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aDept. de Matemàtica Econòmica, Financera i Actuarial and BEAT
Universitat de Barcelona

Av. Diagonal 690, 08034 Barcelona, Spain
bDept. de Matemàtiques
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Abstract

We analyze assortative assignment games, introduced in Becker (1973) and

Eriksson et al. (2000). We study the extreme core points and show an

easy way to compute them. We find a natural solution for these games. It

coincides with several well-known point solutions, the median stable utility

solution (Schwarz and Yenmez, 2011) and the nucleolus (Schmeidler, 1969).

We also analyze the behavior of the Shapley value. We finish with some

extensions, where some hypotheses are relaxed.
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1. Introduction

Several economic and other areas depend heavily on the allocation of in-

divisible resources, objects or persons. A simple but deeply analyzed prob-

lem is that of matching, by making valuable pairs, the elements of two finite
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sets. These are referred to hereafter as the agents’ sets. An assignment

matrix or array collects all these valuations.

There are at least two main issues to be addressed in any assignment

problem. Firstly we have to search/look and analyze how agents sort them-

selves out, that is, who is matched with whom. Secondly we have to solve

the assignment problem by proposing and studying fair allocations for the

agents. Both aspects have been dealt with extensively. Roth and Sotomayor

(1990) serves as an accurate well-written text at these issues and an up-to-

date survey is Núñez and Rafels (2015).

Concurrent in time with the seminal paper of Shapley and Shubik (1972),

Becker (1973) shows up an original application of assignment problems to

the marriage market in which households produce some output to share

between man and woman. In some assignment problems he conveys the

effect of mating of the likes.

To model the mating of the likes he introduces two independent condi-

tions on the assignment matrix. First, the association of likes is optimal

when traits are complements and second, each trait has a monotone effect

on the output, higher values have a larger effect. Moreover he proposes

and analyzes the core of the game as a decisive reference solution set for

searching allocations to solve the assignment problem. In Becker’s paper no

explicit allocation is proposed.

In Chapter 10, Open questions and research directions, Roth and So-

tomayor (1990) already expresses the aim of studying special classes of as-

signment problems “(...) of the kind explored by Becker (...)” (page 247).

Sherstyuk (1999) and Eriksson et al. (2000) manage to get insight into these

topics. Sherstyuk analyzes multilateral supermodular assignment games.

She proves the non-emptiness of the core and finds some extreme core allo-
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cations à la Shapley and Shubik. She imposes not only supermodularity but

also monotonicity and opens a question about the possibility of relaxing the

monotonicity condition, which we tackle in the last section of this paper.

Eriksson et al. (2000) formalize Becker’s ideas and introduce what is known

as Becker’s assortative assignment problems. Eriksson et al.(2000) discovers

how to compute the buyers-optimal and sellers-optimal core allocations in

the square case. They point out that all core payoffs rank the agents of any

one side in the same way.

Finally Schwarz and Yenmez (2011) shows the existence of a family of

central stable utility imputations for any assignment game. No formula is

given and they open the question to analyze these allocations as a pon-

deration of the extreme core allocations. In particular, they show that for

monotone supermodular production functions the fair allocation (Thomp-

son, 1981) coincides with their median stable utility solution (MSUS).

The central purpose of this paper is to propose a new point solution to

solve any assortative, square or not, assignment problem. It outcrops after

a reexamination of the core of an assortative assignment game inspired by

the seminal Becker’s paper. Once defined and established an easy closed

formula in terms of the original entries of the assignment matrix, we devote

our efforts to intertwine its main properties.

Firstly we show that this solution always coincide with the median sta-

ble utility solution introduced in Schwarz and Yenmez (2011). Secondly it

always coincides with the nucleolus (Schmeidler, 1969) of the assortative

assignment game. This is a pleasant result since the nucleolus must be com-

puted by tedious algorithms. Thirdly, we analyze the core and obtain an

easy method to compute all extreme core points, and its number, a power

of two.
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To end the paper, we analyze which are the conditions for the Becker’s

solution to coincide with the Shapley value (Shapley, 1953) and also some

extensions of the model to cover other assignment markets where our results

can be applied.

2. Preliminaries

A bilateral assignment market (F ,W, A) is formed by two non-empty

disjoint sets, the set of firms F = {f1, f2, . . . , fm} and the set of workers

W = {w1, w2, . . . , wn} where m could be different from n and a non-negative

matrix A = (aij)(fi,wj)∈F×W ∈ M+
m×n where each entry aij represents some

measure of the joint productivity of firm fi and worker wj when they are

matched together. Clearly this productivity depends on the agents and

could be written as a(fi, wj) or a(i, j). When m = n the assignment market

is said to be square.

A matching µ from firms F to workers W is a bijection from F1 ⊆ F

to W1 ⊆ W, such that |F1| = |W1| = min {|F| , |W|}.2 The set of all

matchings is denoted byM (F ,W) . Similarly we useM (S, T ) to represent

all matchings from S ⊆ F to T ⊆ W.

We say firm fi and worker wj are matched by µ if wj = µ (fi) or fi =

µ−1 (wj) . In this case we also say that each one is the partner by µ of the

other one. With some abuse of notation we also write (fi, wj) ∈ µ. When

dealing with indices we also use j = µ (i) or i = µ−1 (j) , if no confusion

arises. When an agent does not have any partner by µ we say agent is

unmatched.

2|F | represents the cardinality of the set F.
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A matching µ ∈M (F ,W) is optimal for the assignment market (F ,W, A)

if for any other matching µ′ we have

∑
(fi,wj)∈µ

aij ≥
∑

(fi,wj)∈µ′
aij .

The set of all optimal matchings is denoted by M∗A (F ,W) .

Shapley and Shubik (1972) associates any assignment market with a

cooperative game,3 the assignment game, where the set of players is F ∪W

and the characteristic function vA is defined for any ∅ 6= S ⊆ F and ∅ 6=

T ⊆ W,

vA (S ∪ T ) = max
µ∈M(S,T )

 ∑
(fi,wj)∈µ

aij

 ,

whereM(S, T ) is the set of matchings from S to T. Moreover vA(S∪T ) = 0

if either S = ∅ or T = ∅.

Notice that any pair of firm and worker evaluates its worth by exactly

the corresponding matrix entry, and any other coalition determines its worth

by pairwise combinations its members can form.

The agents of an assignment market may divide among themselves their

worth in any way they like. An imputation is a non-negative vector (x, y) ∈

Rm+ × Rn+ such that
∑m

i=1 xi +
∑n

j=1 yj = vA (F ∪W) , where we interpret

xi and yj as the payoffs associated to firm fi and worker wj respectively.

