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1 Introduction

Lately, the study of cooperative games with coalitional externalities has attracted the

attention of some important researchers (see Maskin, 2016). The basic ingredients of

such games are coalitions of players embedded in a partition of the set of all players.

Then, a game with coalitional externalities, or game in partition function form, is a real

valued function on the set of all such embedded coalitions with the convention that the

value attached to the empty set is zero. To date, most of the efforts have been devoted

to the extensions of solution concepts like the core or the Shapley value from classic

games, or games in characteristic function form, to games with externalities. In this

paper we concentrate on the structure of the set of embedded coalitions endowed with a

partial order. This allows us to study properties of the game itself like superadditivity

and convexity. However, even if the motivation for our study and its applications are in

Economics, our approach uses tools and results that belong to Discrete Mathematics.

When dealing with embedded coalitions one has to consider two types of objects,

namely subsets and partitions. Even if both objects have well known ordering relations

that give rise to the Boolean algebra and the lattice of partitions, respectively, it is not

clear how embedded coalitions should be ordered. Indeed, Grabisch (2010) and Alonso-

Meijide et al. (2017) have already studied two partial orders that give rise to two distinct

lattice structures. In this paper, we consider another partial order that was first used

by Bolger (1990) and, more recently, by Hu and Yang (2010) and Skibski et al. (2018),

but that has not been formally defined and analyzed yet. The three partial orders agree

in considering that if one embedded coalition precedes another, then the coalition of the

first should be contained in the coalition of the second. The difference lies in how they

deal with the partition side. According to Grabisch (2010), the first partition should

be finer than the second while Alonso-Meijide et al. (2017) consider that it should be

coarser.1 In this paper, we consider that the second partition equals the first one after

removing the agents in the second coalition. Then, this partial order can be considered

a compromise between the other two. However, it turns out that these posets are quite

1The precise definitions will soon follow.
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different because the new one does not have a lattice structure as the other two do. We

characterize the maximal lower bounds and minimal upper bounds of an arbitrary finite

set, whenever they exist. We provide examples to see that the meet and join operations

are not associative, neither distributive. We show that it is a graded poset and count

the number of elements at a given level. We also identify the join and meet-irreducible

elements. Finally, we provide an isomorphism between the chains in our structure and

the chains in the Boolean lattice. Based on this isomorphism, we count the total number

of chains and describe the Möbius function.

The study of this poset allows us to derive some applications to the theory of co-

operative games with externalities. To start with, we obtain an explicit expression of

the coefficients of any game in the basis of unanimity games with respect to this partial

order. Then, using the partial order it is very natural to define what superadditivity

and convexity mean for games in partition function form. The literature on partition

function form games has paid attention to these properties (see for instance, Maskin,

2003; Hafalir, 2007; Abe, 2016).

To the best of our knowledge, we are the first to consider these interesting properties

of a game in partition function form based on this partial order. We see that our notion

of convexity implies the one proposed by Hafalir (2007), but the reverse does not hold.

Finally, we present an equivalent formulation of convexity, parallel to a well-known

result for games in characteristic function form. Indeed, a game is convex if and only

if the contributions of players to embedded coalitions of increasing size, with respect to

our partial order, are nondecreasing.

The rest of the paper is organized as follows. In Section 2, we describe previous

notions and results. Section 3 is devoted to the study of the new poset. Finally, Section

4 presents our results related to game theory.
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2 Preliminaries

Let (A,≤) be a partially ordered set (in short, a poset). Let A ⊆ A and x ∈ A. We

say that x is a lower bound of A if and only if x ≤ y, for every y ∈ A.2 We say that

x is an upper bound of A if and only if y ≤ x, for every y ∈ A. We say that x is a

minimal (maximal) element of A if there is no y ∈ A \ {x} such that y ≤ x (x ≤ y).

We say that x is the supremum of A, sup(A), if x ≤ y for every upper bound y of A.

