Treball final de grau

GRAU D’ INFORMÀTICA

Facultat de Matemàtiques i Informàtica
Universitat de Barcelona

Predictive Data Driven Dashboard
as an Academic Guidance Support
Platform for Mentors

Autor: German Dempere

Directors: Dr. Eloi Puertas
Dra. Laura Igual

Realitzat a: Departament de Matemàtiques i Informàtica

Barcelona, 27 de juny de 2018
Contents

Abstract iii

1 Introduction 1
 1.1 Motivation .. 2
 1.2 Objectives .. 2
 1.2.1 Data Science to predict Student Performance 2
 1.2.2 Data Visualization for mentors 3
 1.3 Thesis Structure 3
 1.4 Context of the Project 4
 1.5 Related Work ... 4

2 Project Planning 7

3 Analysis and Design 9
 3.1 Requirements .. 9
 3.2 Design of the Data Science Process 10
 3.3 Design of the Dashboard 11
 3.3.1 Dashboard Back-end Technologies 11
 3.3.2 Dashboard Front-end Technologies 13

4 Development 15
 4.1 Dashboard Backend 15
 4.1.1 Data Model .. 16
 4.1.2 Webservice API 18
 4.2 Dashboard Frontend 18
 4.2.1 User Interface 19
4.2.2 Vue, Javascript Framework 21

5 Experiments and Results 23
 5.1 Data Gathering and Cleaning 23
 5.2 Experimental Settings 25
 5.2.1 Random Forest Regression 25
 5.2.2 Bayesian Ridge Regression 26
 5.3 Comparative to Previous Work 27
 5.4 Dashboard Usability 29

6 Conclusion and Future Work 31

Bibliography ... 33

Appendix A - Installation guide 37
Abstract

The early prediction of a student’s performance through their academic career is very relevant for mentor guidance and personalized advice. We present a combined data science and web application dashboard for analyzing real academic data from 4 degrees in the Universitat de Barcelona. Very satisfactory results are achieved on the prediction of course grades. After obtaining the predictions, we display different visualizations of the predictions in a dashboard platform to help mentors understand their set of students and identify ones in need of special attention. Big opportunities open for the future.

Resumen

La prediccion del comportamiento y las notas de un estudiante durante su carrera universitaria es de especial relevancia para las tareas de un tutor académico, por tal de poder ofrecer consejos personalizados. Presentamos un proyecto combinado de Ciencia de Datos y desarrollo de una Aplicacion Web en forma de Dashboard para analizar datos académicos reales de cuatro grados de la Universidad de Barcelona. Obtenemos resultados muy satisfactorios en cuanto a la prediccion de notas de asignaturas aun no cursadas. Después de obtener las predicciones, las importamos a una plataforma digital para ofrecerlas a los tutores. De manera que puedan entender mejor los estudiantes que tutelan y determinar cuales necesitan de una atención especial. Oportunidades considerables se abren de cara al futuro.
Chapter 1

Introduction

As part of an effort to improve learning conditions in academic communities of students, most Universities today have developed a mentorship program wherein a teacher is assigned to a student for the duration of their academic degree. This mentor, as is often referred to, is tasked with following the development of all students they are assigned to, and offer career advice and course recommendations if requested by the student.

Due to the high enrollment rates of tertiary education[3], mentors are overwhelmed by the amount mentored students that they have to follow. Right now a single teacher may be in charge of upwards of 60 students, each with a complex and interconnected academic record that can span multiple degrees, with a considerable variance from student to student.

The aim of mentorship programs is to offer personalized guidance, but this goal is jeopardized by the amount of data each student produces every passing year. Data which is also often not very easy to access from a mentor’s standpoint.

Previous work has discussed the possibility of a tool aimed at teachers and mentors [2] that would allow an ease of access to information on a student’s profile in a way that is not currently possible. Furthermore, such tools have been proven in limited trials to be effective [9] and that can be built off existing Learning Management Systems already in place in most universities. All studies point to the data existing, just not being taken advantage of.

Since the last attempt [2] at applying predictive models to real data from the
Introduction

University of Barcelona a year ago, a full year’s worth of data has been generated. Since machine learning methods generally improve their performance with more data, a never attempt is performed at improving prediction metrics.

Visualizations of overall performance and global metrics has been conceptualized in previous iterations of this project[2]. The next goal is to be able to present an individualized student record coupled with the predictions in an easy-to-digest manner. To that end we develop a Dashboard platform to be used by mentors. This tool enables a full view of a student’s past and future in a way that is not currently possible.

