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Abstract

Most automobile insurance databases contain a targ@er of policyholders with zero
claims. This high frequency of zeros may refleet thct that some insureds make little
use of their vehicle, or that they do not wish take a claim for small accidents in order
to avoid an increase in their premium, but it miglsto be because of good driving. We
analyse information on exposure to risk and driviiadpits using telematics data from a
Pay-as-you-Drive sample of insureds. We includéadise travelled per year as part of
an offset in a zero- inflated Poisson model to jotetthie excess of zeros. We show the
existence of a learning effect for large valuesdddtance travelled, so that longer
driving should result in higher premium, but ther®uld be a discount for drivers that
accumulate longer distances over time due to tbee@sed proportion of zero claims.
We confirm that speed limit violations and drivimgurban areas increase the expected
number of accident claims. We discuss how telematformation can be used to
design better insurance and to improve traffictyafe
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Summary for Social Media:

Many automobile insurance companies offer the pdggito monitor driving habits
and distance driven by means of telematics devigstalled in the vehicles. This
provides a novel source of data that can be armditgsealculate personalised tariffs. For
instance, drivers who accumulate a lot of milesusthdoe charged more for their
insurance coverage than those who make little tisieear car. However, it can also be
argued that drivers with more miles have betteringi skills than those who hardly use
their vehicle, meaning that the price per mile sti@lecrease with distance driven. The
statistical analysis of a real data set by meansiople machine learning techniques
shows the existence of a learning effect for largkies of distance travelled, so that
longer driving should result in higher premium, libere should be a discount for
drivers that accumulate longer distances over time to the increased proportion of
zero claims. We confirm that speed limit violaticarsd driving in urban areas increase
the expected number of accident claims. We disbagstelematics information can be
used to design better insurance and to improvedisdfety.



1. INTRODUCTION AND MOTIVATION

According to the World Health Organization (WHO,120, road traffic injuries are

responsible for more than 1.2 million deaths ewsgr. Indeed, they are the leading
cause of mortality among those aged between 1X28nat a cost to governments of
approximately 3% of their GDP. This situation ie&rbated if we contemplate the fact
that from the beginning of 2013 until the end ofl20there was a 16% increase in the

number of vehicles on the world’s roads.

Automobile insurance is compulsory in almost allumiies and, recently, many
insurance companies have begun to collect telemdtta about drivers’ exposure to
traffic (i.e. distance driven and vehicle locatiamd their driving behaviour (excess
speed and aggressiveness). This information camoiwepthe insurance ratemaking
process and also allows conclusions to be drawmutabow to make driving safer
(Ayuso, Guillen, & Nielsen, 2018, Lemaire, Park V#ang, 2016, Paefgen, Staake, &
Fleisch, 2014, Ferreira & Minikel, 2013, PaefgetgaBe, & Thiesse, 2013, Langford,
Koppel, McCarthy, & Srinivasan, 2008, Sivak et &007, Litman, 2005 and Edlin,
2003). New automobile insurance products (knowrtHgy acronyms PAYDpay-as-
you-drive or PHYD, pay-how-you-drive necessitate the introduction of a GPS device
in the insured vehicle to record and store relevafdrmation about variables that
change over time, including, for example, the nundfekilometres driven per day by
the insured, the percentage of kilometres drivenvabthe speed limit, and the
percentage of kilometres driven at night, amongsthThis development represents a
remarkable advance, given that, previously, autol®atsurance companies could only

use variables related to certain fixed charactesistf the insured (for example age,



gender, or number of years since the driver’'s Beewas issued) and the vehicle (age of

the automobile, engine power, etc.).

Most automobile insurance databases contain mahgypolders with zero claims.
This high frequency of ‘zeros’ may be due to thespnce of insureds that have no wish
to claim for small accidents in order to avoid ampium increase or, alternatively, it
might be due to the relative lack of use they makéheir vehicles. If the vehicle is
parked in a garage, it is not exposed to the riskcoident. Here, we analyse distance
driven as a measure of exposure to risk and exartsm®le in the probability of an
insured having zero claims. We show how to diffeeta those drivers that almost
never use their vehicles (and so have little exposo the risk of an accident) from
those that are good drivers, i.e. those who, degeitording high mileages, are not
involved in any accidents. In what follows we referaccidents as opposed to claims,
even though we are aware that some accidents dareeported to the insurance
company. Indeed, a detailed discussion of the rdiffee between the number of
accidents and the number of claims has previousgnlreported by Boucher, Denuit,

and Guillen (2009).

