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Abstract

Background

Type 1 diabetes mellitus (T1D) affects the entire cellular network of the organism. Some

patients develop cognitive disturbances due to the disease, but several authors have sug-

gested that the brain develops compensatory mechanisms to minimize or prevent neuropsy-

chological decline. The present study aimed to assess the effective connectivity underlying

visuospatial working memory performance in young adults diagnosed with T1D using neuro-

imaging techniques (fMRI).

Methods

Fifteen T1D right-handed, young adults with sustained metabolic clinical stability and a con-

trol group matched by age, sex, and educational level voluntarily participated. All partici-

pants performed 2 visuospatial working memory tasks using a block design within an MRI

scanner. Regions of interest and their signal values were obtained. Effective connectivity—

by means of structural equations models—was evaluated for each group and task through

maximum likelihood estimation, and the model with the best fit was chosen in each case.

Results

Compared to the control group, the patient group showed a significant reduction in brain

activity in the two estimated networks (one for each group and task). The models of effective

connectivity showed greater brain connectivity in healthy individuals, as well as a more com-

plex network. T1D patients showed a pattern of connectivity mainly involving the cerebellum

and the red nucleus. In contrast, the control group showed a connectivity network predomi-

nantly involving brain areas that are typically activated while individuals are performing

working memory tasks.
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Conclusion

Our results suggest a specific effective connectivity between the cerebellum and the red

nucleus in T1D patients during working memory tasks, probably reflecting a compensatory

mechanism to fulfill task demands.

Introduction

Type 1 diabetes mellitus (T1D) is a metabolic disease that has been directly related to several

clinical impairments, such as retinopathies, nephropathies, and neuropathies, along with an

increased risk of cognitive decline [1]. Patients with T1D may show mild cognitive impairment

[2] that usually affects memory, processing speed, verbal skills, learning, and executive func-

tions, including working memory in both children [3, 4, 5, 6, 7] and adults [8, 9, 10, 11, 12].

Despite such alterations, adult patients with T1D may show cognitive impairment circum-

scribed to certain cognitive areas, with severity varying from mild to moderate or having no

cognitive alterations at all [11]. Accordingly, several functional magnetic resonance (fMRI)

studies–both in activation and brain connectivity papers—suggest that the brains of T1D

patients develop several functional adaptations that prevent or limit the deleterious effect of

T1D on cognitive processing. Several of those papers focus on the study of working memory.

Working memory (WM) is a cognitive function that allows us to temporarily keep and

manipulate information in memory in a wide range of cognitive tasks [13]. Different meta-

analyses have suggested that, for it to work properly, the activity of several cortical areas is

needed; these areas include the bilateral premotor cortex (BA 6.8), the medial cingulate cortex

and the supplementary motor area (BA 32.6), the frontal anterior pole (BA 10), the dorsolateral

prefrontal cortex (BA 9 and 46), the ventrolateral cortex (BA 45 and 46), and the posterior

parietal cortex (BA 40) [14, 15, 16]. Additionally, some extracortical areas participate in WM

tasks, such as the basal ganglia [17, 18], the cerebellum [19], and the thalamus [20], and during

visuospatial WM tasks, the occipitotemporal cortex and the hippocampus have also been

implicated [21].

Brain activity during WM tasks has shown important differences between T1D patients

and healthy controls and between T1D patients with different clinical characteristics or glyce-

mic states. Diabetic patients with retinopathy show less deactivation in the anterior cingulate

cortex and the orbitofrontal cortex in the state of hypoglycemia compared to patients without

retinopathy [22]. In other work, the patients with T1D in euglycemia showed a similar activa-

tion pattern as healthy controls during WM tasks, but during a period of hypoglycemia, the

diabetic patients had greater activations in the parietal and the frontal cortex, as well as in the

cerebellum and the hippocampus, when performing the task [23]. All these studies were per-

formed using classical approaches to fMRI analysis that are useful to study functional segrega-

tion, which is a basic principle of brain organization [24]. However, a particular area of the

brain may be involved in different cognitive and behavioral functions working in coordination

with other brain areas. The study of this functional integration can be conducted by functional

and effective connectivity fMRI analyses [24]. The brain’s functional connectivity is defined as

a pattern of statistical dependence between distant neurophysiological events, while effective

connectivity denotes the effects that a brain area can exert over others [24]. The study of brain

connectivity in the past decades during the brain’s rest allowed us to discover several function-

ally linked regions that form functional networks within the central nervous system, such as

the motor network, the visual networks, the default mode network (DMN), and the cognitive
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control network, among others (see [25] for a review). Functional connectivity may also be

studied during the performance of a particular cognitive or emotional task to study the func-

tional integration that subserves these activities [26].

Brain connectivity at rest in patients with T1D may also be altered. Some studies have sug-

gested that some children and adults with the disease will show brain hyperconnectivity pat-

terns related to a good cognitive performance that had been interpreted as brain adaptations

to prevent or limit cognitive impairment in diabetic patients [27, 28]. Additionally, abnormal

connectivity patterns in adults have been reported between the bilateral subgenual cingulate

cortex and other structures of the prefrontal cortex and the DMN in diabetic patients [29]. The

work by Bolo et al. [23] suggested that the DMN of T1D patients was hyperactive with respect

to the control group during a WM task. Adult patients with this disease show a relative lack of

high-level cortical hubs in the prefrontal cortex [12, 30] and a global topology of the gray mat-

ter network with a rather random organization in adult T1D patients when compared to

healthy subjects [31].