1.1 Motivation

The motivation for this project is continuing previous attempts [1, 2] at closing the gap between data science for education, and mentors. Enabling the latter to perform data-driven decisions based on true historical data and predictive models.

Many studies have focused on developing new Data Science methods for student performance predictions but final working implementations are seldom fully realized, this works aims to make a real attempt at developing a fully-featured mentoring platform that is integrated with the output of ML algorithms.

1.2 Objectives

The objectives of this work are two-fold. One is to improve upon previous performance metrics across all datasets for the grades prediction thanks to new data (obtained 2016) and harvest the already obtained dropout intention predictions [2]. The second objective is to present all of this data in a form that is most accessible by Mentors and Heads of Department.

1.2.1 Data Science to predict Student Performance

Part of this projects focuses on expanding and improving on the data gathering and cleaning previously done to predict future courses’ grades. To that end we will use state-of-the-art prediction methods and evaluate various methods of data cleaning and data exploration.
1.2.2 Data Visualization for mentors

Besides obtaining the predictions, we also develop a companion application to Learning Management Systems (LMS) in the form of a dashboard accessible by mentors. The goal of this dashboard is to present a huge amount of data in a way that is easily browsable and discoverable about a mentor’s set of students.

Besides being able to show informative and interactive graphs, the dashboard also aims to be actionable on discovery of a student in need of counseling support. In addition, it also pro-actively generates alerts for students with a predicted positive dropout intention.

1.3 Thesis Structure

This thesis will be organized in several sections, each one detailing a part of the process. From conceptualization and design, to implementation of the Academic Guidance Support Platform.

- Project Planning: The work is laid out and planned according to realistic expectations. The scope of what is and is not to be attempted or built is also defined, so as to keep the list of features well defined.

- Analysis and Design: A careful design of the Machine Learning approach is defined. Close cooperation necessary with the University of Barcelona’s Secretary personnel is needed to obtain the data. As well as how the continuous iterative design of the Academic Guidance System Dashboard is performed, again in cooperation with teachers.

- Development: The designed Dashboard’s development phases and details on the implementation. Split between developing the Machine learning algorithms and data filtering, and developing from the ground up the mentor Dashboard tool.

- Experiments and Results: Experiments detailed with the datasets used, showing comparisons with previous work and results on new data for the Machine Learning predictions. Initial trials of the Dashboard and opinions are also presented.
• Discussion and Future Work: A final word on what has been accomplished as well as evaluation of the results. Future applications and implementation details on a non-controlled environment are discussed, as well as theorizing a trial run.

1.4 Context of the Project

This thesis is part of the Teaching Innovation Project created in the Departament de Matemàtiques i Informàtica and the Departament de Mètodes de Investigació i Diagnòstic en Educació (MIDE) of the University of Barcelona.

The final aim of the project is to create a tool to help academic advisors, mentors, and heads of department manage large sets of students. The project has been divided into 5 phases:

1. Acquisition, centralization and anonymization of student’s data
2. Data Exploration, using data science, statistical and graphing techniques.
3. Use of Machine Learning Techniques to predict final students grades and other useful prediction outputs.
4. Development of the System / Platform as a deployed finalized product.
5. Evaluation of the System / Platform in controlled trials.

This thesis continues the work started in [1, 2] continuing to advance to phase 3 and placing special effort in phase 4, completing the goal objective for that phase, and delving into possibilities for phase 5.

1.5 Related Work

The usage of already-available data to perform Learning Analytics and run Predictive models is a field that has recently attracted much attention. Some works[11] suggest that there needs to be a concerted effort to understand, access, and make use of the vast amounts of data that Academic Institutions possess. Only by acknowledging and exploring that repository of data can we advance the field of Learning Analytics, the paper suggests.
Data Science has been successfully applied to education before [4] to predict the final graduation grade of a student by looking at the best available data at each point in the academic career of a student. Other efforts [5] have tried to go further and predict degree completion probability and other performance metrics that are of high relevance to mentors. The next step has been to predict outcomes on a per-course basis, [6] attains this goal and extracts useful and actionable predictions on courses that a student is currently enrolled in.

