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ABSTRACT: A film of gas sensitive ZnO nanoparticles has been 

coupled with a low-power micro light plate (µLP) to achieve a 

NO2-parts-per-billion conductimetric gas sensor operating at room 

temperature. In this µLP configuration, an InGaN-based LED 

(emitting at 455 nm) is integrated at a few hundred nanometers dis-

tance from the sensor material, leading to sensor photoactivation 

with well controlled, uniform and high irradiance conditions, and 

very low electrical power needs. The response curves to different 

NO2 concentrations as a function of the irradiance displayed a bell‐

like shape. Responses of 20% to 25 ppb of NO2 were already ob-

served at irradiances of 5 mWatts·cm-2 (applying an electrical 

power as low as 30 µW). In the optimum illumination conditions 

(around 60 mWatts · cm-2, or 200 µW of electric power), responses 

of 94% to 25 ppb were achieved, corresponding to a lower detec-

tion limit of 1 ppb of NO2. Higher irradiance values worsened the 

sensor response in all the parts-per-billion range of NO2 concentra-

tions. The responses to other gases such as NH3, CO and CH4 were 

much smaller, showing a certain selectivity towards NO2. The ef-

fects of humidity on the sensor response are also discussed. 

KEYWORDS: Gas Sensor, Nitrogen Dioxide (NO2), High Sensi-

tivity, Photo/Light Activation, Micro Light Plate (LP), Light 

Emitting Diode (LED), InGaN, Ultra Low Power. 

Nitrogen dioxide (NO2) is a pollutant gas produced in many of 

the combustion processes1 related to heating, industry and transpor-

tation, which is object of societal awareness in densely populated 

areas, especially after public controversies around its emission 

from diesel engines.  

NO2 is harmful to human health even at concentrations as low as 

a few hundred parts per billion (ppb)2, therefore its monitoring re-

quires highly sensitive methods, with very low detection limits. 

Among the different solutions present in the market, electrochemi-

cal and semiconductor sensors are the most widespread. The former 

ones offer detection limits down to 100 ppb and good specificity 

(with some cross-sensitivity to O3 
3); but are relatively bulky, some-

how fragile, and require frequent calibration4,5. The latter ones offer 

similar detectivities in a more robust and much cheaper configura-

tion, but lack of proper specificity and require higher amounts of 

power to reach the high temperatures needed to come into opera-

tion6,7. To avoid the need of such heating, it is well-known that 

some metal oxide (MOX) semiconductor sensors can be operated 

at room temperature with the help of light activation8–12. In fact, it 

has been demonstrated that light-activated metal oxide sensors can 

render sensing performances fully equivalent to those obtained 

with heating13. 

To date, there is a broad literature available reporting light acti-

vated MOX sensors for NO2 8,9,21–29,13–20. These works investigate 

the use of different MOXs (like SnO2, ZnO, In2O3) and MOXs 

combinations (binary MOX composites, composites of MOXs with 

catalysts and molecular surface functionalization of MOXs) under 

different illumination conditions (wavelengths and irradiance lev-

els), and device arrangements (integrated vs. discrete components), 

being the lowest detection limits reported to date above 100 

ppb13,16. None of these works addresses the optimization of the 

power needed to illuminate the sensor material, and either report 

figures typically above 10 mW or just provide no information about 

that. 

On this regard, we have recently reported on the micro light plate 

configuration (LP), which is a sensor architecture built around a 

miniaturized LED30. In the LP, the sensor material is placed di-

rectly on top of a planar LED structure, only separated by a few 

hundred nanometers to insulate it electrically. Consequently, al-

most all the light emitted by the LED impinges on the sensor MOX, 

allowing for very well controlled, uniform and high irradiances, 

with a reduced electrical power consumption. 

In this work, we report on a new NO2 sensor based on the micro 

light plate configuration, capable of detecting NO2 in concentra-

tions ranging from a few parts per billion (ppb) to parts per million 

(ppm), with power requirements as low as 30 W. To the best of 

our knowledge, this is the lowest detection limit reported for light 

activated metal oxide sensors, and the lowest power consumption 

as well.  