The literature suggests that patients with T1D show both a brain functional activation pat-

tern different from that observed in healthy controls during different WM tasks, and they also

show functional connectivity patterns at rest that differ from those obtained in healthy con-

trols. Nevertheless, to our knowledge, there are no functional connectivity studies during WM

tasks in this type of patient. Therefore, our goal was to evaluate brain connectivity during a

visuospatial WM task in a sample of young adults with T1D, and we studied the brain activity

pattern through fMRI related to this cognitive function [32, 33]. In these previous studies, T1D

patients and the healthy control group showed activations expected by the task in areas of the

lateral prefrontal cortex, anterior cingulate cortex and cerebellum, but T1D patients showed

less cortical activations than the control group in the left parietal cortex, premotor cortex, and

superior frontal gyrus and more intense activations than the controls in the inferior frontal

gyrus, basal ganglia and cerebellum. In addition, T1D patients showed activations in the sub-

stantia nigra that were not observed in the healthy participants [32, 33].

In light of the results of our two precedent studies, our hypothesis is that the control sub-

jects will show a pattern where brain connectivity networks will be established between the

cortical areas typically related to WM, whereas the connectivity pattern of the patients with

T1D will instead be focused on other brain structures such as the cerebellum and subcortical

structures such as the basal ganglia. This is a very general hypothesis, but it is not feasible to

formulate a priori, a more specific one, given that the current study has been conducted on the

basis of the ROIs activated (data-driven) independently in each of the tasks, which constitutes

a clearly different approach from what we carried out in our previous papers (hypothesis-

driven). We believe that such differences would be due to specific mechanisms of brain adapta-

tion and compensation that make it possible to maintain cognitive efficiency, as reflected by

the analysis of effective connectivity between different brain regions. For this study, we intro-

duced the use of structural equation models (SEM), as they have proven a high level of effi-

ciency in the estimation of complex networks similar to those formulated here. In addition,

they are in turn easy and available to estimate [26, 34].

Materials and methods

Participants

The study’s samples consisted of 21 subjects with T1D and 21 without T1D, selected through

intentional sampling among the outpatients at the Hospital Civil Fray Antonio Alcalde and the

Servicio de Endocrinología del Centro Médico Nacional de Occidente, Guadalajara, Mexico. All

the participants met the inclusion criteria: i) they were right-handed, ii) they were between 14
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and 30 years old, iii) they had an IQ within the normal range, and iv) they had a minimum of 9

years of school education. The group of participants with T1D consisted of subjects with a

minimum 4 years since the onset of the disease, with an onset between childhood and adoles-

cence. The control group was mostly recruited through the same subjects with T1D, and they

were paired by age, gender, and years of school education.

Regarding exclusion criteria, we discarded data from subjects with i) a history of neurode-

velopmental alterations; ii) signs of depression according to Hamilton’s Depression Rating

Scale; iii) substance dependence or abuse; and iv) frequent periods of hypo- or hyperglycemia

that had ended in one or more hospitalizations in the last two years. Later, the participants

who did not finish the experimental tasks or who moved during the completion of the tasks

were also removed. In the end, a total of 12 participants were excluded, thus leading to a final

sample of 15 subjects with T1D and 15 subjects without T1D with strict pairings.

Table 1 shows the descriptive statistics for the sociodemographic data from both samples

and the comparison between both groups. There were no differences between the two groups,

with the exception of total IQ, verbal comprehension index and plasma glucose before the

fMRI (mg/dL). However, the total IQ score or the verbal comprehension index score in the

two groups show that both distributions were normogroups.

Experimental task

The experimental task had a block design (boxcar) and consisted of a visuospatial short-term

memory task and a visuospatial working memory task (Tasks A and B, respectively). Both

visuospatial memory tasks involved visualizing a square on the screen, which moved to 3 or 4

different positions. Next, after a first sequence, a second sequence was played that could be the

same as or different from the previous sequence. In Task A, the participant received the

instruction “DIRECT ORDER”, and upon finishing the task, they had to answer whether the

order of the positions of the square in the second sequence matched the order of the positions

in the first sequence. Task B had the exact same format as A, but in this case, the instruction

given was “REVERSE ORDER”, and the subject had to answer whether the order of the posi-

tions of the square in the second sequence followed the exact same order as in the first, but in

Table 1. Demographic and clinical characteristics of the study subjects.

Patients with T1D Control subjects Signification

n 15 15

Age (years) 20.6 (4.0) 21.13 (4.41) No Sig.

Sex (men/women) 9/7 9/7 No Sig.

Education (years) 12.69 (2.87) 13.31 (2.75) No Sig.

TOTAL IQ 103.88 (7.40) 113.06 (7.30) p = 0 .04

Verbal Comprehension Index 102.88 (12.39) 116.81 (8.73) p< .01

Perceptual Reasoning Index 109.19 (8.31) 113.44 (8.41) No Sig.

Working Memory Index 97.00 (2.12) 99.50 (3.08) No Sig.