Learning Management System (LMS) powered dashboards are a recent field of study, with early steps towards the goal of developing one. [7] conceptualizes an Early Warning System (EWS) using data from a LMS in place at an academic institution to generate alerts on outstanding occurrences to students. The work was specially focused around the role of Mentors and Advisors as central pillars of the entire process. [8] goes into further detail on the development of this EWS, citing how the integration of already-existing LMS data was accomplishable. As well as the adoption of it by academic advisors. Further literature [9] has gone to explain how the use of accurate analytics-based teacher-student interventions have proved successful in their goal of improving a student’s outlook. The paper also goes into detail on how the data on interactions must also be feed back into the system to measure and improve.

Finally, tools have been devised to evaluate the readiness of such teacher-assistance platforms. A recent paper [10] surveys data from 24 institutions that have adopted Learning Management Systems and are actively using them to promote proactive action from their mentors. The design of an evaluation instrument, named Learning Analytics Readiness Instrument (LARI) by the publication, hopes to standardize the metrics that need to be evaluated on any implementation of Learning Analytics tools. From performance to the ethical implications of such tools. Results from the various institutions are very mixed, regarding the efficacy of implementation as well as the results. Some institutions have adopted bad practices while others have seen their mentorship programs improve substantially.
Chapter 2

Project Planning

The work is planned to be equivalent to an entire semester of University. Starting from October 2017 and ending on June 2018. Since other related studies are also executed during the development of the project, such as a Poster publication, the total span of 9 months is justified. The initial approach is to find a middle ground between Waterfall Development and Agile, allowing some room for changing requirements and iterative design in the middle. Complex or broad-scope changes are not considered for the latter phases of development.

The final project Gantt chart is presented in 2.1. We can observe a sprint-oriented cycle of development, with scheduled meetings every two weeks for the most part of the project.

Figure 2.1: Gantt chart for the entire Project.
Scheduled meetings help review finished work as well as establish new requirements for the next weeks. Of special note are the dependencies. Along the development of the project complex dependencies arise from a second round of gathering and cleaning data, in order to prepare the most up-to-date Machine Learning report.

By the end of April and the beginning of May, an effort was also diverted to write a small poster to be sent for review and further exposition to the IEEE Data Science Workshop 2018.
Chapter 3

Analysis and Design

An analytical approach to all of the requirements is crucial to manage the scope of the project. The goal is attaining a final product, careful choosing requirements and technologies at every step.

3.1 Requirements

Before beginning any work on the project, the set of high-level requirements has to be scoped. Formally, we want to define what constitutes a finished part of the project. Namely, we split the project into four big parts:

1. **Data Gathering and Cleaning**: Before even begin, we have to obtain an up to date dataset of all the grades from relevant faculties of the University of Barcelona. After obtaining the datasets, we have to explore the data, extract what is relevant, and clean it prior to its use.

2. **Machine Learning Algorithms**: After obtaining the cleaned data, a study of proven and new methods of Machine Learning is run on the Dataset, trying to maximize evaluation metrics across all data sets. Once a model is deemed satisfactory, we generate all of the relevant predictions.

3. **Dashboard Back-end and Server Setup**: After we obtain our historical data and our grades and dropout predictions, we create a suitable data model that will allow us to exploitate the data using modern Database Engines. Additionally, a web service API has to be designed and developed, as it will
be the access point to all the rest of the data. This phase also includes setting up a Linux server to host the entire project so it is available on the Internet.

4. **Dashboard Front-end User Interface:** Finally, once everything is in place, we can develop a website application front-end that makes full use of modern browsers and the latest libraries in data visualization and graphs to translate all of our data into a fully featured dashboard.

3.2 Design of the Data Science Process

Before designing the Machine Learning approach we want to take, we first have to make a choice in what kind of Data Science Framework (DSF) we want to use. A DSF is a choice of Programming Language, Libraries and Tools that make developing Machine Learning algorithms more convenient and most of all, fast. Instead of re-implementing everything ourselves, we would use well-established and proven tools. A few options arise:

1. **Custom-developed ML algorithms.** Similar to what is performed in [2], we would create our own algorithms basically from scratch.

2. **Python: Scikit[13].** A very complete and high-level ML set of tools. From model fitting to prediction and evaluation. Without the burden of developing the algorithm ourselves, we can focus on other tasks, such as finding the optimal model and running several rounds of evaluation.

3. **Python: Tensorflow / Keras.** A Deep Learning toolkit that makes the world of Neural Network Machine Learning more accessible to the casual programmer. Although theoretically has a higher roof of performance than more traditional (statistical) ML methods, an issue arises from not having a large enough dataset. DNN Models are very sensitive to big differences in dataset size.