We say that x is the infimum of A, inf(A), if y ≤ x for every lower bound y of A. If

there is an element 1̂ ∈ A such that y ≤ 1̂ for every y ∈ A, we say that 1̂ is the top

element of A. Similarly, the bottom element 0̂ is an element of A such that 0̂ ≤ y for

every y ∈ A. We say that x is covered by y ∈ A\{x} or y covers x if x ≤ y and there is

no z ∈ A \ {x, y} such that x ≤ z ≤ y. An atom is any x ∈ A that covers 0̂. A coatom

is any x ∈ A that is covered by 1̂. An element x ∈ A \ {1̂} is join-irreducible if for each

A ⊂ A such that sup(A) exists and x = sup(A) implies x ∈ A. An element x ∈ A \ {0̂}

is meet-irreducible if for each A ⊂ A such that inf(A) exists and x = inf(A) implies

x ∈ A. A (irreducible) chain C is a totally ordered subset of A, C = {x0, x1, . . . , xk}

such that xl+1 covers xl, for every l = 0, . . . , k − 1.

Let (A,≤) be a poset.

• If x, y ∈ A and x ≤ y, we denote by [x, y]A the set of elements z ∈ A such that

x ≤ z ≤ y. If no confusion arises, we may simply write [x, y].

• (A,≤) satisfies the Jordan-Dedekind condition if all chains between two elements

have the same length. This common length is called the rank.

Let (A1,≤1), (A2,≤2) be two posets. An isomorphism φ is a bijective map φ : A1 −→

A2 such that φ(x) ≤2 φ(y) if and only if x ≤1 y, for every x, y ∈ A1.

A finite lattice is a finite poset (A,≤) such that sup(A) ∈ A and inf(A) ∈ A, for

every A ⊆ A. Apart from the Boolean lattice of a finite set, denoted by (B(N),⊆),

we need to recall some notions related to the partition lattice. Let N be a finite set,

|N | = n, and Π(N) be the family of partitions of the set N . Let S ⊆ N and P ∈ Π(N).

2We denote: x = y if x ≤ y and y ≤ x; x < y if x ≤ y, but x 6= y.
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We denote by P−S the partition of N \ S given by P−S = {T \ S : T ∈ P} and by

P \R = P \{R}, for every R ∈ P . Let P ∈ Π(N \S). We denote by P ∪bSc the partition

given by {{T : T ∈ P}, {{i} : i ∈ S}}. Let 1 ≤ k ≤ n. The total number of partitions

of N with k elements is the Stirling number of second kind, Sn,k. The Bell number of n

is the total number of partitions of a finite set N with |N | = n, i.e., Bn =
∑n

k=1 Sn,k.

A well-known partial order on Π(N) is the following. Let P,Q ∈ Π(N).

P � Q if and only if for every S ∈ P there is some T ∈ Q such that S ⊆ T.

We denote this poset by (Π(N),�). It is well-known that (Π(N),�) is a lattice. If

P,Q ∈ Π(N), we denote by P
∧
Q the infimum of P and Q and by P

∨
Q the supremum

of P and Q, according to the partial order �.

An embedded coalition of N is a pair (S;P ) with ∅ 6= S ⊆ N and P a partition of

N \ S, i.e., P ∈ Π(N \ S). If we have the embedded coalition (T ;Q) with T = N then,

Q = {∅} and we take |Q| = 0. For simplicity we denote by (S;N \ S) the embedded

coalition (S; {N \ S}), for every S ⊆ N . The set of embedded coalitions is denoted by

ECN . Several partial orders are considered on the family of embedded coalitions of a

finite set N , ECN . One of them has been studied in Grabisch (2010). He defined a

partial order as follows: for every (S;P ), (T ;Q) ∈ ECN ,

(S;P ) v0 (T ;Q) if and only if S ⊆ T and P ∪ {S} � Q ∪ {T},

Alonso-Meijide et al. (2017) study a different partial order on ECN defined as

(S;P ) v1 (T ;Q) if and only if S ⊆ T and Q � P−T (1)

for every (S;P ), (T ;Q) ∈ ECN . Both partial orders consider a fictitious bottom element

0̂. Instead of that, here we consider empty embedded coalitions given by the family

F0(N) = {(∅;P ) : P ∈ Π(N)}. We denote by FN = ECN ∪F0(N). In the next section

we define and study a partial order on FN .
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3 A new poset on FN

In this section we formulate and study the partial order suggested by Bolger (1990),

Hu and Yang (2010), and Skibski et al. (2018), among others. First, we formalize the

partial order defined on FN .