Processing Speed Index 104.38 (16.36) 118.44 (10.87) p< .01

Diabetes duration (years) 10.44 (5.37)

HbA1c (%) 8.91 (2.09)

(mmol/mol) 74 (22.8)

Last fasting plasma glucose (mg/dL) 128.54 (60.05)

Plasma glucose before fMRI (mg/dL) 207.06 (72.31) 106.8 (40.19) p< .01

The data are presented as the means (SD); n = number of cases; HbA1c = glycated hemoglobin.

https://doi.org/10.1371/journal.pone.0208247.t001
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reverse order. Each task lasted 21 seconds and was composed of 2 blocks, one with 3 stimuli

and another with 4. In each block of stimuli, two sequences were presented. The first sequence

was called “sequence of visualization”, where the participant had to pay attention to the order

in which the squares were presented. In the second sequence, called “sequence of response”,

the squares kept, or did not, the previously presented spatial order (Fig 1). The participants

had to respond by pressing button 1, if the second sequence correctly matched the first one,

according to the instruction received, and button 2 if they did not.

The total time of acquisition of the images was 6:12 minutes for both tasks. The visuospatial

memory paradigm comprised 16 blocks, 8 blocks of tasks for block A and block B presented

alternately, and 8 blocks of rest were presented after each task block.

Experimental procedure

At the beginning of each block, the instructions “DIRECT ORDER” or “REVERSE ORDER”

were shown at the center of the screen, followed by a white fixation point (cross). Thereafter,

the three or four squares, also white, were sequentially presented at different positions of the

screen. The first sequence was followed by the reappearance of the white cross, the fixation

point, that preceded the presentation of the second sequence of squares–this time printed in

red–matching or not the spatial order in which the first sequence had been presented. To con-

clude, the instruction “Respond” appeared on the screen, and the subject was given time to

answer. The initial instruction had a duration of 3,000 ms. The presentation of each stimulus

lasted 800 ms, and the interstimulus interval lasted 460 ms. For the period between sequences

and the answer time, both lasted 1,800 ms each.

Image acquisition: The experimental tasks were programmed with E-prime Studio v.2.0

(Psychology Software Tools, Inc., 2010) and were projected through a goggle system. The

answers were registered in a four-button box compatible with a magnetic resonance. For the

image acquisition, a 1.5 Tesla GE ExcieHDxT scanner (General Electric Medical System, Mil-

waukee, WI) was used with an eight-channel standard circular antenna with headpads to

restrict head movement. The first scan was a locator for the positioning of the planes of the

functional image. Previous to the study, T2 axial series were obtained for every subject in addi-

tion to a sequence pulse of rapid three-dimensional high-resolution images (SPGR) to be used

as anatomic references. For the functional images, 32 cuts were obtained and acquired in

ascending sequential order, with a 4-mm thickness with no space between them, in an oblique

axial plane, by using eco-planar images (EPI), with a time of repetition (TR) of 3,000 ms, a

Fig 1. Layout of the tasks applied in the experimental sequence.

https://doi.org/10.1371/journal.pone.0208247.g001
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time of echo (TE) of 60 ms, and a flip-angle of 90˚ in a 64x64 matrix. As a result, the voxel size

was 4.06 x 4.06 x 4 mm.

General procedure

The study’s protocol was approved by the ethics committee of the Hospital Civil Fray Antonio
Alcalde, and all the persons taking part received ample explanation on the reason and the

details of the study. Likewise, all their doubts were answered before signing the written

informed consent. In the case of minors, consent was obtained from the parents. In the first

contact with the patients, the reason for the study was explained, and those who were willing

to participate were administered a brief questionnaire as well as an IQ evaluation by means of

the WAIS-III questionnaire to verify that they met the inclusion criteria. A week before acquir-

ing the fMRI sequence, a second interview took place to describe the experimental procedure

in detail, in addition to submitting the subjects to a training session in the completion of the

tasks so that they would become familiar with the study before the fMRI session. No differ-

ences were detected at this point between groups in relation to the reaction time, number of

correct responses or total errors. For the fMRI study, the subjects were asked to refrain from

ingesting alcohol, tea, coffee, cigarettes or any other substance that might alter Central Ner-

vous System (CNS) 12 hours prior to the study. Moreover, they were asked to attend with com-

fortable clothing and without any metallic objects. Minutes before the study, they were given

the task instructions to read, and their blood glucose level was taken with a glucometer (Accu-

Check Active).

Data analysis

For the treatment of the images and the statistical analysis of the functional magnetic reso-

nance imaging (fMRI), the software Statistical Parametric Mapping (SPM8) was used (http://

www.fil.ion.ucl.ac.uk/spm/). All images were slice time and motion corrected, coregistered

with a high-resolution anatomical scan, and normalized to Montreal Neurological Institute

space. We conducted spatial smoothing using a Kernel Gaussian Full Width at half-Maximum

(FWHM) of twice the size of the voxel. Additionally, the images were placed on a standard

template using the above mentioned coordinates as an anatomical reference.

In relation to the influence of head motion, we estimated the root mean square and peak/

average (across volumes) framewise displacement (FD), which is based on SPM’s realignment

procedure. We used the same procedure described in [35] using the converted rotational dis-

placements from degrees to millimeters by calculating displacement on the surface of a sphere.

There were no statistically significant differences in any of these parameters for each group

using a nonparametric Kolmogorov test.

A total of 124 brain volumes were obtained in each paradigm, and for experimental design

reasons, 12 volumes were deleted per task, corresponding to the volumes generated at the

times of the instructions, which were uninteresting for the study, thus yielding a total of 112

volumes per task in the statistical analysis.