4. **R: Machine Learning and Statistical Analysis R Packages.** A complete and production-ready environment for ML using the R language. Very widely used by scientists to run simulations and statistical predictions. A huge number of packages are available for almost any kind of model imaginable.
In the end we choose to use Python paired with the Scikit Toolkit. We choose python as it has been the language for all of the previous work in [1, 2] and for being widely accessible. The choice between Keras or Scikit is decided by looking at the amount of data available. We cannot guarantee that with data from only 2009 onwards (first year we have data on) we have a large enough training set for a Neural Network.

Besides Scikit, we will also be making extensive use of other Python libraries, namely Pandas and NumPy.

3.3 Design of the Dashboard

Next we explore the technologies available to us to develop the the Academic Guidance Support Platform for mentors we want to design and develop.

First off we define that we want to use a web application-based approach to our Dashboard Platform. We choose to develop a web application as they are widely compatible with a full range of devices. Accessible from anywhere without requiring to install additional software, and always up-to-date by definition.

A web application architecture is split in two parts: a Back-end and a Front-end. The two parts should be as separate as possible to facilitate making changes in one without breaking the other. This architecture has been used extensively (i.e. [14]) by many institutions and companies, in order to deploy services to a wide audience with varying needs and accessibility options. Next we discuss the different options we have for the two aspects of the web application regarding available technologies.

3.3.1 Dashboard Back-end Technologies

The Back-end is the part of the Platform responsible for ultimately sending any and all information from a server hosted on the general Internet and the end user connecting from a web browser. Without this part, nothing would actually load on a user’s desktop or mobile browser. We explore a wide range of new and time-tested technologies. Technologies not mentioned here are not under the umbrella of knowledge afforded by the author.
1. **PHP (Laravel).** One of the first and oldest web languages. Currently in use by server computers in the University of Barcelona. An application framework needs to be layered on-top to manage the complexities of web applications. One such framework is Laravel. One upside of the use of PHP is that integration with existing systems would be mostly painless, due to the existing infrastructure.

2. **NodeJS (Express).** Very modern web framework based on a modern JavaScript engine (V8). One upside of using JavaScript for the back-end would be using the same scripting language that is native to web browsers, thus making it easier to reason about the data model. Adoption and integration of the Node runtime environment poses a challenge for an institution as the University of Barcelona.

3. **Python (Django).** Time-tested web framework. Builds upon the expressiveness of Python to deliver extremely quick development times for the purpose of Web Applications. Additionally, data modeling and database handling come packaged by default. A major upside to using Python is that the same language for the Machine Learning algorithms is used, as decided in the previous section. Integration of Python into production also poses a challenge to big institution, albeit not as big as Node, due to being a more mature environment.

After carefully considering each option, and their upsides and downsides, we decide to settle on using Python with the Django framework. The main reasons include a very fast development cycle, familiarity with the language and framework, ease of installation and deployment, and very complete and detailed documentation.

As well as a web framework, the back-end is also composed of a database engine that will hold all the data we need to display to the end user, as well as a way to access that data from the front-end. We made the following choices for each requirement:

- **MySQL RDMS Server.** A commonly used Relational Data Storage System. MySQL covers all of our data storage and access needs, as well as provide a
very solid foundation to expand upon later on.

- **GraphQL API Design.**[15] A fairly-recent API implementation guide. GraphQL centers around thinking of your data as an interconnected web of nodes and edges, allowing you to traverse a graph of objects though their relations. GraphQL has been studied to be very optimal[16] running complex queries. Most important of all, GraphQL is designed to let the consumer request what parts of the data are relevant, unlike REST APIs. The concrete implementation of GraphQL for Python is known as Graphene, and it’s what we are using.

3.3.2 Dashboard Front-end Technologies

A web application’s Front-end is the set of user-facing technologies that deliver the final experience to the user browsing our web. The modern landscape of browsers is currently dominated by a single set of markup and scripting languages: HTML, CSS and Javascript. Within the confines of these languages, most web applications nowadays use what is known as a Front-End Application Framework. It is usually comprised of a very complete JavaScript library that abstracts away most of the complexities of modern browser scripting.

For the purposes of this work, we are using a JavaScript framework known as Vue[17]. It offers many of the benefits of larger and more featured frameworks, without the need to adhere to strict guidelines enforced by other such frameworks. Thanks to Vue, the development of Web Applications can be very iterative and feature-driven.