The core of the assignment game C (vA) is described for any fixed µ ∈

3In a cooperative game (N, v), the set of players is given by N = {1, . . . , n} and v is a

function that assigns a real number v(S) for any coalition S ⊆ N with v(∅) = 0. Its core

is defined as C(v) := {x ∈ Rn |
∑

i∈N xi = v(N) and for all S ⊆ N,
∑

i∈S xi ≥ v(S)}. A

game is named balanced if its core is nonempty.
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M∗A (F ,W) as those imputations (x, y) ∈ Rm+ × Rn+ satisfying

xi + yj ≥ aij for all (fi, wj) ∈ F ×W,

xi + yj = aij for all (fi, wj) ∈ µ.

Unassigned agents by µ receive a zero payoff in any core allocation.

Shapley and Shubik (1972) proves that the core of any assignment game

is always nonempty. Among the core allocations of an assignment game,

there are two specific extreme core points: the buyers-optimal core allocation

(xA, yA) where each buyer attains her maximum core payoff and each seller

his minimum, and the sellers-optimal core allocation (xA, yA) where each

seller attains his maximum core payoff and each buyer her minimum.

In Mart́ınez-de-Albéniz et al. (2011) an alternative characterization of

the core is given. Let (F ,W, A) be a square assignment market. Then the

core is described as those imputations (x, y) ∈ Rm+ × Rm+ satisfying

xi + yj ≤ vA(F ∪W)− vA(F ∪W \ {fi, wj}) for all (fi, wj) ∈ F ×W. (1)

Moreover, given two square assignment markets (F ,W, A) and (F ,W, B),

their cores coincide C(vA) = C(vB) if and only if

vA(F ∪W \{fi, wj}) = vB(F ∪W \{fi, wj}), for all (fi, wj) ∈ F ×W. (2)

3. Assortative assignments. Extreme core allocations

Assortative assignment markets were introduced by Becker (1973). These

markets model special bilateral assignment problems where agents on each

side can be ordered by some trait with the consequence that the mating of

the likes or a positive assortative mating will form. Assortativity is modeled
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by two monotonic effects with respect to the traits: the output effect and

the increment of output effect.

An assignment market (F ,W, A) is an assortative market if it satisfies:

a) supermodularity4 (the main diagonal is optimal in any 2× 2 submar-

ket):

ail + akj ≤ aij + akl for all 1 ≤ i < k ≤ m, and 1 ≤ j < l ≤ n. (3)

b) monotonicity (non-decreasing rows and columns):

aij ≤ akl for all 1 ≤ i ≤ k ≤ m, and 1 ≤ j ≤ l ≤ n. (4)

Matrix A is called assortative.

Only adjacent rows and adjacent columns are needed to check the su-

permodularity condition.

The class of assortative matrices is large enough. In fact, they form a

full-dimensional convex cone in M+
m×n (see Eriksson et al., 2000).

Let (F ,W, A) be an assortative market with m ≤ n. From the supermod-

ularity condition at least one optimal matching µ ∈M (F ,W) is monotone,

i.e.

for all fi1 , fi2 ∈ F and wj1 = µ(fi1), wj2 = µ(fi2) if i1 < i2 then j1 < j2.

When the assortative assignment market is square, that is m = n, there

is only one monotone matching which is placed in the main diagonal i.e.

µ(fi) = wi for i = 1, 2, . . . ,m. This is, by the previous observation, optimal

(maybe not unique).

4Notice that this condition implies that matrix entries as function of the indices is

supermodular in the lattice {1, . . . ,m} × {1, . . . , n} with the usual order. When the

reverse inequalities hold, it is called submodularity.
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We will concentrate in the square case since any non-square assortative

matrix with m < n could be analyzed by adding null rows at the beginning of

the matrix. In this way we preserve supermodularity and the monotonicity

conditions.

Now we summarize some important and known results for any square

assortative assignment game (F ∪W, vA) with A ∈ M+
m.

(a) The main diagonal of the assignment matrix A is an optimal matching

(maybe not unique).

(b) An allocation (x, y) ∈ Rm+ ×Rm+ belongs to the core C(vA) if and only

if

xi + yi = aii for all i = 1, 2, . . . ,m, (5)

xi + yi+1 ≥ ai i+1 for all i = 1, 2, . . . ,m− 1, (6)

xi+1 + yi ≥ ai+1 i for all i = 1, 2, . . . ,m− 1. (7)

(c) At any core allocation (x, y) ∈ C(vA) we have

0 ≤ x1 ≤ x2 ≤ . . . ≤ xm,

0 ≤ y1 ≤ y2 ≤ . . . ≤ ym.

Items (a) and (b) depend only on the supermodularity condition of the

assignment matrix, and a proof can be found in Mart́ınez-de-Albéniz and

Rafels (2014). Item (c) depends only on the monotonicity and the fact

that we have an optimal matching in the main diagonal. It is known for

assortative matrices (see Eriksson et al., 2000).

Now we give a new and simple procedure to obtain all the extreme core

points. To this end, for notational convenience we introduce, for any square

assortative assignment market (F ,W, A) firm 0 and worker 0 and denote

a00 = a01 = a10 = 0.
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A central path (a path) p is a sequence of different places or positions in

(F ∪ {0})× (W ∪ {0})

p =
(
(0, 0), (i1, j1), (1, 1), (i2, j2), (2, 2), . . . , (m− 1,m− 1), (im, jm), (m,m)

)
,

where (k − 1, k − 1) ≤ (ik, jk) ≤ (k, k), ik 6= jk, for k = 1, 2, . . . ,m.

Notice that for any central path p and any k = 1, 2, . . . ,m, either (k−1, k)

or (k, k−1) belongs to p but not both. Therefore there are 2m different paths.

The set of all paths is denoted by Pm.

A central path connects the initial position (0, 0) with the last one (m,m)

within the central strip. There are two important central paths, the one

through the upper part of the strip:

p∗ =
(
(0, 0), (0, 1), (1, 1), (1, 2), . . . , (m− 1,m− 1), (m− 1,m), (m,m)

)
, (8)

and its symmetric path:

p∗ =
(
(0, 0), (1, 0), (1, 1), (2, 1), . . . , (m− 1,m− 1), (m,m− 1), (m,m)

)
. (9)

For each path p ∈ Pm we associate an allocation vector, the p-vector

(xp, yp) ∈ Rm × Rm, by solving the linear equations given by all the places

of the selected path

xpk + ypk = ak k for k = 1, . . . ,m, and (10)

xpik + ypjk = aik jk for k = 1, . . . ,m, (11)

where we take for notational convenience xp0 = yp0 = 0.

