

Cortisol Detection in Fish Scales by Enzyme Immunoassay

Journal:	Journal of Applied Ichthyology
Manuscript ID	Draft
Wiley - Manuscript type:	Short Communication
Date Submitted by the Author:	n/a
Complete List of Authors:	Carbajal, Annaïs; Universitat Autonoma de Barcelona, Department of Animal Health and Anatomy; Monclús, Laura ; Universitat Autonoma de Barcelona, Department of Animal Health and Anatomy Tallo-Parra, Oriol; Universitat Autonoma de Barcelona, Department of Animal Health and Anatomy Sabes-Alsina, Maria; Universitat Autonoma de Barcelona, Department of Animal Health and Anatomy Vinyoles, Dolors; Universitat de Barcelona, Department of Evolutive Biology, Ecology and Environmental Sciences Lopez-Bejar, Manel; Universitat Autonoma de Barcelona, Department of Animal Health and Anatomy
Subject Area:	Endocrinology
Abstract:	The study of fish stress is usually assessed by measuring blood cortisol. Nevertheless, blood provides only a snapshot of the hormonal profile at one point in time. An alternative source of cortisol may be found in scales, providing a new approach for assessing long-term hormonal levels. The present study aimed to develop and validate a methodology for detecting cortisol in scales of goldfish (Carassius auratus). The study highlights the importance of an initial isopropanol washing procedure to completely eliminate external contaminations of cortisol. Additionally, the biochemical validation of the enzyme immunoassay verifies the ability to detect cortisol with repeatability and reliability in goldfish scales. In conclusion, this study provides validated information about a new methodology to measure cortisol in scales. The incorporation of this biomarker could provide retrospective hormonal measurements from species and time periods that are usually difficult or impossible to obtain, thus offering key data of an animal's physiology.

SCHOLARONE[™] Manuscripts

Cortisol Detection in Fish Scales by Enzyme Immunoassay

Running title: Cortisol detection in fish scales

A. Carbajal¹, L. Monclús¹, O. Tallo-Parra¹, M. Sabes-Alsina¹, D. Vinyoles², and M. Lopez-Bejar¹

¹ Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain. ² Department of Evolutive Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain

inguua Ding

Correspondence should be sent to Annaïs Carbajal, Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain. *E-mail address*: <u>anais.carbajal@uab.cat</u>; annais.carbajal@gmail.com

1 Introduction

2	The study of fish stress responses are usually assessed by quantification of
3	short-term changes in blood cortisol (Baker, Gobush, & Vyne, 2013), the main
4	GC in most teleost fish (Mommsen, Vijayan, & Moon, 1999). Nevertheless,
5	blood provides only a snapshot of the hormonal profile at one point in time. An
6	alternative matrix for cortisol measurement may be found in fish scales. A
7	recent publication showed that the analysis of cortisol in scales could constitute
8	a method for retrospective assessment of fish GC secretion over extended
9	periods of time (Aerts et al., 2015). However, little information concerning the
10	laboratory processing and validation of cortisol measurement in scales is
11	available. Accordingly, the present study was focused on developing and
12	biochemically validating the methodology for detecting cortisol deposited inside
13	the scales of goldfish Carassius auratus (L. 1758).
14	External sources of cortisol, presumably coming from the fish skin mucus
15	(Bertotto et al., 2010), should be previously removed in order to study a more
16	tightly bound fraction incorporated in the interior of the matrix. While isopropanol
17	has been the wash solvent of choice to remove external contaminations of GC
18	in mammal hair (Davenport, Tiefenbacher, Lutz, Novak, & Meyer, 2006; Tallo-
19	Parra, Manteca, Sabes-Alsina, Carbajal & Lopez-Bejar, 2015), in fish, only
20	ultrapure water has been employed (Aerts et al., 2015). Hence, the first
21	experiment explored the appropriateness of water and isopropanol as solvents
22	to decontaminate the scale without compromising the inside hormone contents.
23	We additionally aimed to test the suitability of an enzyme immunoassay (EIA) in
24	the quantification of cortisol concentrations in scales, since the assay procedure

25	should	always	be pro	operly	validated	for each	new s	pecies	and	matrix

- 26 (Buchanan & Goldsmith, 2004).
- 27

28 Materials & Methods

- 29 Animals and sampling
- 30 Twenty goldfish were euthanized with an overdose of MS-222. Immediately

after sacrifice, whole body scales were removed and thoroughly mixed to create

- 32 two separate pools, one for each experiment.
- 33
- 34 Washing procedure validation