Definition 3.1. Let N be a finite set. We define the inclusion in FN as follows:

(S;P ) v (T ;Q) if and only if S ⊆ T and Q = P−T (2)

for every (S;P ), (T ;Q) ∈ FN .3

Equation (2) implies a closed relationship between P and Q∪bT \Sc. Since (S;P ) v

(T ;Q), then S ⊆ T and P−T = Q. Thus, Q∪bT \Sc � P and P = P
∨

(Q∪bT \Sc). The

reverse implication is not true as we can see by taking (S;P ) = ({1, 2}; {3, 4, 5, 6}) and

(T ;Q) = ({1, 2, 3}; {{4}, {5, 6}}). Notice that S ⊆ T , P = P
∨

(Q ∪ {3}) but P−T 6= Q.

Then, (S;P ) 6v (T ;Q).

This binary relation defines a partial order on FN . The next example illustrates the

differences among the three partial orders defined above, v0, v1, and v.

Example 3.1. Let us take N = {1, 2, 3} and its set of embedded coalitions ECN . Fig-

ure 1 depicts the Hasse diagram corresponding to (FN ,v). Notice that ({1}; {2, 3})

and ({1}; b2, 3c) are not comparable according to v. Nevertheless, ({1}; {2, 3}) v1

({1}; b2, 3c) and ({1}; b2, 3c) v0 ({1}; {2, 3}). The figure also illustrates the fact that

there is no bottom element in (FN ,v).

Let N be a finite set. The set of lower bounds of a pair of elements in (FN ,v) can

be empty as the next example shows.

Example 3.2. Let N = {1, 2, 3, 4} and (S;P ), (T ;Q) ∈ FN defined as (S;P ) =

({1}; {{2}, {3, 4}}), (T ;Q) = ({1, 3}; {2, 4}). There is no (L;M) ∈ FN such that

(L;M) v (S;P ) and (L;M) v (T ;Q) as we see next. We proceed by contradiction. Let

3The strict inclusion in F is given by (S;P ) @ (T ;Q) if and only if S ⊂ T and Q = P−T , for every

(S;P ), (T ;Q) ∈ FN .
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(N ; ∅)

({1, 2}; {3}) ({1, 3}; {2}) ({2, 3}; {1})

({1}; b2, 3c) ({2}; b1, 3c) ({3}; b1, 2c)({1}; {2, 3}) ({2}; {1, 3}) ({3}; {1, 2})

(∅; b1, 2, 3c)(∅; {{1}, {2, 3}})(∅; {{2}, {1, 3}})(∅; {{3}, {1, 2}})(∅; {1, 2, 3})

Figure 1: The partial order v on FN with |N | = 3.

us assume that there is (L;M) ∈ FN such that (L;M) v (S;P ) and (L;M) v (T ;Q).

Then, L ⊆ {1} and we distinguish two cases.

1. L = {1}. Since (L;M) v (S;P ), we have P = M−S = M , because L = S = {1}.

Then, (L;M) = (S;P ), but (S;P ) and (T ;Q) are not comparable.

2. L = ∅. We have P−L = P = M−S because (L;M) v (S;P ). Additionally,

(L;M) v (T ;Q) implies M−T = Q = Q−L. On one hand, we obtain that 2 and

4 belong to different elements in M due to P = M−S and, on the other hand, 2

and 4 must belong to the same element in M because M−T = Q. Then, we get a

contradiction.