We discover a positive relationship between theadise driven and the number of
excess zeros observed in the number of claims. Mieeahat this is due to a learning
effect, where good drivers are more frequent thqreeted among those that drive long
distances. The overall effect of the driving disewariable is positive, however, even
if it is true that longer driving should obvioustgsult in higher premium, there is a
discount due to the increased proportion of zemothé frequencies, due to a learning
effect. The overall effect is still an increasdhe premium, however not as much as we

would expect without the learning effect.



Our research is innovative because (1) we introdeleenatics covariates while dealing
with the excess of zeros and (2) we discuss théigatpns for new insurance products
and traffic safety that are obtained on the baksistance driven. Additional variables
may be measured to assess the quality of driveds imnfuture work these new

telematics signals could be much more sophisticduaa distance driven.

Various studies have explored the potential ofmelécs when applied to risks of road
accidents, beginning in 1968 with a preliminary Igsia by Vickrey (1968). More

recently, several papers have examined the imgaotw technologies on road safety
and how driving habits can be measured (Shafiquelato, 2015, Xu et al., 2015,

Ellison, Bliemer, & Greaves, 2015, Ayuso, GuilléPérez-Marin, 2014, Underwood,
2013, Jun, Guensler, & Ogle, 2011, Elias, Toled&Hé&ftan, 2010 and Ayuso, Guillen
and Alcafiiz, 2010), while others have focused spadly on mileage and new risk

factors that might be included in the ratemakingcpss, see Ayuso, Guillen, and
Nielsen (2018) for an extended review. Recentlyhas been proven that including
standard telematics variables significantly impowvesk assessment of insureds,
therefore insurers should be able to tailor theadpcts to the customers’ risk profile
(Baecke & Bocca, 2017). The objective for the iaswe industry is to penalize high
risk drivers with higher premiums by taking intonstderation factors related to
dangerous driving, including, for example, excegdime speed limits or not respecting
safety distances. We show that having informatioouéa the annual distance driven by
the insured improves the ratemaking process corate not only because it is a
measure of exposure to risk, but because of th@atnole it plays in the analysis of the
absence of claims, i.e. the probability of not g or, in other words, the probability
of zero claims. See the following papers on thevahce of including distance driven as

a traffic risk factor (Segui-Gomez et al., 2011 ahercer, 1989).



In terms of methodology, Poisson regression motaise traditionally been used to
predict the number of automobile claims in insueanithe Poisson regression model is
a special case of the generalized linear modek @asl serves as a benchmark model
(Gourieroux, Monfort, & Trognon, 1984a and 1984Hpwever, various corrections
have to be made when assuming that the probalolitgero is larger than the
probability under the Poisson assumption — a siead@xcess of zeros. Various papers
suggest that this excess is caused by asymmeinéamation with an insured
preferring not to declare a claim so as to avortage deductibles or the application of a
bonus-malus system (Chiappori & Salanié, 2000 alhiiz & Vanasse, 1992). In this
paper, we wish to differentiate those drivers tieate no claims because they rarely use
their vehicles during the year (in the extreme casaking no use of the vehicle at all)
from those that have no claims despite being fregdeavers. To do this, we propose
using a zero-inflated Poisson (ZIP) model corredtgdlistance (kilometres driven per
year by the driver). While various studies havedug# models (Cameron & Trivedi,
2013, Winkelmann, 2003 and Lambert, 1992) and egpthem to the context of
automobile insurancéSarul & Sahin, 2015, Boucher, Denuit, & Guille)0Z and
Lord, Washington, & Ivan, 2005), none of these dbations has analysed the role of

exposure to risk in terms of distance driven.

From an empirical point of view, we draw on a raatomobile claims database for a
sample of insureds. This includes individual dstaibout annual mileage travelled and
other aspects of driving behaviour, which enabletaustudy the effects of various
indicators on the probability of making a claim. Wghlight the implications of this for

the design of new insurance ratemaking processes.

The rest of the paper is structured as followssdation 2, we present the methodology

used when including distance as an offset variabtee ZIP model. The database and
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some descriptive results are presented in sectiand3our main results obtained with
the models specified are analysed in section 4allljina discussion and the main

conclusions drawn from this research are presantséction 5.