Finally, to take care of the visual aspect of the Dashboard, we use the Gentelella[18] Bootstrap template. Bootstrap is a widely used set of styles for web development, that is aimed at providing a consistent and responsive visual experience across a wide range of devices, from desktop computers to mobile phones. Gentelella is a freely-distributed template and styles that gives us a solid foundation on which to build the visual user experience on our Dashboard, as can be seen on Figure 3.1. It would be out of the scope of this project to also develop a competent set of styles from the ground up, so that is why we choose to make use of freely-available templates.
To summarize, we’ve gone over every requirement and category in the development of a Web Application, identified our needs and selected appropriate technologies that match our objectives and allow the project to focus on high-level development instead of dwelling with the details of the involved technologies.

Of special note is the wide availability of choices and technologies that are completely free to use and very well documented. An attempt at developing a project not dissimilar to this one would be able to select a completely different set of technologies and it would be none the worse for it.
Chapter 4

Development

In this section we will focus on the concrete steps taken to fully realize the project. Putting special attention on the implementation details for the Web Application.

4.1 Dashboard Backend

The first development steps focus on the back-end for the web application. As the back-bone of the application, the requirements for this part are two-fold: Provide a platform to permanently store data and access it, and serve the pages to the web browser.

Figure 4.1 represents a diagram of the various building blocks that compose our designed architecture. As can be observed, there are two distinct entry points to the back-end. One is in charge of serving the HTML pages to a browser, and the other offers a direct view into the database.

Zooming in on the HTTP Server, this is the part that sends the HTML pages that contain the front-end to any user that enters the website.

As we mentioned previously, for this part we are using the Django Web Framework. We take advantage of its many features to implement the necessary set of characteristics that allow the Web Application to work:

- Serve static assets (HTML, CSS, JS). These are files to be interpreted by the browser.
• Manage security of access through a Login portal. Only personnel who is authorized to access the site though a set of credentials may advance further than the Login portal.

• Manage a user’s session and track their movements on the site. We want to know who is logged in and what kind of user they are. For example, Mentors have different views and sets of permissions in contrast to Heads of Department.

4.1.1 Data Model

The data model represents how the data inside the Database needs to be interpreted. A data model is meant to abstract the real world to a level that is both useful and realistic.
4.1 Dashboard Backend

Figure 4.2 represents the developed data model for the Platform. The data model must permit a set of requirements identified during several meetings with teachers:

1. A student may have more than one Academic Record.

2. A student may have more than one grade per course.

3. A student may have more than one Mentor. In fact, mentors are interpreted to be assigned to Academic Records, not Students.

A lot of relationships are necessary to capture the entire set of possibilities. Thanks to this versatility, this data model is not restricted to a single Degree, Faculty or even Campus. The added complexity of many relationships is thankfully solved by the next piece in the back-end Architecture.
4.1.2 Webservice API

The Web Service API is in charge of presenting an end-point for the front-end to interact directly with the database. In this project it is used mostly as a one-way data extraction channel, but usually there is bi-directional data flow from the Web Application back to the Database.

In our project we’ve chose a bold and modern API design known as GraphQL. The real power of GraphQL comes from interpreting the data model as a fully traversable graph, and allow the front-end framework to "program" queries without having to modify the back-end to incorporate new data views.

A clear example is presented in Figure 4.3, where we can observe what a GraphQL query to get information about a particular student’s academic record might look like. Please note how the graph traversal is performed via opening and closing braces. Each brace opens up a node to explore the child nodes inside. Eventually we get to the attributes, and those are returned as either strings or numbers.

This Application Programing Interface (API) is used from the user’s browser by the front-end framework, to recover data about a particular student or a set of students.

As well as providing the requested data, the GraphQL API is also aware of who is currently logged in and performing the requests. For example, a student querying their academic record is fine, but if they try to query any other record, the request is denied. The same thing happens for mentors, they may only access data on the students they are assigned to. This prevents unauthorized access to confidential data.

4.2 Dashboard Frontend

The front-end includes both the visible part of the website (layout and styles) and the necessary scripts to interface with the Web service API.
Example GraphQL Query

```java
query {
  records(niub: "16662225") {
    yearStarted
    meanGrade
    degree {
      name
    }
    teacher {
      profile {
        fullName
      }
    }
  }
}
```

Example GraphQL Response

```java
{
  "data": {
    "records": [
      {
        "yearStarted": 2014,
        "meanGrade": 8.89,
        "degree": {
          "name": "Enginyeria Informatica"
        },
        "teacher": {
          "profile": {
            "fullName": "Maria Salamo"
          }
        }
      }
    ]
  }
}
```

Figure 4.3: GraphQL example Request and Response data.