The volumes corresponding to each task were analyzed separately. The statistical analysis of

brain activation was conducted through a simple general linear model (GLM) using the cor-

rection for multiple comparisons of the family wise error rate (FWE) for an α level of 5%. All

four analyses (one for each task and group) were conducted by simple contrasts between the

BOLD signal means obtained during the activation periods and those obtained during the rest-

ing periods. For the analysis of the brain connectivity network, by means of the MarsBars 0.44

software, we extracted the activation data of the BOLD signal for each of the regions of interest

(ROIs) that the previous statistical analysis had shown to be significantly activated during the
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task completion. For each region, we included in the reduction procedure, the total number of

significant voxels in the first level analysis. The data matrices of the BOLD signal for each ROI

were analyzed through the statistical analysis software M-PLUS 5.1, using a structural equation

model (SEM) to extract the network of effective connectivity between the ROIs based on the

matrix of correlations between ROIs.

Results

Behavioral results

The behavioral results are shown in more detail in our previous papers [32, 33]. In summary,

the results showed that both groups had a high percentage of correct answers in tasks A and B

(between 88.28% and 94.53% of correct answers). The only significant differences were

observed in the interaction, tasks AB by Group [F(1, 30) = 4.35; p = .046; η2 = .133]. In particu-

lar, the patients showed a higher percentage of correct answers in task A and the controls in

task B. In any case, the effect size of such difference was small, and the high percentage of cor-

rect answers for both groups in both tasks allowed us to confirm that our research was

completely feasible in the BoxCar design we used and that the ROIs extracted in this analysis

were activations related to the successful completion of the respective tasks.

Activated areas

Table 2 show the list of activated areas during the completion of the different tasks separated

by groups, controls and patients. As seen, there is a great number of areas activated in the fron-

tal lobe, which is unsurprising since several frontal areas participate in WM. We should note

that the largest ROIs are found in this lobe, with ROIs with over 14 clusters in some cases. This

means that, although the point with the greatest activation is in the area shown in the table,

there are ROIs comprising over 300 voxels with smaller activations in nearby areas. However,

since they are activated at the same time and are located side by side, the neuroimaging analy-

sis groups them into one. We can observe, in Table 2, which areas activated in the frontal lobe

are on the right side of the brain. Among the most relevant areas activated in the frontal lobe,

we find, in both tasks, the medial frontal gyrus, which is linked to high demand levels for exec-

utive functions.

Effective connectivity network. SEM model estimation

The conception of the effective connectivity model though structural equations is based on the

fact that the computation capacity makes it possible to identify cognitive processes as a com-

plex series of hierarchically organized computational models. It is assumed that the processes

analyzed are conceived as separable, and following the same logic as in cognitive subtraction,

the final process is defined by the addition of defined partial processes.

By effective connectivity, we mean statistical models that formulate stochastic structural

relationships between specific ROIs that have shown statistically significant activity with cog-

nitive task.

The stages to estimate effective connectivity through SEMs were defined by [36]:

a. Selecting ROIs through the combination of the univariate analysis, the intensity changes in

the BOLD signal, the multivariate analysis, and the theoretical knowledge.

b. Obtaining the anatomical model.

c. Calculating interregional covariance or the matrix of correlations of the fMRI data.

Effective connectivity in patients with T1D mellitus
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Table 2. Activated areas for the different groups and tasks.