For each path p the above linear system has a unique solution, which

satisfies xpk ≥ 0 and ypk ≥ 0 for k = 1, . . . ,m, (xp, yp) ∈ C(vA), and in fact

it is an extreme core point. We prove it by induction over m.
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Firstly notice that if m = 1 there are only two different paths which

vector is either (a11, 0) or (0, a11). Assume that the solution is unique up to

k, k > 1, and without loss of generality assume path p contains (k, k + 1).

Then by (10) and (11) we have

xpk + ypk = ak k,

xpk + ypk+1 = ak k+1,

xpk+1 + ypk+1 = ak+1 k+1.

Simple manipulations yield, where we use the definition of assortative ma-

trix, see (3) and (4),

ypk+1 = ypk + [ak k+1 − ak k] ≥ ypk ≥ 0,

xpk+1 = xpk + [ak+1 k+1 − ak k+1] ≥ xpk ≥ 0,

xpk+1 + ypk = ak+1 k+1 + ak k − ak k+1 ≥ ak+1 k.

From here we obtain the uniqueness of the solution (xp, yp) and the fact

that (xp, yp) ∈ C(vA).

Moreover (xp, yp) is an extreme core point. To see it, just notice that if

it were the midpoint of two other core points, these points must satisfy with

equality all entries of path p. By uniqueness of the solution, they coincide

with (xp, yp).

We know that each central path gives an extreme core point. Let us

write Ext(C(vA)) the set of all extreme core points. We prove next that

any extreme core point is linked to a central path, that is, there is a cor-

respondence between paths and extreme core points. This is the following

theorem. All the omitted proofs are in the Appendix.
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Theorem 3.1. Let (F ,W, A) be a square assortative assignment market

with A ∈ M+
m. Then

Ext(C(vA)) = {(xp, yp)}p∈Pm .

From the previous theorem there are at most 2m different extreme core

points. As the reader may suspect, different paths can give the same extreme

core point. Therefore to analyze this issue we introduce some additional

notation.

Given an square assortative matrix A, we define its principal elements

dA1 = a11 ≥ 0, (12)

dAk = ak−1 k−1 + ak k − ak−1 k − ak k−1 ≥ 0 for k = 2, . . . ,m. (13)

Notice that each dAk , k = 2, . . . ,m, corresponds to a consecutive 2 × 2

submarket centered at the main diagonal. The number of extreme core

points is strongly related to the number of nonzero principal elements, nA,

that is

nA =
∣∣{k ∈ {1, 2, . . . ,m} | dAk 6= 0

}∣∣ .
Then we have the following theorem.

Theorem 3.2. Let (F ,W, A) be a square assortative assignment market

with A ∈ M+
m. Then

|Ext(C(vA))| = 2nA .

The proof is a direct consequence of the next lemma.

In the next lemma we analyze what happens with the allocation associ-

ated to a path when we move one and only one of its positions. In this way

we realize whether this change implies an actual change in the allocation.

This fact allows to count the number of extreme core points.
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Lemma 3.1 (Switching lemma). Let (F ,W, A) be a square assortative as-

signment market with A ∈ M+
m and let p ∈ Pm be a central path through

(ik∗ , jk∗) = (k∗, k∗ − 1) for some k∗ ∈ {1, . . . ,m}. Let p′ ∈ Pm be the same

path as p except we have switched (ik∗ , jk∗) position to (k∗− 1, k∗). Then we

have

xp
′

k = xpk and yp
′

k = ypk for 1 ≤ k ≤ k∗ − 1,

xp
′

k = xpk + dAk∗ and yp
′

k = ypk − d
A
k∗ for k∗ ≤ k ≤ m,

(14)

where (xp, yp) and (xp
′
, yp

′
) are defined in (10) and (11), and dAk∗ in (12)

and (13).

Proof. We have to prove that the allocation defined in (14) satisfies equalities

of path p′. Since (xp, yp) is associated with path p, the only equality we have

to check is the corresponding to the position (k∗ − 1, k∗). Then for k∗ 6= 1,

xpk∗−1 + (ypk∗ − d
A
k∗) =

[
ak∗−1 k∗−1 − ypk∗−1

]
+
[
ak∗ k∗ − xpk∗

]
− dAk∗ =

= ak∗−1 k∗ + ak∗ k∗−1 − ypk∗−1 − x
p
k∗ = ak∗−1 k∗ .

For k∗ = 1, recall yp1 = a11 and xp0 + (yp1 − dA1 ) = 0 = a01, finishing the

proof.

It rests to analyze the proof of Theorem 3.2. Notice that only when

in the switching lemma, Lemma 3.1, dAk∗ = 0 then the extreme core points

corresponding to p and p′ coincide. Therefore each time a principal element

vanishes, the initial potential number of 2m extremes is divided by 2, which

concludes the proof.

This switching lemma indicates that whenever we raise up a path, firms’

sector is benefited, and consequently, workers’ sector is harmed. Recall

that dAk ≥ 0 for all k ∈ {1, . . . ,m}. Clearly whenever a path is modified
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downward, workers’ sector is benefited. Then as a direct consequence of the

switching lemma we have (xp
∗
, yp

∗
) = (xA, yA), where p∗ is the path given in

(8), and path given in (9) is the path for the workers-optimal core allocation,

i.e. (xp∗ , yp∗) = (xA, yA).

4. The solution

We want to show that a specific point solution has outstanding proper-

ties. We define this solution and prove that it is a core point.

Definition 4.1. Let (F ,W, A) be a square assortative assignment market

with A ∈ M+
m. The solution is defined by (x∗, y∗) ∈ Rm+ × Rm+ where for

i = 1, 2, . . . ,m,

x∗i =
1

2
aii +

1

2

i−1∑
k=1

ak+1 k −
1

2

i−1∑
k=1

ak k+1, (15)

y∗i =
1

2
aii −

1

2

i−1∑
k=1

ak+1 k +
1

2

i−1∑
k=1

ak k+1. (16)

We prove now that this solution is a core element, i.e. (x∗, y∗) ∈ C(vA).

To see that all components are non-negative, just observe that for i =

1, . . . ,m− 1,

x∗i+1 − x∗i =
1

2
[ai+1 i+1 + ai+1 i − ai i+1 − ai i]

=
1

2
[ai+1 i+1 + ai i − ai+1 i − ai i+1] + [ai+1 i − ai i] ≥ 0,

using the supermodularity and monotonicity of matrix A, see (3) and (4).

Moreover x∗1 = 1
2 a11 ≥ 0. We have proved

x∗m ≥ x∗m−1 ≥ · · · ≥ x∗2 ≥ x∗1 ≥ 0.

