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If the standard model is valid up to very high energies it is known that the Higgs potential can develop a

local minimum at field values around 1015–1017 GeV, for a narrow band of values of the top quark and

Higgs masses. We show that in a scalar-tensor theory of gravity such Higgs false vacuum can give rise to

viable inflation if the potential barrier is very shallow, allowing for tunneling and relaxation into the

electroweak scale true vacuum. The amplitude of cosmological density perturbations from inflation is

directly linked to the value of the Higgs potential at the false minimum. Requiring the top quark mass, the

amplitude and spectral index of density perturbations to be compatible with observations, selects a narrow

range of values for the Higgs mass, mH ¼ 126:0� 3:5 GeV, where the error is mostly due to the

theoretical uncertainty of the 2-loop renormalization group equation. This prediction could be soon tested

at the Large Hadron Collider. Our inflationary scenario could also be further checked by better

constraining the spectral index and the tensor-to-scalar ratio.
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I. INTRODUCTION

Despite the many experimental successes of the standard
model (SM) of particle physics, its scalar sector is still to
be confirmed by accelerator experiments. Extensions of the
SM are intensively explored, motivated by the fact that the
SM does not explain neutrino masses, dark matter,
the baryon-antibaryon asymmetry, a primordial stage of
inflation, etc. From a theoretical point of view, useful
guides for extending the SM are represented by a possible
unification of gauge couplings, by fine-tuning problems
(such as the lightness of the Higgs mass) and by the
inclusion of gravity.

We consider here the possibility that no major exten-
sions of the SM Higgs sector are required. In this frame-
work, we consider the possibility of realizing inflation by
introducing only modifications in the gravitational sector.

The idea that inflation is realized in the SM Higgs sector
has been proposed recently [1], by allowing for a non-
minimal coupling of the Higgs to gravity. This is an
appealing point of view because it does not introduce
new degrees of freedom. It is however controversial
whether such scenario is viable at the quantum level,
because radiative corrections could modify the potential
[2,3].

In this paper we propose a slightly less minimalistic
scenario, in which we do introduce a new scalar degree
of freedom, but assume it to be decoupled from the SM:
in such a way the SM is not altered at all and only
gravitational physics is affected.

We use the fact that the Higgs potential has a local
minimum between 1015–1017 GeV, which is indeed known
to exist for a narrow band of the top and Higgs mass values
[4–6]. We will assume that the Universe started with the
Higgs in this false vacuum, which leads to a stage of
exponential inflation, where density perturbations are
produced.
It is already a nontrivial fact that such a local minimum

can exist in the Higgs potential, but is even more nontrivial
that there exist an allowed parameter range in the Higgs
and top masses, for which the energy density of this
minimum has the right value [grand unified theory
(GUT) scale] to give rise to the correct amplitude of
density perturbations from inflation.
The additional scalar has the role of providing a graceful

exit to inflation, which is possible in a Brans-Dicke scalar-
tensor theory of gravity, as shown in Refs. [7,8] (and earlier
in [9–11] for power-law inflation). After the stage of ex-
ponential inflation, the expansion is drastically slowed
down by the Brans-Dicke scalar and the Higgs field can
tunnel out efficiently, via production and collision of bub-
bles, and subsequently rolls down to its present vacuum
expectation value, v� 246 GeV. Moreover quantum fluc-
tuations in the Brans-Dicke scalar generate a spectrum of
density perturbations, which can be understood also as a
tunneling which happens at slightly different times in
different regions of space. In particular, we show that
successful inflation can be achieved for a very broad class
of couplings of the scalar-tensor theory and that the spec-
tral index of density perturbations is largely independent
on the particular choice of couplings.
We use the information from the amplitude and

spectral index of cosmological density perturbations
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generated during inflation to predict the Higgs mass,
finding

mH ¼ ð126:0� 3:5Þ GeV; (1)

where the error is mostly due to the theoretical uncertainty
of the 2-loop renormalization group equation (RGE). This
range is within the present experimental window set by
direct searches, namely, the 115 GeV lower bound set
by LEP [12] and the 140 GeV upper bound set recently
by LHC [13], which restricted the previous 155 GeV bound
set by Tevatron [14]. We note that the range above is also
compatible with the July 2011 global electroweak SM
precision fit [15], which gave mH ¼ 125þ8

�10 GeV at 1�.
After the first release of this paper on the arXiv, LHC

updated the Higgs boson exclusion limits [16]: as of 13
December 2011 ATLAS excludes at the 95% C.L. masses
outside 116–130 GeV and CMS excludes at the 95%
confidence limit (C.L.) masses outside 115–127 GeV.
Remarkably, the allowed band for SM false vacuum in-
flation includes the region 124–127 GeV, where ATLAS
and CMS recorded excesses of events in the di-photon as
well as 4-leptons channels [16]. At present, the significance
of this result is however still low.

Hopefully, our inflationary model prediction will be
soon better tested by LHC. In the case of compatibility
with LHC results, future more precise cosmological mea-
surements of the scalar spectral index and the tensor-to-
scalar ratio could provide further tests for the idea of Higgs
false vacuum inflation [17].

The paper is organized as follows. In Sec. II we present
our inflationary model, based on a scalar-tensor theory of
gravity. First, we derive the expression for the slow-roll
parameters, the scalar spectral index and the tensor-to-
scalar ratio. We then establish the relation between the
amplitude of density perturbations and the Higgs potential
at the false minimum. In Sec. III we study values of the top
and Higgs masses giving a SM false vacuum within the
range consistent with inflation. In Sec. IV we show that the
set of values derived in this way are only in part consistent
with the measurement of mt. This allows to predict a
narrow range for the Higgs mass. In Sec. V we provide
details about the post-inflationary period, while in Sec. VI
we generalize the model by considering higher order terms.
We finally draw our conclusions in Sec. VII.