Group and Task Num H Anatomical region Broadmann Area Coord T Z stat

X Y Z

Control group in task A 1 R Superior Frontal Gyrus 9 34 39 30 4.55�

2 R Middle Frontal Gyrus 6 6 28 1 47 6.12�

3 R Middel Frontal Gyrus 11 11 11 32 -17 4.89�

4 R Supramarginal Gyrus 40 50 -31 33 3.77�

5 R Declive 19 -75 -21 4.01�

6 R Superior Temporal Gyrus 9 34 39 30 6.11�

7 R Lentiform Nucleus Putamen -28 -21 -4 3.91�

8 L Middle Occipital Gyrus 19 -45 -73 -14 4.12�

9 L Fastigium -5 -53 -23 5.02�

10 L Culmen -6 -45 -17 4.77�

11 L Declive -6 -74 -21 3.99�

12 L Lentiform Nucleus Putamen -28 -21 -4 6.12�

13 L Ventral Anterior Nucleus -7 -3 3 5.12�

Patients group in Task A 1 R Red Nucleus 8 -19 -10 3.44�

2 R Fusiform Gyrus 37 46 -52 -7 4.12�

3 R Inferior Temporal Gyrus 20 45 -20 -23 3.79�

4 L Red Nucleus -5 -20 -9 3.88�

5 L Pyramis -5 -69 -28 3.91�

6 L Declive -6 -74 -21 4.22�

7 L Lingual Gyrus 18 30 -89 6 4.37�

Control group in Task B 1 R Pulvinar 9 -20 8 4.11�

2 R Putamen 26 7 -4 3.79�

3 R Inferior Frontal Gyrus 9 34 39 30 4.52�

4 R Middle Frontal Gyrus 6 28 1 47 6.12�

5 R Superior Frontal Gyrus 8 22 28 42 5.11�

6 R Tuber 5 -74 -27 4.23�

7 R Lingual gyrus 18 30 -89 6 5.02�

8 R Subgyral Hippocampus 31 -39 5 3.81�

9 R Middle Temporal Gyrus 20 45 -20 -23 3.44�

10 L Precuneus 7 -18 -57 50 4.12�

11 L Precentral Gyrus 6 -28 0 48 5.11�

12 L Middle Occipital Gyrus 19 -45 -73 14 4.61�

13 L Uvula -13 -49 -14 4.22�

14 L Supramarginal Gyrus 40 -52 -30 32 3.99�

15 L Declive -6 -74 -21 4.91�

16 L Lentiform Nucleus -28 -21 -4 3.95�

17 L Claustrum -30 13 9 4.12�

18 L Pulvinar -8 -18 8 4.38�

19 L Putamen -28 -21 -4 5.23�

20 L Insula 13 -40 0 2 5.07�

(Continued)
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d. Calculating the trajectory of the coefficients and comparing them to the models according

to the characteristics of the statistical estimation technique.

The SEMs applied in this environment are based on the so-called type III models, by [37]

and are identified by the following general expression:

yt ¼ byt þ zt;

where yt are the values of the ROIs selected, β the parameter estimations, and zt the structural

errors associated with each endogenous variable yt.

We need to bear in mind two important considerations. The first consideration regards the

concept of effective connectivity: SEM estimation is generated regardless of the biological

structure of the nervous system. The effects described deriving from the univariate and multi-

variate analyses lack neurofunctional support and are solely justified by statistical effects which

must later be contrasted with the existing literature.

The second consideration is statistical. Whatever the parameter estimation technique—in

our case Maximum Likelihood—it involves estimating the parameters of matrix β, which com-

prises the effects between ROIs, and the parameters of matrix ψ, which comprises the vari-

ance-covariance matrix between the structural errors zt, so that ψ = E(zz’). The specific form

adopted by β derives from the effects specified between ROIs, while the form adopted by ψ
summarizes the assumptions specified regarding the structural error distributions. Generally,

the classical assumptions of SEMs would involve initially assuming that E(zz’) = E(ytz’) = 0

and, consequently, the errors should be uncorrelated between themselves with regard to the

endogenous variables, except for the possibility that matrix β considers nonrecursive effects.

Evidently, this enables the possibility that the error distribution may be independent from

the estimations of β. In fact, this model also implies the assumption that the variables—that is,

the values for each ROI—are observed continuous variables of multinormal distribution. The

truth is that each yt value representing the fMRI activity of one ROI is estimated by a compo-

nent principal analysis based on the selection of a given number of voxels convoluting under a

geometric form defined around a voxel of maximum univariable or multivariable statistical

significance under the statistical assumptions of the massive general linear model. Therefore,

each yt extracted might be considered a latent variable (ηt) defined on the basis of the values

Table 2. (Continued)

Group and Task Num H Anatomical region Broadmann Area Coord T Z stat

X Y Z

Patients Group in Task B 1 R Culmen 9 -33 -21 3.78�

2 R Fusiform Gyrus 37 46 -52 -7 4.44�

3 R Lingual Gyrus 18 30 -89 6 5.79�

4 R Declive 19 -75 -21 5.18�

5 L Cerebellar Tonsil -17 -55 -41 3.82�

6 L Declive -6 -74 -21 4.29�

7 L Red Nucleus -5 -20 -9 4.51�

8 L Fusiform Gyrus 19 -45 -73 14 3.77�

9 L Culmen -6 -45 -17 4.81�

�p < .001, H: Hemisphere; R:Right; L:Left; Z stat: Statistical Contrast; Coord T: Tailarach coordinates

https://doi.org/10.1371/journal.pone.0208247.t002
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actually observed in every voxel and estimated according to the type of design used, block

design or event-related.

However, despite certain limitations of the model, SEM complex models are essential for

the study of connectivity as it would be imprudent not to assume the existence of reciprocal

effects between ROIs. In addition, the goodness-of-fit indicators, the Tucker and Lewis Index

and the Determination Coefficient (R2), indicate that the models for each task and group fit

perfectly. To establish the best structural model in each of the four variance and covariance

matrices derived from the ROIs of each group and task, we followed the procedure described

by [34]. It involves starting the estimation of all the possible models and discarding all those

incorrectly specified (degrees of freedom below 0); discarding those models that do not con-

verge after a reasonable number of steps (500 iterations in this case); and finally, out of the

models that pass these previous stages, selecting the one with the best fits. These are the models

resulting from connectivity studies.

Results task A. The effective connectivity model of the control group in task A shows

major direct interconnections between the frontal lobe and sublobar regions, such as the right

anterior ventral nucleus. In turn, the latter sends outputs to the cerebellum (declive) by con-

necting with the putamen and the occipital lobe. Additionally, Brodman’s area 6 of the medial

frontal gyrus is indirectly connected with the anterior ventral nucleus by means of the superior

temporal gyrus and passing through the supramarginal gyrus. The fastigium and the culmen,

although anatomically identified in another lobe, are also part of the cerebellum and are in

charge of sending outputs to the frontal lobe, the declive, and the parietal lobe.

