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Abstract

We report the synthesis, thermal stability, and RNase H substrate activity of 2′-deoxy-2′,4′-

difluoroarabino-modified nucleic acids. 2′-Deoxy-2′,4′-difluoroarabinouridine (2,′4′-diF-araU) 

was prepared in a stereoselective way in six steps from 2′-deoxy-2′-fluoroarabinouridine (2′-F-

araU). NMR analysis and quantum mechanical calculations at the nucleoside level reveal that 

introduction of 4′-fluorine introduces a strong bias toward the North conformation, despite the 

presence of the 2′-βF, which generally steers the sugar pucker toward the South/East 

conformation. Incorporation of the novel monomer into DNA results on a neutral to slightly 

stabilizing thermal effect on DNA–RNA hybrids. Insertion of 2′,4′-diF-araU nucleotides in the 

DNA strand of a DNA–RNA hybrid decreases the rate of both human and HIV reverse 

transcriptase-associated RNase H-mediated cleavage of the complement RNA strand compared to 

that for an all-DNA strand or a DNA strand containing the corresponding 2′-F-araU nucleotide 

units, consistent with the notion that a 4′-fluorine in 2′-F-araU switches the preferred sugar 

conformation from DNA-like (South/East) to RNA-like (North).
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INTRODUCTION

Antisense oligonucleotides (AONs) and small interfering RNA (siRNA) are both recognized 

as potential therapeutic agents for the silencing of specific genes at the post-transcriptional 

level.1,2 At present, dozens of AONs and siRNAs are undergoing human clinical trials, with 

two AONs and one aptamer having been already clinically approved.3 Given the fact that a 

majority of these are chemically modified, the search for chemical modifications to improve 

delivery, stability, efficacy, and specificity of AONs- and siRNA-based drugs is a very 

active area of research.1,4–6

Modification to the 2′ position of nucleosides provides a remarkable level of control over 

sugar conformational preferences, a physical property that is intimately related to ON 

binding affinity toward complementary RNA strands. Sugars that adopt the 3′-endo (North) 

conformation, such as 2′-deoxy-2′-fluoro-RNA (2′-F-RNA) and 2′-O-alkyl RNA, stabilize 

DNA–RNA and RNA–RNA duplexes by inducing a conformational preorganization for 

formation of A-form duplexes.7,8 2′-Deoxy-2′-fluoroarabinonucleic acids (2′-F-ANA) have 

also attracted much attention. The corresponding monomers have a preference for the 2′-

endo (South)/4′-endo (East) conformation in solution (Figure 1A).9 In the context of 

oligonucleotides, 2′-F-ANA adopts East puckers, allowing the formation of internucleosidic 

C–H···F–C pseudohydrogen bonds at pyrimidine–purine steps and resulting in the stabilizing 

effect observed when it is incorporated in the DNA strand of DNA–RNA hybrids.10 

Additionally, 2′-F-ANA is one of the handful of analogues that support cleavage of modified 

duplexes by RNase H, an enzyme that cleaves the mRNA in AON–mRNA hybrids.11,12 The 

features listed above together with the high nuclease resistance13,14 make 2′-F-ANA a very 

attractive modification for antisense applications.15,16

Although the 2′ modification of ONs has been extensively studied, the 4′-substitution has 

been explored only in the case of 2′,4′-bridged modified nucleic acids.1 Yet, modification to 

the 4′-position of the furanose sugar can have a profound impact on the conformational 

preferences and biological properties of 4′-modified nucleos(t)ides and duplexes derived 

from them. For example, we recently reported the effect of introducing a 4′-fluorine on 2′-

deoxy-2′-fluororibouridine.17 The strong gauche and anomeric effects18–21 imparted by both 

the 2′- and 4′-fluorines, respectively, strongly favor the North conformation, thus locking the 

sugar in the North region of the pseudorotational cycle. In the case of 2′,4′-
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difluoroarabinonucleosides, the 2′-fluorine is expected to promote a [O4′–C1′–C2′–F2′] 

gauche interaction that favors the South sugar conformation, whereas the 4′-fluorine should 

impart a strong anomeric effect [O4′(p-type)/σ*C4′–F4′] that drives the pseudorotational 

equilibrium toward the North conformation (Figure 1B). It is of interest to determine how 

these opposing effects tailor the conformation of 2′,4′-difluoroarabinonucleosides.

Our group has focused on the development of fluorinated nucleoside and nucleic acids 

encouraged by the conformational changes that fluorine imparts in the ribose and arabinose 

moiety.9,10,22 As a part of this ongoing program, we chose to place a fluorine at the 4′ 

position of 2′-F-araU, as this modification was expected to modulate stereolectronic effects 

on the arabinose sugar moiety. We were especially interested in studying its impact on the 

sugar pucker, duplex stability, and the susceptibility of DNA–RNA hybrids containing 2′,4′-

diF-araU toward RNase H, an enzyme that cleaves the RNA strand of DNA–RNA hybrids. 