II. THE INFLATIONARY MODEL

The model setup is the SM of particle physics in a scalar-
tensor theory of gravity. We denote the Higgs field by �.
For very large field values, the quadratic term m2�2 can
be neglected in the Higgs potential which, at some scale
�� � becomes simply

Vð�Þ ’ �ð�Þ�4: (2)

It is well known that the SM Higgs potential has a false
minimum for some narrow band of the Higgs and top

masses [4–6], as we also discuss in Secs. III and IV. For
such band, the coupling � goes very close to zero at large
field values and then rises again, namely, the Higgs poten-
tial can develop a new local minimum, which turns out to
be well compatible with the GUT scale range,
1015–1017 GeV. We call �0 the Higgs field at the false
minimum.1

We are going to use this new minimum to drive cosmic
inflation, since Vð�0Þ is a large potential energy which can
be a source for an exponential expansion of the Universe.
The nontrivial ingredient is to provide a graceful exit from
inflation, that is a transition to a radiation-dominated era, in
a nearly flat Universe, at a sufficiently high temperature.
This is known to be impossible in standard gravity [18]. In
fact, in order to end inflation the field would have to tunnel
to the other side of the potential barrier by nucleating
bubbles with a different value of the field [19] and the
bubbles would eventually collide with each other and
reheat the Universe. However, the nucleation rate per unit
time and volume � (which has mass dimension four) has to
be suppressed as compared to the fourth power of the
Hubble rate HI, otherwise the Universe would tunnel
quickly in a few Hubble times, without providing sufficient
inflation. On the other hand, if � � H4

I the probability of
tunneling is very small and the process is not efficient
enough to produce a sufficient number of bubbles inside
a Hubble horizon, which could collide producing a homo-
geneous radiation thermal bath. The possibility that we
lived inside one single bubble, without collision with other
bubbles, is also ruled out by the fact that the inner region of
a bubble would have too large spatial curvature. In other
words, a graceful exit would require � to become larger
than H4

I only after some time, but this is impossible be-
cause both quantities are time independent.
Interestingly, such a behavior becomes possible in a

scalar-tensor theory of gravity. This has been shown in
earlier models, under the name of extended [9,10] or
hyperextended [11] inflation and more recently in [7,8].
In earlier models only a power-law inflation (scale factor
growing with time as aðtÞ / t�) was proposed, but subse-
quently this has been shown to be in tension with obser-
vations of the cosmic microwave background, because it
turns out to be difficult to produce a nearly flat spectrum of
perturbations [20]. In [7,8] it was shown instead that a
stage of exponential expansion is naturally incorporated
in the model and then followed by a stage of power-law
(even decelerated) expansion. In this way, it is possible to
produce the correct spectrum of perturbations in the first
stage of inflation and subsequently to slow down dramati-
cally the expansion of the Universe, thereby allowing the

1There is also an intermediate regime in which the Higgs can
develop a flat region of the potential, but it has been shown that
inflation is not viable [6], at least in standard Einstein gravity.
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field trapped in the false minimum to tunnel through
percolation of bubbles.

A scalar-tensor theory of gravity is obtained by adding a
scalar field � (sometimes called Brans-Dicke scalar or
dilaton), coupled to the Ricci scalar R via a nonminimal
coupling. We will follow here very closely the scenario
presented in [7,8]. The full action of the model2 is given by

� S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
LSM þ ð@��@��Þ

2
�M2

2
fð�ÞR

�
;

(3)

where LSM includes all the SM of particle physics and
where we require that fð�Þ is always positive. Here, for
small � values we assume that we can simply expand the
function fð�Þ as

fð�Þ ’ 1þ �

�
�

M

�
2 þ �

�
�

M

�
4 þ . . . ; (4)

where M plays the role of the Planck mass and �, � are
dimensionless couplings. Indeed, the usual case of stan-
dard Einstein gravity corresponds to f ¼ 1. In general we
may view these models just as gravitational theories in
which the effective Planck mass—given by

ffiffiffi
f

p
M—is fixed

by the vacuum expectation value of �. For small values of
� one then recovers the usual Einstein gravity with a
Planck mass given by M. As in [7], for large field values
(� � M) we require f to be a monotonic growing func-
tion, such that fð�Þ>�ð�=MÞ2.

We start by assuming that the primordial Universe is
initially in a cold state, where � takes a very small value
and the Higgs field is trapped in the false minimum of its
potential, at a field value �0. The evolution equation [8,21]
of the metric in a Friedmann-Lemaı̂tre-Robertson-Walker
background is given by

H2 ¼ 1

3M2fð�Þ
�
1

2
_�2 � 3HM2 _fð�Þ þ Vð�0Þ

�
; (5)

where H � _a=a (a is the scale factor) and the evolution
equation for the scalar field is

€�þ 3H _� ¼ M2

2

dfð�Þ
d�

R: (6)

Since � is small we can approximate (5) with the
standard equation

H2 ’ Vð�0Þ
3M2

� H2
I ; (7)

leading to a stage of inflation with the Universe expanding
almost exponentially with a scale factor aðtÞ / eHIt.

In this minimum the Ricci scalar has a value:

R ¼ 6 _H þ 12H2 ’ 12H2
I ; (8)

where the second equality follows from the fact that during
inflation H is almost constant.
In this false minimum the Higgs field can tunnel with a

Coleman instanton [19], a bounce solution of the classical
equations of motion, but it will do it with negligible
probability if � � H4

I [8]. However in such an inflationary
background there is a time-dependent quantity, which is
the value of the Brans-Dicke field �, which sets dynami-
cally the value for the Planck mass. It is easy to see
combining Eqs. (6) and (8) that, if the function fð�Þ is a
monotonic increasing function, the presence of a nonzero
background value for R makes the additional field � grow
and at some point the field � will reach values large
enough so that the Planck mass, given by fð�Þ, starts
becoming larger than M. When we enter this regime,
gravity becomes weaker and so the Hubble parameter starts
decreasing with time. If we wait for a sufficiently long
time, the tunneling via a Coleman transition will happen
successfully when H4 ’ �, since � is a constant. Note
however that the transition could happen also by quantum
fluctuations due to the gravitational background, through
the Hawking-Moss instanton, which would make also �
time dependent. We now disregard this possibility here and
comment it later in Sec. III.
Such a process can be studied by analyzing directly the

above equations of motion, derived by the action (3). It is
however simpler and more general to make a change of
variables, as in [7], and go in the so-called Einstein frame
(we use the bar to indicate a quantity in this frame), which
is related to the original frame through the change of
variable obtained via the conformal transformation of the
metric �g�	 ¼ fð�Þg�	. The action in this frame becomes

(see [7,21] for further details)

SE ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi� �g
p ½M2 �R� Kð�Þð �@�Þ2 � 2 �LSM�;

Kð�Þ � 2fð�Þ þ 3M2f02ð�Þ
2f2ð�Þ :

(9)