The effective brain connectivity network modeling for patients starts off with a lower num-

ber of ROIs deriving from the univariate and multivariate analyses of the changes in intensity

of the BOLD signal. In turn, the areas appearing as significantly activated are more related to

the motor completion of the task than to the executive functions network—such as the red

nucleus, responsible for motor coordination—and have a lower number of connections

between themselves. Figs 2 and 3 display the diagrams for each complex system by means of

SEMs as well as the main statistical estimations. In relation to individual parameter estimation,

in the control group, there are 13 ROIs connected with a total of 17 significant paths (βij in

terms of SEM nomenclature); meanwhile, in the T1D group, there are only 7 ROIs connected

with 8 significant paths.

Results Task B. The effective connectivity network model in the control group during the

completion of task B is the most complex of all. This is due to the increased difficulty of this

task. Lateralization can be clearly observed in the direction of the connections from left to

right, especially from sublobar areas such as the thalamus, the putamen, and the claustrum

towards areas of the anterior lobe, the hippocampus, and the temporal lobe. The hippocampus

is also the area receiving the most connections from different lobes, as this is an organ involved

in long-term memory and essential for spatial navigation.

As in task A, patients show fewer activated regions in task B. In this case, no activation is

shown in the main areas of executive functions or in any area of the frontal lobe. However, the

culmen of the anterior lobe, the red nucleus, and the declive do appear. Figs 4 and 5 displays

the diagrams for each complex system by means of SEMs as well as the main statistical estima-

tions. In this case, in the control group, there are 20 ROIs connected with a total of 18 signifi-

cant paths (βij in terms of SEM nomenclature); meanwhile, in the T1D group, there are only 9

ROIs connected with 13 significant paths.

Additionally, we obtained the global fit values for every model, and they guaranteed that

each estimated model was the best possible model out of all the models analyzed according to

[34] procedure. Table 3 shows these values. Finally, we summarized, in Table 4, the values of

the standardized structural parameters to offer the empirical values of the different effects,
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both for those with a significance p< .01 (thin line in the figures) and for those with a signifi-

cance p< .001 (thick line in the graphs).

Discussion

In this paper, we have studied, through SEMs, the connectivity of two visuospatial memory

tasks: one that we might consider short-term memory and another with a greater WM compo-

nent. Some authors consider the distinction between both types of memory to reflect the

degree of manipulation, and the distinction between both types of memory would accordingly

be rather gradual than categorical. Consequently, the term ‘working memory’ might be applied

to immediate memory tasks [15]. Both tasks used in this study shared a good deal of the cogni-

tive processes that were involved. However, Task B also has a rehearsal component of the

information that is unnecessary to solve task A. Therefore, it is hardly surprising that, to a cer-

tain extent, the ROIs activated and some aspects of effective connectivity were similar in both

tasks.

Fig 2. Path diagram and results of the SEM of task A for patients. The grey line represents left and right hemisphere.

Note: TLI = Tucker Lewis Index; CFI = Comparative Fit Index; AIC = Akaike Information Criteria; BIC = Bayesian

Information Criteria. R2 = Coefficient of Determination; χ2 = Goodness-of-fit statistic.

https://doi.org/10.1371/journal.pone.0208247.g002
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Control group

The control group–in task A—showed an effective connectivity pattern comprising numerous

brain areas. First, we should point out two classical ROIs in these tasks: the right superior fron-

tal circumvolution and the right middle frontal circumvolution (BA 6 and 11). The superior

frontal circumvolution is a brain area classically involved in executive control and involved in

the updating of memory content and the storage of temporal stimuli order [16], which are two

key cognitive components in this type of task. It is a point of convergence for the dorsal and

ventral networks of the attention network, and it is responsible for slowing down endogenous

Fig 3. Path diagram and results of the SEM of task A for controls. The grey line represents left and right

hemisphere. Note: TLI = Tucker Lewis Index; CFI = Comparative Fit Index; AIC = Akaike Information Criteria;

BIC = Bayesian Information Criteria. R2 = Coefficient of Determination; χ2 = Goodness-of-fit statistic.

https://doi.org/10.1371/journal.pone.0208247.g003
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attentional processes and directing attention towards external stimuli. Moreover, this cortical

area is linked to processes related to decision-making [38, 39].

Other areas that appear activated as ROIs and generate effects on the connectivity model

are the cerebellum fastigium, the declive, and the culmen. The declive would be an area con-

stantly related to WM [15]. The cerebellum nuclei activated in our research were found in the

left hemisphere, and they send most of their effects to the cerebellum’s right hemisphere and

the right middle and superior frontal cortexes. This interaction between the left cerebellum

and the right prefrontal cortex is to be expected due to the demonstrated cerebellar role in the

timing [40] and sequencing of stimuli in WM tasks [41, 42].

The left and right putamen also generated and received effects in this task. Some studies

suggest that the left putamen would be a brain area involved in preventing irrelevant

Fig 4. Path diagram and results of the SEM of task B for patients. The grey line represents left and right hemisphere.

Note: TLI = Tucker Lewis Index; CFI = Comparative Fit Index; AIC = Akaike Information Criteria; BIC = Bayesian

Information Criteria. R2 = Coefficient of Determination; χ2 = Goodness-of-fit statistic.

https://doi.org/10.1371/journal.pone.0208247.g004
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information from entering WM [43]. Undoubtedly in our study, the area receiving the most

effects is the thalamus’s anterior ventral nucleus. It has been purported that in WM memory

tasks, the thalamus participates in holding in memory and retrieval phases [44, 45].