The pool of scales was uniformly split into two groups given by the type of wash 35 solvent evaluated; water and isopropanol. Each group was subdivided into three 36 different treatment conditions; for one, two or three consecutive washes, with 37 three replicates per treatment. Each replicate was composed by 300 mg of 38 39 pooled scales introduced into polypropylene tubes. Three millilitres of solvent 40 was added to each tube and vortexed for 2.5 min. Afterwards, the supernatant 41 was separated for further analysis. The process was then repeated once or twice in accordance to the treatment assigned. Once the scales were dried they 42 were minced with a ball mill and 75 mg of each powdered sample were 43 44 incubated with 1.5 ml of methanol for 18 h. Following extraction, samples were 45 centrifuged and 1 ml of the supernatant was evaporated and reconstituted with 46 0.2 ml of EIA buffer provided by the assay kit. 47

47

48 Biochemical validation of the EIA

49	Cortisol concentrations and the validation tests were determined by using
50	competitive EIA kits (Neogen $\ensuremath{\mathbb{R}}$ Corporation Europe, Ayr, UK). The assay was
51	validated following the criteria for an immunological validation (Reimers &
52	Lamb, 1991). Precision was assessed by calculating intra-assay coefficients of
53	variation (CV) from all duplicated samples analysed. The specificity was
54	evaluated with the linearity of dilution and with the parallelism test. Finally, the
55	sensitivity of the test was given by the smallest amount of hormone
56	concentration analysed.
57	
58	Statistical analysis
59	Data obtained were analysed using R software (R-project, Version 3.0.1, R
60	Development Core Team, University of Auckland, New Zealand) with a P-value
61	below 0.05 as a criterion for significance. The assumption of normality was
62	checked using a Shapiro–Wilk test and concentrations were log transformed to
63	achieve normality. An analysis of variance (ANOVA) was used to test for
64	differences between distilled water and isopropanol treatments. When
65	significant, ANOVA was followed by post hoc analysis (Tukey's test) in order to
66	determine the source of significance. For the biochemical validation, statistical
67	correlations in the dilution and parallelism test were determined using the
68	Pearson's Product correlation test.
69	
70	Results
71	Washing procedure validation

- 72 No significant differences in the scales cortisol concentrations (SCC) were
- found between samples subject to 1, 2 or 3 washings with isopropanol (P >

74	0.05; Fig. 1a). Whereas samples washed with distilled water showed a
75	significant decrease in the SCC from the first to the second wash ($P < 0.05$), but
76	not from the second to the third one ($P > 0.05$; Fig. 1a). The Tukey's test
77	indicated significant differences in SCC between water and isopropanol when
78	samples were washed twice and thrice ($P < 0.05$).
79	Significant differences were found in cortisol concentrations between the first,
80	the second and the third wash supernatant of scales treated with isopropanol (P
81	< 0.05; Fig. 1b). The same statistically differences were observed in scales
82	washed with distilled water ($P < 0.05$).
83	
84	Biochemical validation of the EIA
85	The intra-assay CV was 6.30%. In the linearity of dilution, the obtained cortisol
86	concentrations correlated with the expected cortisol values (r = 0.99 , $P < 0.05$;
87	Fig. 2a). In the spike-and-recovery test, hormone standards spiked with the pool
88	of scale extracts presented a mean recovery percentage of 89.59 \pm 7.71 %
89	(MEAN \pm S.D.). Cortisol concentrations from the standard curve and the pool
90	curve obtained in the parallelism test showed correlation (r = 0.99, P < 0.05;
91	Fig. 2b). Finally, the sensitivity of the assay obtained was 0.22 pg of cortisol/mg
92	of scale.
93	
94	Discussion
95	Results showed that SCC of samples washed with isopropanol, unlike scales
96	washed with water, remained constant regardless of the number of washings

- 97 (Fig. 1a). These results could indicate two phenomena: washing scales with
- isopropanol was not effective enough to remove the external contamination of

99	cortisol, or water could be penetrating into the scale while removing the
100	hormone deposited inside the matrix. Cortisol concentrations detected in the
101	wash supernatant (Fig. 1b) were actually three orders of magnitude higher than
102	in scales for both isopropanol and water washes, probably due to higher cortisol
103	concentrations found in fish skin mucus (Bertotto et al., 2010). Therefore, the
104	absence of higher cortisol levels detected in scales washed with isopropanol
105	suggests that this solvent was effective in removing the external contamination.
106	Additionally, our results suggest that successive washes with water could be
107	removing endogenous cortisol from the scales, as previously observed in the
108	hair shaft washed with water (Hamel et al., 2011). Accordingly, three 2.5-min
109	isopropanol washings of 3 ml each were established as the washing protocol for
110	the subsequent assessments.
111	In conclusion, the present work presents a validated methodology to detect
112	cortisol in scales of goldfish. We highlight the importance of an isopropanol
113	washing procedure to completely eliminate external contaminations of cortisol
114	while preserving the inside matrix steroid content. Additionally, we demonstrate
115	the suitability of the EIA in the quantification of cortisol concentrations in scales
116	processed through the aforementioned methodology. The incorporation of this
117	biomarker could provide retrospective hormonal measurements from species
118	and time periods that are usually difficult or impossible to obtain, thus offering

119 key data of an animal's physiology.