Let us now focus on the function fð�Þ, which can
generically be written for any value of the field � as

fð�Þ ’ 1þ �

�
�

M

�
2 þ X

n�4

�n

�
�

M

�
n
: (10)

As shown below, it is required [7] that for large field values
f grows faster than ð�=MÞ2. This is achieved for instance if
all coefficients �n of the higher-dimensional operators are
positive numbers. In order to keep the analysis simple, it is
sufficient to focus on one single operator, and the simplest
one is the operator with n ¼ 4. As already anticipated in
Eq. (4), from now on we therefore consider only the n ¼ 2
and n ¼ 4 terms: this allows to have a model with only two

2A potential term Uð�Þ for the field � could be added, and in
fact it is likely to be needed for the post-inflationary evolution.
We assume that this potential term is subdominant before the
tunneling.
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parameters, � and �. We will show in Sec. VI that for any
coupling with n > 2, the predictions are very similar and
converge to a single prediction at large n. Note that for this
reason in our scenario there is a very wide class of higher-
dimensional operators which work well, and that the pre-
dictions are almost independent on the precise functional
form of f inside this class. This is different from the case
proposed by [1] where only the quadratic term in f works
well (making the scenario possibly unstable under quan-
tum corrections, because of the appearance of higher-
dimensional operators).

In terms of a canonically normalized field � defined

through d� ¼ d�
ffiffiffiffiffiffiffiffiffiffiffiffi
Kð�Þp

, the action in Eq. (9), can be
further simplified to

SE ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi� �g
p ½M2 �R� ð �@�Þ2 � 2 �LSM�: (11)

Because of the conformal transformation to the Einstein
frame, the Higgs potential becomes Vð�Þ=fð�Þ2, so that
the potential energy at the false Higgs minimum gives rise
to a potential term for �

SvacE ¼
Z

d4x
ffiffiffiffiffiffiffi� �g

p
�V; �V � Vð�0Þ

fð�Þ2 : (12)

Now, in this frame, we can discuss in a very general way
the dynamics, distinguishing between two stages: small �
and large �. At small �, considering in (10) only the
n ¼ 2, 4 terms as discussed, and assuming �2 � �, the
Higgs potential becomes

�Vð�Þ ¼ Vð�0Þ
�
1� 2�

�
�

M

�
2 � 2�

�
�

M

�
4 þ . . .

�
: (13)

This acts as a hill-top potential for the � field. So, in this
frame� rolls down the potential from small to high values.
If � � 1, the field rolls down slowly and the standard
slow-roll approximation can be used.

For large field � values, instead, it can be seen that,
under the assumption that fð�Þ grows faster than
quadratic, we have that M2f02 > jfj. In this case in the
numerator of K in Eq. (9), the second term dominates.
Therefore, in this phase, the kinetic term can be approxi-
mated as

Kð�Þ 	 3

2

�
Mf0

f

�
2
: (14)

We can now write the canonical variable in this regime
simply as

� ¼
ffiffiffi
3

2

s
M lnfð�Þ; (15)

so that the potential for �, Eq. (12), becomes remarkably
independent on the exact form of f:

�Vð�Þ ¼ Vð�0Þ exp
�
�2

ffiffiffi
2

3

s
�

M

�
: (16)

Evolutions under such exponential potential corresponds to
a power law phase, with decelerated expansion, given by

�a� �t3=4. It is also easy to see that � grows and the kinetic
energy is always proportional to �V (precisely it is 4=5 �V).

Now, the end of this phase is achieved when �H2 ’ �V
M2 is

equal to ��1=2 and at this point the Higgs field tunnels
efficiently. Therefore the final field value at tunneling �T

is given by

fð�TÞ ’ Vð�0Þ1=2
M ��1=4

¼ Vð�0Þ
M2�1=2

; (17)

where the last equality has been derived using the fact that
the dimensionful parameter � rescales between the two

frames as �� ¼ �=f2. In principle � is calculable knowing
the SM potential exactly, requiring an accurate numerical
solution of the bounce equation [19]. However, the quan-
tity � is exponentially sensitive to the SM parameters, and
so we cannot compute it with the present known experi-
mental errors. For this reason we will treat it as a free
parameter, which leads to the conclusion that also �T is a
free parameter. However, for practical purposes we only
need to know that the transition is possible, leading to a
radiation-dominated Universe. Knowing when the transi-
tion happens can change only the number of e-folds which
correspond to our horizon scale today. For any practical
purpose we leave this as a free parameter, as we discuss in
Sec. V, and focus now on the observational consequences
of the slow-roll stage.
Assuming the initial value for� to be of the order of the

quantum fluctuations, given by� 	 HI, it is easy to check
that the total number of e-folds is always huge.

A. Slow-roll parameters and the number of e-folds

We are now in the position to calculate the slow-roll
parameters in our model:


ð�Þ ¼ 1

2

��������1
�V

d �V

dð�=MÞ
��������2	 8

�
�

M

�
2
�
�þ 2�

�
�

M

�
2
�
2
;

(18)

�ð�Þ ¼ 1
�V

d2 �V

dð�=MÞ2 	 �4�� 24�

�
�

M

�
2
: (19)

Inflation ends when one of these parameters becomes of
order one. We call�f the value of the field� at the end of

inflation, for definiteness say when 
 or � become exactly
equal to one. The number of e-folds corresponding to a
smaller value of � is
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Nð�Þ 	 1

M

Z �f

�
d�0 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ð�0Þp 	 1

8�
ln

ð�MÞ22�þ �

ð�MÞ22�þ ð��f
Þ2� :

(20)

For what concerns the small � regime both couplings �
and � could be important, but in order to have the simplest
possible model we now focus on the case � ¼ 0 (we will
analyze in more detail the case � � 0 in Sec. VI); this
model has just one parameter, �, in addition to those of the
SM. The slow-roll parameters become simply:


ð�Þ 	 32�2

�
�

M

�
6
; �ð�Þ 	 �24�

�
�

M

�
2
: (21)

For � & 2
 10�3, 
 becomes of order one at ð�f=MÞ2 	
1=ð32�2Þ1=3, before this happens to �. On the contrary, for
� * 2
 10�3, � becomes of order one at ð�f=MÞ2 	
1=ð24�Þ, before 
. The relation between � and the asso-
ciated number of e-folds becomes

�
�

M

�
2 	 1

16�Nð�Þ þ C�

; (22)

whereC� 	 ð32�2Þ1=3 for � & 2
 10�3, whileC� 	 24�

for � * 2
 10�3. The expression above allows to calcu-
late the slow-roll parameters of Eq. (21) as functions of the
number of e-folds.