2. METHODOLOGY

A Poisson regression with an offset variable isltiggcal way to include an exposure to
the risk variable in our model. Here, therefore, oy to use a Poisson model with
offset and a two-step procedure aimed at introdutaétematics data, which serves as a

correction to the classical model.

Zero-inflated Poisson (ZIP) regression is a modetbunt data with an excess of zeros.
It assumes that with probabilitp the only possible observation is 0, and with
probability 1, a PoissonX) random variable is observed. For example, inflergint
context, the same model can be used in qualityrabnthus, when a manufacturing
system is properly aligned, defects are nearly ssjibe, and the is large. However,
when the machine is misaligned, defects may ocacording to a Poisson\)
distribution. This same principle is also plausilsiemotor insurance when modelling
the number of accidents per year. Some drivershhae their vehicle or use it very

rarely, so for them the probability of not beingatved in an accident should be large.

Both the probability of no accidents and the meamiver of defect& in the imperfect
state (when people use their cars) may depend wariates that are defined for each

individual. Here, we have not included subscripd refer to the-th observation in a



sample of sizen, to make notations easier. Sometinpeand A are unrelated; but on
other occasiong is a simple function ok, such agp = I/(1 + AT) for an unknown
constantT. In either case, ZIP regression models are ea$y. tlaximum likelihood
estimates (MLE) are approximately normal in largenples, and confidence intervals
can be constructed by inverting likelihood ratistseor using the approximate normality
of the MLE. The estimation can be performed witingard statistical software, such as
R or SAS, but the interpretation of the resultsaoZIP regression model is not
straightforward. For example, Lambert (1992) repdiiat in an experiment involving
soldering defects on printed wiring boards, twacs s#t conditions resulted in roughly
the same mean number of defects; however, thegbestiete was more likely under one
set of conditions and the mean number of defecthenimperfect state was smaller
under the other set. In other words, ZIP regressaanshow not only which conditions

give the lower mean number of defects but also thikymeans are lower.

Notice that formally we introduce an extended maxfetero claims in insurance using
distance driven as the exposure to risk variablewever, while this simple model
extension primarily improves understanding of zetaims, it may have another
important effect. When factors other than just agle are included in the model, then
essentially the extension suggested here alsossas/a bias correction. With the data
provided herein, the adjustment via our extendedehonproved considerably when
mileage was included, and only marginally when Hert variables were included.
Finally, therefore, we opted only to include mileag the extension of the model, thus
facilitating a straightforward interpretation. Img way, the excess zeros in our extended

model are simply interpreted as a function of migsen.

In the zero part of the model, we have only a Bellh@wariable that distinguishes

between the zero event (no claim) versus the nom-eeent (at least one claim), so the
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expectation for this binary response random vagigbkxactly the probability of excess
zero claims, which should be limited to the [0dferval. For this reason, we have no

offset in this part and the parameter of the laggatice is not necessarily equal to one.

Below we first introduce the simple Poisson modehwand without exposure as it has
traditionally been presented. Exposure, in our\stigl equivalent to miles driven per

year.

2.1. The Poisson mode

Let us assume that given xhe dependent variable; Yollows a Poisson distribution

with parameterAi, which is a function of the linear combination pdrameters and

regressorsf, + B1xi1 + -+ + P xix- Indeed,

E(Yilx) = A = exp(Bo + B1xi1 + -+ + Br Xi)- (1)

The unknown parameters to be estimated gge.., fx)-

2.2. The Poisson model with exposure

When exposure to risk is introduced, then an offsetcluded in the model. Let us call

T; the exposure factor for policyholder(i=1,...,n), in our caseT;=In(D;), where D;

indicates distance travelled. Then the model caarporate this factor as follows:

E(Y;lx;, T;) = D;exp(Bo + B1xi1 + -+ + B xix) = exp(T;)A;. (2)



Under this model, the probability of zero using Bwsson distribution is calculated as
follows, P(Y; = 0) = exp(—D;4;), so it depends on the distance and, sihads always
positive by definition, then the probability of peclaims declines naturally as distance

driven increases.

We are now ready to extend the traditional Poissgnession models above to include
excess zeros via ZIP models. This extension is alt@duced with and without

exposure.

2.3. The zero-inflated Poisson model

In the ZIP model, the probability of zero is spestifas follows:

P(Y; =0)=p;+ (1 —p)P(; =0), 3)

wherep; is the probability of the perfect, zero defectestand (1p;) is the probability
of the complementary state. The n&W variable follows a Poisson distribution with
parameteexp(B, + B1x;1 + - + Br xi) and captures the claims distribution that is not

contaminated by the excess of zeros. Note thaimay depend on some covariates.