Moreover, if the set of maximal lower bounds is non-empty, it may have more than

one element, as we see next.

Example 3.3. Let N = {1, 2, 3} and (S;P ), (T ;Q) ∈ FN given by (S;P ) = ({1}; {2, 3}), (T ;Q) =

({2, 3}; {1}). Then, from Figure 1 it is easy to see that

(∅; {1, 2, 3}) v (S;P ), (∅; {1, 2, 3}) v (T ;Q), and

(∅; {{1}, {2, 3}}) v (S;P ), (∅; {{1}, {2, 3}}) v (T ;Q).
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Additionally, for the embedded coalition (∅; {1, 2, 3}), there is no (L;M) ∈ F such

that (∅; {1, 2, 3}) @ (L;M) @ (S;P ) and (∅; {1, 2, 3}) @ (L;M) @ (T ;Q). Analo-

gously, for the embedded coalition (∅; {{1}, {2, 3}}), there is no (L;M) ∈ F such that

(∅; {{1}, {2, 3}}) @ (L;M) @ (S;P ) and (∅; {{1}, {2, 3}}) @ (L;M) @ (T ;Q).

As a consequence of all this, the set of maximal lower bounds of (S;P ) and (T ;Q)

is

{(∅; {1, 2, 3}), (∅; {{1}, {2, 3}})}.

We present an auxiliary result for partitions.

Lemma 3.1. Let N be a finite set, S ⊂ N , P,Q ∈ Π(N) such that bSc ∈ Q. Then,

(P
∨
Q)−S = P−S

∨
Q−S.

Proof. Let us take L ∈ P
∨
Q. If L ∩ S = ∅, then L ∈ P−S

∨
Q−S . Let us assume

that L∩S 6= ∅. By the choice of L, there are L1, . . . , Lk ∈ P such that L = ∪kj=1Lj with

Lj ∩ S 6= ∅ for some j ∈ {1, . . . , k}. Besides, there are L′1, . . . L
′
r ∈ Q with L′j ∩ S = ∅,

for every j = 1, . . . , r, such that L = (∪rj=1L
′
j) ∪ (bL ∩ Sc). Then,

L \ S = ∪rj=1L
′
j = ∪kj=1(Lj \ S)

and L \ S ∈ P−S
∨
Q−S .

Now take L ∈ P−S
∨
Q−S . There are L1, . . . , Lk ∈ P−S and L′1, . . . L

′
r ∈ Q−S such

that L = ∪kj=1Lj = ∪rj=1L
′
j . Take R1, . . . , Rk ∈ P such that Lj ⊆ Rj , for every

j = 1, . . . , k and define R = ∪kj=1Rj . Thus,

R = ∪kj=1Rj = L ∪ (R ∩ S) = (∪rj=1L
′
j) ∪ (R ∩ S),

R−S = L, and R ∈ P
∨
Q. �

Next, we characterize the set of maximal lower bounds of a finite subset of FN .

Proposition 3.1. Let N be a finite set and (S;P ), (T ;Q) ∈ FN with (S;P ) 6= (T ;Q).

1. If Q−S 6= P−T , a lower bound of (S;P ) and (T ;Q) does not exist.
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2. If Q∪ {T} = P ∪ {S}, then the set of maximal lower bounds of (S;P ) and (T ;Q)

is the set {(∅;P ∪ {S}), (∅;P−T ∪ {T ∪ S})}.

3. If P−T = Q−S but Q ∪ {T} 6= P ∪ {S}, then the set of maximal lower bounds of

(S;P ) and (T ;Q) is given by

{(S ∩ T ;M)} ∪ {(S ∩ T ;M−(R∪R′) ∪ {R ∪R′}) : R ⊆ T,R′ ⊆ S,R,R′ ∈M}

being M = (P ∪ bS \ T c)
∨

(Q ∪ bT \ Sc).

Proof. Let N be a finite set and (S;P ), (T ;Q) ∈ FN with (S;P ) 6= (T ;Q).