Since RNase H activity is sensitive to subtle structural changes in the sugar–phosphate 

backbone, any inhibitory effect caused by a nucleotide analogue would suggest incompatible 

RNaseH–hybrid interaction localized at, or around, the modification. As such, this assay 

allows for probing DNA-like conformation/flexibility, as previously demonstrated with 2′-F-

ANA–RNA hybrids.12,14 Herein, we describe, for the first time, the synthesis, 

characterization, and conformational analysis of 2′-deoxy-2′,4′-difluoroarauridine (2′,4′-diF-

araU). We have also incorporated this novel modification into the DNA strand of DNA–

RNA hybrids and studied the stability and susceptibility of such hybrids toward RNase H-

mediated RNA cleavage catalyzed by the human enzyme as well as a catalytically active 

RNase H domain fragment of HIV reverse transcriptase.

RESULTS AND DISCUSSION

We envisaged that the synthetic method developed recently for the preparation of 2′-

deoxy-2′,4′-difluororibouridine (2′,4′-diF-rU) could be adapted for the synthesis of its 2′ 

epimer, namely, 2′,4′-diF-araU (Scheme 1).17 Thus, reaction of commercially available 2′-F-

araU (1) with triphenylphosphine and iodine afforded the corresponding 5′-iodo derivative 2 
in 93% yield. The 4′,5′-exocyclic double bond in 3 was installed by an elimination reaction 

of the 5′-iodo with sodium methoxide in 53% yield. In situ generation of iodine fluoride 

from the reaction of AgF and iodine was found to be an attractive procedure for the 

introduction of a 4′-fluorine in 4′,5′-unsaturated nucleosides.17,23–26 Indeed, dropwise 

addition of iodine at 0 °C to a mixture of nucleoside 2 and AgF resulted in the formation of 

5′-iodo,4′-fluoro nucleoside 4 with high stereoselectivity in 68% yield. Next, nucleophile 

substitution of the 5′-iodine was required to obtain the final nucleoside analogue. Because 

the reactivity of the 5′-iodine is considerably decreased due to the presence of the 4′-

fluorine, we placed a 3′-benzoyl group in nucleoside 4 to assist in the substitution 

reaction.17,25,26 The actual substitution was carried out in the next step by activating the 

protected 5′-iodo,4′-fluoro analogue 5 to the corresponding hypoiodite with mCPBA in 

water-saturated dichloromethane with concomitant migration of the benzoyl group from the 

3′ to the 5′ position to obtain 5 in 68% yield.17,24 Deprotection of the 5′-O-benzoyl group 

with methanolic ammonia proceeded in nearly quantitative yields to afford the novel 

nucleoside monomer 2′,4′-diF-araU (7). The NOESY NMR spectra of 7 show correlations 
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between H6 of the base and the H5′ protons and between H5′ and H3′, thus supporting the 

desired α-configuration of fluorine at C4′.

Next, we embarked on the study of the conformation of 2′,4′-diF-araU (7). In solution, the 

furanose ring of nucleosides exists in a conformational equilibrium between the North and 

South puckers. The Karplus equation predicts that a northern conformer of an arabino sugar 

will have a large 3JH2″H3′ coupling constant, whereas a southern conformer will have a 

large 3JH1′F2′ value since each H2′/H3′ and H1′/F2′ adopt a nearly antiperiplanar orientation 

(Figures 1B and 2). Since the 4′-fluorine can affect the magnitudes of 3JH1′H2″ and 3JH2″H3′, 

thus misleading our analysis,21 their magnitudes were calculated for 2′-F-araU (1) and 2′,4′-

diF-ara-U (7) by applying a generalized Karplus equation that takes into account the 

inductive effect of the 4′-fluorine.27,28 Figure S1 (Supporting Information) shows that the 

4′-fluorine has, in fact, no effect on 3JH1′H2″ and 3JH2″H3′ coupling constants. According to 

the Karplus equation, a JH1′H2″ of ≈7.0 Hz is expected for the North conformers (P = 0–

30°) of both 1 and 7 (Figure S1, Supporting Information). Experimental JH1′H2″ for 2′,4′-

diF-araU is 6.0 Hz, indicating that the North pucker is highly predominant in solution. 

However, for 2′-F-araU, JH1′H2″ is 4.0 Hz, suggesting a contribution of Southeastern 

conformations in which a smaller JH1′H2″ is expected (Figure S1). The experimentally 

obtained 3JH2″H3′ value of 1 in D2O is 3.0 Hz, whereas that for 7 is 5.5 Hz, indicating a 

significantly higher North population for the latter (Table 1). A rough estimation of the 

relative population of North and South conformers can be obtained from theoretical J-

coupling values assuming a two-state equilibrium between the two conformers (see 

Supporting Information for details). In the case of 2′,4′-diF-araU, 1H–1H J-coupling 

constants are consistent with a ≈ 80% population of the North conformer. In the case of 2′-

F-araU, the major conformer is South, with a population of around 60%. Also consistent 

with this notion is the significantly higher 3JH1′F2′ value (ΔJ = +9.0 Hz) for 7 relative to that 

for 1. Furthermore, J H3′F4′ is 18.0 Hz (Table 1), consistent with the pseudotrans-diaxial 

orientation of H3′ and F4′ of a North-puckered nucleoside (Figure 2). As reference, the 

recently reported North “locked” nucleoside, 2′,4′-diF-rU, has a similar J H3′F4′ value (20.7 