Similarly,

y∗m ≥ y∗m−1 ≥ · · · ≥ y∗2 ≥ y∗1 ≥ 0.
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Trivially x∗i + y∗i = ai i for i = 1, . . . ,m. Finally, for i = 1, . . . ,m − 1, we

have x∗i + y∗i+1 ≥ ai i+1 and x∗i+1 + y∗i ≥ ai+1 i. We prove the first ones and

the others are proved similarly. For i = 1, . . . ,m− 1, we have

x∗i + y∗i+1 =
1

2
[ai+1 i+1 + ai i − ai+1 i − ai i+1] + ai i+1 ≥ ai i+1,

where we have used the supermodularity condition. Now using (5)–(7) we

obtain (x∗, y∗) ∈ C(vA).

Now we define the median stable utility solution introduced by Schwarz

and Yenmez (2011).

Definition 4.2 (Schwarz and Yenmez, 2011). Let (F ,W, A) be an square

assignment market with A ∈ M+
m. The median stable utility solution (MSUS)

is the unique core allocation vmedian(A) = (x̃, ỹ) such that, for all fi ∈ F

and for all wj ∈ W,

λr({(x, y) ∈ C(vA) | xi ≥ x̃i}) = λr({(x, y) ∈ C(vA) | xi ≤ x̃i}),

λr({(x, y) ∈ C(vA) | yj ≥ ỹj}) = λr({(x, y) ∈ C(vA) | yj ≤ ỹj}),

where λr is the Lebesgue measure in Rr, with r = dimC(vA), see Núñez and

Rafels (2008).

We prove next that our solution coincides with the median stable util-

ity solution and the midpoint between the buyers-optimal and the sellers-

optimal core allocations. This last coincidence is stated in Schwarz and

Yenmez (2011). Moreover, we prove later that it coincides with the nucle-

olus of the assignment game. Therefore we provide a nice formula for the

nucleolus using only the matrix entries to compute it.

Theorem 4.1. Let (F ,W, A) be a square assortative assignment market

with A ∈ M+
m. Then the following statements are equivalent:
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1. (u, v) = 1
2

[
(xp

∗
, yp

∗
) + (xp∗ , yp∗)

]
, where p∗ and p∗ are given by (8) and

(9),

2. (u, v) = (x∗, y∗) , where (x∗, y∗) is given in Definition 4.1,

3. (u, v) = (x̃, ỹ) where (x̃, ỹ) is given in Definition 4.2.

Proof. In order to prove the theorem we only need to check that (x∗, y∗) =

1
2

[
(xp

∗
, yp

∗
) + (xp∗ , yp∗)

]
, since by Schwarz and Yenmez (2011) vmedian(A) =

(x̃, ỹ) = 1
2

[
(xp

∗
, yp

∗
) + (xp∗ , yp∗)

]
for any square assortative assignment

market.

Clearly u1 = v1 = 1
2a11 and for k = 1, . . . ,m, we have uk + vk = akk.

Notice that for all k ∈ {2, . . . ,m} position (k− 1, k) belongs to path p∗ and

position (k, k − 1) to path p∗. Then we have, for k = 2, . . . ,m.

uk−1 + vk =
1

2

[
(xp

∗

k−1 + xp∗k−1) + (yp
∗

k + yp∗k )
]

=
1

2

[
ak−1 k + xp∗k−1 + yp∗k

]
=

1

2
[ak−1 k + ak−1 k−1 + ak k − ak k−1]

= ak−1 k +
1

2
dAk .

Solving the above linear equations we easily obtain

ui =
1

2

[
aii +

i−1∑
k=1

ak+1 k −
i−1∑
k=1

ak k+1

]
for i = 1, . . . ,m,

vj =
1

2

[
ajj −

j−1∑
k=1

ak+1 k +

j−1∑
k=1

ak k+1

]
for j = 1, . . . ,m.

Now we turn to the nucleolus of the square assortative assignment game.

Among other solutions, the nucleolus (Schmeidler, 1969) is a “fair” solu-

tion in the general context of cooperative games. For balanced games, it
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is the unique core-selection that lexicographically minimizes the excesses5

arranged in a nondecreasing way.

Here, we use the characterization of the nucleolus of a square assignment

game of Llerena and Núñez (2011). Given any square assignment game

(F ∪W, vA) and two arbitrary coalitions ∅ 6= S ⊆ F and ∅ 6= T ⊆ W, we

define

δAS,T (x, y) := min
i∈S,j∈W\T

{xi, xi + yj − aij} , (17)

δAT,S (x, y) := min
j∈T,i∈F\S

{yj , xi + yj − aij} , (18)

for any core allocation (x, y) ∈ C (vA).

Llerena and Núñez (2011) prove that the nucleolus of a square assignment

game ν(vA) is characterized as the unique core allocation (x, y) ∈ C(vA) such

that for some optimal matching µ ∈M∗A (F ,W)

δAS,µ(S) (x, y) = δAµ(S),S (x, y) , for any ∅ 6= S ⊆ F . (19)

Now we are in the position to prove that our solution coincides with the

nucleolus of the assortative assignment game. Its rather technical proof can

be found in the Appendix.

Theorem 4.2. Let (F ,W, A) be a square assortative assignment market,

and (F ∪ W, vA) be its associated cooperative game. Then, the solution

defined in Definition 4.1 coincides with the nucleolus of the game, i.e.

(x∗, y∗) = ν(vA).

5Given a coalition S ⊆ N, and an allocation x ∈ RN the excess of a coalition is defined

as e (S, x) := v (S)−
∑

i∈S xi. Note they can be considered as complaints.
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5. The solution and the Shapley value

The most popular single point solution for cooperative games is the Shap-

ley value (Shapley, 1953). This solution assigns a vector for any cooperative

game, and it is based on marginalistic considerations. It can be regarded

as an ex-ante evaluation of the value (power) of any player in the game. It

is defined as the mean of all marginal worth vectors and a specific formula

can be derived. For any cooperative game (N, v) the Shapley value Sh(v)

is defined for all i ∈ N as

Shi(v) =
∑

S⊆N\{i}

s! (n− s− 1)!

n!
[ v(S ∪ {i})− v(S) ] , (20)

where |S| = s.

It is well-known that the Shapley value is usually outside the core for as-

signment games. Hoffmann and Sudhölter (2007) study the Shapley value for

assignment games and prove that for all exact assignment games the Shap-

ley value belongs to the core. They prove that this is a sufficient but not a

necessary condition with a thorough study of 2× 2 assignment games. Ex-

act assignment games have been studied by Solymosi and Raghavan (2001),

where they derive two conditions: dominant diagonal and doubly-dominant

diagonal.

Now we investigate the relationship between the Shapley value and our

solution, and show that for square assortative assignment games, both solu-

tions coincide only for some specific assortative matrices. This is our next

theorem.