In the case in which� is nonvanishing but such that� &
5
 10�4, it turns out (see Sec. VI) that the expressions
above specific to the case � ¼ 0 are marginally affected.
This means that all the results that we are going to derive in
the next section putting formally � ¼ 0 are slightly more
general.

B. Tensor-to-scalar ratio and scalar spectral index

We call �N the number of e-folds corresponding to the
present horizon of 3000=hMpc, which is expected to be in
the range 40 & �N & 60, as discussed in Sec. V.
We are interested in 
 �N , � �N , since the observable quan-

tities [22] are the tensor-to-scalar ratio r � PT=PS ¼ 16
 �N

and the scalar spectral index nS ¼ 1� 6
 �N þ 2� �N. When
Nð�Þ in Eq. (22) is taken to be as large as �N, the term with
C� in the denominator of the Eq. (22) is negligible for both

� regimes provided � � 10�5, in which case we obtain:

nS 	 1� 3
�N
; r 	 1

8� �N3
: (23)

The fact that nS mildly depends on � provides � � 10�5

is shown in the left panel of Fig. 1. Considering for
example �N ¼ 50� 10, we obtain nS ¼ 0:94� 0:01, pre-
cisely inside its 2� experimentally preferred region [23],
as depicted in the right panel. Clearly, future experiments
with a better precision on nS could further check this
model. As shown in Sec. VI, if we consider in Eq. (10) a
term with n > 4, the prediction for nS leads to a slightly
higher value which goes closer to the central measured
value, nS 	 0:96.
The prediction for r depends strongly on � and, as will

be discussed in more detail in Sec. VI, very mildly on � as
far as � & 10�2. To make the connection with experiment
even more direct, in the right panel of Fig. 1 we show r as a
function of nS for various values of � and taking � ¼ 0.
The narrow shaded region is found by requiring �N to be in
the range of interest, �N ¼ 50� 10. One then realizes that
for such range, only values of � larger than 10�5 allow
both r and nS to be in their experimentally preferred
region [23]. From now on we will therefore consider the
parameter � of our inflationary model to be in the range
10�5 � � � 1.

0 5 10 4

60

50

40

6 5 4 3 2 1 0
0.92

0.93

0.94

0.95

0.96

Log10

n S 10 6

10 5

10 4 40 50

60010 5

0 500

0.90 0.92 0.94 0.96 0.98 1.00
0.00

0.05

0.10

0.15

0.20

0.25

0.30

nS

r

FIG. 1 (color online). Left: dependence of nS on � when 0 � � & 5
 10�4. The curves are obtained for the representative values of
�N ¼ 40, 50, 60. Right: dashed curves display r as a function of nS for selected values of � (and taking � ¼ 0). The narrow shaded
(green) region is found by requiring �N 	 50� 10. The larger shaded (red) regions are to the 1 and 2� ranges allowed experimentally
for r and nS [23].
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C. Amplitude of perturbations and Higgs potential at
the false minimum

The amplitude of density perturbations in k space is
specified by the power spectrum:

PsðkÞ ¼ �2
R

�
k

k0

�
nS�1

; (24)

where�2
R is the amplitude at some pivot point k0, predicted

by inflation to be

�2
R ¼ �V

24�2M4


��������k0

: (25)

According to Eq. (13), since we are in the small field
regime for�, the Higgs potential at the false minimum can
be related to r of Eq. (23) by

Vð�0Þ
M4

¼ 3

2
�2�2

Rr: (26)

In the following we consider �2
R ¼ ð2:43� 0:11Þ 
 10�9,

taken as the best-fit value from [23] for a pivot scale k0 ¼
0:002 Mpc�1.

The value of the Higgs potential at the false minimum is
shown in Fig. 2 as a function of � and for 40 � �N � 60.
This plot gives the window of values of the Higgs potential
in the false minimum that are compatible with our

inflationary model. Taking M ¼ ð8�GNÞ�1=2 ¼
1:22
 1019=

ffiffiffiffiffiffiffi
8�

p
, where GN is the Newton constant, we

obtain

9:7
 1014 GeV< Vð�0Þ1=4 < 1:5
 1016 GeV; (27)

which is, by the way, the range where unification of cou-
plings might take place. As we are going to discuss, in the
SM this range of values for the Higgs potential at a false
minimum �0 is natural, even though it requires highly
correlated values for the top and Higgs masses.

III. FINDING AVIABLE MINIMUM

The fact that the Higgs field in the SM can develop a
false minimum is nontrivial by itself and, as we are going
to discuss, it is even more intriguing that this happens at the
right energy scales required by our inflationary model.
The false minimum requires very specific values of the

top and Higgs masses. Using 2-loop RGE and matching
conditions as discussed e.g. in [5], we studied such
values. Of course, the extremely precise values for mt

and mH that we are going to present are not to be taken
sharply, because of a theoretical uncertainty of about
3 GeV on the Higgs mass and about 1 GeV on the top
mass, which is intrinsic in the 2-loop RGE running
procedure (more on this later).
As an example, in Fig. 3 we show the Higgs potential as

a function of the Higgs field �, by taking mt ¼ 171:8 GeV
and values of mH decreasing from 125.2 down to
125.157663 GeV from top to bottom. The plot shows that
it is possible to have a second minimum at high energy
(magnified in the right plot), in addition to the usual SM
minimum at low energy. Having fixed mt, this happens
only for very specific values of mH. Increasing (decreas-
ing) the top mass, the value of the second minimum �0=M
increases (decreases), and larger (smaller) values ofmH are
required. The horizontal shaded band represents the range
selected by the inflationary model discussed in the previous

section, namely 10�3:4 < Vð�0Þ1=4=M < 10�2:2. The spe-
cific values considered in the plot are fine for our infla-
tionary model.
As we are going to discuss, in order to have a sizable

tunneling probability to the left side, the barrier must be
very low, as is the case for the middle curve in the right
panel of Fig. 3, obtained for mH ¼ 125:158. For larger mH

the potential has no false minimum, while for slightly
smaller values ofmH the second minimum becomes deeper
and very soon negative. In this case it is the SM minimum
at low energy that becomes metastable and it could cata-
strophically tunnel to minus infinity. (The points in the
mt �mH plane corresponding to the transition from stabil-
ity to metastability are shown in Fig. 4 as dashed lines; the
inner line is obtained when using the central value of
�3ðmZÞ, while the side ones represents its 1� range.) For
even smaller values of mH the tunneling probability in-
creases so much to be inconsistent with the present age of
the universe; the region of parameters is called instability
region. For a discussion about the stability and metastabil-
ity constraints of the Higgs potential see Ref. [5].
The tunneling rate [19] in our model is given by