Hz) as that of 7 (18.0 Hz). In the South conformer of 1 and 7, H3′ and F4′ are 

pseudoequatorial and hence a much smaller coupling constant value (JH,F = 4–10 Hz) should 

be expected (Table 1 and Figure 2).23,29–31

While this qualitative examination of vicinal 1H–1H and 1H–19F coupling constants is 

useful, the conclusions can be only approximate because of the rapid interconversion of 

nucleoside conformers at room temperature. We therefore used quantum mechanical 

calculations to further explore the impact of 4′-fluorine substitution. We carried out the 

calculations using Gaussian 09 at the M062x/6-31+G(d,p) level.32 The pseudorotation 

energetic profiles of 2′,4′-diF-araU, 2′-F-araU, and 2′,4′-diF-rU were calculated by means of 

a constrained energy optimization (Figure 3A). As previously reported, quantum mechanical 

calculations indicate a clear preference for the North pucker in 2′,4′-diF-rU with a very high 

interconversion barrier to the destabilized South conformation (P ≈ 180°).17 For 2′-F-araU, 

quantum mechanical calculations predict similar energies for the North and South puckers 

with a low activation barrier.22 The South conformation is shifted toward the East region (P 

≈ 140). However, for 2′,4′-diF-araU, the North conformation is clearly the most stable 
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among all possible puckers that can be adopted, and as with 2′,4′-diF-rU, the energy 

minimum of the South pucker increases significantly relative to the corresponding 2′-F 

nucleotide. These results match preliminary NMR experiments suggesting that the anomeric 

effect induced by the 4′-fluorine in 2′,4′-diF-araU is able to overcome the opposing [O4′–

C1′–C2′–F2′] gauche effect, hence imparting a bias toward the North pucker. Figure 3B 

shows the minimized structure for 2′,4′-diF-araU (P = 26°).33

Encouraged by the stabilizing effect observed for 2′-F ONs (2′-F-ANA and 2′-F-RNA) when 

inserted into oligonucleotide duplexes, we incorporated 2′,4′-diF-araU in the DNA strand of 

a DNA–RNA duplex. This context is the most relevant for antisense applications in which 

the AON (a DNA strand) is generally modified to avoid degradation while maintaining a 

high affinity for the RNA target. With this purpose, we first prepared the 2′,4′-diF-araU 

phosphoramidite. The 5′-hydroxyl of 7 group was protected using an excess of DMTr 

chloride to afford 8 in 77% yield. The tritylation reaction proceeded very slowly, probably 

due to the presence of the electronegative 4′-fluorine, and heating at 40 °C was required. 

Phosphitylation of tritylated compound 8 using ClP(OCEt)N(iPr)2 in the presence of N,N-

diisopropylethylamine gave phosphoramidite 9 in moderate yield and enough purity for 

standard solid-phase oligonucleotide synthesis (Scheme 1).

To assess the impact 2′,4′-diF-araU on duplex thermal stability, we measured the Tm values 

of 5′d-GCTTXTTTGCT-3′ (X = 2′,4′-diF-araU, 2′-F-araU, dT) hybridized to an RNA 

complement (Table 2). This DNA sequence has previously been used to test the impact of 

other fluorinated modifications on duplex stability.34 For example, it has been reported that 

CeNA and North-like modifications such as 2′-O-MOE and 2′-F-RNA are destabilizing 

(ΔTm ≈ −2 °C) when inserted at the same position within this specific heteroduplex.34 

Interestingly, in our study, 2′,4′-diF-araU was found to be neutral (A2, ΔTm = −0.1 °C), 

whereas 2′-F-araU had a small stabilizing effect (A3, ΔTm = +0.6 °C). Given that the 2′,4′-

diF-araU nucleoside favors a North pucker, this result was somewhat unexpected. We 

hypothesize that in the oligonucleotide 2′,4′-diF-araU adopts an alternative backbone 

conformation (e.g., a different epsilon angle C4′–C3′–O3′–P3′) in a way that minimizes 

distortions within the hybrid structure as shown here. Preliminary computational studies 

indicate that, while the North pucker is favored, reorientation of the phosphate linkage 

(epsilon dihedral angle) may occur as a result of repulsive F4′– O3′ lone-pair interactions (ε 

= 180–92°). Clearly, high-field NMR analysis on these modified duplexes are needed to 

gain a better understanding of these effects.

To further study the impact of our modification, we studied another sequence, 5′-

d(CUAUAGUAUAC)-3′, and replaced each dU residue with either 2′,4′-diF-araU or 2′-F-

araU. In this case, both 2′-F-araU and 2′,4′-diF-araU nucleotides were tolerated, providing 

small but detectable increases in melting temperatures (Tm = +0.4 °C/mod and +0.15 °C/

mod, respectively, Table 2).