120 **References**

- Aerts, J., Metz, J. R., Ampe, B., Decostere, A., Flik, G., & De Saeger, S. (2015). Scales
 Tell a Story on the Stress History of Fish. *Plos One*, *10*(4), e0123411.
- Baker, M. R., Gobush, K. S., & Vynne, C. H. (2013). Review of factors influencing
 stress hormones in fish and wildlife. *Journal for Nature Conservation*, *21*(5), 309–318.
- Bertotto, D., Poltronieri, C., Negrato, E., Majolini, D., Radaelli, G., & Simontacchi, C.
 (2010). Alternative matrices for cortisol measurement in fish. *Aquaculture Research*, *41*, 1261–1267.
- Buchanan, K. L., & Goldsmith, A. R. (2004). Noninvasive endocrine data for
 behavioural studies: the importance of validation. *Animal Behaviour*, 67(1), 183–
 185.
- Davenport, M. D., Tiefenbacher, S., Lutz, C. K., Novak, M. A, & Meyer, J. S. (2006).
 Analysis of endogenous cortisol concentrations in the hair of rhesus macaques.
 General and Comparative Endocrinology, *147*(3), 255–261.
- Hamel, A. F., Meyer, J. S., Henchey, E., Dettmer, A. M., Suomi, S. J., & Novak, M. A.
 (2011). Effects of Shampoo and Water Washing on Hair Cortisol Concentrations. *Clinica Chimica Acta*, 20(2), 233–243.
- Mommsen, T. P., Vijayan, M. M., & Moon, T. W. (1999). Cortisol in teleosts : dynamics ,
 mechanisms of action , and metabolic regulation. *Reviews in Fish Biology and Fisheries*, (9), 211–268.
- Reimers, T., Lamb, S. (1991). Radioimmunoassay of hormones in laboratory animals
 for diagnostics and research. *Laboratory Animal* 20, 32–8.
- Tallo-Parra, O., Manteca, X., Sabes-Alsina, M., Carbajal, A., & Lopez-Bejar, M. (2015).
 Hair cortisol detection in dairy cattle by using EIA: protocol validation and
- 145 correlation with faecal cortisol metabolites. *Animal*, 9(6), 1059–1064.

146 Figure legends

147

148	Figure 1. Comparison of distilled water (light grey) and isopropanol (dark grey)
149	mean cortisol concentrations obtained in the validation of the washing
150	procedure: (a) scale cortisol concentrations (SCC) detected in samples subject
151	to 1, 2 and 3 washings and (b) wash cortisol concentrations (WCC) detected in
152	the first, second and third supernatant of each washing procedure. Bars with
153	different letters indicate statistical differences between treatments (Tukey's test,
154	<i>P</i> < 0.05).
155	
156	Figure 2. Results obtained in the biochemical validation of the enzyme
157	immunoassay: (a) correlation between observed and theoretical cortisol
158	concentrations obtained in the dilution test (Pearson's correlation; $r = 0.99$, $P <$
159	0.05) and (b) parallelism relation between lines from the standard (white
160	squares) and sample pool (black squares) curves obtained in the parallelism

161 test (Pearson's correlation; r = 0.99, P < 0.05).

Figure 1. Comparison of distilled water (light grey) and isopropanol (dark grey) mean cortisol concentrations obtained in the validation of the washing procedure: **(a)** scale cortisol concentrations (SCC) detected in samples subject to 1, 2 and 3 washings. Bars with different letters indicate statistical differences between treatments (Tukey's test, P < 0.05).

s (Tukey's test, P < 0.00).

Figure 1. Comparison of distilled water (light grey) and isopropanol (dark grey) mean cortisol concentrations obtained in the validation of the washing procedure: **(b)** wash cortisol concentrations (WCC) detected in the first, second and third supernatant of each washing procedure. Bars with different letters indicate statistical differences between treatments (Tukey's test, P < 0.05).

Figure 2. Results obtained in the biochemical validation of the enzyme immunoassay: (a) correlation between observed and theoretical cortisol concentrations obtained in the dilution test (Pearson's correlation; r = 0.99, P < 0.05).

Figure 2. Results obtained in the biochemical validation of the enzyme immunoassay: **(b)** parallelism relation between lines from the standard (white squares) and sample pool (black squares) curves obtained in the parallelism test (Pearson's correlation; r = 0.99, P < 0.05).