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Abstract 1 

The cardiovascular benefits of physical activity are undisputable. Nevertheless, growing 2 

evidence suggests that both atrial fibrillation and right ventricular arrhythmias could be 3 

a side effect of exercise in some individuals. Exercise-induced atrial fibrillation is most 4 

commonly diagnosed in middle-aged, otherwise healthy men who have been engaged in 5 

endurance training for >10 years, and is likely mediated by atrial dilatation, 6 

parasympathetic enhancement and, possibly, atrial fibrosis. The relationship between 7 

physical activity and right ventricular arrhythmia is complex and involves genetic and 8 

exercise factors that in few athletes eventually lead to right ventricular dilatation, 9 

followed by subsequent myocardial fibrosis and lethal ventricular arrhythmias. Sinus 10 

bradycardia and atrioventricular conduction blocks are common in athletes, most of 11 

whom remain asymptomatic, although incomplete reversibility has been shown after 12 

exercise cessation. Cardiac ablation is evolving as a first-line tool for athletes with 13 

exercise-induced arrhythmia who are eager to remain active.  14 
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Regular physical activity of moderate-to-vigorous intensity should be encouraged in all 1 

healthy individuals and most patients with cardiovascular conditions on the basis of its 2 

effects on lowering risk factor burden, improving wellness, and potentially reducing 3 

overall mortality.1 Although the benefits of exercise have been scientifically proven and 4 

are well-established, early reports that observed an increase in sudden cardiac death 5 

during, or shortly after, intense physical activity led researchers to question whether 6 

intense exercise was harmful.2 Further research in this area demonstrated that 7 

underlying cardiac abnormalities, either congenital or acquired, were present in most of 8 

these athletes.3–5 Therefore, exercise was considered a mere trigger for ventricular 9 

arrhythmias and sudden death, paving the way for preparticipation screening 10 

programmes aimed at identifying underlying cardiac conditions.6,7 11 

However, in the past two decades, a growing core of evidence supports the 12 

premise that strenuous physical activity is not only able to trigger cardiac events, but 13 

can promote the development of cardiovascular disease in individuals with no previous 14 

cardiovascular abnormalities.8–11  Most of this research has focused on the identification 15 

of arrhythmias originating in both the atrium and the right ventricle. Specifically, the 16 

role of exercise in the development of atrial fibrillation (AF) has been acknowledged.12 17 

Conversely, the evidence supporting an involvement of the right ventricle in the genesis 18 

of potentially lethal ventricular arrhythmias is less established. Furthermore, the left 19 

ventricle remains relatively preserved in most studies. Some reports have suggested that 20 

extreme forms of exercise might paradoxically increase atherosclerotic complications.11  21 

Two consequences of exercise-induced arrhythmias underscore their importance 22 

as public health concerns. First, the lifestyles of young athletes are generally seen as a 23 

hallmark of a healthy way of life and, for some individuals, an example to be followed. 24 

Public confusion and uncertainty surrounding the diagnosis of a cardiac arrhythmia, or 25 
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live broadcasting athletes dying suddenly in sports events has a negative effect on the 1 

media and society. If not properly addressed, this issue might result in reduced physical 2 

activity among individuals and a subsequent rise in the burden of cardiovascular 3 

disease. Second, most exercise-induced cardiac conditions are diagnosed in individuals 4 

engaged in vigorous physical activities. Considering that the number of individuals 5 

undertaking extreme forms of exercise has been readily increasing for the past 20 6 

years,13 it is conceivable that the number of individuals affected with exercise-induced 7 

arrhythmias could also progressively increase over the next decade. 8 

Therefore, why and how these apparently paradoxical effects of exercise fit into 9 

actual knowledge, and how they should be approached are crucial for all health-care 10 

personnel and policy makers to understand. In this Review, we will present the evidence 11 

supporting the existence of exercise-induced arrhythmias, its mechanism of action and 12 

discuss the specific considerations for the clinical approach of these patients. 13 

[H1] Atrial arrhythmias   14 

AF is the most common sustained arrhythmia in clinical practice. AF is 15 

characterized by a loss of synchronous atrial electrical activity and contraction, and 16 

results in increased thromboembolic and heart failure risk, impaired quality of life, and 17 

a two-fold higher risk of adjusted mortality.14 Hypertension and structural heart disease 18 

are two of the most frequent causes of AF in the general population. Cardiovascular 19 

abnormalities are absent in up to 10% of patients with AF; risk factors for the 20 

development of AF in these patients include obstructive sleep apnoea, obesity, and 21 

intense exercise.15  22 

The first evidence linking exercise and AF was first published in the late 23 

1990s,8,9 prompting much debate amongst researchers, with one side drawing attention 24 
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to the growing core of evidence, and the other highlighting the potential biases and 1 

inconsistences in the data13,16. The rationale behind these debates are the seemingly 2 

conflicting results derived from a multitude of different methods and analyses used, an 3 

intrinsic limitation of the retrospective nature of most studies. Central to this limitation 4 

is the considerable variability in ways in which physical activity has been quantified. 5 

Physical activity is intuitive, but difficult-to-quantify; several approaches have been 6 

taken to assess physical activity,17 including the evaluation of cohorts of well-trained 7 

athletes, performing questionnaires, or objectively assessing cardiovascular fitness (Box 8 

1). Remarkably, as the core of published studies grows, the association between 9 

physical activity and AF becomes consistent all across these methods (Figure 1). 10 

 11 

1.1. [H2] Exercise-induced AF 12 

The first association observed between exercise and AF came from studies that 13 

found an unexpected over-representation of endurance athletes in a lone AF cohort9 and 14 

an increased risk of AF in veteran orienteer runners.8 Subsequent studies were 15 

performed in elite athletes who had been engaged in marathon running,18 cycling19, or 16 

cross-country skiing20,21, which showed that elite athletes were at a 4 to 15-fold 17 

increased risk of AF than the general, sedentary population. Aizer and colleagues 18 

provided the first evidence that this association was not limited only to elite athletes, but 19 

also affects the most active individuals in the general population.22 In their work, 20 

jogging for 5-7 days per week increased the risk of AF by 1.7 fold in individuals aged 21 

<50 years. Subsequent larger studies provided further confirmatory data of this 22 

association among the general population. In a study including >300,000 Norwegian 23 

men and women, men engaged in regular intensive physical activity (defined as 24 

participation in hard training or sports competitions, regularly and several times per 25 
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week) were at a three-fold increased risk of being prescribed flecainide (a surrogate for 1 

AF diagnosis).23 Drca and colleagues found that Swedish men who vigorously exercised 2 

