vs ~20% activity

after amiltriptyline). The lack of ASMase is known to cause the lysosomal storage disease

Niemann-Pick disease type A, which is characterized by the accumulation of lipids such as

SM, cholesterol and glycosphingolipids in the affected organs, predominantly in brain and

peripheral tissues such as liver [23]. The residual ASMase activity left after amitriptyline

treatment is sufficient to prevent the increment of hepatic SM levels and subsequent increase

in cholesterol seen in ASMase−/− mice with no residual activity. The relation of ASMase

activity with cholesterol homeostasis is likely regulated by the SM content. It has been

shown that SM depletion by exogenous sphingomyelinase blocks while SM enrichment

promotes proteolytic processing of SREBP-2 at site 1, the same site that is regulated by the

levels of sterols, to achieve an optimal ratio of SM to cholesterol [42]. Furthermore, as

cholesterol is increasingly recognized as an important player in NASH [43], the protection

of ASMase−/− mice to diet-induced early-stage NASH seems paradoxical. Perhaps as

important as the extent of cholesterol increase is the subcellular location where cholesterol
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accumulates. In this regard, mitochondrial cholesterol plays a relevant role in NASH as it

has been shown to sensitize to TNF/Fas-mediated NASH [22]. Importantly, we show that

the increased hepatic cholesterol levels in the ASMase−/− mice are found in lysosomes but

not in mitochondria. This outcome determines not only the sparing of mitochondrial GSH,

as recently reported [28], but also the resistance of ASMase−/− mice to LMP, which is an

important mechanism of lipotoxicity [21]. The causal role of increased lysosomal

cholesterol in apoptosis resistance is further established in wild type PMH treated with the

amphiphile U18666A and the reversal of apoptosis resistance of ASMase−/− PMH upon

cholesterol extraction by the oxysterol 25-hydroxycholesterol. In addition to the regulation

of intracellular cholesterol distribution and LMP, ASMase is proapoptotic and mediates

death receptor-induced hepatocellular apoptosis [8–10]. In conclusion, ASMase promotes

ER stress, autophagy and LMP, which in turn mediate steatosis and lipotoxicity caused by

HFD and saturated fatty acids, events that are blunted in ASMase null mice (Figure 4J).

Therefore, targeting ASMase may be of benefit in protecting against diet-induced liver

injury and NASH.
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ASMase acid sphingomyelinase

ALDLRDKO ASMase/LDL receptor double knockout

CHQ chloroquine

ER endoplasmic reticulum

FFA free fatty acids

GTT glucose tolerance test

ITT insulin tolerance test

IRβ insulin receptor β subunit

HCD high cholesterol diet

HFD high fat diet

LMP lysosomal membrane permeabilization
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MDC monodansylcadaverine

MCD methionine and choline deficient diet

MSDH O-methylserine dodecylamide hydrochloride

PA palmitic acid

PMH primary mouse hepatocytes

RAPA rapamycin

RD regular diet

SubAB AB5 subtilase cytotoxin

SMases sphingomyelinases

SM sphingomyelin

SMS sphingomyelin synthases

SPT serine palmitoyl transferase

TG triglycerides
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Figure 1. ASMase−/− mice are resistant to HFD and MCD-induced steatosis
Mice were fed regular diet (RD) or HFD and liver samples processed for (A) liver TG, (B)

oil-red staining, (C) cholesterol levels, (D) filipin staining and (E) FFA. In addition, mice

were fed MCD for two weeks to examine (F) TG levels and (G) H&E staining. Results are

expressed as mean ± SD (n= 5–7 mice). *p< 0.05, RD-fed ASMase+/+ mice, #p<0.05, vs

HFD-fed ASMase+/+ mice or MCD-fed ASMase+/+ mice.
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Figure 2. Resistance of ASMase−/− mice to HFD-mediated ER stress
Expression of ER stress markers, (A) Atf4, (B) Pdi and (C) Edem, and (D) p-IRE1αινλιωερ

from mice fed RD or HFD. Moreover, PMH were treated with SubAB to examine GRP78

degradation (E), and the expression of Pdi (F) and Edem (G). ASMase+/+ mice or

ASMase−/− mice were treated with tunicamycin (TM) examining the expression of Atf4 (H),

Pdi (I) and liver TG levels (J). PMH were cultured in the presence of chloroquine (CLQ) and

brefeldinA (BFA) and samples processed for (K) BiP, (L) Chop, (M) Perk expression and

western blot (N). Results are expressed as mean ± SD (n=5–7 mice). A–C: *p< 0.05 vs. RD-
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fed ASMase+/+ mice; F–G: *p<0.05 vs. SubA[A272]B-treated ASMase+/+ pmh, #p<0.05 vs

SubAB-treated ASMase+/+ PMH; H–J: *p<0.05 vs. control.
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Figure 3. Autophagy and LMP in ASMase−/− mice
A, Autophagy in liver samples from mice fed RD or HFD. B, Autophagy in PMH

challenged with rapamycin (RAPA), chloroquine (CHQ) or combination RAPA+CHQ (C-

R). C, p62 and LC3BI/II in PMH treated with chloroquine and brefeldinA. D, PMH from

ASMase+/+ and ASMase−/− mice were stained with Lysotracker and filipin. Images shown

are representative of 4–5 individual experiments with similar findings. Cell death (E) and

caspase-3 activity (F) of PMH induced by the lysosomotropic detergent MSDH. G, Effect of

25-hydroxycholesterol in MSDH-induced cell death in PMH. H, PMH challenged with
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increasing doses of PA to induce cell death. I, confocal imaging of PMH from wild type

mice treated with U18666A. J, survival of PMH from wild type mice treated with U18666A

challenged with PA. K, p62 and LC3BI/II levels in PMH treated with U18666A with or

without chloroquine. Results are expressed as mean ± SD of 4–6 independent experiments.

*p<0.05 vs. control ASMase+/+ PMH; # p<0.05 vs. ASMase+/+ PMH.
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Figure 4. Amitriptyline protects wild type mice from HFD-induced NASH
Wild type mice were fed RD or HFD with or without amitriptyline (AMI) for the last 6

weeks to determine oil red staining (A), TG (B), cholesterol (C), FFA (D), H&E (E), serum

ALT (F), Col1A mRNA levels (G), Sirius Red staining (H) or MCP-1 expression (I). J,

schematic summary of the findings: ASMase promotes HFD-induced ER stress, autophagy

and LMP, which in turn, contribute to steatosis and lipototoxicity. ASMase ablation prevents

these effects induced by HFD. The dash line linking autophagy and fatty liver denotes that

this relationship may not be direct in view of recent findings (see Discussion). Results are
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expressed as mean ± SD of n=10 mice per group. * p<0.05 vs. control mice fed RD;

#p<0.05 vs. control mice fed HFD.
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