The ability of an oligonucleotide to elicit RNase H activity is particularly important since 

this mechanism potentiates the biological activity of AONs by enabling degradation of the 

mRNA portion of the AON–mRNA duplex. The subsequent release of the AON allows it to 

bind to another mRNA molecule to continue the degradation process. Although RNase H 
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cleaves only the RNA strand of the hybrid, this action is very much dependent on the nature 

of the bound AON strand. RNase H acts upon DNA–RNA hybrids (the native substrate in 

vivo), but it will not degrade double-stranded RNA. Minor groove dimensions of the hybrid, 

as well as the conformation and flexibility of the AON, are key determinants in the 

activation of RNase H.12,35–37 RNA mimics (e.g., North-like 2′-O-alkyl-RNA, 2′-F-RNA) 

produce duplexes that are too similar to the RNA–RNA duplex and hence are not cleaved by 

the enzyme.

We have previously shown that RNase H can cleave an oligo-RNA strand that is hybridized 

to a complementary 2′-F-ANA or a chimeric 2′-F-ANA–DNA strand.38 To determine if 

chimeric 2,′4-diF-ANA–DNA oligonucleotides can elicit RNase H degradation of target 

RNA, an assay comprising [32P]-target RNA and test oligonucleotide was carried out with a 

slight excess of human and HIV-RT RNase H. The corresponding native and 2′-F-ANA-

modified oligonucleotides were studied for comparison. The reaction products were resolved 

by electrophoresis and visualized by autoradiography. The results of such experiments are 

shown in Figure 4A.

The data show that all three oligonucleotides are able to form hybrids with target RNA that 

serve as substrates for human RNase H, as indicated by the smaller sized degradation 

products of the target RNA in Figure 4A. The overall efficiency of RNA cleavage observed 

for the 2′,4′-diF-ANA-modified oligomer is reduced relative to that of unmodified DNA and 

the corresponding 2′-F-ANA-modified strand. The ability of the three hybrids to trigger 

human RNase H activity followed the order DNA > 2′-F-ANA > 2′,4′-diF-ANA. The 

locations of cleavage sites of the RNA strand for the 2′,4′-diF-ANA duplex differ from those 

of the DNA and 2′-F-ANA duplexes (Figure 4A,C). The same trend was observed with the 

HIV-RT RNase H enzyme; however, in this case, negligible cleavage was observed for the 

2′,4′-diF-ANA–RNA hybrid (Figure 4B). The different rates and cleavage patterns suggest 

structural variations among the various hybrids and are consistent with the introduction of 

North/South junctions along the antisense ON strand.

CONCLUSIONS

Introduction of a 4′-fluorine in 2′-F-araU switches the preferred sugar conformation from 

South to North due to a strong anomeric effect, as assessed by NMR and quantum 

mechanical calculations. The novel 2′,4′-diF-araU modification is well-tolerated when 

placed in the DNA strand of DNA–RNA hybrids, resulting in a neutral or slightly stabilizing 

thermal effect. RNase H recruitment studies of a 2′,4′-diF-ANA-RNA modified duplex has 

been carried out and compared with native DNA and 2′-F-araU. The differences in the 

cleavage sites and the lower degradation rates of the RNA strand observed for the 2′,4′-diF-

ANA duplex support structural changes in the hybrid structure induced by the North pucker 

adopted by the novel modification. The results presented here warrant further studies on 2′,

4′-diF-ANA for gene silencing applications.
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EXPERIMENTAL SECTION

Procedures and Experimental Data

1-(2-Deoxy-2-fluoro-5-iodo-β-D-arabinofuranosyl)uracil (2)—Iodine (1.92 g, 7.56 

mmol) and triphenylphosphine (2.15 g, 8.19 mmol) were added to a suspension of 1 (1.55 g, 

6.30 mmol) in pyridine (6.6 mL) and anhydrous CH3CN (120 mL). After being stirred at 

room temperature for 48 h, solvents were concentrated under vacuum, and the residue was 

purified by column chromatography (1–4% MeOH in CH2Cl2) to give 2 as a pale yellow 

solid (2.1 g, 93%). Rf (10% MeOH/CH2Cl2): 0.41. 1H NMR (MeOH-d4, 500 MHz): δ 3.49 

(m, 2H), 4.02 (dt, 1H, JHH = 3.5 Hz, JHH = 6.0 Hz), 4.32 (ddd, 1H, JHH = 2.0 Hz, JHH 3.5 

Hz, JHF = 17.5 Hz), 5.05 (ddd, 1H, JHH = 2.0 Hz, JHH = 3.5 Hz, JHF = 17.5 Hz), 5.74 (d, 

1H, H-5, JHH = 8.0 Hz), 6.23 (dd, 1H, JHH = 3.5 Hz, JHF = 20.0 Hz), 7.73 (dd, 1H, JHH = 

2.0 Hz, JHH = 8.5 Hz). 13C NMR (MeOH-d4, 125 MHz): δ 3.0, 77.0 (d, JCF = 25.0 Hz), 

83.8, 84.9 (d, JCF = 16.4 Hz), 95.1 (d, JCF = 189.8 Hz), 100.7, 141.6, 150.3, 164.5. HRMS 

(ESI+) m/z: calcd for C9H10FIN2NaO4 [M + Na]+, 378.9562; found, 378.9560.