>5 hours per week at the age of 30 years had a 1.2-fold increased risk of being 3 

diagnosed with AF in later life.24 To date, the largest of such studies was conducted in 4 

>1.1 million men undergoing mandatory conscription in Sweden during a 23-year 5 

period; these men were followed-up for an average of 26 years. Better cardiovascular 6 

fitness, objectively assessed through a bicycle ergometer test, correlated with a 7 

progressive increase in the incidence of AF. For example, the quintile with the highest 8 

fitness had 1.31-fold higher risk of AF than the quintile who were least fit.25 In general, 9 

a low comorbidity burden is common in these abovementioned cohorts. 10 

Conversely, several studies have failed to show this association, or have even 11 

found that physical activity protects from the development of AF. Moderate doses of 12 

exercise in individuals with specific cardiovascular conditions are thought to decrease 13 

arrhythmic risk. At the epidemiological level, objectively assessed physical fitness was 14 

negatively correlated with the incidence of AF in a middle-to-advanced-aged cohort of 15 

>64,000 individuals with a high burden of cardiovascular risk factors and 16 

cardiomyopathies.26 Estimated physical activity in older individuals has been found to 17 

reduce27 or have no effect28 on the incidence of AF. 18 

Clinical trials have consistently reported that moderate doses of physical activity 19 

might be of therapeutic value in patients who have already been diagnosed with AF. 20 

Physical activity is an important component in the multidimensional secondary 21 

prevention approach aimed at controlling risk factors for AF, particularly in obese 22 

patients presenting with one or more risk factors,29 where the magnitude of AF 23 

recurrence prevention seems similar to that of some antiarrhythmic drugs. These 24 

benefits might be, at least in part, attributable to better control of classical risk factors 25 
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for AF, including hypertension or diabetes mellitus.29 Remarkably, weight loss after 1 

regular training might contribute to AF burden reduction.30 Nevertheless, the effects of 2 

exercise on improving physical fitness are additive to those of weight loss, and among 3 

obese patients with AF, those who are less fit at baseline or present with lower fitness 4 

improvement after the completion of a training programme are at a highest risk of AF 5 

recurrence.31 An improvement in AF control can be detected early after beginning a 6 

training programme. In the short term, AF burden was almost halved in a secondary 7 

prevention trial in patients averaging 60 years old who were randomized to aerobic 8 

interval training three times per week for 12 weeks compared with those receiving usual 9 

care.32  Furthermore, in patients with diastolic heart failure, physical training improved 10 

diastolic function and reversed atrial remodelling.33 11 

Remarkably, most of the aforementioned studies have evaluated leisure-based 12 

physical activity. Occupational physical activity has been repeatedly shown not to be 13 

associated with an increased risk of AF.34,35 A low occupational physical intensity in 14 

most individuals, and a predominantly strength work load in those workers with the 15 

heaviest physical activity (in contrast to endurance training in athletes) likely account 16 

for the lack of an association between occupational physical activity and AF.  17 

[H2] Exercise-induced atrial flutter 18 

AF and atrial flutter share some basic pathophysiological and clinical features. 19 

While most research work has linked physical activity with increased risk of AF, data 20 

on atrial flutter are much less abundant. Long-term endurance sportsmen were over-21 

represented in a cohort of patients with lone atrial flutter,36 yielding an odds ratio of 22 

5.33 (95% CI 2.1 - 13.53). The arrhythmic risk conferred by exercise evolves earlier and 23 

more intensely for atrial flutter than for AF.37 Some analyses in large cohorts 24 

21,24,25,27,28,38 and a study in veteran elite cyclists19 indistinctly defined AF and atrial 25 
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flutter as outcomes, but did not provide separate results for both arrhythmias.24,38 1 

Overall, the risk of atrial flutter is also considered to be increased as a consequence of 2 

physical activity; nevertheless, the impact of AF is higher owing to its remarkably 3 

larger relative contribution to overall atrial arrhythmia burden.  4 

[H2] Identifying the risk of AF 5 

Current evidence from global studies suggests that the relationship between 6 

exercise and AF is complex and likely relies on the balance between baseline 7 

cardiovascular risk factors,  the type, intensity, and duration of physical activity, and 8 

individual susceptibility. Published studies have largely failed to isolate each of these 9 

factors, thereby accounting, at least in part, for the conflicting conclusions (Box 2). 10 

An association has been reported between AF and physical activity in 11 

men18,22,24,25,39, but the effects of exercise in women remain controversial (Figure 2A). 12 

In a retrospective study, Drca and colleagues found that self-reported sporting activity 13 

in 30-year old individuals did not predict AF incidence in women,38 in contrast to their 14 

findings in men.24 Two large studies that confirmed an association between exercise and 15 

AF also provided sex-based subanalyses.21,23 The results were similar for men and 16 

women in the study by Andersen and colleagues, although the lower sample size of 17 

females likely explains the lack of statistically significance21. In a larger Norwegian 18 

cohort involving >140,000 men and >160,000 women, physical activity was associated 19 

with a three-fold increase in the incidence of AF in men, but not women.23 In a cohort 20 

including >1,400 women, >40 years of intense endurance training associated with a 21 

nonsignificant (p=0.07) two-fold increased risk of AF.40 Although a similar a U-shaped 22 

relationship between physical activity levels and AF risk in both males and females was 23 

identified in a study published in 2016, formal statistical analyses were not reported.35 24 

Conversely, in agreement with findings in men, physical activity was protective against 25 
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AF in two cohorts of postmenopausal women41 and women in their 6th decade of life42 1 

who had a high burden of cardiovascular risk factors. Studies specifically focusing in 2 

women are insufficient and heterogeneous. Overall, there is inadequate evidence to 3 

reliably affirm a proarrhythmogenic effect for exercise in women.43 It is likely that sex 4 

physiological differences, attenuated exercise-induced cardiac remodelling, or a lower 5 

exercise intensity in women than in men could also contribute to the lack of an evident 6 

exercise-induced increased risk of AF.44 7 

The risk of AF conferred by exercise progressively increases with the intensity 8 

of exercise (Figure 2B). AF risk in athletes (relative risk of 4 - 15) is higher than in 9 

studies conducted in the general population (relative risk in the most active individuals 10 

of 1.2 – 2). The risk conferred by exercise progressively increased over jogging 11 

intensity and duration in a cohort of healthy middle-aged male physicians.22 A gradient 12 

of risk exists even within highly trained individuals. In a cohort of >50,000 individuals 13 

participating in a 90 km ski cross-country race, those who performed better (with a 14 

finish time of  <2.4 times the winning time) were at a 1.2-fold higher risk of AF over a 15 