� ’ Ae�B, where B is the Euclidean classical action of
the bounce solution which interpolates between �0 and the
value on the left side of the barrier, �T , and A is a dimen-
sion four quantity of the order of the scale of the problem
(GUT scale). We have numerically computed B for several
potentials finding that only if the potential is extremely
shallow, such as the middle curve in the right panel of
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FIG. 2 (color online). Value of the Higgs potential at the false
minimum as a function of � and for 40 � �N � 60. The shaded
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10�3:4 � Vð�0Þ1=4=M � 10�2:2.

ISABELLA MASINA AND ALESSIO NOTARI PHYSICAL REVIEW D 85, 123506 (2012)

123506-6



Fig. 3, we can obtain values of B & Oð102Þ. If the potential
well is instead deeper as the bottom curve, the exponent B
becomes rapidly extremely large and � becomes essen-
tially zero. In this case the transition would never happen,
or it would happen at a too low energy, leading to a too
small reheating temperature.

As mentioned earlier note that the transition could hap-
pen also through a Hawking-Moss instanton (see for in-
stance [24]), which is due the presence of a gravitational
background. In the case in which this is the dominant
process the whole scenario would be different because �
would also be time dependent, since the Planck mass and
H are varying with time. Such a transition is basically due
to quantum jumps of the fields if its mass (the second
derivative of the potential at the false minimum) is smaller
than H (which is about 1011–1012 GeV), and so it could be
important for extremely shallow barriers and very high H
(i.e. very large values of Vð�0Þ). It may happen therefore
that the scenario is viable only for low values of Vð�0Þ,
which could translate on a further upper bound on the Higgs
mass. In order to compare which instanton is the dominant
one it is important for this analysis to have good control on
the shape of the potential around the false minimum with a
huge precision, of about 16 digits onmH. We postpone this
analysis for future work. Note also that in the case in which
such transition would not lead to sufficient inflation it is
also possible to invoke an additional effect which would
modify the Higgs field tunneling process, by considering a
nonminimal coupling between the Higgs and gravity of the
form �2R. Since now R is varying with time, this would
introduce a time dependence of the Higgs potential which
could easily erase the potential barrier. We have in fact
checked that a coupling  of Oð1Þ should be enough to
erase the barrier, therefore opening another interesting
possibility to implement inflation. However we leave also
such a possibility for future work.

IV. THE HIGGS MASS RANGE

As discussed, only with a restricted set of values of mH

and mt it is possible for the false vacuum to be inside the
band required by inflation. These very particular values for
mH and mt are displayed as segments in Fig. 4. The upper

(lower) values of mt �mH in the band correspond to the

upper (lower) value of Vð�0Þ1=4 allowed in our inflationary
model, namely 1:5
 1016 GeV (9:7
 1014 GeV). As can
be seen in Fig. 3, this in turn corresponds to a scalar-to-
tensor ratio r close to 0.1 (10�6). The inner segment is
obtained using the central value of �3ðmZÞ, while the side
ones mark its 1� range.
Our inflationary model works for a narrow band in the

mt �mH plane, which only partially overlaps with the top
mass experimental range mt ¼ 173:2� 0:9 GeV, pro-
vided by the recent (July 2011) global electroweak preci-
sion fits of the SM [15]. We are then left with the upper part
of the band in the mt �mH plane, the one for which

Vð�0Þ1=4 � 1016 GeV and r� 10�2. Such region is em-
phasized with a spot in Fig. 4 to remind that the 2-loop
RGE running has a theoretical uncertainty of 1 GeV in mt

and of 3 GeV in mH.
Consequently, the inflationary model based on the Higgs

false minimum considered here gives a narrow prediction
for the Higgs mass:

mH ¼ ð126:0� 3:5Þ GeV: (28)

This range is within the summer 2011 experimental win-
dow set by direct searches, namely, the 115 GeV lower
bound set by LEP [12] and the 140 GeVupper bound set by
LHC [13], which restricted the previous 155 GeV bound
set by Tevatron [14]. Interestingly, this range is perfectly
compatible with—and even more precise than—the recent
global electroweak precision SM fit [15], which gives
mH ¼ 125þ8

�10 GeV at 1�.
Hopefully the prediction of our inflationary model could

be tested soon by LHC, so the model can be experimentally
supported or ruled out. Actually, immediately after the first
version of this preprint appeared on the arXiv, the ATLAS
and CMS collaborations summarized the status of the
Higgs boson searches in a public seminar [16]. The main
conclusion is that, at 95% C.L., the SM Higgs boson mass
range outside 116–130 GeV is excluded by the ATLAS
experiment, and the one outside 115–127 GeV by CMS. It
is extremely interesting that both experiments found some
excess of events in the region between 124–127 GeV,
mainly for the diphoton H ! �� and four-lepton H ! 4l
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channels. Although the significance of the excess is still too
low, these preliminary results from LHC are very exciting
for the idea of false SM vacuum inflation.

If these preliminary experimental results were to be
confirmed, it would be important to reduce the theoretical
error which affects the determination of the values of mt

and mH allowing for the presence of a shallow SM false
minimum. The dominant source of the uncertainty in the
RGE at present arises from the matching of the quartic
Higgs coupling, known only at 1-loop. Such error is usu-
ally estimated by varying the matching scale in some
(somewhat arbitrary) range. Choosing, for example, such
range from about 125 GeV (close to mH) and about
175 GeV (close to mt) one finds that the value of mH

leading to a shallow false minimum at the GUT scale
changes by 1 GeV. In the literature one can find several
different choices [5,6] and perhaps a conservative error of
3 GeV can be assigned on mH, and of 1 GeV on mt. This
might overestimate the theoretical error, but in order to
better understand it, one would need to know the 2-loop
correction to the matching of the quartic Higgs coupling.
Reasonably, one could expect that in this way the theoreti-
cal error on mH could be reduced down to 1 GeV, which is
comparable to the experimental precision on mH foreseen
at LHC.