Figure 1.a shows a general view of the LPs we fabricated. A 

detailed description about their design and fabrication process can 

be found elsewhere30 The LP exposed four independent pads: two 

to operate the blue InGaN LED (455 nm peak emission), and two 

more to measure the electrical resistance of the sensor material ly-

ing across a pair of interdigitated electrodes (IDE). As a sensor ma-

terial, we choose to work with ZnO nanoparticles (maximum size 

130 nm, according the specifications provided, Aldrich Prod. No. 

721085, CAS Number 1314-13-2)31,32. The nanoparticles were de-

posited on top of the IDEs by micro-drop casting. To that end, we 

suspended them in diethylene-glycol (CAS Number 111-46-6), 

which was left to dry in open air at 150C after the deposition. Fol-

lowing this deposition method, the ZnO nanoparticles displayed a 

broad light absorption edge in the visible range31, that overlaps with 

the LED emission (see Figure 1.e). 



 

 

 

Figure 1. Details of the μLP used in this work. (a) Global view of the device. 

Metal pads to the p-GaN anode, n-GaN cathode and the IDE pair are shown. 

The area of the p-GaN mesa can also be seen as a slightly pink-shaded pol-

ygon under the IDE-1, p-GaN and IDE-2 pads. The active portion of the 

μLP device is restricted to the IDE area, containing the sensor material on 

top, and the LED emitter underneath. See magnified details in (b) bare IDE, 
(c) ZnO material deposited on top of the IDE , and (d) LED lit on. (e) Light 

emission spectrum ϕe,λ of the InGaN LED in the µLP and light transmis-

sion spectrum T of a layer of ZnO NP deposited on a bare sapphire sub-

strate. 

To investigate the response to gases of these devices, we intro-

duced them in a gas tight chamber flowing gas blends produced by 

means of a set of Mass Flow Controllers (MFC, Bronkhorst) at a 

constant total rate of 400 ml/minute. Reference atmospheres were 

produced by diluting certified gas patterns in dry synthetic air (SA) 

(20% O2 + 80% N2 in volume ratio, with a purity of 99.999%, H2O 

< 5ppm, CnHm < 1ppm). Patterns of 10 ppm of NO2, 100 ppm of 

NH3, 100 ppm CO and 1% of CH4 were used to incorporate the 

target gases. Relative humidity (RH) −considered at 20ºC and 1 

atm− was introduced in some experiments by means of a Con-

trolled Evaporator and Mixer system (CEM, Bronkhorst) by evap-

orating ultrapure water (> 18 MΩ · cm). The gas chamber was 

equipped with feedthrough electrical connections to drive the LEDs 

and to measure the electrical resistance of the MOX layer, by means 

of a Keithley 2400 sourcemeter SMU. LEDs driving and resistance 

measurements were carried out under constant current conditions. 

Ten devices were produced and investigated along several weeks, 

displaying sensor signal differences of less than 10% before and 

after the measurement campaign. More details about this experi-

mental set-up can be found elsewhere33. 

Figure 2.a shows a representative resistance record of one of our 

devices exposed to increasing concentrations of NO2 ranging from 

25 ppb to 1 ppm under steady light irradiance. Clearly, the device 

is sensitive even to the lowest concentrations available in our setup 

(25 ppb). A signal to noise ratio analysis suggests that it could be 

sensitive to concentrations as low as 1 ppb‡ under the most favora-

ble illumination conditions (i.e. peak sensitivities achieved at 60 

mWatts · cm-2 with 200 µW of electric power§). Figure 2.b summa-

rizes the responses** 𝑆 we obtained to the previous NO2 concentra-

tions at different optical power levels, expressed in terms of the ir-

radiances E𝑒 impinging on the sensor material. The corresponding 

values of electric power P𝐿𝐸𝐷 needed to obtain these irradiance val-

ues are shown in the top x-axis (notice that in the case of InGaN-

LEDs the relationship between E𝑒 and P𝐿𝐸𝐷 is not directly propor-

tional34). Clearly, the response to gases exhibits a complex bell-

                                                 