9-year follow-up than those who took longer to finish the race.21  16 

The type of exercise that yields the most remarkable proarrhythmogenic effect 17 

has not been systematically studied, but a detailed analysis of published studies yields 18 

rather robust conclusions. To date, most small studies confirming an association 19 

between physical activity and AF have been conducted in endurance sports practitioners 20 

(for example, marathon runners, cyclists, and cross-country skiers)18–21,45 or mixed 21 

sports (for example, handball players).46 Jogging, but not other sporting activities, 22 

increased risk of AF in a large study.22 A subanalysis of the FUTURE study47 in 23 

patients with lone AF yielded an odds ratio of 9 for AF in endurance sports practitioners 24 

in comparison to team sports. To date, there has not been any studies showing an 25 
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increased incidence AF in strength sport practitioners. Remarkably, in the large 1 

population-based Swedish study, cardiovascular fitness assessed in a bicycle ergometer 2 

test, but not muscular strength tested using a hand dynamometer, was associated with 3 

incidence of AF during follow-up.25 4 

The incidence of AF progressively increases over the number of years of active 5 

exercise participation. Most studies show that athletes diagnosed with AF have been 6 

engaged in regular training for at least ten years (Figure 2C). A study published in 2014 7 

found that the risk of AF increases after 20 years of active sport participation, and 8 

progressively increases with a longer duration of exercise.37 In patients with lone AF in 9 

the FUTURE study,15 lifetime accumulated physical activity was the strongest predictor 10 

of AF prevalence, above ongoing exercise and physical activity density (hours of 11 

physical activity per year). In this study, >2,000 hours of lifetime vigorous exercise was 12 

associated with an odds ratio of ≈4 for AF.  13 

Exercise-induced AF commonly affects middle-aged individuals. Total 14 

accumulated lifetime physical activity is a critical factor in the development of AF,15,37 15 

thus justifying that young athletes are infrequently diagnosed with AF.48 A link between 16 

physical activity and AF has been consistently confirmed when physical activity was 17 

assessed in middle-aged individuals, but nonexistent when assessed in later stages of 18 

life (Figure 2D). A substudy of the Physicians Health Study found that physical activity 19 

before, but not after, the age of 50 years predicted incidence of AF.22 The 50-year 20 

threshold was recently reinforced in a subanalysis of the study by Morseth and 21 

colleagues.35 Further supporting his notion, Drca and colleagues found that participation 22 

in sporting activity at age 30 years, but not at 60, predicted a higher incidence of AF in 23 

the elderly.24 Two factors likely explain the lack of a proarrhythmogenic effect of 24 

exercise in the elderly. First, physical activity in aged individuals is likely of a lower 25 
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intensity than in young or middle-aged individuals and, therefore, is associated with 1 

lower haemodynamic overload.49 Second, the accumulation of risk factors in the elderly 2 

might override the potential deleterious effects of intense physical activity.24,27,50 3 

Nevertheless, variability still remains within the high-risk population, that is 4 

apparently healthy middle-aged individuals who have participated in intense, endurance 5 

physical activity for long periods of time. AF only affects a limited number of athletes, 6 

in whom genetic background likely fosters a deleterious response to similar amounts of 7 

physical activity. A small subset of highly trained athletes present with atrial dilatation 8 

and dysfunction, leading to increased atrial wall stretch during physical activity that 9 

might increase the risk of maladaptive remodelling in the atrium.51 However, no 10 

individual susceptibility factors have been found for exercise-induced AF. 11 

Overall, an increasing body of evidence supports a U-shaped relationship 12 

between total amount of physical activity and incidence of AF,15,35,52 largely shaped by 13 

the presence of risk factors, exercise intensity, and genetic background and variability 14 

(Figure 3A). According to this hypothesis, both exercise duration (Figure 3B) and 15 

intensity (Figure 3C) result in a U-shaped dose-response curve in terms of risk of AF. 16 

Low-to-moderate doses of physical activity reduces the risk of AF, particularly in those 17 

individuals with other risk factors (for example, heart failure, hypertension, and aging), 18 

whereas increasing doses might prompt an increased risk. 19 

 20 

[H2] Pathophysiology of exercise-induced AF 21 

The mechanisms by which a previously healthy atrium develops an 22 

arrhythmogenic substrate after several years of physical activity are likely multifactorial 23 

and involve physiological (athlete’s heart), but also pathological components of 24 
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exercise-induced cardiac remodelling (Figure 4). Notably, while some data has been 1 

obtained in athletes, most pathology insights have been acquired from animal models 2 

and, until they have been confirmed in human, caution is warranted when translating 3 

these conclusions.  4 

Sinus bradycardia and delayed atrioventricular conduction are well-known 5 

features of the athlete’s heart. Nevertheless, their underlying mechanisms are still 6 

controversial; although some studies claim a critical role of primary electrical 7 

remodelling, classic theories have relied on parasympathetic tone enhancement as a 8 

central mechanism in athlete’s bradycardia.53,54  Notably, parasympathetic tone also 9 

shortens the atrial refractory period, facilitating re-entry formation and AF 10 

establishment.55 Therefore, parasympathetic tone enhancement is a likely candidate that 11 

contributes to exercise-induced pathology. Indeed, AF events in parasympathetic-12 

predominant circumstances (for example, sleeping or after meals) are common in 13 

trained individuals.9,56 In nonprofessional athletes participating in a 10-mile race, those 14 

with the heaviest lifetime accumulated workload presented with a higher prevalence of 15 

AF and a deeper parasympathetic enhancement than less-trained athletes.57 16 

Furthermore, autonomic tone imbalance was a critical contributor to exercise-induced 17 

AF substrate in a heavy endurance, treadmill-trained animal model.58  18 

Atrial structural remodelling, namely atrial dilatation and fibrosis, is 19 

progressively being recognized as a contributor to exercise-induced proarrhythmogenic 20 

arrhythmia. Atrial dilatation has been considered a physiological component of the 21 

cardiac remodelling to exercise, but at the same time it increases the critical myocardial 22 

mass needed to establish the basic mechanisms of AF.59 Indeed, atrial dilatation 23 

frequently contributes to AF establishment in hypertension or heart failure, and to AF 24 
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self-perpetuation mechanisms.60 To date, there is no robust evidence proving that atrial 1 

dilatation in athletes is structurally different from that of pathological settings.  2 

Collagen fibres interspersed between cardiomyocytes impede normal electrical 3 

conduction in the atrium and promote heterogeneous electrical conduction and re-entry 4 

formation. Fibrosis has became a structural hallmark of AF pathology.61 Atrial fibrosis 5 

was first described in an animal model of exercise-induced AF. A group of rats were 6 

trained on a treadmill at a high intensity for 16 weeks and tested for AF inducibility at 7 

the end of the experimental protocol.58,62  Trained rats were more readily inducible than 8 

their sedentary littermates, and AF inducibility was associated with a ~60% increase in 9 

atrial fibrosis.58,62 Similar results were later shown in a swim-trained mice model.63 10 