1. Take (S;P ), (T ;Q) ∈ FN such that Q−S 6= P−T . We proceed by contradiction.

Let us assume that (L;M) ∈ FN is a lower bound of {(S;P ), (T ;Q)}. Then,

(L;M) v (S;P ) and (L;M) v (T ;Q). This implies L ⊆ S ∩ T , M−S = P and

M−T = Q. Notice that

M−(S\L) = M−S = P = P−L, M−(T\L) = M−T = Q = Q−L.

Thus,

P−T = P−(T\L) = M−((S∪T )\L) = Q−(S\L) = Q−S ,

reaching a contradiction.

2. Let us assume that Q ∪ {T} = P ∪ {S}. Hence, T ∈ P , S ∈ Q, S ∩ T = ∅, and

P−T = Q−S . It is clear that

(∅;P ∪ {S}), (∅;P−T ∪ {T ∪ S}) v (S;P ), and

(∅;P ∪ {S}), (∅;P−T ∪ {T ∪ S}) v (T ;Q).

Moreover, if (L;M) v (S;P ) and (L;M) v (T ;Q), we have L = ∅, M−S = P ,

and M−T = Q. Since T ∈ P and S ∈ Q, we have T ∈M−S and S ∈M−T . Then,

either S, T ∈ M or S ∪ T ∈ M . In the first case (L;M) = (∅;P ∪ {S}). In the

second case, (L;M) = (∅;P−T ∪ {S ∪ T}).

3. Let us assume that P−T = Q−S but Q ∪ {T} 6= P ∪ {S}. Then, either T 6∈ P or

S 6∈ Q. Take (L;M) with L = S ∩ T and M = (P ∪ bS \ T c)
∨

(Q ∪ bT \ Sc).
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We need to prove (L;M) v (S;P ), and (L;M) v (T ;Q). Clearly L ⊆ S and

L ⊆ T . It remains to prove that M−S = P and M−T = Q. Using Lemma 3.1 and

P−T = Q−S , we obtain

M−S = M−(S\T ) = [(P ∪ bS \ T c)
∨

(Q ∪ bT \ Sc)]−(S\T )

= P
∨

(Q ∪ bT \ Sc)−(S\T ) = P
∨

(Q−(S\T ) ∪ bT \ Sc) = P.

In a similar way, we can prove M−T = Q.

Now take R,R′ ∈M such that R ⊆ T,R′ ⊆ S. Let us consider M ′ = M−(R∪R′) ∪

{R ∪ R′} and (S ∩ T ;M ′) ∈ FN . By the choice of R and R′ and the definition

of M and M ′, it is clear that M ′−S = M−S = P and M ′−T = M−T = Q. Then,

(S ∩ T ;M ′) v (S;P ) and (S ∩ T ;M ′) v (T ;Q).

Finally, we need to prove that these elements in FN are the maximal lower bounds.

First, we take (S ∩ T ;M). If there is (U ;W ) ∈ FN such that (S ∩ T ;M) @

(U ;W ) @ (S;P ) and (S ∩ T ;M) @ (U ;W ) @ (T ;Q), then S ∩ T ⊂ U ⊂ S and

S ∩ T ⊂ U ⊂ T , but S ∩ T is the maximal lower bound of S and T . Thus, we get

a contradiction. In a similar way, we can proceed if we take any element of the

type (S ∩ T ;M−(R∪R′)) with R ⊆ T,R′ ⊆ S,R,R′ ∈M .

We present an example to illustrate Item 3.

Example 3.4. Let N = {1, 2, 3}, (S;P ) = ({1, 2}; {3}), and (T ;Q) = ({3}; b1, 2c).

Clearly, P−T = Q−S, P ∪ {S} 6= Q ∪ {T}, and (P ∪ b1, 2c)
∨

(Q ∪ {3}) = Q ∪ {3} =

b1, 2, 3c. Then, the set of maximal lower bounds is given by

{(∅; b1, 2, 3c), (∅; {{1, 3}, {2}}), (∅; {{2, 3}, {1}})}.