‡ To estimate the detection limit, we assumed that signal detection 

is feasible at values 5 times larger than the noise to signal ratio, 

which is a common practice in the literature. Since we have a noise 

level of around 2% (relative to the baseline signal value), we have 

considered a signal change of at least 10% to extrapolate the lower 

detection limit. 

shaped dependence with the irradiance/power values, with a maxi-

mum signal at E𝑒 values of around 60 mWatts · cm-2, which corre-

sponds to P𝐿𝐸𝐷 of 200 W. As discussed in the following lines, this 

trend is consistent with the models for the photoactivated response 

of metal oxides to oxidizing gases reported to date, both qualita-

tively10, and quantitatively15.  

In the case of NO2, according to the current literature10,35, light 

facilitates charge exchanges with the surface of n-type MOXs fol-

lowing a process like: 

𝑁𝑂2(𝑔𝑎𝑠) + 𝑒(𝑝ℎ)
− → 𝑁𝑂2(𝑎𝑑)

−

𝑁𝑂2(𝑎𝑑)
− → 𝑁𝑂(𝑔𝑎𝑠) + 𝑂(𝑎𝑑)

−

𝑁𝑂2(𝑎𝑑)
− + 𝑒(𝑝ℎ)

− → 𝑁𝑂(𝑔𝑎𝑠) + 𝑂(𝑎𝑑)
2−

}  (1) 

where 𝑒(𝑝ℎ)
−  indicates a free electron in the semiconductor material, 

generated upon photoexcitation. Real sensing is however carried 

out in the presence of the oxygen background in air, and O2 can 

undergo a similar light-induced process36: 

𝑂2(𝑔𝑎𝑠) + 𝑒(𝑝ℎ)
− → 𝑂2(𝑎𝑑)

−     (2) 

Both processes end up trapping negative charges at the MOX 

surfaces around ionized oxygen adsorbates (𝑂(𝑎𝑑)
− , 𝑂(𝑎𝑑)

2−  and 

𝑂2(𝑎𝑑)
− ,  among others), which can transit trough different molecu-

lar and oxidation states until equilibrium is reached, if a supply of 

free electrons is available (like the ones in the conduction band of 

an n-type MOX): 

 

Figure 2. (a) Resistance record of our ZnO NP sensors built on a LP to 

increasing concentrations of NO2, operated at an irradiance E𝑒 of 123 

mWatts · cm-2. (b) Summary of the responses 𝑆 obtained to NO2 concentra-

tions ranging from 25 ppb to 1 ppm with increasing irradiance/power levels. 

Bell-shaped solid lines correspond to the fittings to eq.(5). (c) Irradiances 

E𝑒,𝑀𝐴𝑋 at which the maximum response 𝑆𝑀𝐴𝑋 is reached, as a function of 

the NO2 gas concentration. Experimental data follows the linear trend pre-
dicted by the models. Experimental data was taken from the fittings in (b), 

using eq.(6). Error bars were estimated from the statistical fitting uncertain-

ties. Inset shows a semi-log representation of the same dataset. (d) Summary 
of the response times (defined as the 10% to 90% of the signal rise time) 

obtained to NO2 concentrations ranging from 25 ppb to 1 ppm as a function 

§ Optical power units are indicated as Watts (and not as W), in order 

to easily distinguish them from the electrical power. 

** We defined the response to gases 𝑆 as the relative resistance 

chance in the presence of the target gas, with respect to the value in 

clean dry SA:   𝑆 =
𝑅𝑔𝑎𝑠−𝑅𝑆𝐴

𝑅𝑆𝐴
· 100 (%) 

 



 

of the invers irradiance (1 E𝑒⁄ ). Despite the higher levels of uncertainty, 

experimental data qualitatively follow the linear trend predicted by eq.(7).  

𝑂2(𝑎𝑑)
− + 𝑒− ↔ 2𝑂(𝑎𝑑)

−

𝑂(𝑎𝑑)
− + 𝑒− ↔ 𝑂(𝑎𝑑)

2− }    (3) 

Anyhow, both oxidizing species (NO2 and O2) lead to resistance 

changes in the same direction: increasing the resistance of an n-type 

MOX by trapping electrons on the surface. 