Theorem 5.1. Let (F ,W, A) be a square assortative assignment market,

and (F ∪W, vA) its associated cooperative game. The following statements

are equivalent:
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1. The solution in Definition 4.1 and the Shapley value coincide,

(x∗, y∗) = Sh(vA).

2. The Shapley value belongs to the core, Sh(vA) ∈ C(vA).

3. Matrix A is as follows:

A =


α1 α1 . . . α1

α1 α2 . . . α2

...
...

. . .
...

α1 α2 · · · αm

 , with 0 ≤ α1 ≤ α2 ≤ . . . ≤ αm.

Roughly speaking, this result shows that the Shapley value belongs to the

core of an assortative assignment game only when the dominant diagonal

property holds. Combined with the monotonicity, we obtain the special

structure of the matrix.

6. Extensions

Now we introduce some extensions of the assortative market notion.

The first one contributes to relax the monotonicity condition (4). This

possibility was also pointed out in Sherstyuk (1999). We name this concept

weak-assortative and basically, apart from the supermodularity conditions,

we request the monotonicity only on the central strip of the matrix.

Given an assignment market (F ,W, A) where A ∈ M+
m we say it is a

weak-assortative market if it satisfies supermodularity condition (3) and an

alternative condition to (4), that is

b’) central strip monotonicity (entries of the central strip satisfy mono-
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tonicity):

aij ≤ akl for all 1 ≤ i ≤ k ≤ m, and 1 ≤ j ≤ l ≤ m, (21)

with |i− j| ≤ 1 and |k − l| ≤ 1.

As the name suggests, weak-assortative is a proper extension of the assor-

tative class of assignment markets. Nevertheless there is a kind of reverse

implication. The core of any weak-assortative market equals the core of an

assortative one. This is the essence to transfer the properties from assorta-

tive markets to weak-assortative ones. This result is constructive.

We introduce for any square matrix A ∈ M+
m the matrix Ã ∈ Mm defined

by:

ãij =


∑j−1

k=i ak k+1 −
∑j−1

k=i+1 akk for 1 ≤ i < j ≤ m,

aii for 1 ≤ i = j ≤ m,∑i−1
k=j ak+1 k −

∑i−1
k=j+1 akk for 1 ≤ j < i ≤ m,

(22)

where the summation over an empty set of indices is zero. Notice that in

general, entries ãij may be negative, but if matrix A is weak-assortative,

then Ã ∈ M+
m, since expression (22) can be written as:

ãij =


ai i+1 +

∑j−1
k=i+1[ak k+1 − akk] ≥ 0 for 1 ≤ i < j ≤ m,

aii for 1 ≤ i = j ≤ m,

aj+1 j +
∑i−1

k=j+1[ak+1 k − akk] ≥ 0 for 1 ≤ j < i ≤ m.

(23)

Notice that matrices A and Ã have the same central strip.

Theorem 6.1. Let (F ,W, A) be an square weak-assortative market with

A ∈ M+
m. Then there exists an assortative market (F ,W, Ã) with Ã ∈ M+

m

given by (22) with the same core

C(vA) = C(v
Ã

).
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As a consequence of the above theorem, we can apply to any weak-

assortative matrix, directly from its central strip our previous results for

assortative matrices, that is, the extreme core points, our solution, and its

coincidence with MSUS, the nucleolus,6 etc.

Weak-assortative matrices open the possibility to look for a more general

class of assignment matrices that can be solved and their core described using

an appropriate assortative matrix. These matrices will be called assortative-

solvable.

Given an square assignment market (F ,W, A) where A ∈ M+
m we say it

is assortative-solvable if there exists an square assortative matrix B ∈ M+
m

with the same core, that is C(vA) = C(vB).

Weak-assortative matrices are assortative-solvable, but there are another

ones, as the next example shows.

Example 6.1. Consider the following square assignment market (F ,W, A)

with matrix

A =


21 25 27 5

26 30 2 0

7 41 52 60

8 2 53 73

 .

The assignment matrix A is not assortative, not even supermodular, not

even central strip monotone. An optimal matching is in boldface.

6Núñez (2004) proves that for assignment games, equality of cores implies coincidence

of nucleolus.
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Matrix

B =


21 25 26 30

26 30 32 38

37 41 52 60

37 41.5 53 73


is assortative and defines the same core: C(vB) = C(vA). To see this equality

of the cores, notice that vA(F ∪ W) = vB(F ∪ W) = 176 and check the

equalities in (2).

As an application we know that C(vA) has exactly 2nB = 8 extreme core

allocations, the firms-optimal and workers-optimal core allocations are

(xA, yA) =(21, 26, 46, 59; 0, 4, 6, 14),

(xA, yA) =(0, 5, 16, 17; 21, 25, 36, 56).

The nucleolus of the assignment game (F ∪W, vA) is just the middle point

or the solution of Definition 4.1 applied to matrix B :

ν(vA) = ν(vB) = (10.5, 15.5, 31, 38; 10.5, 14.5, 21, 35).

Notice that we have to use matrix B to obtain the extreme core allocations

or our solution. We cannot apply our methods directly to matrix A, since

the central strip changes from matrix A to the assortative matrix B.

Two natural questions arise. Firstly how to know whether matrix A ∈

M+
m is assortative-solvable and secondly how to find an associated assortative

matrix. First of all, we fix an optimal matching on the main diagonal: the

optimal partner of firm fk ∈ F is worker wk ∈ W.

Given a matrix A ∈ M+
m with an optimal matching placed on the main

diagonal, we introduce an auxiliary matrix H(A) = (hAij) ∈ M+
m defined by

hAij = vA(F ∪W)− vA(F ∪W \ {fj , wi}), for i, j = 1, . . .m. (24)
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Notice that in (24) we subtract the worth of the market without the partners

of firm fi and worker wj , that is, we drop out worker wi and firm fj . This

matrix is the cornerstone for our characterization.

In the above Example 6.1 we can compute matrix H(A) :

H(A) =


21 26 46 59

25 30 50 63

36 41 52 65

56 61 72 73

 .

Notice that matrix H(A) is submodular and monotonic7. This will be

our main result, since both properties for matrix H(A) characterize the

assortative-solvability of matrix A. Moreover, an assortative matrix B is

directly related to H(A) as next theorem shows.

Theorem 6.2. Let (F ,W, A) be a square assignment market where A ∈ M+
m

and an optimal matching is placed on the main diagonal. Let matrix H(A)

be the matrix defined in (24). Then the following statements are equivalent:

1. Matrix A is assortative-solvable.

2. Matrix H(A) is submodular and monotonic.

Moreover, in this case, an assortative matrix B ∈ M+
m with the same core is

given by bij = aii + ajj − hAij , for all (fi, wj) ∈ F ×W.