Evidence for atrial fibrosis has not yet been found in athletes, but is supported by some 11 

indirect data. Veteran athletes present with higher levels of profibrotic markers such as 12 

plasmatic fibrosis turnover markers carboxyterminal propeptide of collagen type I 13 

(PICP), carboxyterminal telopeptide of collagen type I (CITP), and tissue inhibitor of 14 

matrix metalloproteinase type I (TIMP-1),64 galectin-3,65 and certain circulating pro-15 

fibrotic microRNAs such as mir-21.66 Endurance athletes show an accumulated physical 16 

activity-dependent P-wave prolongation;67 notably, P-wave duration does not correlate 17 

to atrial size in athletes.68 Surgical atrial samples have shown that P-wave duration 18 

associates with atrial fibrosis and flags those individuals at an increased risk of AF.69  19 

The mechanisms leading to collagen deposition in the atrium of athletes remain 20 

largely unknown. Repetitive exercise training have been suggested to promote structural 21 

damage70, which eventually leads to the formation of fibrosis. A study using an animal 22 

model demonstrated that the renin-angiotensin-aldosterone system participates in 23 

exercise-induced fibrosis.71 Other studies have proposed that exercise-induced 24 
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hypertension could underlie the instauration of maladaptive atrial processes in some 1 

athletes,18,72 but current evidence does not support this notion.73 2 

Haemodynamic overload during strenuous exercise training might trigger 3 

mechanisms involved in myocardial fibrosis formation. Intense exercise increases atrial 4 

wall stretch.74 Tumour necrosis factor-α mediates stretch-promoted local myocardial 5 

inflammation, and has a central role in exercise-induced fibrosis in a preclinical 6 

model.63 Intense bouts of physical activity yield transient, duration-dependent, and 7 

intensity-dependent systemic inflammation that might also contribute to exercise-8 

induced cardiac maladaptation. Interestingly, cardiac dysfunction following strenuous 9 

bouts of exercise correlates with systemic inflammation.75 Overall, either systemic or 10 

local, acute bouts of exercise has been shown to cause myocardial inflammation and 11 

apoptosis in an animal model.76 In athletes, the P-wave is transiently prolonged after 12 

completing a marathon, however, this effect cannot be explained by atrial dilatation; 13 

atrial inflammation and oedema are more likely explanations.77 14 

Environmental factors might also contribute to exercise-induced AF, though 15 

most of them remain speculative. Strenuous exercise sessions prompt acute, transient 16 

abnormalities in immune response, including variable degrees of immunosuppression.78 17 

Although conflicting data have been published and limitations been claimed, several 18 

studies have found a higher incidence of upper respiratory tract infections in 19 

athletes.79,80 Infections with cardiac tropism have been hypothesized to develop variable 20 

degrees of myocardial inflammation. Ventricular mid-myocardial or subepicardial 21 

fibrotic patches are a characteristic sequela of myocarditis;81 atrial myocarditis often co-22 

exists with ventricular myocarditis82 and likely causes atrial fibrosis. Interestingly, data 23 

from animal models suggest that exercise exacerbates deleterious consequences of 24 

infectious myocarditis.83 Therefore, it might be plausible that infections by cardiotropic 25 
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viruses during post-exercise immunosuppression can induce subclinical myocarditis 1 

that, either exacerbated or not by subsequent exercise, could contribute to atrial fibrosis 2 

formation.  3 

 Performance-enhancing drugs are used by some professional and amateur 4 

athletes, but their contribution to exercise-induced AF pathology remain speculative 5 

owing to the obscure nature of drug doping. Remarkably, almost 70% of veteran 6 

cyclists included in the study by Baldesberger and colleagues admitted to using 7 

performance-enhancing drugs, mainly amphetamines or anabolic steroids.19 Case-8 

reports have provided the basis for a role of anabolic steroid use in the development of 9 

AF.84 Chronic anabolic steroid administration has been associated with prolonged atrial 10 

electromechanical delay among professional bodybuilders.85 However, contrary to this 11 

hypothesis, there are no reports showing an increased incidence of AF in disciplines 12 

associated with high prevalence performance-enhancing drug use, such as bodybuilding 13 

and wrestling.86  14 

In addition to promoting a proarrhythmogenic substrate, repetitive exercise 15 

training might also trigger AF events. Whereas chronically elevated parasympathetic 16 

tone might have a role in AF promotion at rest,58 increased sympathetic tone during 17 

physical exertion might also trigger AF events.56 Haemodynamic overload during 18 

physical activity increases atrial wall stretch, which increases arrhythmogenicity 19 

through connexin inactivation and atrial conduction slowing87,88. Atrial premature beats 20 

might act as AF triggers in the presence of a suitable substrate. The burden of premature 21 

atrial complexes is mildly increased in veteran athletes in some,57,69 but not all studies19. 22 

The clinical relevance of exercise-induced atrial ectopic beats still remains to be 23 

elucidated. 24 

 25 
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[H2] Clinical management of AF in the athlete   1 

The contribution of vigorous physical activity to the global incidence and 2 

prevalence of AF is unknown. Some studies suggest that exercise contributes to AF 3 

pathology in ~40% of patients with AF in the absence of other cardiovascular 4 

conditions (that is, lone AF).9,15 Unfortunately, there are currently no effective tools to 5 

flag those athletes at a high risk of exercise-induced AF who would be candidates for 6 

primary prevention strategies. An early diagnosis upon clinical suspicion seems to be 7 

the only feasible approach to prevent AF progression.60 A prolonged PQ interval has 8 

been associated with the development of exercise-induced AF,20,46 but the clinical use of 9 

this measure as a marker of AF risk is hampered by its low predictive value.  10 

Among athletes, AF is one of the most common causes of palpitations,89 and is 11 

associated with an extensive symptomatology56 and poor subjective health status.90 AF 12 

events can present at rest or during exercise.9,56 Physical performance commonly 13 

decreases during AF episodes owing to the loss of the atrial contribution to cardiac 14 

output. Of note, an unexplained decrease in physical performance might be the only 15 

clinical symptom of exercise-induced AF and should raise awareness of AF as a 16 

potential diagnosis. On the other hand, few of the affected athletes will remain almost 17 

asymptomatic or present with minor symptoms that will not prevent them from 18 

competing at a high level.56 19 

Upon clinical suspicion of AF, efforts should be directed towards obtaining an 20 