1-(2,5-Dideoxy-2-fluoro-β-D-4-enoarabinofuranosyl)uracil (3)—A commercially 

available solution of 25% sodium methoxide in MeOH (6.1 mL, 28.2 mmol) was added to a 

suspension of compound 2 (2.1 g, 5.90 mmol) in anhydrous MeOH (53 mL). The reaction 

mixture was stirred at reflux for 24 h. MeOH was evaporated, and the residue was filtered 

over a small bed of silica gel using 10% MeOH/CH2Cl2 as eluent to remove the salts. The 

obtained solid was then purified by column chromatography (4% MeOH/CH2Cl2) to afford 

3 as a white solid (0.72 g, 53%). Rf (10% MeOH/CH2Cl2): 0.38. 1H NMR (MeOH-d4, 500 

MHz): δ 4.49 (d, 1H, JHH = 2.5 Hz), 4.60 (m, 2H), 5.06 (dd, 1H, JHH = 2.0 Hz, JHH = 3.0 

Hz, JHF = 51.0 Hz), 5.74 (d, 1H, JHH = 8.0 Hz), 6.53 (dd, 1H, JHH = 3.0 Hz, JHF = 19.5 Hz), 

7.49 (dd, 1H, JHH = 2.0 Hz, JHH = 8.1 Hz). 13C NMR (MeOH-d4, 125 MHz): δ 72.8 (d, JCF 

= 27.5 Hz), 85.3 (d, JCF = 15.9 Hz), 86.8, 93.2 (d, JCF = 191.3 Hz), 101.1, 140.9, 150.3, 

160.2, 164.4. HRMS (ESI+) m/z: calcd for C9H9FN2NaO4 [M + Na]+, 251.0439; found, 

251.0449.

1-(2-Deoxy-2,4-difluoro-5-iodo-β-D-arabinofuranosyl)uracil (4)—A suspension of 

alkene 3 (253 mg, 1.11 mmol) and silver fluoride (4.43 mmol, 563 mg) in MeCN (15 mL) 

was vigorously stirred at 0 °C while a solution of iodine (563 mg, 2.22 mmol) in MeCN (9 

mL) was added over 15 min. After completion, the reaction mixture was directly filtered 

over a small bed of silica gel using 50% MeOH/CH2Cl2 as eluent to remove the Ag salts. 

Fractions containing the product were collected, solvents were evaporated, and the resulting 

residue was purified by column chromatography (2% MeOH/CH2Cl2) to afford 4 as a white 

solid (283 mg, 68%). Rf (10% MeOH/CH2Cl2): 0.44. 1H NMR (MeOH-d4, 300 MHz): δ 

3.64 (d, 1H, JHH = 7.5 Hz), 3.69 (s, 1H), 4.69 (ddd, 1H, JHH = 5.1 Hz, JHF = 16.8 Hz, JHF = 

21.9 Hz), 5.29 (dt, 1H, JHH = 5.7 Hz, JHF = 54.0 Hz), 5.74 (d, 1H, JHH = 8.1 Hz), 5.89 (dd, 

1H, JHH = 5.7 Hz, JHF = 9.9 Hz), 7.60 (dd, 1H, JHF = 1.8 Hz, JHH = 8.1 Hz). 13C NMR 

(MeOH-d4, 125 MHz): δ −0.05 (d, JCF = 32.6 Hz), 76.1 (dd, JCF = 22.7, JCF = 24.9 Hz), 

82.5 (d, JCF = 16.9 Hz), 94.3 (d, JCF = 193.8 Hz), 101.6, 113.2 (d, JCF = 229.3 Hz), 141.5, 

150.3, 164.2. HRMS (ESI+) m/z: calcd for C9H9F2IN2NaO4 [M + Na]+, 396.9467; found, 

396.9465.
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1-(3-O-Benzoyl-2-deoxy-2,4-difluoro-5-iodo-β-D-arabinofuranosyl) uracil (5)—
Benzoyl chloride (82 μL, 0.705 mmol) was added dropwise to a solution of compound 4 
(240 mg, 0.64 mmol), triethylamine (447 μL, 3.20 mmol), and DMAP (0.5 mg, 0.004 mmol) 

in THF (16 mL). The reaction was stirred for 15 min at room temperature and was then 

quenched by addition of 3 mL of MeOH. Solvents were evaporated, and the residue 

obtained was purified by column chromatography (40% AcOEt/hexanes) to give 

benzoylated compound 5 (242 mg, 79%) as a white solid. Rf (70% AcOEt/Hexanes): 

0.57. 1H NMR (acetone-d6, 300 MHz): δ 3.93 (d, 1H, H-5′, JHH = 4.5 Hz), 3.96 (s, 1H), 5.79 

(d, 1H, JHH = 8.5 Hz), 5.91 (dt, 1H, JHH = 4.0 Hz, JHH = 5.5 Hz, JHF = 52.5 Hz), 6.19 (ddd, 

1H, JHH = 3.4 Hz, JHF = 14.5 Hz, JHF = 22.5 Hz), 6.69 (dd, 1H, JHH = 5.5 Hz, JHF = 12.5 