4.2.1 User Interface

The user interface is based off the Gentelella Bootstrap template. Thanks to having a solid base to start from, the resulting design for the dashboard can be perceived as modern and elegant. Studies show that attractive and well-designed interfaces attract more attention from their targeted user base. With this Dashboard Platform not only do we aim to promote its usage among mentors, but also for students, as an alternative to other ways of accessing the same data in the existing University of Barcelona’s Intranet.

For mentors, the most relevant view is the summary lists with all of their
Development

mentored students laid out in 3 separate boxed lists. As can be seen in Figure 4.4, the "Student List" view offers a very concise summary. Three sections are immediately apparent:

1. **Top Students.** Students placed in the top 10% that you happen to be a mentor of are shown here.

2. **Projected Dropouts.** Students that you mentor and have been flagged by the Machine Learning system as at risk of dropping out are listed here.

3. **Mentored Students.** The entire list of all students under your mentorship. The list can be sorted by Surname (default) or by ascending / descending order of their Academic Record’s mean grade.

In the case of students at risk of dropout, an additional alert is placed on their profile page, as can be seen in Figure 4.5. This prompts mentors to initiate contact with the Student to alleviate the situation and offer career advise.
4.2 Dashboard Frontend

4.2.2 Vue, Javascript Framework

Besides the style and design of the dashboard itself, a certain degree of dynamic integration with the data is expected of a Web application. To this end, Vue has been used to interface with the Web Service API and convert the raw data into palatable graphs and dynamic lists. In Figure 4.6 we can see an example of this.

Figure 4.5: Warning shown on projected dropouts.

Figure 4.6: Converting data to graphs and summary tables.

Vue recovers the academic record of a student and then displays it in a format that is much more interpretable. In this case, predictions are also shown as we are
logged in as a Mentor. In the case of students accessing their own profile, they can’t see their predicted grades.
Chapter 5

Experiments and Results

5.1 Data Gathering and Cleaning

To conduct our research, we have gathered 134,571 data samples (grades) from a total of 7,557 students who studied the degree in Law (3,444), Mathematics (490), Computer Science (422) and Primary Education Teaching (3,201) in the University of Barcelona (UB) between the years 2009 and 2016. This data is summarized in Table 5.1, where the total number of data points (individual grades) is recorded. The data was provided by the Secretary’s personnel of the University of Barcelona.

<table>
<thead>
<tr>
<th></th>
<th>Law</th>
<th>Comp.Sci.</th>
<th>Maths</th>
<th>PE Teaching</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Data Points</td>
<td>94,804</td>
<td>10,445</td>
<td>10,056</td>
<td>81,490</td>
<td>196,795</td>
</tr>
<tr>
<td>Total Students</td>
<td>3,444</td>
<td>422</td>
<td>490</td>
<td>3,201</td>
<td>7,557</td>
</tr>
</tbody>
</table>

Table 5.1: Summary of Datasets

We can explore the datasets using a graphing technique named “Violin Plotting”, where we can observe the normalized distribution of our entire dataset. Figure 5.1 represents all of the obtained datasets’ data points in a single graph. We can observe from the shape of the datasets that they all seem to form a “arrow point” shape. The white dot represent the median value, and the black box extends from 25% to 75% of the data variance. Immediately apparent are the differences between the degrees. One differentiating aspect is the tendency of “humanities” degrees to bunch up grades around whole numbers, while “sciences” degrees span
Before we attempt to run any Machine Learning algorithms, it is necessary to clean and select the data that will truly be beneficial to run analysis on. According to [21], Data Quality (DQ) is crucial to achieving the best performance a particular Machine Learning model can reach given a dataset.

Even if we have obtained nearly 200,000 data points, the amount that is finally used for training purposed is a much lower figure. The steps and justification for each stage of cleaning are detailed below:

1. Discard all other attempts to pass a subject besides the first attempt. The focus of the predictions will be on predicting your "First Attempt" at a subject.

2. Students who have not attempted at least 80% of the first year’s curriculum are excluded from the training set. This is done to select students who are seriously attempting to enter the degree. First year part-timers and students who have not completed most of the first year should not be used to model student behavior. This way we intend to exclude outliers.