Under this model, the probability of suffering kcatents, when k is bigger than or

equal to one is:

P(Y; =k) = (1 -p)P(Y;" = k), k>0.
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2.4. The zer o-inflated Poisson model with exposure

Here we assume that is the probability of an excess of zeros for tile observation

and it is specified as a logistic regression maedeh that

_exp(ag + a; In(Dy))
Pim 1+ exp(ag + a4 In(D;))

(4)

The Poisson model for* is specified as follows, with an exposurE(Y;"|x;, T;) =

D;exp(Bo + Brxiy + -+ + Br xu) = DiA; = exp(In(D;))A;= exp(T;)A;. Then,

__exp(ag + a;In(Dy)) 1
P(Y; = 0) = 1+ exp(ay+ a;In(D;)) 1+ exp(ay + a;In(D;)) exp(=Didy)
1 ko, k
P(Y;=k) = (exp(—D;A;))D;" ;" /k!

1+ exp(ay + a4 In(D;))

Using the definition of the expectation of a disereandom variable, the expectation of
the Poisson part is

1 (5)

(llxl l) ( pl) ( llxl l) 1+eXp(0(0+a1 ln(Dl)) [ 2t [

whereD*; = Di Is a transformation of the original exposixeSo, when
1+exp(ag+aq In(D;))

we include zero-inflation there is a transformatidrihe exposure in the Poisson model.
Let us study the transformation.a; > 1, whenD; is large therD*; tends to zero, but
whena,; < 1then D*; increases wheD; increases. On the other hand, wiigrtends

to zero,D*; tends to zero.
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If we examine the logistic regression part (4), elserve thap; can be understood
again as a transformation of the exposure into[@hH interval, which tends to zero
whenD; tends to zero i@, is positive. Moreover, the derivative of (5) witspect to

D; shows how much the expected claims would changefasction ofD; and indicates

that if a; is significantly different from zero, then the agbnship is not linear. Since
insurance premiums are based on expected numistiwfs, this is an important result
as it potentially shows that insurance prices shonbt necessarily be linearly

proportional to distance driven.

3. DATA

We use information on the risk exposure and nurobelaims for 25,014 insureds with
car insurance coverage throughout 2011, that dyisluals exposed to the risk for a
full year. Note that in our case these data condewxers up to a maximum age of 37,
given that the insurance product was sold primaolyoung drivers. Our aim is to
discriminate between good and bad drivers in tbitfplio segment and to identify the
influence of driving short distances (Ayuso, Guille& Pérez-Marin, 2014). Claim
frequencies are presented in Table I, with an expecalue of 0.23 claims per person.
Table | has information on the frequency of allaeed claims. The sum of reported
claims that were not at fault is 3,108, while thensof claims at fault is 2,652. Overall
5,760 claims were reported. Descriptive statisfios the risk exposure indicator
(kilometres per year) are presented in Table llemghwe analyse drivers with and
without claims separately. The rest of the indicgtboth those derived from traditional

ratemaking factors and those obtained from telentvices, are presented in Table I,
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where we also present the definitions of theseab#és and their main descriptive

statistics.
Tablel. Frequency of claims per driver (n=25,014)
in the Spanish insurance dataset (all claims,udt, fand not at fault)
Absolute frequency per driver
Number of claims All claims Claims at fault Claims not at fault
0 20,608 22,837 22,432
1 3,310 1,750 2,111
2 889 385 424
3 165 37 40
4 34 4 6
5 7 1 1
6 1 0 0

One insured driver had 6 claims, 2 were at fault 4nvhere not at fault.

Tablell. Descriptive statistics for the risk exposure iadioe
(total kilometres travelled per year in 000s)

All Sample Drivers with no claims Drivers with claims
n = 25,014 n = 20,608 (82.4%) n =4,406 (17.6%)

Mean 7.16 6.99 7.96
1st Quartile 4.14 4.00 4.87
Median 6.46 6.28 7.22
3rd Quartile 9.40 9.22 10.30

Standard Deviation 4.19 4.14 4.35

The results presented in Table Il in relation te #mnual distance travelled by the
insured drivers reveal differences between thosk mo claims and those with claims.
If we focus on the 25% of drivers that travelled #mallest distance over the yea (1
quartile), we observe that the insureds that clatmeast one accident drove more
kilometres per year than those with no claims —+éspective quartile values being 4.87

vs. 4.00. A similar pattern of behaviour is obsdréer the second (median) and third
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quartiles with those making claims driving largéstances than those with no claims.
This result was as expected and is a clear indicadf a relationship between claims

and distance driven.