Hz), 7.58 (t, 2H, JHH = 8.0 Hz), 7.72 (t, 1H, JHH = 7.7 Hz), 7.78 (dd, 1H, JHF = 1.8, Hz, JHH 

= 8.1 Hz), 8.13 (m, 2H). 13C NMR (acetone-d6, 125 MHz): δ 3.2 (d, C-5′, JCF = 32.0 Hz), 

78.1 (dd, JCF = 20.8, JCF = 27.6 Hz), 84.9 (m), 94.3 (d, JCF = 195.0 Hz), 103.6, 114.4 (d, 

JCF = 232.3 Hz), 129.9, 131.2, 135.3, 142.8, 151.4, 163.4, 166.2. HRMS (ESI+) m/z: calcd 

for C16H13F2IN2NaO5 [M + Na]+, 500.9729; found, 500.9714.

1-(5-O-Benzoyl-2-deoxy-2,4-difluoro-β-D-arabinofuranosyl)uracil (6)—3-

Chloroperoxybenzoic acid (mCPBA) (77% purity, 523 mg, 2.33 mmol of mCPBA) was 

added to a suspension of 5 (282 mg, 0.59 mmol) in CH2Cl2 (16 mL) and H2O (0.6 mL). The 

mixture was heated at 40 °C for 5 h, after which time solvents were concentrated and the 

residue was purified by flash column chromatography (40% AcOEt/hexanes) to afford 6 
(148 mg, 68% yield) as a white solid. Rf (70% AcOEt/Hexanes): 0.40. 1H NMR (MeCN-d3, 

500 MHz): δ 4.64 (dd, 1H, H-5′, JHF = 8.5 Hz, JHH = 12.0 Hz), 4.68 (dd, 1H, JHF = 10.0 Hz, 

JHH = 12.5 Hz), 4.78 (ddd, 1H, JHH = 5.0 Hz, JHF = 16.5 Hz, JHF = 21.5 Hz), 5.36 (dt, 1H, 

JHH = 5.5 Hz, JHF = 53.5 Hz), 5.58 (dd, 1H, JHH = 8.0 Hz), 6.53 (dd, 1H, JHH = 6.0 Hz, JHF 

= 9.5 Hz), 7.39 (dd, 1H, JHF 1.5 Hz, JHH = 8.1 Hz,), 7.55 (t, 2H, JHH = 8.0 Hz), 7.68 (t, 1H, 

JHH = 7.7 Hz), 8.08 (m, 2H), 9.45 (br s, 1H). 13C NMR (MeCN-d3, 125 MHz): δ 61.7 (d, 

JCF = 39.4 Hz), 75.1 (dd, JCF = 21.3, JCF = 24.8 Hz), 82.9 (m), 93.6 (d, JCF = 193.1 Hz), 

102.1, 113.3 (dd, JCF = 11.0 Hz, JCF = 229.0 Hz), 128.8, 130.3, 129.6, 133.0, 140.8, 150.0, 

162.8, 165.4 (Bz). HRMS (ESI+) m/z: calcd for C16H14F2N2NaO6 [M + Na]+, 391.0712; 

found, 391.0696.

1-(2-Deoxy-2,4-difluoro-β-D-arabinofuranosyl)uracil (7)—Protected nucleoside 6 
(148 mg, 0.402 mmol) was treated with 2 M NH3 in MeOH (6 mL), and the mixture was 

stirred overnight at room temperature and then evaporated to dryness under reduced 

pressure. Purification by column chromatography (1–10% MeOH/CH2Cl2) gave 7 (106 mg, 

99%) as a white solid. Rf (10% MeOH/CH2Cl2): 0.22. 1H NMR (D2O, 500 MHz): δ 3.81 

(m, 2H, H-5′), 4.64 (ddd, 1H, H-3′, JHH = 5.5 Hz, JHF = 18.0 Hz, JHF = 23.5 Hz), 5.37 (dt, 

1H, H-2′, JHH = 6.0 Hz, JHF = 53.0 Hz), 5.81 (d, 1H, H-5, JHH = 8.0 Hz), 6.49 (d, 1H, H-1′, 

JHH = 6.0 Hz, JHF = 8.5 Hz), 7.57 (dd, 1H, H-6, JHF = 1.5 Hz, JHH = 8.0 Hz). 13C NMR 

(MeOH-d4, 125 MHz): δ 59.0 (d, JCF = 40.5 Hz), 73.2 (dd, JCF = 21.5, JCF = 24.2 Hz), 81.9 

(d, JCF = 17.3 Hz), 93.8 (d, JCF = 193.4 Hz), 101.4, 115.1 (dd, JCF = 11.6 Hz, JCF = 228.9 

Hz), 140.7, 150.5, 164.3. 19F NMR (D2O, 470.35 MHz) δ −121.8 (m, F-4′), −200.9 (ddd, 