V. POST-TUNNELING EVOLUTION

When � ’ H4 many bubbles of the new phase quickly
form, collide and rapidly give rise to a nearly homogenous

state with the Higgs field on the other side of the barrier at a
value �F smaller than �0, and some of its potential energy
transformed into radiation. In this model, the fraction of
energy converted into radiation is however very small,
since the potential barrier has to be very shallow as can
be seen in Fig. 3. So, the two values �0 and �F between
which the bounce solution interpolates are very close and
the difference in potential energy Vð�0Þ � Vð�FÞ before
and after the transition is small compared to Vð�0Þ.
It is well known that a part of the energy density goes

also into gravitational radiation through bubble collisions
[25], but for the same reason its energy density is going to
be negligible compared to Vð�0Þ, unlike the case studied in
[7] where it was assumed that the entire energy density
would be converted into radiation and gravity waves
through bubble collisions.
After this rapid thermalization, the Higgs field is free to

roll down its potential, quickly reach zero and undergo
rapid oscillations around zero. This happens at a rate faster
than the expansion, since the quartic potential is steep and
the term V0ð�Þ in the Klein-Gordon equation wins against
the Hubble friction. During these oscillations the field is
expected to rapidly convert all of its energy into particles,
via perturbative and nonperturbative decays (similarly to
what is described in [26]). Since the Higgs couplings are
large, it is expected that this process is very efficient,
leading to reheating of the Universe, although probably
through a very complicated sequence of processes. Wemay
however assume that roughly all the energy density
Vð�FÞ ’ Vð�0Þ is converted into a bath of SM
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particles: equating the energy density of the produced
radiation to the initial potential energy we get an estimate
for the reheating temperature g�T4

RH ’ Vð�0Þ, where g� is
the number of degrees of freedom of the SM, g� ¼ 106:75.
After this, the Universe cools down as usual and finally the
Higgs field settles down to its present electroweak vacuum
expectation value v� 246 GeV.

Apart from the evolution of the Higgs field, it is also
necessary to follow the evolution of the� field. In fact, the
� field has to satisfy the fifth force constraints at late times,
due to the fact that an additional light scalar can mediate a
long-range force between matter bodies and there are
strong constraints about this, especially from the Solar
System [27]. Those constraints can be satisfied if the
following quantity [21]:

� � d lnA

d�
; A � f�1=2 (29)

is small today, �2 & 2
 10�4 [27], or if the field is
massive enough m� * 1 eV, so that it does not mediate
a long-range force [27]. Moreover, it is necessary that at
least after big bang nucleosynthesis the field � do not
evolve significantly, because the value of the Planck
mass (set by fð�Þ) is constrained to be close to its present
value [27].

It is difficult to predict the evolution of the field� during
the oscillations of the Higgs, because this would require to
compute the equation of state w ¼ p=� where p is the
pressure and � is the energy density of the total amount of
matter contained in the Universe. In the absence of dis-
sipation and in the approximation in which the Higgs field
has just a quartic potential this would be possible, since it is
well known that averaging oscillations on a quartic poten-
tial leads to an equation of state of w ¼ 1=3. Moreover
for the radiation produced the equation of state is also
w ¼ 1=3. However the fact that the energy gets dissipated
decreases the kinetic energy of the field �, leading proba-
bly to a w slightly smaller than 1=3. Even when the
oscillations are completed the equation of state of radiation
is not exactly w ¼ 1=3 but it is slightly smaller because of
quantum corrections which break the conformal invari-
ance, due again to the running of couplings (mostly QCD
corrections [28]). The valuew ¼ 1=3 is critical because the
field is driven to large values if w< 1=3 or to smaller
values if w> 1=3, and so we would conclude that the field
� after tunneling stays at a large value, close to the value
that it takes at the tunneling epoch, �F, or slightly larger.

On the other hand, in order for our model to be predic-
tive we need to identify M with the present value of the
Planck mass MPl, otherwise we would not be able to tell

what is the value of the scale V1=4ð�Þ needed from Fig. 3,
which leads to our prediction on the Higgs mass. This can
be achieved if the post-tunneling evolution of � drives it
back to zero, and in this case it automatically follows that
the Solar System constraints are satisfied, since � is very

close to zero. As we have just discussed this could happen
if w> 1=3 or, alternatively, upon introduction of a poten-
tial Uð�Þ in (3). Since we do not want to alter the SM
significantly, it seems that the latter option is to be taken.
In this case, we can analyze the evolution again in the

Einstein frame, remembering that a potential term Uð�Þ
becomes now a potential �Uð�Þ ¼ Uð�ð�ÞÞ=fð�ð�ÞÞ2.
Since we want � to go to zero, we have to require that
Uð�Þ is a function which grows more rapidly than f2ð�Þ
for large �. On the other hand we also want U to be
negligible before tunneling, so the choice of U requires
some care, but it can be shown that such functions can be
constructed.
An additional relevant issue is that after tunneling the

field � may lead to some additional inflation, because the
potential U effectively can introduce a slow-roll phase,
since the field is at values � � M, similarly to what
happens in chaotic inflation models [29]. This would shift
the needed number of e-folds �N by some model-dependent
number � �N, which has to be not too large in order not to
erase the predictions of our model discussed in the pre-
vious section.
Although these are relevant and interesting issues, they

are however very model dependent, and it is sufficient to
say for our purposes that a mechanism to drive back the
field � to zero has to be implemented, most likely using a
potentialUð�Þ, and this has to be done without introducing
too many e-folds of an additional inflationary phase in
order for our predictions to be valid. Under the assumption
that � �N is zero or negligible we can compute the value of
�N which corresponds to our present horizon as follows.
First of all, let us compute when a particular comoving

scale Lwent outside the horizon during inflation. We count
the number of e-folds starting from the end of exponential
inflation (whose scale factor we call aE), going backwards
in time. In general a scale L leaves the horizon at some
e-folding number �N if:

L

�
T0

TRH

��
�aE
�aRH

�
e� �N ¼ �H�1

I : (30)

The reheating temperature is given by T4
RH ’ Vð�0Þ=g� and

the redshift during the power-law phase is given by

�aE= �aRH ¼ ð�tE=�tRHÞ3=4 ’ ð ��1=4= �HIÞ3=4. Here we have as-
sumed that the transition between the exponential and the
power-law phase is very quick and this is true for most
functions, fð�Þ. Now, the largest scale observed today is
the horizon scale, which leads to

�N & 60; (31)

where we have used Vð�0Þ1=4 	 10�2:4M, L ¼
3000 Mpc=h, h 	 0:7 and we have taken the extreme value
��1=4 	 �HI.
Also, if the field is driven to zero, it would start oscillat-

ing around the zero and it could overclose the Universe
[30], unless it can decay. Since we do not want in principle
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to introduce new couplings, this can be achieved either by
decay into � quanta, through self-interactions, or via
decay into gravitons. The latter can be estimated to have
a decay rate of the order of m3

�=M
2
Pl, and the decay has to

happen before big bang nucleosynthesis, which has a tem-
perature of OðMeVÞ. This leads to the requirement
that the decay rate is larger than the expansion rate:
m3

�=M
2
Pl * MeV2=MPl which leads to m� * 104 GeV.