3. Students who have not attempted at least 70% of the second year’s curriculum are excluded from the training set. The logic behind this is to also get
5.2 Experimental Settings

For the purposes of predicting the grade that a student may obtain on their first attempt at a new course, we want to explore several interesting Machine Learning algorithms. Previous parts of this project [2] have focused on designing a Collaborative Filtering method that tries to make lots of assumptions about how students might behave and how they may rank the courses. The approach in this thesis will be different.

After our data is cleaned and normalized to adhere to the same standards for all datasets (regarding minimum number of attempts per year), we can proceed to develop our machine learning algorithms. We choose a pair of distinct and very relevant ML methods: Random Forest (RF) and Bayesian Ridge Regression (BR). The choice of methods is motivated to be both concise and to explore both non-linear (RF) and linear (BR) methods.

5.2.1 Random Forest Regression

A random forest regression is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and limit over-fitting. After training N different trees with different subsets of the data, predictions are made by averaging the prediction of all N trees. A summary explanation can be observed in Figure 5.2.

The "Forest" in RF comes from the multiple decision "Trees" that are contained inside the model. Each Tree has non-linear decision boundaries to split the data.
at each Tree Node. Once a terminal node is reached, the value associated becomes the final prediction for that Tree.

5.2.2 Bayesian Ridge Regression

Bayesian Ridge (BR) regression is a linear regression based on Bayesian Inference, wherein the probabilities of an outcome are updated as more data becomes available. The use case for BR is in datasets that have errors approaching a normal distribution[19]. In our case, this method seems adequate given that the grades distributions follow a quasi-normal distribution in Figure 5.1.

To perform the model training, we first have to "fill in" the missing values in a single student's grades for each year of education. For example, if a student has only attempted 8 out of the 10 courses for year 1, those last two must be extrapolated somehow from existing data. Two methods are attempted and evaluated:

1. **Fill in with the student mean grade.** This effectively fills all missing values for a single student with the same value, an average of all grades that a
2. **Fill in with the mean grade for that subject.** This fills the missing values for a single student with different values, taking the mean grade for each subject, calculated using all other data points for that subject. Effectively filling the same value for all students missing the same course grade.

After testing both methods and comparing the outcomes, the results for average course grade, option 2 is immediately discarded for being very detrimental to the ML training step. Given how average grades hover almost always around 5.5, it is easy to see why filling in that value for all students skews the predictions. We are severely modifying the variance of the data.

5.3 Comparative to Previous Work

We train and evaluate both models proposed above on the 4 data sets. To evaluate the models we follow the procedure specified in [2] to calculate the Mean Absolute Error (MAE) of the predictions.

Training and predicting are done following the Leave-one-out cross-validation technique. This technique is studied[22] to be of much higher statistical stability and lower bias than other methods of cross-validation. In Figure 5.3, we can see a bar plot of obtained Mean Absolute Error metrics across all datasets.

We are looking for low variation across datasets and the lowest possible values for MAE. The lowest value is obtained by the Recommender in [2] evaluated on the Primary Education Dataset. However we find that Bayesian Regression obtains the overall lowest mean MAE score, and most importantly, whereas both other methods seem to have a high variance in their MAE scores, BR is much more stable.

To explore the results of the Bayesian Regression prediction, we move to Figure 5.4. Here we have plotted the predictions of the LOO cross-validation of the BR method against the real grades obtained by the students, run on the Computer Science dataset.
Figure 5.3: MAE metric obtained for all methods across all datasets.

We have two color codes: Green colored points signify "properly classified" as a passing or a failing grade. Red colored points signify "improperly classified" passing or failing grade. In other words, if a real passing grade was predicted to fail, or a real failing grade was predicted to pass, we consider that the "red" portion of the graph. 67.5% of the total predictions are labeled correctly,

Additionally, a trend-line is painted on top of the scatter plot. The trend-line is a good indication of how good our predictions were. Ideally we want to bisect the plot area across the 1st and 3rd quadrants, passing through (0,0). As we can observe, our prediction still has room to improve.
5.4 Dashboard Usability

Initial demos of the Dashboard platform to target users have been well received. The attractive visual design is effective in bringing interest to the platform, and users find the data presented to them of use, both in the way that is presented as well as in the value of such data. One example are the student graphs, seen in Figure 4.6, that prove very useful for at-a-glance impressions on a student. Several improvement suggestions are brought up by testers:

1. A clearer divide between Mentors and Heads of Department in terms of what is shown. Currently, Mentors are shown a list of all their students, while heads of Department have access to a more detailed dashboard with relevant stats of their Degree.