F-2′, JHF = 8.0 Hz, JHF = 23.5 Hz, JHF = 53.1 Hz). HRMS (ESI+) m/z: calcd for 

C9H10F2N2NaO5 [M + Na]+, 287.0450; found, 287.0448.
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1-(2-Deoxy-2,4-difluoro-5′-[4,4′-dimethoxytrityl]-arabinofuranosyl) uracil (8)—
Nucleoside 7 (74 mg, 0.28 mmol) and 4,4′-dimethoxytrityl chloride (143 mg, 0.42 mmol) 

were dried overnight under vacuum. Pyridine (2 mL) and DMAP (catalytic) were added 

under nitrogen. The reaction was stirred for 2 h at 40 °C. Pyridine was evaporated under 

vacuum, and the resulting residue purified by column chromatography (1–3% MeOH/

CH2Cl2) to afford tritylated nucleoside 8 as a white solid (122 mg, 77%). Rf (10% 

MeOH/CH2Cl2): 0.38. 1H NMR (MeOH-d4, 500 MHz): δ 3.43 (d, 1H, JHF = 3.0 Hz, JHH = 

10.0 Hz), 3.56 (d, 1H, JHF = 3.5 Hz, JHH = 10.0 Hz), 4.78 (ddd, 1H, JHH = 6.5 Hz, JHF = 

18.5 Hz, JHF = 24.0 Hz), 5.35 (td, 1H, JHH = 6.0 Hz, JHF = 54.0 Hz), 5.36 (d, 1H, JHH = 8.5 

Hz), 6.55 (t, 1H, JHH/F = 6.0 Hz), 6.90 (m, 4H), 7.27–7.41 (m, 9H), 7.77 (d, 1H, JHH = 8.0 

Hz). 13C NMR (MeCN-d3, 125 MHz): δ 54.9 (OMe), 60.8 (d, JCF 43.3 Hz), 69.7 (m), 88.3 

(d, JCF 221.7 Hz), 92.2 (m), 102.2, 113.2, 117.1 (d, C-4′, JCF 232.5 Hz), 127.1–135.1 

(DMTr), 141.8 (C-6), 144.4 (DMTr), 158.9 (DMTr), 149.9 (C-2), 162.8 (C-4). HRMS 

(ESI+) m/z: calcd for C30H28F2N2NaO7 [M + Na]+, 589.1757; found, 589.1750.

1-(3-[2-Cyanoethoxy(diisopropylamino)-phosphinyl]-2-deoxy-2,4-difluoro-5-
[4,4′-dimethoxytrityl)]-β-D-arabinofuranosyl)uracil) (9)—Tritylated nucleoside 8 
(111 mg, 0.196 mmol), was dried under vacuum overnight and coevaporated with MeCN 

four times. Dry THF (2 mL) was added under N2. To the solution was added EtN(iPr)2 (127 

mg, 0.98 mmol) and then ClPOCEtN(iPr)2 (51 mg, 0.216 mmol). The reaction mixture was 

stirred for 2 h at room temperature. The reaction progress was monitored by TLC (Et3N/

CH2Cl2/eter, 2:48:50). After the reaction reached completion, the mixture was directly 

loaded for purification on a silica gel column chromatography (eluent: 40% EtOAc, 60% 

hexanes) to afford phosphoramidite 9 (76 mg, 50%). The mixture of two diastereomers at 

phosphorus led to complex 1H and 13C NMR spectra. 31P NMR (81 MHz, acetone-d6): δ 

151.8 (d, JPF = 5.6 Hz), 152.1 (d, JPF = 6.2 Hz). HRMS (ESI+) m/z: calcd for 

C39H45F2N4NaO8P [M + Na]+, 789.2835; found, 789.2851.

Procedure for the RNase H Assays

Recombinant human RNase H1 in pBAD-His plasmid was expressed in BL21 Escherichia 

coli and purified by affinity chromatography followed by gel permeation. The catalytically 

active RNase H domain fragment of HIV-1 RT was expressed from plasmid pCSR231 (a 

generous gift from Dr. Daria Hazuda, Merck, West Point, PA) and purified as previously 

described.39 RNA template was 5′-radiolabeled with γ-P32-ATP (PerkinElmer) using T4 

polynucleotide kinase and annealed with either DNA (B1), 2-F-araU (B2), or 2′,4′-diF-araU 

(B3) modified substrate. RNase H hydrolysis reactions were conducted at room temperature 

in 50 mM Tris-HCl, pH 8.0, and 50 mM KCl buffer with 20 nM each duplex and 100 nM 

enzyme. Reaction was started by adding 5 mM MgCl2 and quenched at different time points 

by 95% formamide and 10 mM EDTA, pH 8.0, with a trace amount of bromophenol blue 

dye. Products of reactions were separated using 20% denaturing PAGE and analyzed by 

phosphorimaging.