A. Further issues

Finally, let us comment on the possibility that other
cosmological puzzles have to be solved in this minimalistic
model with SM and tensor-scalar gravity. It is well known,
for example, that other ingredients need to be introduced
beyond the SM in order to satisfy cosmological observa-
tions, such as baryogenesis and dark matter.

For what concerns baryogenesis it is interesting to note
that the tunneling event provides an out-of-equilibrium
event in the early Universe which could be used for gen-
erating the baryon asymmetry. This would require only the
addition of some source ofCP violation. While in the usual
SM electroweak phase transition the CP violation is con-
sidered to be too small it would need to be investigated if
this remains true in such a scenario. In any case, it is always
possible to add right-handed neutrinos and achieve a new
source of CP violation in the lepton sector of the SM
without changing significantly the running of � (which
depends mostly on the gauge and top Yukawa couplings)
and therefore without affecting at all our scenario. So
baryogenesis could proceed in a new nontrivial way during
reheating and oscillations of the Higgs field, or it could be
also obtained via the usual leptogenesis scenario [31],
where right-handed neutrinos are thermally produced and
decay out of equilibrium, since the reheating temperature
in this model can be large enough.

For the dark matter problem many solutions could be
possibly incorporated in our model. For instance, there
could simply be an additional weakly-interacting stable

particle, which again would not change significantly the
running of the SM. Alternatively, it could be worth con-
sidering the hypothesis that quanta of the field � itself are
left as a remnant of the post-tunneling evolution of �.
Finally, in the same spirit of the proposal of the present
paper, it is possible also to add another particle completely
decoupled from the SM, which could perhaps be produced
gravitationally or via decay of the � field during or after
inflation.

VI. EXPONENTIAL INFLATION WITH
QUADRATIC AND HIGHER ORDER TERMS

A. Effect of �

We study now the inclusion of the quadratic coupling �
in Eq. (10) and in order to do this we focus on the case
n ¼ 4, so that

fð�Þ ’ 1þ �

�
�

M

�
2 þ �4

�
�

M

�
4
: (32)

We study the evolution equations both analytically and
numerically.
For the analytical calculation, we work directly in the

Einstein frame, computing�ð�Þ by solving the differential
equation d� ¼ d�

ffiffiffiffiffiffiffiffiffiffiffiffi
Kð�Þp

via a power series expansion in
the parameter �. We thus obtain an expression for the
potential �Vð�Þ which generalizes the one in Eq. (13)

�Vð�Þ ¼ Vð�0Þ
�
1� 2�

�
�

M

�
2

þ
�
13

3
�2 þ 16�3 � 2�4

��
�

M

�
4 þ . . .

�
: (33)

The number of e-folds is calculated using the first approxi-
mation of Eq. (20). By selecting a value for the number of
e-folds �N, one obtains the associated predictions for nS and
r, as displayed in Fig. 5. As already anticipated, as far as
� & 5
 10�4, the prediction for nS does not change sig-
nificantly with respect to the case in which� ¼ 0. This can
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FIG. 5 (color online). Analytical calculation of nS and r as a function of � for n ¼ 4. Values of �4 and �N are indicated in the plots.
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be seen from the left plot of Fig. 5. For higher values of �
there is a slight increase in nS, which then falls down in the
experimentally excluded region at � 	 10�2. The depen-
dence of r on � is less pronounced, see the right plot of
Fig. 5. When � * 10�2, r falls down rapidly.

Also for the numerical analysis we work directly in the
Einstein frame, computing�ð�Þ by solving the differential
equation d� ¼ d�

ffiffiffiffiffiffiffiffiffiffiffiffi
Kð�Þp

, which gives us the potential
�Vð�Þ of Eq. (12). We solve then the equations of motion
for � and the Friedmann equation in order to find the
evolution of the scale factor �aðtÞ. The number of e-folds
is computed as �Nð�tÞ ¼ R�t

�tF
�HðtÞdt, where �tF corresponds to

the end of inflation, and the slow-roll parameters 
 �N and
� �N have been computed as usual by computing the first and
second derivatives of �V. The result for nS is given in
Fig. 6 for �N ¼ 50 and �N ¼ 60. Here tF is here defined as
the time in which €a becomes negative. Note that close to tF
the slow-roll parameters are already Oð1Þ. This leads to a
slight difference compared to the approximate expression
of Eq. (20) where the end of inflation has been defined

there as the moment when either 
 or � are equal to 1, and
which is valid only when 
 � 1: all this leads to a shift in
�N of about 5. Note also that if � is large enough the
tunneling event could happen before the transition to the
decelerated phase, because H is already decreasing before

that the asymptotic behavior �a / �t3=4 is reached. In this
case there can be another shift in �N, which makes the
spectral index slightly higher and r slightly smaller: for
instance for the case � ¼ 10�5 and � ¼ 10�2 the numeri-
cal calculation can make nS increase by 0.003 and r
decrease by 0.03 in the numerical result. Anyway remind
that �N is subject to other uncertainties due to post-
inflationary evolution, as discussed in the previous section.