The Mann Whitney test is a nonparametric test efrtbll hypothesis that it is equally
likely that a randomly selected value from one damg less than or greater than a
randomly selected value from a second sample. TaenMVhitney test shows that the
differences in the mean for the exposure risk 1=gre (Table 1), as well as for the
other classical and telematic regressors (Tabdeali¢ statistically significant in the
cases of drivers with no claims and drivers withiral, with the exception of vehicle
age (p-value=0.331) and the percentage of kilormethéven over the speed limit
squared (p-value=0.9293). Note that the normalypothesis of these variables is
rejected when using the Kolmogorov-Smirnov teste Kolmogorov-Smirnov test is a
nonparametric test of the equality of continuousie-dimensional probability
distributions that can be used to compare thestital distribution of two samples.
From a univariate point of view, drivers that madelaim for at least one accident are,
on average, younger than those that made no clathhave held their driving licence
for fewer years. A similar conclusion can be dramnthe case of ownership of a
powerful vehicle, where those insureds making astlene claim present a higher value
than those making no claims. Unexpectedly, in th&eoof cars parked overnight in a
garage, the percentage value is higher among thbeanade at least one claim than it
is among those who made no claim. We would expech £ars to be safer, but it
appears that this variable may be closely relate¢ar type, with powerful, more
expensive cars being kept in garages. As for the deving behaviour indicators
derived from telematics, driving at night and dniyiin urban areas present larger mean

values in the claims group than in the no clainmgr
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Tablelll. Explanatory variables* included in the models dadcriptive statistics

All sample Drivers with no

Drivers with claims

Description claims
Std. Std. Std.
Mean Dev. Mean Dev. Mean Dev.
Traditional ratemaking factors
Age Age of the insured driver (in years) 27.57 3.09 27.65 3.09 27.18 3.10
Age? Age squared of the insured driver
Male (%) Sex of the insured driver (1 if male, énfide) 48.91 - 48.61 - 50.32 -
Age Driving Licence Experience of the insured drive 7.17 3.05 7.27 3.07 6.73 2.94
Vehicle age Age of the insured vehicle 8.75 417 768. 4.19 8.69 4.11
Power Power of the insured vehicle 97.22 27.77 6.9 27.83 98.36 27.46
Parking (%) étgémi;/ghlcle is parked in a garage over night, 77.38 R 7791 } 78.17 )
New telematic ratemaking factors
Km per year at night (%) ;Zrt):lzr;fge of kilometres travelled at night during 6.91 6.35 6.85 6.32 7.16 6.49
Km per year at night (%) Percentage of kilometres travelled at night sqiiare
Km per year over speed limit (%) S"Ségznltlam?tes of kilometres during the year above theg 35 g3 gog 6.87 6.60 6.59
. Percentage of kilometres during the year above the
Km per year over speed limit (%) speed Iimg?ts squared 9 Y
Percentage of kilometres travelled in urban areas 25.87 14.36 25.51 14.31 2756 14.47

Urban km per year (%)

during the year

* In addition to risk exposure (km per year in 000s

4. RESULTS

Tables IV and V present the zero-inflated Poiss@dets including exposure to risk

(kilometres driven per year) as the offset variabléhe models as discussed in section

2. Fig. 1 gives an overview of the estimated madels

All variables.
Table IV (column 1)

Only non-telematics information.

All reported claims
P Table IV (column 2)

Only telematics information.

Table IV (column 3)

All variables.
Table V (column 1)

Only reported claims Only non-telematics information.

where the driver is at fault Table V (column 2)

Only telematics information.
Table V (column 3)

Fig. 1. Summary of the estimated models
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Traditional software programs facilitate the maximilikelihood estimation of these
models, their results being obtained using SAS, ER&ENMOD. To compare the
models, we use the Akaike Information Criterion @A\l calculated as twice the number
of parameters in the model minus twice the valutheflog-likelihood in the maximum.

The best model is the one that presents the srhAll€svalue?