Oligonucleotide Synthesis

Standard phosphoramidite solid-phase synthesis conditions were used for the synthesis of all 

modification and unmodified oligonucleotides on a DNA synthesizer. Each oligonucleotide 
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was synthesized at the 1 μmole scale, using Unylinker CPG as solid support. DNA 

phosphoramidites were prepared as 0.1 M solutions in acetonitrile, RNA phosphoramidites, 

as 0.15 M solutions in ACN, and 2′-F-araU phosphoramidite, as 0.15 M in ACN. 2′,4′diF-

araU phosphoramidite was prepared as a 0.08 M solution in acetonitrile. Significant 

vortexing and sonication were required to fully dissolve the compound. 5-Ethylthiotetrazole 

was used as activator, 3% trichloroacetic acid in dichloromethane was used to detritylate, 

acetic anhydride in tetrahydrofuran (THF) and 16% N-methylimidazole in THF was used to 

cap, and 0.1 M I2 in 1:2:10 pyridine/water/THF was used for oxidation. DNA was coupled 

for 110 s (270 s for G); all other phosphoramidites were coupled for 600 s (900 s for G). 2′,

4′-diF-araU phosphoramidite was coupled for 1200 s. Deprotection and cleavage from the 

solid support was achieved with 3:1 aqueous NH4OH/EtOH for 48 h at room temperature. 

After decanting to remove the CPG, the deprotection solution was removed under vacuum in 

a SpeedVac lyophilizer. For RNA-containing oligonucleotides, desilylation was achieved in 

neat TREAT-HF (150 μL) with shaking at room temperature for 48 h. Purifications were 

performed by HPLC, using a Protein Pak DEAE 5PW analytical anion-exchange column. A 

stationary phase of Milli-Q water and a mobile phase of 1 M LiClO4 in water was used for 

analysis and purification using a gradient of 0–50% over 46 min. Following purification, 

excess LiClO4 salts were removed using NAP-25 sephadex size-exclusion columns. 

Oligonucleotides were quantitated by UV (extinction coefficients were determined using the 

IDT OligoAnalyzer tool (www.idtdna.com/analyzer/Applications/OligoAnalyzer). 

Extinction coefficients for DNA and RNA were used for oligonucleotides containing 2′-F-

araU and 2,′4′-diF-araU inserts, respectively.

Thermal Denaturation Studies

Equimolar amounts of complementary sequences were combined, dried, and rediluted in 10 

mM sodium phosphate buffer (pH 7.2) containing 100 mM NaCl and 0.1 mM EDTA (1 

mL). They were then transferred into cold cuvettes in a UV spectrophotometer. The samples 

were heated at 90 °C and then cooled to 5 °C. The change in absorbance at 260 nm was then 

monitored upon heating from 5 to 90 °C. Melting temperatures were determined using the 

hyperchromicity method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Pseudorotational cycle describing the sugar conformations of nucleosides (E, envelope; 

T, twist). Superscripts and subscripts indicate the specific atoms in the ribose ring that 

project away from the plane defined by the remaining ring atoms. Natural nucleosides have 

characteristic minima in the North (0–36°) and South (144–180°) regions. (B) Anomeric 

effect (left) favoring the North conformation due to the overlap of a lone-pair orbital O4′(p-

type) with the σ*C4′–F4′ antibonding orbital and gauche effect (right) favoring the South 

conformation due to the interaction between σ*C2′–H2′ bonding orbital and the σ*C1′–O4′ 

antibonding orbital.
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Figure 2. 
Comparison of sugar ring 1H–1H and 1H–19F coupling constants for 2′,4′-diF-araU (7), 2′-F-

araU (1), and 2′,4′-diF-rU represented in the preferred conformation.
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Figure 3. 
(A) Comparison of the energy profiles of 2′,4′-diF-rU, 2′-F-araU, and 2′,4′-diF-araU. (B) 

Minimized structure for 2′,4′-diF-araU computed at the M062x/6-31+G(d,p) level using 

Gaussian 09.
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Figure 4. 
Ribonuclease H degradation of DNA (B1) and 2′-F-ANA (B2) and 2′,4′-diF-ANA (B3) 

modified hybrids. An 11 nt 5′-32P labeled target RNA 5′-r(GUAUACUAUAG)-3′ was 

preincubated with complementary B1–B3 and then added to reaction assays containing 

either human RNase H (A) or HIV-RT-associated RNase H (B). PAGE image shows 

representative points for each assay. Aliquots were removed as listed in the figure (in 

minutes). Reactions were conducted at room temperature and contained 20 nM of each 

duplex, 200 nM recombinant human RNase H or the catalytically active RNase H domain 
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fragment of HIV RT, and 5 mM MgCl2 (human RNase H) or 5 mM MnCl2 (HIV RT RNase 

H domain). (C) Schematic representation of the RNase H-mediated cleavage at positions 1 

and 2 of the RNA strand.
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Scheme 1. 
Synthesis of 2′,4′-diF-araU (7) and the Corresponding Amidite (9)
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Table 1

1H–1H and 1H–19F Coupling Constant Values for Different Nucleoside Derivatives at 25 °C in D2O (500 

MHz)

J (Hz) (±0.2)a 2′,4′-diF-araU (7) 2′-F-araU (1) 2′,4′-diF-rUc

H1′–H2″b 6.0 4.0 0

H1′–F2′ 8.5 17.5 21.5

H2″–H3′b 5.5 3.0 5.8

H3′–F2′ 23.5 21.5 22.1

H3′–X4′ 18.0 5.0 20.7

a
X = H for 2′-F-araU; X = F for 2′,4′-diF-araU and 2′,4′-diF-rU.

b
The proton and the fluorine are labeled as ′′ and ′, respectively, regardless of the relative orientation.

c
Ref 17.
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