Notice that in Example 6.1 matrix B given by Theorem 6.2 does not

coincide with the one in the example. This shows that an assortative-solvable

matrix does not determine the assortative matrix which corresponds to it.

7For the definition of submodular, see (3) but reversing the inequalities, and for mono-

tonicity see (4).
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One possible extension of the current paper is to many-to-one markets

in the tradition of Kelso and Crawford (1982). In this setting, Chen et al.

(2016) show the existence of a median stable matching, and this is a line of

future research.
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[10] Núñez, M., 2004. A note on the nucleolus and the kernel of the assign-

ment game. International Journal of Game Theory 33, 55–65.
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AppendixA. Proofs

Proof of Theorem 3.1

Proof. One inclusion has been discussed previously. For the other, suppose

(x, y) is an extreme core point but it does not correspond to any path. Since

in any extreme core allocation either x1 = 0 or y1 = 0 (see Hamers et al.,

2002), then either x0 + y1 = a01 or x1 + y0 = a10 where x0 = y0 = 0 by

notational convenience. Let k ∈ {1, 2, . . . ,m− 1} be the first index where

xk + yk+1 > ak k+1 and xk+1 + yk > ak+1 k. Notice that xk+1 > 0 since if

xk+1 = 0 then xk = 0 and ak k = xk + yk = xk+1 + yk > ak+1 k contradicting

(4). Similarly yk+1 > 0.

Now take ε ∈ R defined below

ε = min {xk+1, yk+1, xk+1 + yk − ak+1 k, xk + yk+1 − ak k+1} > 0,

and define (x′, y′) ∈ RF+ × RW+ by

x′t = xt and y′t = yt, for t ≤ k,

x′t = xt + ε and y′t = yt − ε, for t > k.
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We have (x′, y′) ∈ C(vA) and (x′, y′) 6= (x, y). Indeed it is enough to see that

x′k + y′k+1 = xk + yk+1 − ε ≥ ak k+1.

Similarly define (x′′, y′′) ∈ RF+ × RW+ by

x′′t = xt and y′′t = yt, for t ≤ k,

x′′t = xt − ε and y′′t = yt + ε, for t > k.

Then (x′′, y′′) ∈ C(vA) and (x′′, y′′) 6= (x, y). Moreover (x, y) is the midpoint

between (x′, y′) and (x′′, y′′), a contradiction with (x, y) being an extreme

core point.

Proof of Theorem 4.2

Proof. We first prove some technical results that the solution (x∗, y∗) in

Definition 4.1 satisfies.

Notice first that for j = 2, . . . ,m,

x∗j − x∗j−1 =
1

2
[aj j + aj j−1 − aj−1 j − aj−1 j−1] . (A.1)

Lemma A.1 For all k ∈ {2, . . . ,m} we have

0 ≥ x∗1 − a1 k ≥ x∗2 − a2 k ≥ . . . ≥ x∗k−1 − ak−1 k, (A.2)

0 ≥ y∗1 − ak 1 ≥ y∗2 − ak 2 ≥ . . . ≥ y∗k−1 − ak k−1. (A.3)

For the first inequality of (A.2), just observe a1 k ≥ a1 1 ≥ 1
2 a1 1 = x∗1. For

the rest of inequalities let j ∈ {2, . . . , k−1} and because of supermodularity,

notice j < k, we have

aj k − aj−1 k ≥ aj j−1 − aj−1 j−1,

aj k − aj−1 k ≥ aj j − aj−1 j .

Summing up and using (A.1) we get the desired result. Inequalities (A.3)

are left for the reader.
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Lemma A.2 For all k ∈ {1, . . . ,m− 1} we have

x∗m − amk ≥ x∗m−1 − am−1 k ≥ . . . ≥ x∗k+1 − ak+1 k, (A.4)

y∗m − akm ≥ y∗m−1 − akm−1 ≥ . . . ≥ y∗k+1 − ak k+1. (A.5)

To prove (A.4), let j ∈ {k+2, . . . ,m} and by supermodularity, notice j−1 >

k, we have

aj j − aj−1 j ≥ aj k − aj−1 k
aj j−1 − aj−1 j−1 ≥ aj k − aj−1 k.

Summing up and using (A.1) we get the desired result. The proof of (A.5)

is similar.

Finally and from the expression of the solution in Definition 4.1, it is

easy to see that for all k ∈ {1, . . . ,m− 1} we have

x∗k+1+y∗k−ak+1 k = x∗k+y∗k+1−ak k+1 =
1

2
[ak+1 k+1 + ak k − ak+1 k − ak k+1] .

(A.6)

Let fr ∈ F and denote R = {f1, . . . , fr} ⊆ F . Let AR be the matrix A

restricted to the first r rows and columns. Notice now that the solution for

AR, (x
∗
R, y

∗
R) ∈ Rr+×Rr+ is just the restriction of the solution for A, and that

(x∗R, y
∗
R) ∈ C(vAR

).

Now we prove that (x∗, y∗) is the nucleolus by induction over m. The case

m = 1 is obvious. Assume the statement is true until r, r ∈ {1, . . . ,m − 1}

and we prove it for r + 1. Denote by R1 = {1, . . . , r + 1} ⊆ F and AR1

matrix A restricted to the first r + 1 rows and columns.

Since matrix A is assortative, the main diagonal is an optimal matching

µ. Then S′ stands for µ(S) and we must check that

δAR1
S,S′ (x∗R1, y

∗
R1) = δAR1

S′,S (x∗R1, y
∗
R1) , for any ∅ 6= S ⊆ R1. (A.7)
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We proceed through cases.

Case 1: S ⊆ R,S 6= ∅.

δAR1
S,S′ (x∗R1, y

∗
R1) = min

i∈S,j∈R1\S

{
x∗i , x

∗
i + y∗j − aij

}
=

min
i∈S

{
δAR
S,S′ (x

∗
R, y

∗
R) , x∗i + y∗r+1 − ai r+1

}
=

min
{
δAR
S,S′ (x

∗
R, y

∗
R) , x∗is + y∗r+1 − ais r+1

}
,

where is = max {i | i ∈ S} , and we have used (A.2) with k = r + 1.

In the same way we obtain

δAR1
S′,S (x∗R1, y

∗
R1) = min

{
δAR
S′,S (x∗R, y

∗
R) , y∗is + x∗r+1 − ar+1 is

}
.

Now we have two possibilities:

(a) is = r. By induction hypothesis δAR
S,S′ (x

∗
R, y

∗
R) = δAR

S′,S (x∗R, y
∗
R) and by

(A.6) we have x∗r + y∗r+1− ar r+1 = y∗r + x∗r+1− ar+1 r and (A.7) holds.