These light-activated detection processes (adsorption) compete 

with a light-activated desorption around the oxygen adsorbates re-

sulting from both processes, in the form36: 

𝑂2(𝑎𝑑)
− + ℎ(𝑝ℎ)

+ → 𝑂2(𝑔𝑎𝑠)    (4) 

where ℎ(𝑝ℎ)
+  indicates a hole in the valence band, generated by an 

impinging photon.  

Therefore, under real operating conditions, the detection of NO2 

is ruled by the competition between (1) NO2-related oxygen ad-

sorbates, eq.(1), (2) air-related oxygen adsorbates, eq.(2), and (3) 

their final desorption, eq.(4). Thus, light acts as a moderator of the 

competition between these reaction paths. These mechanisms have 

quantitatively predicted the responses 𝑆 to different concentrations 

of nitrogen dioxide [𝑁𝑂2] observed experimentally in n-type 

MOXs under different light intensities15.  

However, it is only possible to conclude analytic solutions to this 

model in very simple geometrical configurations (e.g. like one sin-

gle monocrystalline nanowire). In our case (a thin film of ZnO 

nanocrystals) the model becomes mathematically untreatable due 

to the complexity of the electron transport between adjacent ran-

domly-organized crystalline domains. Therefore, we can only ex-

pect to fit the dependence of the response 𝑆 under increasing irra-

diance E𝑒 levels to a phenomenological bell-shaped trend, that ac-

counts for the counter-balancing of the photoactivated adsorption 

(that increases with the light intensity, increasing the response) and 

the photoactivated desorption (that also increases with the light in-

tensity, decreasing the response). Figure 2.b also shows the fitting 

of our experimental data to a log-normal distribution, in the form: 

𝑆(E𝑒) ∝
1

E𝑒𝜎√2𝜋
 ∙  𝑒𝑥𝑝 {−[𝑙𝑛(E𝑒) − 𝜇]2 2𝜎2⁄ }  (5) 

(where µ  and  stand for the mean and standard deviation of 

𝑙𝑛(E𝑒), respectively) observing a good apparent matching (𝑟 >
0.99 in all cases). Such fitting was purely phenomenological, but 

allowed us to estimate more accurately the irradiance levels E𝑒,𝑀𝐴𝑋 

at which photoadsorption and photodesorption optimally compen-

sate, leading to a maximum in the response 𝑆𝑀𝐴𝑋, with 

E𝑒,𝑀𝐴𝑋 =  𝑒𝑥𝑝 {𝜇 − 𝜎2} .    (6) 

Figure 2.c shows that E𝑒,𝑀𝐴𝑋 increases with the gas concentra-

tion [𝑁𝑂2], following a linear trend (𝑟 = 0.992), as predicted by 

the models15. This is a striking difference compared to convention-

ally heated sensors, where the temperature that maximizes the re-

sponse is independent of the gas concentration. This is because, the 

response of light activated devices involves individual energy 

packages (the photons) triggering adsorption and desorption events 

of individual molecules. In contrast, thermal activation has to do 

with the thermal equilibrium conditions at which the sensor mate-

rial, as a whole, statistically behaves. 

In terms of power consumption, it is remarkable that values as 

low as 30 W are enough to observe clear responses to ppb con-

centrations, with signals well above the noise level. Clearly, 

slightly higher power values are helpful to develop larger sensor 

responses (i.e. favoring adsorption processes, eq.(1)), but they still 

fall in the sub-milliwatt regime (e.g. peak responses 𝑆𝑀𝐴𝑋 observed 

between 170 and 300 W for the gas concentrations investigated). 

Due to the competitive mechanism discussed before, higher light 

irradiances lead to lower sensor responses (i.e. excessive 

desorption, eq.(4)), producing signals below the noise level, and 

making it pointless to operate the devices at higher power level. 