electrocardiogram (ECG) during symptoms, including a rest 12-lead ECG, Holter 21 

ambulatory recordings, or implantable devices, if needed. Smartphone applications are 22 

an effective tool to quickly and easily obtain an ECG during short-term symptoms91; 23 

nevertheless, expensive add-on hardware are required to obtain reliable single-lead ECG 24 

recordings. Treadmill stress tests might serve to uncover AF in athletes complaining of 25 
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palpitations during physical activity. Athletes diagnosed with AF should be managed 1 

using contemporary standards and in a manner similar to other patients with AF.12 Even 2 

in the presence of an evident endurance training history, secondary causes of AF should 3 

always be ruled out, including (but not limited to) thyrotoxicosis, cardiomyopathies, or 4 

masked hypertension (Figure 5).  5 

Although AF undeniably impairs quality of life and physical performance in 6 

affected athletes, whether they have adverse survival prognosis and complication rates 7 

are unknown. Notably, the rate of stroke is higher in veteran athletes with AF than in 8 

athletes without AF, and similar to the stroke rate in the comparable (nonathletic) AF 9 

population.90 The stroke risk attributable to AF is higher in athletes than in 10 

nonathletes,92 although the well-known decrease in atherosclerotic risk factors in active 11 

individuals likely justifies the higher relative contribution of AF.  12 

AF confers a 1.5-1.9-fold increased mortality risk in the general population.93 13 

Data on mortality for athletes with AF are not yet available. Given that exercise-induced 14 

AF mostly affects middle-aged individuals with a low comorbidity burden (lone AF), 15 

mortality should remain largely unaffected. In the absence of cardiovascular 16 

comorbidities such as hypertension or heart failure, the risk of cardiovascular 17 

complications is low.94,95 These data suggests that AF might not have a negative 18 

survival effect at diagnosis in the largely middle-aged cohort of athletes, but might have 19 

deleterious effects in later stages of life. 20 

[H3] Therapeutic approach 21 

The most appropriate approach for treating exercise-induced AF remains 22 

unknown, including whether specific considerations should be taken into account 23 

(Figure 5). In this regard, the anticoagulation strategy is critical and should follow the 24 
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same recommendations as for the general population12 (that is, in patients with 1 

nonvalvular AF with a CHA2DS2VASc score ≥1 or for short-term peri-cardioversion or 2 

peri-ablation periods). 3 

Avoiding the aetiologic factor (in this case, exercise) seems to be the common 4 

sense approach, but robust and consistent evidence of benefit for this recommendation 5 

is lacking. A small subgroup of 4 athletes with AF showed significant improvement in 6 

symptoms  after deconditioning, to the point when they were able to reinitiate training.89  7 

Furthermore, Heidbuchel and colleagues found that athletes  who abandoned training 8 

after an atrial flutter ablation developed less AF  than those who continued exercising.96 9 

Results from a study using an animal model suggest that the atrial arrhythmogenic 10 

substrate might regress shortly after abandoning physical activity.58  11 

In clinical practice, deconditioning is further jeopardized by individual, 12 

nonmedical factors. First, in our own experience, a substantial proportion of athletes 13 

with AF suffer from addiction to physical activity, which affects up to 25% of young 14 

university students living in the USA.97 In a subgroup of these patients, addiction might 15 

lead to negative symptoms and even social isolation. Second, professional athletes 16 

might not be willing to retire owing to economic losses. On the other hand, regular, 17 

moderate physical activity should be encouraged for its effects in improving quality of 18 

life in patients with AF.98 19 

Medical therapy should follow the general guidelines for patients with AF,12 20 

with particular attention to doping issues and their effect on cardiac performance. In 21 

general, an athlete will be willing to follow a rhythm-control strategy if they decide to 22 

remain in competitive sports. If class Ic antiarrhythmic drugs (for example, flecainide) 23 

are used, β-blockers are also required to avoid rapid ventricular rate in the case of type 24 

Ic flutter. An exercise test is advisable before returning to regular training in those 25 
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athletes employing a rate-control strategy or those who develop symptoms during 1 

exercise. 2 

AF ablation has a central role in the treatment of young and middle-aged 3 

symptomatic patients. In this regard, ablation might be considered as first-line therapy 4 

in athletes with AF.12 Treatment outcomes are similar in athletes undergoing AF 5 

ablation and other patients with AF but no concomitant cardiovascular conditions,99 6 

particularly for endurance trained athletes.100 Symptomatic athletes who undergo AF 7 

ablation might be able to return to high-level sporting competition.101 8 

 9 

[H1] Ventricular arrhythmias in athletes 10 

Ventricular arrhythmias - mostly isolated ventricular premature beats - are 11 

common in athletes, but it remains unclear whether ventricular arrhythmia burden is 12 

higher in athletes than in sedentary individuals.102,103 A common concern is whether 13 

athletes with ventricular arrhythmias are at an increased risk of sudden death. Any 14 

excess of sudden cardiac death among athletes is considered to be attributable to 15 

underlying structural heart disease (such as hypertrophic cardiomyopathy, 16 

arrythmogenic right ventricular cardiomyopathy [ARVC], and channelopathies). In this 17 

regard, the more frequent and complex the identified ventricular arrhythmia (from 18 

frequent isolated ventricular premature beats to sustained ventricular arrhythmias), the 19 

higher the prevalence of an underlying cardiomyopathy.104 20 

ARVC is a hereditary cardiac condition predominantly affecting the right 21 

ventricle, and is most commonly due to mutations in proteins involved in desmosome 22 

assembly. The pathophysiology of ARVC involves fibro-fatty replacement of the 23 

myocardium, along with right ventricular (RV) dilatation and dysfunction. These factors 24 
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are associated with an increased risk of ventricular tachycardia and fibrillation and, in 1 

some patients, symptoms of heart failure. Over the past few years, a link between 2 

ARVC and physical activity has been proposed. Strenuous physical activity has been 3 

suggested to contribute, either as a central aetiologic factor or as a promoter of disease 4 

progression, to the pathology of ARVC. However, the evidence for this association is 5 

limited and, in some cases, controversial.  6 

[H2] Describing the ARVC-continuum. 7 

In 2003, Heidbuchel and colleagues first reported on a group of well-trained 8 

endurance athletes who presented with complex symptomatic ventricular arrhythmias10 9 

or aborted sudden cardiac death likely originating from a mildly dysfunctional right 10 

ventricle.10,105 A subset, but not all, of these athletes fulfilled criteria of a diagnosis of 11 

ARVC, but contrary to expectations, there was a distinct lack of evidence of inheritance. 12 

The authors speculated that endurance training had central role as an aetiologic factor in 13 

these patients, a fact that was also supported by a lower-than-expected prevalence of 14 