2. Easier access to messaging capabilities from mentors to students.

3. Editing form on the front page, to put up announcements. This is however
related to opening up the platform for Students too, something which was removed from the scope in the initial phases.

4. Better integration of data ingestion and import tool. The only way to import data now is to load CSV file inside the server and then run python scripts to insert them into the database. Not very user friendly.
Chapter 6

Conclusion and Future Work

We set on this project to bridge the gap between Machine Learning studies and the applied use of technology to create real tangible products. The set of requirements has lead us to reevaluate previous work and apply new Machine Learning methods on a larger dataset. As a result of this, we have improved on previous metrics of success by a non-marginal amount.

The great advantage of Learning Management Systems is that they accrue more and more data every passing year. So in 5 years from now the models could be trained with up to 50% more data points. This is very good news when using Machine Learning algorithms that depend on rich and comprehensive datasets. With more data, more extreme cleaning and filtering could be performed to only select the most relevant data.

Regarding the development of a Data-Driven Guidance Platform for Mentors, we can say we have successfully integrated both historical and predicted grades data, as well as dropout intention alerts, successfully into a functioning online platform. Powered by well-researched technologies, the adoption of such a platform does not appear far-fetched. Significant effort on the part of the University of Barcelona to accept updated software would have to occur.

In the future, to successfully integrate the platform the final stages of the development must be completed, including a roll-out and production plan, as well as creating more user-friendly data ingestion mechanisms. The datasets could also
be enriched with more real-time data from platforms such as Moodle. It is not unfeasible to attain near-real-time prediction and alert capabilities.

In the real of Machine Learning algorithms, the idea of using Neural Networks should not be closed off completely in a future where more data is available. There is a certain degree of non-linearity in most grades distributions, especially as seen in humanities oriented degrees, where a NN-approach could work better than purely statistical methods.
Bibliography

[22] Eliseeff, André & Pontil, Massimiliano Leave-one-out error and stability of learning algorithms with applications. Max Planck Institute for Biological Cybernetics, Germany.
A - Installation guide

This section will address what is required to install and deploy all the necessary components to run the project on a server.

Requirements
The following requirements are absolutely necessary for the project.

1. Linux Operative System. Recommended distribution based on Ubuntu 16.04LTS or above. Not tested on Widows Server platforms.
2. MySQL or equivalent server (MariaDB in the case of Linux Systems)
4. Virtualenv Python Package.

Installation Steps
The following requirements are absolutely necessary for the project.

1. Obtain the source code to the project.
2. Extract to a folder that is owned by a regular user and you have permission to write in.
3. Create a new Python virtual environment folder named "env" and activate it:

 $ virtualenv env
 $ source env/bin/activate

4. Install all python packages defined in the "requirements.txt" file:
$ pip install -r requirements.txt

5. Edit the "mentoring/settings.py" to reflect your database connection settings:

 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': '<database name>',
 'USER': '<user>',
 'PASSWORD': '<password>',
 'HOST': '<host>',
 'PORT': '<port>',
 'OPTIONS': {
 'sql_mode': 'STRICT_TRANS_TABLES'
 }
 }

Alternative, you may use the "SQLite" backend, but it has not been tested.

6. Edit the "mentoring/settings.py" to reflect your email server connection settings:

 EMAIL_HOST = '<host>'
 EMAIL_PORT = <port>
 EMAIL_HOST_USER = '<user>@<host>'
 EMAIL_HOST_PASSWORD = '<password>'

7. Execute the server once to verify that it’s connecting properly. If the server crashes, verify your installation:

 $ python manage.py runserver 0:8080

8. If the server starts successfully, stop it with Ctrl+C and then run the migration process to create the necessary tables in your database. Afterwards load the included data.

 $ python manage.py makemigrations
 $ python manage.py migrate
 $ python manage.py loaddata fixtures/database.json
9. If everything completed successfully, you should now be able to start the server and log into your Dashboard.

 $ python manage.py runserver 0:8080

 Go to your browser of choice and input http://<server ip>:8080 on the navigation bar. If you are running this on your local machine, the ip will look like: http://localhost:8080 To log in, you have a choice of users:

 <username>:<password>
 admin:123456 (Django administrator)
eloi:123456 (Head of Department)
laura:123456 (Regular Teacher)
12637525:123456 (Student)

10. Congratulations, you have successfully installed the Dashboard Web application on your server.

 Please refer to the official Django documentation for version 1.11 if you get stuck at any point during the installation.