Concerning the dynamic response of the sensors, Figure 2.d sum-

marizes the response times 𝑡10%→90% observed for different gas 

concentrations [𝑁𝑂2] and under varying irradiance levels E𝑒. In 

this case, the response times decrease monotonously with the light 

intensity15, or in other words, 

𝑡10%→90%  ∝  
1

E𝑒
 .     (7) 

This is because at higher photon arrival rates, the steady balance 

between photoadsorption and photodesorption of the different mo-

lecular species is reached faster. In Figure 2.d, data points were 

plotted as a function the invers irradiance 1 E𝑒⁄  showing again that 

experimental data agrees well with pre-existing models for this 

kind of MOX sensors15. 

It is worth mentioning that our results were obtained with blue 

light, i.e. with photon energies below the nominal bandgap of ZnO. 

While this observation is not completely new21, it is still widely 

assumed in the literature that electron-hole pair generation by direct 

bandgap absorption is needed to activate the response to gases of 

this kind of sensors. The results presented here, however suggest 

that such assumption might not be necessary, as long as the sensor 

material offers alternative photogeneration paths (e.g. see Figure 

1.e).  

We also studied the response of our devices in the presence of 

humidity, the most common interfering gas in real applications 

open to atmospheric air. Figure 3.a shows some examples of the 

resistance records observed upon exposure to NO2 in different rel-

ative humidity (RH) backgrounds. Clearly, the presence of water 

interferes with the NO2 sensing mechanism, increasing the re-

sponse 𝑆 (Figure 3.b). This is a common and expected effect in 

MOX sensors of any kind7, usually attributed to additional reaction 

paths at the surface enabled by the presence of water-related OH 

groups. In this case, however, and in contrast to other MOX sen-

sors, humidity leads only to a monotonous rescaling of the sensor 

signal 𝑆, which could be easily removed with the help of an auxil-

iary humidity sensor. Concerning the response time (Figure 3.b), 

the presence of water slows it down significantly, even at the lowest 

RH levels investigated (15%). This deceleration effect does not de-

velop further at higher RH.  

 
Figure 3: (a) Differences in the resistance record of our ZnO sensors ex-

posed to 100 ppb pulses of NO2 under increasing relative humidity (RH) 

backgrounds, and (b) summary of the response magnitudes 𝑆 and the re-

sponse times obtained. (c) Exemplary resistance records comparing the re-
sponses to NH3, CO and CH4, with that to NO2. Notice that the concentra-

tion of NO2 is much lower than that of the other gases. (d) Full comparison 

of the responses 𝑆 obtained to NO2, NH3, CO and CH4 at different concen-

trations of each gas.  



 

Finally, for completeness, we investigated the response of our 

sensors to some of the classical gases that are usually monitored 

with conventional MOX sensors, like NH3, CO and CH4. Figure 3.c 

and Figure 3.d show a comparison between the responses observed 

to these gases and NO2. Concentrations were selected to cover the 

relevant range for each of the gases. Remarkably, our illuminated 

sensors displayed a much higher response to NO2 (well over 100% 

for sub-ppm concentrations) than to all those other gases (below 

100% for concentrations well above 1 ppm). These relatively 

smaller responses, even to higher concentrations of reducing gases, 

are generally observed in photoactivated gas sensors and may open 

interesting paths for selectivity improvements10. 

In conclusion, we have presented a gas sensor capable of  

(1) operating at room temperature, (2) measuring the concentration 

of NO2 from a few ppb to ppm (which are record low detection 

limit and operation range values for this type of sensor),  

(3) with a power consumption as low 30 W (again a record value). 

The sensor was based on the micro light plate (LP) configuration, 

which offers a direct path for mass production and industrialization, 

as it is fully based in microelectronic processing. The material used 

was ZnO nanoparticles, which are today inexpensive and commer-

cially available. The responses obtained are well described by the 

models available in the literature and exhibit interfering effects 

comparable to those of any other MOX-based sensor that could be 

compensated with additional sources of information (e.g. humidity 

sensor). Therefore, this development represents a step ahead to-

wards the dream of mass producible, very sensitive, robust and low 

power gas sensors for NO2, one of the most socially sound urban 

pollutants. 
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