ARVC-causing mutations.106 Similarly, patients with ARVC in the North American 15 

Multidisciplinary Study107 without a desmosome mutation were more often competitive 16 

athletes. These findings have resulted in the conception of the term ‘gene-elusive 17 

ARVC’. In a single-centre cohort study, patients with gene-elusive ARVC were more 18 

likely to be endurance athletes, and had a more intense history of physical activity than 19 

patients with desmosome mutations.108 20 

Whereas Heidbuchel and colleagues focused their analysis in a highly selected 21 

group of diseased individuals,10,105  studies that have assessed alternative 22 

methodological approaches using unselected cohorts of athletes have failed to identify a 23 

deleterious effect of exercise in the right ventricle. Andersen and colleagues did not find 24 

an increased diagnoses of ventricular tachycardia, ventricular fibrillation, or cardiac 25 
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arrest in cross-country skiers participating in the Vasaloppet race21 or in the male 1 

Swedish population undergoing conscription in 23-year period.25 However, these 2 

complex data need to be carefully interpreted. Patients with an underlying 3 

cardiomyopathy (that is, definite or probable ARVC) are usually excluded from 4 

competitive sport participation and, therefore, selection bias is a possibility in small 5 

sample studies. Moreover, actual evidence suggests that the prevalence of exercise-6 

induced ARVC-like cardiomyopathy, if eventually confirmed, would be low and largely 7 

influenced by individual susceptibility. We speculate that such a low prevalence would 8 

hamper its assessment in unselected or large cohorts with a limited statistical power to 9 

identify these small subpopulations.13  10 

Although the evidence for a pure exercise-induced ARVC-like cardiomyopathy 11 

is limited, there is a growing proof supporting that regular exercise is an important 12 

factor that promotes ARVC progression. Desmosome mutation carriers engaged in 13 

regular vigorous physical activity present with an earlier clinical ARVC diagnosis,107 14 

increased ventricular arrhythmia incidence107,109 and greater RV structural and 15 

functional remodelling107,110 than their sedentary counterparts. Furthermore, strenuous 16 

bouts of exercise is a common trigger for sudden cardiac death in affected patients.4 17 

Overall, these findings suggest, with different degrees of evidence, that exercise 18 

might cause and aggravate similar forms of ARVC. Whether these represent two 19 

extremes of a pathological and clinical continuum (Figure 6) still remains to be 20 

established. 21 

 22 

[H2] Pathophysiology of gene-elusive ARVC   23 
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The identification of the mechanisms underlying maladaptive RV remodelling as 1 

a substrate for arrhythmias in athletes is complicated by the complex interaction of 2 

genetics and the effect of exercise. Data specifically focusing on exercise-induced, 3 

gene-elusive ARVC are scarce. Ventricular arrhythmias were more readily inducible in 4 

an electrophysiological study in intensively trained rats than in their sedentary 5 

littermates.62  Selective RV dilatation and increase in myocardial fibrosis (while absent 6 

in the left ventricle) was proposed to have a central role in exercise-induced ventricular 7 

arrhythmogenesis.62 Notably, no fatty replacement of the RV myocardium was 8 

observed.  9 

Robust evidence for RV fibrosis in highly trained athletes are lacking. As 10 

previously mentioned, veteran athletes show an increase in markers of plasma 11 

fibrosis.64,111 Endomyocardial biopsies in athletes with ventricular arrhythmias have 12 

provided some insight into the arrhythmogenic substrate in humans. Dello Russo and 13 

colleagues observed fibro-fatty replacement in 5 of 13 athletes  and active myocarditis 14 

foci in 7 of 13 athletes with symptomatic ventricular arrhythmias but no apparent 15 

structural heart disease.112 Furthermore, fibrosis was found in 3 of 8 patients with 16 

ventricular arrhythmias in the series by Heidbuchel and colleagues.10 Late-gadolinium 17 

enhancement is a promising technique to noninvasively measure myocardial fibrosis; 18 

however, the sensitivity of conventional magnetic resonance techniques to detect diffuse 19 

fibrosis is low.113 Several small cohort studies including unselected athletes have failed 20 

to identify RV fibrosis by mean of late-gadolinium enhanced magnetic resonance.114–116 21 

Interestingly, although ischaemic and myocarditis fibrotic patches were found in  22 

group of highly trained athletes,117,118 left ventricular (LV) ultrastructure remained 23 

preserved in most athletes.62,114,119 Therefore, a central issue in these athletes with 24 

ventricular arrhythmias is the rather selective and specific effect on the right ventricle, 25 
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with mild or no LV involvement.120 Cardiac magnetic resonance (CMR) is the gold 1 

standard technique for morphological and functional assessment of the right ventricle. 2 

Current evidence obtained through CMR imaging points to imbalanced remodelling of 3 

the right and left ventricle in highly trained individuals, with disproportionate RV 4 

enlargement.114,119 Strenuous bouts of exercise can induce transient intensity-dependent 5 

and duration-dependent RV dilatation and dysfunction, whereas the left ventricle 6 

remains relatively preserved.119,121 La Gerche and colleagues provided remarkable 7 

insights into the mechanism of this selective RV effect by showing that right-left 8 

haemodynamic and morphological differences provoke a small (~14%) increase in LV 9 

wall stress during exercise, but a notable (~125%) increase in the right ventricle, leading 10 

to a higher workload.115 Notably, there are large inter-individual differences in RV 11 

adaptation, which are not solely related to previous training116, but also to individual 12 

susceptibility.121 As for exercise-induced AF, performance-enhancing substances have 13 

been postulated as aetiologic factors of exercise-induced ventricular arrhythmias in 14 

some case reports,122 and their use should be inquired in all affected athletes. 15 

Nevertheless, the contribution of these performance-enhancing substances on 16 

ventricular arrhythmias remains speculative. 17 

  18 

[H2] Athletes with RV arrhythmias 19 

The presence of ventricular arrhythmias in athletes is a complex situation that 20 

needs to be approached by an experienced cardiologist or sport physician (Figure 7). 21 