(b) is < r. Then is+1 ≤ r, and by (A.5) taking k = is we have x∗is +y∗r+1−

ais r+1 ≥ x∗is + y∗is+1 − ais is+1. Now notice is ∈ S, is + 1 /∈ S, and then

x∗is + y∗r+1 − ais r+1 ≥ δAR
S,S′ (x

∗
R, y

∗
R) . In this case δAR1

S,S′ (x∗R1, y
∗
R1) =

δAR
S,S′ (x

∗
R, y

∗
R) and similarly δAR1

S′,S (x∗R1, y
∗
R1) = δAR

S′,S (x∗R, y
∗
R) , and by

the induction hypothesis (A.7) holds.

Case 2: S = {r + 1}.

δAR1
S,S′ (x∗R1, y

∗
R1) = min

j∈R

{
x∗r+1, x

∗
r+1 + y∗j − ar+1 j

}
=

min
{
x∗r+1, x

∗
r+1 + y∗r − ar+1 r

}
=

x∗r+1 + y∗r − ar+1 r,

where we have used (A.3) taking k = r+1 and 0 ≥ y∗1−ar+11 ≥ y∗r −ar+1 r.
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Similarly,

δAR1
S′,S (x∗R1, y

∗
R1) = x∗r + y∗r+1 − ar r+1.

Then (A.7) holds by (A.6).

Lastly Case 3: S = S̃ ∪ {r + 1}, S̃ ⊆ R, S̃ 6= ∅.

δAR1
S,S′ (x∗R1, y

∗
R1) = min

i∈S,j∈R1\S

{
x∗i , x

∗
i + y∗j − aij

}
=

min
j∈R\S̃

{
δAR

S̃,S̃′
(x∗R, y

∗
R) , x∗r+1, x

∗
r+1 + y∗j − ar+1 j

}
=

min
{
δAR

S̃,S̃′
(x∗R, y

∗
R) , x∗r+1 + y∗jt − ar+1 jt

}
,

where we have noticed first that R1 \ S = R \ S̃; we have x∗r+1 ≥ x∗r ≥

δAR

S̃,S̃′
(x∗R, y

∗
R) and we have used (A.3) with k = r+1 and jt = max

{
j | j ∈ R \ S̃

}
.

In the same way we obtain

δAR1
S′,S (x∗R1, y

∗
R1) = min

{
δAR

S̃′,S̃
(x∗R, y

∗
R) , y∗r+1 + x∗jt − ajt r+1

}
.

Now we have two possibilities:

(a) jt = r. By induction hypothesis δAR

S̃,S̃′
(x∗R, y

∗
R) = δAR

S̃′,S̃
(x∗R, y

∗
R) and by

(A.6) we have x∗r + y∗r+1− ar r+1 = y∗r + x∗r+1− ar+1 r and (A.7) holds.

(b) jt < r. Then jt + 1 ≤ r, and by (A.4) taking k = jt we have x∗r+1 +

y∗jt − ar+1 jt ≥ x∗jt+1 + y∗jt − ajt+1 jt . Now notice jt ∈ R \ S̃, jt +

1 /∈ R \ S̃, and then x∗r+1 + y∗jt − ar+1 jt ≥ δAR

S̃,S̃′
(x∗R, y

∗
R) . In this

case δAR1
S,S′ (x∗R1, y

∗
R1) = δAR

S̃,S̃′
(x∗R, y

∗
R) and similarly δAR1

S′,S (x∗R1, y
∗
R1) =

δAR

S̃′,S̃
(x∗R, y

∗
R) . Then (A.7) holds.

This finishes the proof.

Proof of Theorem 5.1
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Proof. 1. −→ 2. Immediate.

2. −→ 3. First, let (F ∪W, vA) be an square assignment game with A ∈

M+
m. Now we relate the Shapley value of this assignment game with the Shap-

ley value of the game when we add the same constant to all matrix entries.

This constant can be positive or negative, provided we stay into M+
m. Then,

from Hoffmann and Sudhölter (2007), for any t ≥ −min(fi,wj)∈F×W{aij}

define matrix At by atij = aij + t, that is At = A+ tU with matrix U ∈ M+
m

a matrix of ones. Now we have

Shi(vAt) =
t

2
+ Shi(vA), for all fi ∈ F , (A.8)

Shj(vAt) =
t

2
+ Shj(vA), for all wj ∈ W. (A.9)

Notice that if A is assortative then min(fi,wj)∈F×W{aij} = a11. Take

now t1 = −a11. Matrix At1 is assortative and since Sh(vA) ∈ C(vA), clearly

Sh(vAt1 ) ∈ C(vAt1 ). Therefore since at111 = 0, then Sh1(vAt1 ) = 0, for f1 ∈ F .

As a consequence of (20), at11 j = 0, for j = 2, . . . ,m. Similarly, taking w1 ∈ W

we can obtain at1i 1 = 0, for i = 2, . . . ,m. Then, we have proved that ai 1 = a11

for i = 2, . . . ,m, and a1 j = a11 for j = 2, . . . ,m.

Now players f1 ∈ F and w1 ∈ W are null players in (F ∪W, vAt1 ) since

at1i j = 0, for i = 1 or j = 1, and can be thrown out. Notice that the Shapley

value and the core satisfy the strong null property.8 Proceed in the same

way and the result is achieved.

3. −→ 1. It is a simple computation taking into account (A.8).

8A solution satisfies the strong null player property if any element of the solution to a

game assigns zero to any null player of the game and the solution to a game (N ∪ {i}, v′)

that arises from (N, v) by adding the null player i arises from the solution to (N, v) by

adding a zero coordinate for the null player i to any element of the solution to (N, v).
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Proof of Theorem 6.1

Proof. We show that matrix Ã given by (22) is assortative and C(vA) =

C(v
Ã

). First notice that for any i, j such that |i− j| ≤ 1 we have ãij = aij ,

that is, the central strip is the same in both matrices, A and Ã. It is easy to

see that ãij + ãi+1 j+1 = ãi j+1 + ãi+1 j for |i− j| ≥ 1. From here we conclude

that the market (F ,W, Ã) is supermodular.

We only have to show that ãij ≤ ãkl for 1 ≤ i ≤ k ≤ m and 1 ≤ j ≤ l ≤

m, or equivalently

ãij ≤ ãi+1 j for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ m, and (A.10)

ãij ≤ ãi j+1 for 1 ≤ i ≤ m and 1 ≤ j ≤ m− 1. (A.11)

We concentrate on (A.11) and the other case (A.10) is proved similarly.