However, none of these papers refer specifically to the thalamus’s lateral nuclei or the ante-

rior ventral nucleus, since the role of the lateral thalamus in spatial memory is little known

[20]. Finally, we also observed activations in the supramarginal parietal cortex in this group.

This is a somewhat surprising result, as it has usually been observed that the storage of spatial

material tends to activate the superior parietal cortex (BA 7), while the storage of two objects

or forms is what activates the inferior parietal cortex [15, 16].

In task B, in addition to the activations observed in task A that we discussed above, in this

connectivity model we saw activations in the inferior frontal cortex, a brain area that would be

important for storing visuospatial material in WM tasks and related to the manipulation of the

content in WM [16]. Task B in our study had a rehearsal component that was unnecessary to

solve task A. Another ROI activated in task B for this group was the insula. This is a structure

that is consistently activated in WM paradigms [15] and related to choosing correctly in WM

tasks [46]. Another area that is part of the model is the precuneus, which is classically involved

in the spatial or verbal storage of information in this type of task [16]. Additionally, we

detected activations in the middle occipital gyrus, an area that has been related in the storage

of short-term visual memory [47]. We must point out that in this task, the brain area receiving

the most effects in the estimation of connectivity is the R-hippocampus. This brain area has

classically been related to long-term memory, but more recent studies suggest that the different

subregions of the medial temporal lobe may be critical for the short-term storage and manipu-

lation of complex spatial arrangements in WM tasks [21].

T1D group

In the group of T1D patients, the connectivity model for tasks A and B showed a very similar

pattern, with a smaller number of brain areas involved, and there is a remarkable lack of fron-

tal cortical areas. However, another remarkable aspect was the fact that in task A, the region

receiving the most effects was the red nucleus, which receives its projections mainly from the

cerebellum. In task B, important connectivity effects appear in the model that are related to the

red nucleus, although this time is only the left side, as it shows connectivity with some cerebel-

lum nuclei. The red nucleus (RN) has been classically considered a motor nucleus with impor-

tant direct pathways with the dentate nucleus in the cerebellum [48]. Structural data obtained

Fig 5. Path diagram and results of the SEM of task B for controls. The grey line represents left and right hemisphere.

Note: TLI = Tucker Lewis Index; CFI = Comparative Fit Index; AIC = Akaike Information Criteria; BIC = Bayesian

Information Criteria. R2 = Coefficient of Determination; χ2 = Goodness-of-fit statistic.

https://doi.org/10.1371/journal.pone.0208247.g005

Table 3. Global fit index for each structural model.

Model TLI CFI AIC BIC R2 χ2 p

Task A Group Control .99 .99 -47234.89 -48231.12 .94 3211.51 .845

Task A Group Patients .99 .99 -234561.12 -277152.33 .92 2213.11 .781

Task B Group Control .99 .99 -88237,11 -89122.37 .95 1221.11 .712

Task B Group Patients .99 .99 -416231.31 -418321.77 .92 877.23 .621

TLI = Tucker Lewis Index; CFI = Comparative Fit Index; AIC = Akaike Information Criteri; BIC = Bayesian Information Criteria; R2: Coefficient of Determination; χ2

= Chi-Square estimation; p = p value associated to χ2.

https://doi.org/10.1371/journal.pone.0208247.t003
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with diffusion–tensor imaging suggested that the red nucleus is connected with the thalamus,

the basal ganglia and is also connected directly and indirectly with the association cerebral cor-

tex. Thus, corticorubral pathways may directly connect the red nucleus with the motor, pre-

motor several areas of the superior, middle and dorsolateral prefrontal cortex insula, and

temporal and cingulate cortices. Indirectly, through cerebellar pathways, the red nucleus is

connected both ipsilaterally and contralaterally to prefrontal, parietal and occipital cortices

[49, 50]. Functional neuroimaging studies suggest that the RN is functionally connected to

brain areas related to WM, including prefrontal cortical areas (BA 45; BA 46; BA 47), the

insula, the hippocampus (BA 11 and precuneus) and the occipital cortex [51]. In addition, a

recent study [52] using high resolution PET showed very similar results to the study [51] and

suggested that the right RN showed strong ipsilateral metabolic correlations with association

cortices, while the left RN showed a more bilateral pattern of connectivity with the cerebral

cortex [52]. These findings suggest that the RN shows strong connectivity with cortical areas

that are either part of the “core” WM network [15] or had shown activity during visuospatial

WM tasks, and several of them showed activity and connectivity effects in our healthy sample.

The most significant effects towards the RN in our study came from the cerebellum pyramid

and declive. Some studies consider the cerebellar tonsil and pyramid to be involved in the

executive control of WM by preventing irrelevant information from entering WM [53], and

the meta-analysis by [15] suggested that the declive would be an area consistently involved in

this cognitive function. In addition, another study examining cerebellar connectivity suggests

that the cerebellum contributes to the salience network, the DMN, and the cognitive control

network, and their results also showed that the RN also participates in those three networks

[48]. Another area receiving important effects in both tasks is the bilateral lingual circumvolu-

tion, as does the right fusiform circumvolution. It has been reported that both could be acti-

vated in healthy persons in WM tasks for forms but not in spatial location tasks [54]. Other

studies suggested that the left lingual circumvolution can be activated in visuospatial WM

tasks [21].