The first step in diagnosis involves ruling out an underlying cardiomyopathy. In the 22 

absence of a cardiomyopathy, idiopathic ventricular arrhythmias (that is, outflow tract 23 

and fascicular ventricular tachycardia) might benefit from ablation procedures. 24 
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Particular attention should be directed to those athletes with RV dysfunction, as 1 

they might occasionally fulfil criteria for ARVC diagnosis. Nevertheless, some athletes 2 

could develop incomplete forms of exercise-induced ARVC-like cardiomyopathy, 3 

particularly in the presence of complex ventricular arrhythmias and accompanying 4 

symptoms. Risk stratification in these cases is not well established. Athletes with 5 

potentially deleterious ventricular arrhythmias that originated in the right ventricle 6 

might present with a normal RV function at baseline, but show abnormalities in systolic 7 

function during a moderate-intensity exercise test.123 An exercise test can also serve to 8 

unmask Epsilon-waves in individuals with underlying, clinically unapparent 9 

desmosome mutations.124  10 

The prevalence of gene-elusive (or exercise-induced) ARVC is unknown, but it 11 

is likely very low, as previously discussed. Patients are commonly diagnosed in the 12 

third or fourth decade of life,10,105,106,108 and are likely to have experienced high intensity 13 

endurance training (such as marathon running and cycling) that has been sustained for 14 

years.10 Furthermore, although there is no evidence sustaining this hypothesis, genetic 15 

predisposition is likely to have an important role in these patients. 16 

 17 

[H3] Therapeutic approach  18 

 The therapeutic approach for patients with RV arrhythmias are largely unknown. 19 

For those fulfilling ARVC criteria, well-established guidelines published by major 20 

scientific societies prohibit competitive sports (class I evidence) and encourage avoiding 21 

high intensity dynamic sports in general (class IIa evidence). 125,126 Deconditioning after 22 

an ARVC diagnosis has been suggested to delay the initiation of symptoms and reduce 23 

the cardiovascular complication rate.107 24 
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The therapeutic approach for those athletes presenting with symptomatic 1 

ventricular arrhythmias and mild RV dilatation that are not diagnostic of ARVC is 2 

uncertain. Radiofrequency ablation should be performed if uncertainty with right 3 

ventricular outflow idiopathic tachycardia are clinically reasonable. In any case, a close 4 

follow-up and a clinical approach similar to that for patients with ARVC seems prudent.  5 

 6 

[H1] Bradyarrhythmias and conduction blocks 7 

In contrast to exercise-induced tachyarrhythmias, the occurrence of 8 

bradyarrhythmias and conduction blocks in athletes has been recognized for decades, 9 

particularly sinus bradycardia and different degrees of atrioventricular block. Sinus 10 

bradycardia occurs frequently in athletes and, in conjunction with eccentric LV 11 

hypertrophy, provides some cardiac output reserve that helps supply the high metabolic 12 

demands during exercise. Overall, sinus bradycardia at rest (with heart rate between 30-13 

60 bpm) is found in 50-80% of athletes127,128 and might occasionally be associated with 14 

long (>3 s) sinus pauses.129 15 

Although sinus bradycardia is an indisputable consequence of exercise, its 16 

causes still remain unresolved. A reduction in heart rate could potentially result from 17 

changes in the autonomic tone (that is, an increase in the parasympathetic tone or a 18 

decreased sympathetic tone) or a reduction in the intrinsic heart rate. Classic theories 19 

consider parasympathetic tone enhancement a critical driver of reduced heart rate, a 20 

process mediated by an increase in vagal nerve activity130 and/or enhanced sensitivity of 21 

the heart to acetylcholine owing to the downregulation of regulatory G-protein 22 

signalling.58 Nevertheless, this long accepted notion has been challenged in in the past 23 

few years by studies showing that the intrinsic heart rate (that is, heart rate in the 24 
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absence of autonomic tone drivers) is lower in athletes than in sedentary 1 

individuals.131,132 Studies using animal models support this hypothesis and suggest that 2 

potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4 3 

(HCN4) downregulation in the sinus node and a decrease in the resulting If current 4 

could be on the basis of these changes.133 As of now, whether both mechanisms 5 

simultaneously coexist or drive heart rate in different settings or sporting activities 6 

remain unknown.  7 

A delayed conduction in the atrioventricular node characteristically manifests in 8 

athletes as a first (that is, PR interval >200 ms) or a type I second degree 9 

atrioventricular block (Wenckebach block). Case reports on high-grade atrioventricular 10 

blocks potentially related to endurance training are infrequent and controversial, and 11 

should not be considered as a normal feature of the athlete’s heart.134 As for sinus 12 

bradycardia, recent insights challenge the classical view that parasympathetic 13 

enhancement controls the delayed atrioventricular node conduction.132 However, there 14 

is no consistent evidence that structural (that is, fibrosis or connexin redistribution) or 15 

primarily electric disturbances underlie PR prolongation in athletes.  16 

Sinus bradycardia and atrioventricular block have been considered as 17 

physiological changes secondary to long-term physical activity on the basis of generally 18 

good outcomes, a very low association with structural heart disease, and a low incidence 19 

of symptoms. Physiological exercise-induced bradyarrhythmias and blocks will become 20 

more evident in settings with parasympathetic predominance (such as during sleep) and 21 

disappear during exercise. However, even if bradycardia is reversible after 22 

deconditioning,104,135 former athletes will still present with a lower heart rate than 23 

sedentary age-matched individuals,19 owing to persistent exercise-induced changes. 24 

Certain degrees of irreversible sinus node dysfunction and atrioventircular block likely 25 
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explain the (still controversial) high rate of pacemaker implantation in veteran 1 

athletes.19 2 

[H2] Clinical manifestations 3 

Most sport-associated bradycardias in athletes remain asymptomatic. Only a 4 

minority of patients, particularly those with exaggerated sinus bradycardia or long 5 

pauses, will present with symptoms, generally in the form of fatigue, dizziness, or even 6 

syncope.129,136   7 

[H2] Therapeutic approach 8 

Most asymptomatic patients with exercise-induced bradyarrhythmias do not 9 

require any specific therapy; only those with extreme forms (for example, bradycardia 10 

<30 bpm or PR intervals >300 ms) will require additional assessment.137 Abandoning or 11 

reducing the intensity or duration of physical activity might improve symptoms in those 12 

athletes with exercise-induced symptomatic bradycardia or atrioventricualr blocks.  13 