Fix i ∈ {1, 2, . . . ,m} and we distinguish three cases: (a) 1 ≤ i < j ≤ m− 1,

(b) i = j or i = j + 1 and (c) 1 ≤ j + 1 < i ≤ m. Cases (a) and (c) come

from (22) and the weak-assortative hypothesis on matrix A. The case (b) is

immediate.

Since both matrices A, Ã are supermodular with the same central strip,

the equality of the cores follows, see the description of the core for super-

modular matrices (5) – (7).

Proof of Theorem 6.2

Proof. 1. −→ 2. Since A is assortative-solvable, there exists an assortative

matrix B ∈ M+
m such that C(vA) = C(vB). From here, since matrix A has

an optimal matching in the main diagonal, it is clear that the main diagonal

is also an optimal matching for matrix B and bkk = akk for k = 1, 2, . . . ,m.

We can assume, maybe by applying Theorem 6.1, that the entries of matrix
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B are given by (22). Now we claim, for all (fi, wj) ∈ F ×W,

bij = bii + bjj − vB(F ∪W) + vB(F ∪W \ {fj , wi}). (A.12)

Trivially (A.12) holds for 1 ≤ i = j ≤ m. We discuss one case and the other

case is proved similarly. For 1 ≤ i < j ≤ m,

bij =

j−1∑
k=i

bk k+1 −
j−1∑
k=i+1

bkk,

=

j−1∑
k=i

bk k+1 +
i−1∑
k=1

bkk +
m∑

k=j+1

bkk + bii + bjj −
m∑
k=1

bkk

= bii + bjj − vB(F ∪W) + vB(F ∪W \ {fj , wi}).

Notice that to compute the last equality, matrix without row j and column

i is a square assortative matrix and an optimal matching is placed in its

main diagonal.

Expression (A.12) can be written as

hBij = bii + bjj − bij , for all (fi, wj) ∈ F ×W. (A.13)

Moreover, by (2) it is easy to see H(A) = H(B).

Now since B is supermodular it is immediate, see (A.13), that matrix

H(B) is submodular. To see monotonicity of matrix H(B) we show

hBij ≤ hBi+1 j for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ m, and (A.14)

hBij ≤ hBi j+1 for 1 ≤ i ≤ m and 1 ≤ j ≤ m− 1. (A.15)

We prove (A.15) and (A.14) is proved similarly. Fix i ∈ {1, 2, . . . ,m}

and we distinguish three cases: (a) for 1 ≤ i < j ≤ m − 1 we have hBij =

bii+ bjj− bij ≤ bii+ bj j+1− bi j+1 ≤ bii+ bj+1 j+1− bi j+1 = hBi j+1, where the

first inequality comes from supermodularity and the second by monotonicity
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of matrix B; (b) for i = j or i = j + 1 just use the monotonicity of B; and

(c) for 1 ≤ j+1 < i ≤ m we use expression (22) to write bij =
∑i−1

k=j bk+1 k−∑i−1
k=j+1 bkk and bi j+1 =

∑i−1
k=j+1 bk+1 k−

∑i−1
k=j+2 bkk. Therefore hBi j+1−hBij =

(bii + bj+1 j+1 − bi j+1)− (bii + bjj − bij) = bj+1 j − bjj ≥ 0.

2. −→ 1. Define matrix B by

bij = aii + ajj − hAij for all (fi, wj) ∈ F ×W. (A.16)

Notice first that for k = 1, 2, . . . ,m, hAkk = akk and then bkk = akk. We

prove that matrix B is assortative and C(vA) = C(vB).

First we prove the equality C(vA) = C(vB). Let it be (x, y) ∈ C(vA). We

have, for all (fi, wj) ∈ F ×W,

xi + yj = (aii − yi) + (ajj − xj) = aii + ajj − (xj + yi)

≥ aii + ajj − vA(F ∪W) + vA(F ∪W \ {fj , wi}) = bij ,

where we have used the expression of the core in (1). As a consequence, we

have for all matching µ′ ∈M (F ,W)

m∑
k=1

bkk =

m∑
k=1

akk =

m∑
k=1

xk + yk =
∑

(fi,wj)∈µ′
xi + yj ≥

∑
(fi,wj)∈µ′

bij ,

which proves that the main diagonal µ = {(1, 1), (2, 2), . . . (m,m)} is also

an optimal matching for matrix B. Therefore we have proved that C(vA) ⊆

C(vB).

To see the reverse inclusion, let it be any (x, y) ∈ C(vB). Then for all

(fi, wj) ∈ F ×W, we have xi + yj ≥ bij and using (A.16) we obtain

xj + yi = (ajj − yj) + (aii − xi) ≤ aii + ajj − bij = hAij .

Now taking into account that vA(F ∪W) = vB(F ∪W) and the expression

of the core in (1), we obtain (x, y) ∈ C(vA) finishing the proof. Notice that

from (2) we have the equality hAij = hBij for all (fi, wj) ∈ F ×W.
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Now we prove that matrix B is assortative. Since by hypothesis matrix

H(A) is submodular it is immediate from (A.16) that matrix B is super-

modular. To see the monotonicity of matrix B we show

bij ≤ bi+1 j for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ m, and (A.17)

bij ≤ bi j+1 for 1 ≤ i ≤ m and 1 ≤ j ≤ m− 1. (A.18)

We prove (A.18) and leave the proof of (A.17) to the reader.

Fix i ∈ {1, 2, . . . ,m} and we distinguish three cases: (a) for 1 ≤ i < j ≤

m− 1; (b) for 1 ≤ i = j ≤ m− 1; and (c) for 1 ≤ j < i ≤ m.

Case (a): 1 ≤ i < j ≤ m− 1.

Notice that for all 1 ≤ i < j ≤ m we have

hBij = vB(F ∪W)− vB(F ∪W \ {fj , wi})

=

m∑
k=1

bkk −

 i−1∑
k=1

bkk +

j−1∑
k=i

bk k+1 +

m∑
k=j+1

bkk

 =

j∑
k=i

bkk −
j−1∑
k=i

bk k+1,

where we have used the supermodularity of matrix B and the fact that in

the square submarket associated to coalition F ∪ W \ {fj , wi} there is an

optimal matching on its main diagonal.

As a consequence, for 1 ≤ i < j ≤ m − 1 a simple computation using

(A.16) yields

bi j+1 − bij = bj+1 j+1 − bjj + hBij − hBi j+1

= bj+1 j+1 − bjj + bj j+1 − bj+1 j+1

= bj j+1 − bjj

= ajj + aj+1 j+1 − hAj j+1 − ajj = hAj+1 j+1 − hAj j+1 ≥ 0,

by the monotonicity of matrix H(A).
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Case (b) for 1 ≤ i = j ≤ m − 1 is immediate and case (c) for 1 ≤ j <

i ≤ m is proved similarly to case (a).
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