Taken together, our data suggested that the T1D patients showed a connectivity pattern

during our memory task that is quite different from the one shown by healthy controls, impli-

cating the RN, the cerebellum, and the lingual and fusiform cortices. This will be interpreted

as a compensatory mechanism that patients need to efficiently solve the WM tasks but that

relays to encephalic structures that are also related to WM. We should note the absence of the

different areas of the prefrontal cortex in the model, but in our previous studies, the T1D

patients presented fewer activations than the control group [32, 33]. This cerebellar-RN con-

nectivity pattern during the WM task was previously found by [55] in patients with attention-

Table 4. Estimation of the free parameters for each model differentiated by intensities.

Model Line ML Parameter estimation

Task A Group Control Thin βij = .213 to .301 p < .01

Thick βij = .377 to .471 p < .001

Task A Group Patients Thin βij = .213 to .301 p < .01

Thick βij = .377 to .471 p < .001

Task B Group Control Thin βij = .178 to .278 p < .01

Thick βij = .310 to .418 p < .001

Task B Group Patients Thin βij = .178 to .278 p < .01

Thick βij = .310 to .418 p < .001

ML: Maximum Likelihood estimation

https://doi.org/10.1371/journal.pone.0208247.t004
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deficit hyperactivity disorder. Our data, along with the findings of those authors, suggest that

when faced with pathologies that affect the brain from an early age, such as ADHD and T1D,

the brain might develop this adaptation that would be relatively specific for WM. We must,

however, be very cautious when making this interpretation because we did not have this start-

ing hypothesis in our study, and our results are derived from a data-driven analysis.

Be that as it may, our study has some limitations that need to be addressed. We based the

preparation of our effective connectivity models on a data-driven strategy, which brings about

complex connectivity models with numerous brain areas involved. This is especially true in

the group of control participants. For that reason, the conclusions obtained from this study

and the way they are interpreted must necessarily be taken with caution and as a preliminary

approach, which leads to future papers driven by more specific hypotheses and approaches to

connectivity with seed studies. Nevertheless, it should be clear that our main goal was to study

connectivity in visuospatial WM in patients with T1D. Given that it had never been done

before and that the data consistently show that diabetic patients have brain activation patterns

clearly different from those of healthy persons in this type of task [23, 32, 33], an approach of

this kind is the most suitable. In this sense, it should be considered that our data confirm a pos-
teriori the idea that this is a sensible approach to the study of the phenomenon if we bear in

mind that the effective connectivity pattern in the group of T1D in both tasks is very different

from that of the control participants.

Another limitation of the study is that it should be understood and interpreted in the con-

text of the tasks used. An aspect hindering the study of fMRI brain databases is the existence of

significant heterogeneity of WM tasks, with a great variety of stimuli, and other manipulations,

such as memory load, delay times, and the presence of distractors, among others [15]. All these

variables exert great effects on the activation of several brain areas [15, 16]. Consequently, our

SEM connectivity models in WM must be understood in the context of the tasks used in the

study, and further studies should be conducted with other tasks to support or refute the finding

of rubro-cerebellar connectivity in the group of T1D. Be that as it may, this is a limitation that

we will find in virtually any brain connectivity study that uses an SEM connectivity estimation

approach.

Likewise, our data have some strong points that we must highlight. First, this is the first

paper to study brain connectivity in WM tasks in patients with T1D using an SEM model. The

data we obtained as a whole suggest that these patients develop a series of functional brain

adaptations that would have a preventive or limiting effect on the alterations of this cognitive

function. This is not new, as several papers have reached similar conclusions [23, 28, 32, 33].

However, our data suggest that these adaptations might be very important, as patients with

T1D develop effective connectivity networks in visuospatial WM that are very different from

those of healthy persons. This is an unquestionable contribution of our study, given that classi-

cal fMRI studies do not show such quite differentiated brain activity patterns between patients

with T1D and control participants. Second, the estimation of effective brain connectivity in

this study was conducted on the basis of a BoxCar design, which, according to certain studies,

would be a more sensitive design to estimate connectivity with SEM than event-related designs

or studies at rest [26]. We have also analyzed a considerable number of brain areas. Although

this is an added difficulty to the analysis, it is also closer to the brain’s complexity and to the

cognitive function studied than what might be seen in many SEM models published today

[26]. In this sense, we must point out that WM is altered in almost any neurological or psychi-

atric disease, which indirectly proves that numerous brain areas take part in this cognitive

function [15].

Another strong point of our study is the fact that, despite its exploratory nature, the fit of

the SEM models in both tasks and groups is very good and has a very high proportion of
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explained variance in all the models. In this sense, we must comment on the fact that our sam-

ple comprises 15 participants in each group, which is adequate from the point of view of sam-

ple size for fMRI studies [24]. We must emphasize that when preparing the model, we

conducted a thorough review of the conditions of application of the SEM model, paying close

attention to the compliance with the model’s assumptions and the distribution of each of the

ROIs. All of the results lead us to consider that the conclusions we have obtained in the current

study are reasonable despite the study’s exploratory nature. Further studies are necessary in

combination with other approaches to the data analysis (e.g., seed studies) to confirm the role

of the different brain structures, both subcortical and cerebellar, in WM T1D patients and to

establish more firmly the connectivity networks associated with this cognitive function in this

type of patient.
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