Pacemaker implantation should be indicated following common use 14 

guidelines.137,138 If a pacemaker is implanted, contact sports should be avoided in 15 

pacemaker-dependent patients, but could be allowed in certain nondependent 16 

patients.137  17 

 18 

[H1] Conclusions  19 

The causal role of strenuous exercise in AF epidemiology is now well-accepted, 20 

particularly for certain populations of well-trained individuals. The role of exercise as a 21 

central aetiologic factor in ARVC is much more controversial, and largely dependent on 22 

combination of exercise and the genetic background. Nevertheless, both atrial and 23 
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ventricular arrhythmias promoted by intense exercise are relatively new concepts, which 1 

still require substantial research and investigation. First, a confirmation of a central role 2 

of physical activity in patients with ARVC-like cardiomyopathies is warranted in large 3 

studies. However, there are other questions that still need to be answered. For example, 4 

what is the real prevalence and effect of ARVC-like cardiomyopathies on the 5 

population? To date, we only have estimations of the true effect of these arrhythmias 6 

with considerably variability between studies. A vigorous training history is evident in a 7 

veteran, long-term endurance athletes, but is uncertain in some physically active 8 

nonathletes. Diagnostic criteria should be established to provide reliable estimates in 9 

epidemiological studies and to focus on the target population. 10 

Furthermore, can we provide a personalized approach for the treatment of these 11 

arrhythmias? Actual knowledge on the mechanisms of these arrhythmias is scarce and 12 

partial, and are largely derived from animal models. This lack of understanding is 13 

further complicated in the case of RV arrhythmias, in which the genetic susceptibility of 14 

the individual seems to be critical and overlaps with relatively well-known hereditary 15 

conditions such as ARVC. The aim to undertake a personalized approach139 should 16 

foster research into the mechanisms of these arrhythmias occurring in young, otherwise 17 

healthy individuals to allow the establishment of primary prevention or effective early 18 

diagnosis strategies based on the underlying substrate. Finally, do exercise-induced AF 19 

and ARVC have anything in common? To date, we do not have any clinical evidence 20 

linking an exercise-induced atrial to RV arrhythmogenic substrate from an 21 

epidemiological point of view. Although some of the mechanisms involving 22 

haemodynamic overload, increased wall stress, and genetic susceptibility are likely 23 

coincident, further work is needed to understand these differences. 24 

  25 
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Box 1 | Methods to estimate exercise 1 

Use of physical activity questionnaires22–24,38 2 

‐ Enables an estimate of current, past, and lifetime physical activity 3 

‐ Subject to recall bias (self-reported) 4 

‐ Validated questionnaires preferred 5 

Cohorts of athletes8,18–21 6 

‐ Assumes very hard training for long periods of time (lifetime accumulated) 7 

‐ Subject to selection bias 8 

Objective assessment of physical activity25,26,52 9 

‐ Treadmill test commonly used 10 

‐ Moderate correlation to amount of exercise practised 11 

‐ Estimates current fitness only (not lifetime) 12 

  13 
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Box 2 | Factors involved in exercise-induced AF promotion 1 

Exercise-related factors 2 

‐ Intensity  3 

‐ Duration 4 

‐ Type of sport 5 

Individual susceptibility 6 

‐ Age 7 

‐ Sex 8 

‐ Comorbidities 9 

‐ Genetic background? 10 

Individuals at highest risk of exercise-induced AF. 11 

 Male sex 12 

 Middle aged at the time of diagnosis 13 

 Involved in high intensity training 14 

 Participate in endurance sports 15 

 Training for >10 years 16 

  17 
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Figure 1 | Schematic summary of current evidence assessing the association 1 

between physical activity and atrial fibrillation (AF) risk. Positive studies (those 2 

with a finding that physical activity significantly increases AF/atrial flutter risk) are 3 

represented with a green circle; negative studies (those that rule out a significant 4 

proarrhythmic effect of exercise) with a red circle. Each circle contains the reference 5 

number. Studies exclusively analyzing women are not shown (see test and figure 2). 6 

Figure 2 | Identification of individuals at risk of exercise-induced atrial fibrillation 7 

(AF). a | Representative large studies assessing the risk of exercise-induced AF 8 

according to the sex composition of the population. b | Relationship between exercise 9 

intensity and AF risk in those studies in which enough data was provided to estimate 10 

exercise intensity. Horizontal error bars represent the range of physical activity 11 

estimates, vertical bars the AF risk confidence interval. c | Vigorous training duration 12 

(in years) in athletes at increased risk of AF. d | Age at which physical activity was 13 

assessed in the most representative studies. Positive studies (those with a finding that 14 

physical activity significantly increases AF risk) are represented inside a green square; 15 

negative studies (those that ruled out a significant proarrhythmic effect of exercise) are 16 

shown in a red square. 17 

Figure 3 | U-shape relationship between exercise dose and atrial fibrillation (AF) 18 

risk. a | Proposed overall curve. b | Clinical evidence for a U-shape relationship 19 

between exercise duration of vigorous physical activity (in years) and AF risk.15 c | 20 

Clinical evidence for a U-shape relationship between exercise intensity of physical 21 

activity (in years) and AF risk. Data from Mozafarian et al.27 (top right panel), Khan et 22 

al.52 (top left panel), Morseth et al.35 (lower right panel) and Myrstad et al45 (lower left 23 

panel).  24 
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Figure 4 | Summary of some mechanisms potentially involved in exercise-induced 1 

atrial fibrillation (AF). Potential mechanisms are represented in the classic Coumel’s 2 

triangle of arrhythmogenesis. A substrate for AF, including atrial dilation and, 3 

potentially atrial fibrosis is created over repetitive bouts of strenuous exercise. 4 

Parasympathetic enhancement, a characteristic of the athlete’s heart, modulates the 5 

arrhythmic risk. AF events may be triggered by an increased atrial stretch during 6 

exercise or by a high burden of atrial premature beats  7 

Figure 5 | Proposed clinical approach in athletes at suspicion of atrial fibrillation 8 

(AF) and with diagnosed AF. Upon clinical suspicion (palpitations, decreased 9 

performance, dizziness, arrhythmic beats on pulse palpation), a diagnostic ECG should 10 

be obtained before any therapeutic tools are used If AF is eventually, diagnosed, other 11 

secondary causes of AF should be ruled out. In the case of athletes with AF, shared 12 

decision making is of particular importance.  13 

Figure 6 | Proposal for a schematic representation of the arrhythmogenic right 14 

ventricular cardiomyopathy (ARVC)-continuum in relation to the exercise dose. 15 

Patients with classic, non-exercise related ARVC and patients with a gene-elusive 16 

ARVC (or ARVC-like) cardiomyopathy in which exercise plays a central aetiologic role 17 

represent the two extremes of this continuum. Variable degrees of exercise and genetic 18 

susceptibility would contribute to intermediate forms of the disease. An overview of the 19 

most representative studies supporting the role of exercise in the development of ARVC 20 

are shown. Negative studies are not shown because they would largely vary depending 21 

on the outcome considered (clinical, morphological, and electrophysiological). 22 

Figure 7 | Proposed clinical approach to athletes with RV arrhythmias. The 23 

presence of an underlying cardiomyopathy critically determines subsequent actions. The 24 

most challenging decisions are probably in those athletes with ventricular arrhythmias 25 
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and a dysfunctional RV but no definite ARVC criteria. Some factors such as the 1 

response to exercise or detraining, or a close follow-up after an ablation (in those with 2 

suspected idiopathic VT) may be of diagnostic value.  3 

140–148  4 
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