Table IV highlights a clear improvement in the leswhen considering all the model
regressors (the lowest AIC value being obtained thar first specification). These
results seem to validate the conclusions drawnrévipus studies (Ayuso, Guillen, &
Nielsen, 2018, Lemaire, Park, & Wang, 2016 anddtexr& Minikel, 2013), in which
the relevance of the new indicators related toadist travelled and driving habits is
highlighted, but where they are used in conjunctwith the classical regressors.
Individual significance is observed for a large m@&mof parameters, including those of
the logit model in its zero-inflation part. On firmspection, the positive sign of the
parameter associated with the log-distance in dlgestics part might seem surprising
and it could be interpreted erroneously. This v§ud04) in the first column does not
mean that the greater the distance driven, thetegreae probability of the insured
having zero claims. Rather it means that the grehgdistance driven, the greater the
proportion of excess zero claims, indicating a dgon from the Poisson distribution

that can be captured by the ZIP model.

! The AIC penalizes the number of parameters lesmigly than the Bayesian information criterion
(BIC), which is calculated on the basis of the lithm of the number of observations as opposed to
multiplying the number of parameters by two, awiite AIC.
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Table IV. Zero-inflated Poisson model with offs@iteg of km per year in 000s). All
types of claims.

All variables (Only significant) Non-telematics Telematics

Coefficient (p-value) Coefficient (p-value) Coefficient (p-value) Coefficient (p-value)

Poisson part
Intercept -2.148 0.045 -3.396 <.001 -0.829 0.440 -3.461 <.001
Age -0.094 0.232 -0.123 0.121
Age? 0.002 0.221 0.002 0.131
Male -0.068 0.029 -0.074 0.017 -0.011 0.719
Age Driving Licence -0.059 <.001 -0.056 <.001 -0.067 <.001
Vehicle Age 0.014 <.001 0.014 <.001 0.017 <.001
Power 0.003 <.001 0.003 <.001 0.001 0.017
Parking 0.029 0.420 0.032 0.381
Log of km per year 1.000 - 1.000 - 1.000 -- 1.000 --
(thousands) - offset
Km per year at night (%) -0.004 0.312 -0.001 0.771
Km per year at night (%) 0.0001 0.467 0.000 0.931
Km per year over speed 0.019 0.001 0.019 0.001 0.018 0.001
limit (%)
Km per year over speed -0.001 0.001 -0.001 0.001 -0.001 0.003
limit (%)?
Urban km per year (%) 0.026 <.001 0.026 <.001 0.027 <.001
Zero-inflation part
Intercept (Logit) -0.847 <.001 -0.857 <.001 -1.639 <.001 -0.795 <.001
Log of km per year 0.404 <.001 0.410 <.001 0.824 <.001 0.406 <.001
(thousands) (Logit)
AIC 28,877.112 28,870.556 29,427.423 29,005.172
BIC 28,999.019 28,951.828 29,508.694 29,070.189

In the case of the classical variables, all theupaters for gender, driving experience,
vehicle age and the power of the vehicle are $i@lly significant. Thus, we find an
increasing expectation in the number of claimswomen drivers as opposed to men,
inexperienced drivers as opposed to experienced, ommers of old and powerful
vehicles as opposed to owners of newer and lesenhavears. As for the new telematic
regressors, two — the percentage of kilometres/gar driven over the speed limit and
the percentage of urban kilometres driven per yeare significant in explaining the
expected number of claims. Thus, the number ofndaincreases as these two
regressors increase. No significance is observeldetase of night driving. In column
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2, we present the estimation results of the reducedel when removing the covariates
with insignificant coefficients in the full moddtinally, if we compare the results of the
third and fourth specifications (columns 3 and dspectively), the best results are
obtained for the model that only includes varialvkdated to driving habits (telematics),

as indicated by its lower AIC value.

Our model predicts the highest number of expectaiins for younger women, with
little driving experience, driving old and powerfeghicles, driving in urban zones, and
exceeding the speed limit. Note that this resuiniéine with the results reported by

Mercer (1989).