B. Higher order terms

We derive in this section the predictions for the case in
which

fð�Þ ’ �n

�
�

M

�
n
; (34)
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where n ¼ 4; 6; 8; . . . , further elaborating some results al-
ready derived in [7]. Again, for � � M, the canonical
scalar field variable � and � almost coincide (K 	 1)
and to lowest order in �=M we get:

�Vð�Þ ¼ Vð�0Þ
�
1� 2�n

�
�

M

�
n
�
: (35)

In the slow-roll approximation,


ð�Þ 	 2�2
nn

2

�
�

M

�
2ðn�1Þ

;

�ð�Þ 	 �2�nnðn� 1Þ
�
�

M

�
n�2

:

(36)

We call �f the field � at the end of inflation, for

definiteness say when 
 or � become equal to one. For

�n & 1=ð2n=2nðn� 1Þn�1Þ, one has 1 ¼ 
ð�fÞ * �ð�fÞ,
otherwise 
ð�fÞ & �ð�fÞ ¼ 1. The number of e-foldings

as a function of � is given by

Nð�Þ 	 1

M

Z �f

�
d�0 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ð�0Þp
	 1

2nðn� 2Þ�n

�
1

ð�MÞn�2
� 1

ð�f

M Þn�2

�
; (37)

which can be rewritten as

�
�f

M

�
n�2 	 1

2nðn� 2Þ�nNð�Þ þ C�n

; (38)

where C�n
	 ð ffiffiffi

2
p

n�nÞððn�2Þ=ðn�1ÞÞ for �n & 1=ð2n=2nðn�
1Þn�1Þ, and C�n

	 2nðn� 1Þ�n otherwise.

This expression can be substituted again in Eqs. (36) in
order to obtain observable quantities as the tensor-to-scalar
ratio r ¼ 16
 �N and the scalar spectral index nS ¼
1� 6
 �N þ 2� �N , for a fixed number of e-folds �N ¼ Nð�Þ
and as a function of �n, as shown in Fig. 7 for n ¼ 4, 6, 8.
One can see that, when �n is large enough so that C�n

is

negligible in the denominator of Eq. (38), nS becomes
nearly constant and it is approximately given by

nS 	 1� n� 1

n� 2

2
�N
: (39)

Hence, nS increases with n and eventually reaches the
maximum value nS 	 1� 2= �N, which is close to 0.967
for �N ¼ 60. The prediction for nS is well inside its present
observational range for reasonable values of �N. On the
other hand, the tensor-to-scalar ratio is shown in the right
plot of Fig. 7 for n ¼ 4, 6, 8 and can be approximated by

r 	 32n2�2
n

1

ð2nðn� 2Þ�n
�NÞðð2ðn�1ÞÞ=ðn�2ÞÞ : (40)

Observationally r & 0:1, which implies the lower bounds:
�4 * 10�5, �6 * 10�9, �8 * 10�13.
In Fig. 8 we show the (dashed) curves of constant �n in

the plane r� nS, for n ¼ 4, 6, 8 from top to bottom. The
plot also show the (solid) curves of constant �N, considering
as reference values �N ¼ 40, 50, 60. Because of the pro-

portionality between r and V1=4ð�0Þ, it also possible to
display for each value of r the values of the Higgs and top
masses giving rise to a shallow false minimum; this is
represented graphically via the vertical arrow. The lower
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FIG. 8 (color online). Connection between r, nS, �n, mH, mt

and Vð�0Þ1=4 for n ¼ 4, 6, 8 from top to bottom. The solid lines
are such that �N ¼ 40, 50, 60. The central shaded (red) regions
are to the 1 and 2� ranges allowed experimentally for r and nS
[23]. The horizontal bottom region is excluded by the 2�
lower bound on mt [15]. It is understood that there is an
uncertainty of about 3 GeV in the ticks for mH and of about
1 GeV in those for mt.
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2� bound on mt is about 171.5 GeV [15] but, as already
explained, in the determination of the shallow minimum
there is theoretical uncertainty of about 3 GeV inmH and of
about 1 GeV in mt; we have thus displayed the exclusion
region for mt by means of the shaded region below
170.5 GeV. The plots show that the three models with n ¼
4, 6, 8 are well compatible with the present observed values
of r and nS [23] at 1 and 2�, displayed via the shaded red
regions. They also show that, due to the lower bound onmt,
in these models r should be found above roughly 10�4.

VII. CONCLUSIONS

We proposed to exploit the possible presence of a false
minimum in the SM Higgs potential at very high energies,
1015–1017 GeV, to provide a large amount of potential
energy which can drive primordial inflation. In the frame-
work of scalar-tensor theories of gravity, a graceful exit
from inflation can be achieved through tunneling of the
Higgs field and subsequent relaxation down to its present
vacuum expectation value v� 246 GeV.

Requiring the amplitude and spectral index of cosmo-
logical density perturbations from inflation and the top
quark mass to be compatible with observations, we showed
that this possibility is realized only within a small region of
values for the Higgs mass, see Fig. 4, leading to the
prediction

mH ¼ ð126:0� 3:5Þ GeV;
where the error is mostly due to the present theoretical
uncertainty of the 2-loop RGE. This prediction can be
tested soon by LHC, in particular, for the decay mode
H ! ��. The inflationary model proposed here could
thus meet experimental support or be ruled out. It is excit-
ing that preliminary results from LHC [16] show an excess
of events in the range 124–127 GeV.

If these results will be confirmed, further checks of the
model will be offered by better determinations of the scalar
spectral index nS, predicted in this model to be within
0.93–0.96. Using the constraints coming from the top quark
mass, the scalar-to-tensor ratio r in this model is con-
strained to be within 10�4 & r & 10�1. Actually, it can
be shown [17] that any model in which the false vacuum is
very shallow, the relation between the potential at the false
minimum and the amplitude of perturbations, Eq. (25),
implies r * 10�4. With forthcoming more precise cosmo-
logical measurements, such as the Planck satellite mission,
one can test the region of large values of r, while improving
the top quark mass measurement can further constrain r
from below.
Moreover, we showed that our scenario, and, in particu-

lar, the prediction for nS, can be obtained in a wide class of
scalar-tensor theories. In particular, higher-dimensional
operators can be safely present.
As a completely general remark, we point out that dis-

covering a Higgs with mass close to 126 GeV is a very
suggestive hint in favor of the existence of a false minimum
in the SM Higgs potential at energies close to 1016 GeV,
which could be the starting point for inflation in our
Universe. Indeed, it would lead to a period of exponential
expansion producing density perturbations with the right
amplitude. We have shown here that in a scalar-tensor
theory of gravity this inflationary stage can end, allowing
the Higgs field to tunnel out of the false minimum and
subsequently to relax down to its present electroweak scale
value.
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