Previous research (Mercer, 1987) has shown thatit be interesting to include Age
and Gender interaction in the model. The resultalicthe models, which are available
from the authors, show that this interaction is sighificant. In practice, Gender cannot
be used for pricing insurance in the EU, but it cartainly be used for risk evaluation
and it can help to understand male/female diffezenwith implications on traffic

safety. Our conclusion for this sample is that eéhisrno interaction between Age and
Gender. There are potentially two reasons for tfigt.The sample consists of drivers
aged less than 37 years, so Age may not have enaugie to show a significantly

different effect by Gender . (2) As found by otlaerthors, the influence of Gender is
masked by the fact that men on average drive sigmifly longer distances than
women. The relationship between distance driven @ethder was discovered by
independent researchers in different EU countragssiclering average daily distance in
a Spanish dataset (Ayuso, Guillen, & Pérez-Mar@1,6}, or using average trip distance
for a Belgian sample (Verbelen, Antonio, & Claeskef018) or even taking both

average trip distance and total distance in andieopean portfolio sample (Withrich,
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2017). They all concluded that Gender differencethe risk of accidents are, to a large

extent, attributable to the fact that men driveglemaverage distances than women.

Similar results are obtained when only claims attfare considered in Table V, with
the exception that the age of the driver is nowificant while gender is not. Here,
again, a better goodness of fit is obtained forsgpecification that includes all variables
(both telematic and non-telematic) and the modat thcludes only the telematics
variables (the lowest AIC value being obtainedderved column 1). As in Table IV, a
lower AIC is obtained for the specification usingjytelematic variables as opposed to

that using only classical variables (columns 2 3niespectively).

Table V. Zero-inflated Poisson model with offsdtedq of km per year in 000s). Claims
for which the policyholder was at fault

All variables Non-telematics Telematics

Coefficient (p-value) Coefficient (p-value) Coefficten(p-value)

Poisson part
Intercept -0.697 0.653 0.278 0.857 -3.892 <.001
Age -0.224 0.050 -0.224 0.049
Age? 0.004 0.039 0.004 0.045
Male 0.000 0.998 0.076 0.093
Age Driving License -0.083 <.001 -0.088 <.001
Vehicle Age 0.013 0.015 0.016 0.004
Power 0.001 0.163 0.001 0.351
Parking -0.035 0.497 -0.025 0.637
Log of km per year 1.000 - 1.000 -- 1.000 --
(thousands) - offset
Km per year at night (%) 0.0052 0.386 0.010 0.083
Km per year at night -0.0001 0.685 -0.0002 0.272
(%Y
Km per year over speed 0.035 <.001 0.031 0.000
limit (%)
Km per year over speed -0.001 0.001 -0.001 0.001
limit (%)?
Urban km per year (%) 0.024 <.001 0.026 <.0001
Zero-inflation part
Intercept (Logit) -0.228 0.151 -0.765 <.001 -0.140 0.358
Log of km per year 0.442 <.001 0.743 <.001 0.441 <.001
(thousands) (Logit)
AlC 16,912.217 17,125.313 17,004.642
BIC 17,034.124 17,206.584 17,069.659
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The age of at-fault drivers is inversely relatedhe expected number of claims, that is,
a higher number of accidents are expected amongggoudrivers. However, the

significance of the age squared parameter indicataen-linear relationship between
the two variables. Inexperienced drivers (measimeeérms of the number of years in
which they have been in possession of a drivingniee) and drivers of old vehicles
show a higher expected number of claims than #w@irded by their more experienced
counterparts and drivers of newer vehicles. In commith the result in Table 1V, the

percentage of kilometres per year driven over treed limit, and additionally here the
percentage of kilometres driven at night, have rapaict on the expected number of
claims in which the driver is at fault. The peraage of kilometres driven at night is
significant at the 10% level when we only consither telematic variables but the AIC

value for this model is lower than that obtainedtf® first model.

Results for the models on the not at fault claindidate similar conclusions. We have
not discussed the not at fault cases because umaimse premium calculation only
claims at fault are of main interest. Claims attfandicate that the driver has caused an
accident, while not at fault means that the acdidess due to someone else. If the
accident is caused by someone else, then the thslirger should not pay a higher

insurance premium compared to someone who didepatrt a claim.

Comparisons with the classical Poisson model witeets (without considering zero

inflation), both for the total sample and for clainvhere the policyholder is at-fault, are
not included here, but they do not enable us talse@mpact of distance on the excess
of zeros. These results are available on request the authors. The goodness of fit

results are always better in the zero-inflated nwdecause they take into account
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differences between false zeros (non-risk exposame)true zeros (risk exposure and

zero claims).

In a similar context, it has been shown that ptexhicmodels for hurricane power
outage can be improved by a new two-step outagiqgbien model and the inclusion of
additional environmental variables that increase tverall accuracy (McRoberts,
Quiring, & Guikema, 2016). Our model also improviee classical approach by
introducing telematics information into the predbat of the number of claims and this

can be done in a two stage model approach (Ayusiie@, & Nielsen, 2018).

In addition to the results presented in Tables id &, we have performed a hold-out
analysis, and we have tested the models agairtstdes which were not used in the
training process. We have chosen a 70% trainingpkanversus a 30% hold-out
sample. In all cases we have confirmed the coramhgsion the significance of the
parameter that we had in the initial analysis. T squared test of differences
between observed and fitted frequencies was equ2dé.7 for the whole sample. The
hold out analysis indicates very similar value941,3 with 6 degrees of freedom in the
training sample and 1,005.9 with 6 degrees of foeeth the test sample for the model
of all claims and all variables). We find analogotesults for other predictive

performance measures at policyholder level, sucth@sGini index (Frees, Meyers, &
Cummings, 2011), which is equal to 82.4% in the tsample while it equals 82.5%

and 82.1% in the training and test samples, res@det

In order to evaluate the variable importance, weehastimated the models using
standardized covariates, so that we can compareoificients. This analysis reveals
that the most important factor that determinesrible of a crash is the percentage in

urban driving, followed by the age of the drivetisense. The third factor is the
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percentage of speed limit violation. The leastwvate factors are the age of the vehicle,

gender of the driver, percent of night distanceeairiand parking in a garage.

5. CONCLUSIONS

We have shown that the part of the zero accidequincy not explained by traditional
insurance risk factors increases with the distainisen by the policyholder. This means
that when considering policyholders with the sarharacteristics but with different
exposures to risk in terms of distance driven garywe can conclude that those with a
greater exposure present a larger proportion oéexeero claims than those with less
exposure. This can be understood as an indicafianlearning effect, or in terms of
distance driven, that even if exposure to risk eases with distance driven, the
probability of not making a claim also increasespared to that of drivers in the group
that drive a shorter distance. This finding is evice of the fact that good drivers — if
we identify them with those reporting no claims re anore frequent than expected
among the group of drivers that drive long distant@n among those that drive shorter

distances, all other things being equal.

This conclusion has a direct impact on the futusigh of PAYD insurance products,
insofar as the premium paid should not be striptiyportional to the distance driven.
Moreover, the premium should take into accounti¢aening effect analysed here. One
possible solution would be to make the marginatdase in the insurance price per
kilometre driven dependent on the accumulated miistaHere, we have shown that this

relationship is not linearly dependent, as we refitat the zero-inflation part plays a
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significant role. Taking the derivative of (5) makéhis non-linearity immediately

apparent.

The probability of excess zeros increases withadist. The coefficient for the
logarithm of the number of kilometres driven pearym the logit model (which predicts
zero inflation) is positive, i.e. the probability observing false zeros increases with
increasing distance. Moreover, we have shown tieZtP model gives better results in
terms of goodness of fit than those obtained Withdlassical Poisson model (non-zero-

inflated Poisson model).

Here, therefore, we have shown both the signifieaot the impact of the distance
variable coefficient and the positive relationshigtween traffic violations involving

excess speed and urban driving with the expectetbauof claims. These results are in
line with reports issued by official traffic ingitions where it is argued that speed limit
violations should be considered in the design auiance premiums so that safer

driving is rewarded (Ayuso, Guillen, & Alcafiiz, 201

Previous traffic studies published in Risk Analy$&egui-Gomez et al., 2011 and
Mercer, 1989) have stressed the desirability ofuttiog risk exposure in terms of
distance driven. We have shown that indeed veheaemetry, and the collection of
information using GPS-based technology such aseptages of kilometres driven at
night, over the speed limit, and in urban zonespragnothers can be included in the
ratemaking process thus improving the results nbthivhen just using classical driver
variables, such as age and gender. This opensusion whether pay-as-you drive
should also consider a different price per mileahgjing on the time of the day and the

location.

23



Our study shows that ZIP models with mileage as tiféset variable can improve the
definition of drivers’ risk profiles and provide luable policy guidelines that might be
implemented to improve driving behaviour. Furtherejothe higher premium

associated with a higher percentage of kilometreged in an urban area (as a
consequence of a higher expected number of clamgyl discourage the use of private
vehicles in cities, as called for by various Eumpenstitutions (not least to reduce
levels of pollution). Clearly, similar conclusiorcan be drawn in terms of traffic

violations, with an increase in the premium forvdrs with a tendency to exceed the

speed limit.
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