Next, we generalize the result in Proposition 3.1.

Corollary 3.1. Let N be a finite set and A ⊆ FN .

1. If there is (S;P ), (T ;Q) ∈ A such that P−T 6= Q−S then, there is no lower bound

of A.
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2. If P−T = Q−S for every (S;P ), (T ;Q) ∈ A then, the set of maximal lower bounds

of A is given by the set of elements (∩(S;P )∈AS;L) ∈ FN with

L = M =
∨

(S;P )∈A(P ∪ bS \ (∩(T ;Q)∈AT )c), or

L = M−(∩(T ′;Q′)6=(T ;Q)(R(T ;Q)∪R(T ′;Q′)))
∪ {∩(T ′;Q′) 6=(T ;Q)(R(T ;Q) ∪R(T ′;Q′))}

for some R(S;P ) ⊆ S,R(S;P ) ∈M, (S;P ) ∈ A.

In the following example, we illustrate Item 2 in Corollary 3.1.

Example 3.5. Let N = {1, 2, 3, 4}, (S;P ) = ({1}; b2, 3, 4c), (T ;Q) = ({2, 3}; b1, 4c),

(H;L) = ({3, 4}; b1, 2c) and A = {(S;P ), (T ;Q), (H;L)}. Notice that P−T = Q−S,

P−H = L−S, and Q−H = L−T . Moreover, S ∩ T ∩H = ∅ and M = b1, 2, 3, 4c. The set

of lower bounds is given by

{(∅; b1, 2, 3, 4c), (∅; {{1, 3}, b2, 4c})}.

Notice that the partition {{1, 3}, b2, 4c} is obtained by taking R(S;P ) = {1}, R(T ;Q) =

{3}, and R(H;L) = {3}.

In what follows, given a finite set A ⊆ FN , we denote by ∧(S;P )∈A(S;P ) the set of

maximal lower bounds of A. The operation ∧ does not satisfy the associative property.

Example 3.6. Let N = {1, 2, 3, 4, 5, 6}, (S;P ) = ({1, 2}; {{3, 4}, {5, 6}}), (T ;Q) =

({1, 4}; {{3}, {2, 5, 6}}), and (L;M) = ({2, 3}; {b1, 4c, {5, 6}}). Notice that P−T = Q−S,

P−L = M−S, and Q−L = M−T . We use Corollary 3.1 to obtain the set of maximal lower

bounds of {(S;P ), (T ;Q), (L;M)}. First, we obtain

{b1, 2c, {3, 4}, {5, 6}}
∨
{b1, 3, 4c, {2, 5, 6}}

∨
{b1, 2, 3, 4c, {5, 6}} =

{{1}, {2, 5, 6}, {3, 4}}.

The unique lower bound of {(S;P ), (T ;Q), (L;M)} is (∅; {{1}, {2, 5, 6}, {3, 4}}). Nev-

ertheless, using Proposition 3.1,

(T ;Q) ∧ (L;M) = {(∅;H) : H ∈ P}
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with

P = {{b1, 3, 4c, {2, 5, 6}}, {{1, 3}, {4}, {2, 5, 6}}, {{3, 4}, {1}, {2, 5, 6}}},

and (S;P )∧[(T ;Q)∧(L;M)] does not exist as a consequence of applying Proposition 3.1

to (S;P ) and (∅; {b1, 3, 4c, {2, 5, 6}}).

Next, we characterize the minimal upper bounds of two elements in FN . It is possible

to have more than one minimal upper bound.

Example 3.7. Take N = {1, 2, 3}, (S;P ) = ({1}; b2, 3c) and (T ;Q) = ({1}; {2, 3}).

Then, (S;P ), (T ;Q) v ({1, 3}; {2}) there is no (L;M) such that (S;P ), (T ;Q) @

(L;M) @ ({1, 3}; {2}). The same happens if we take ({1, 2}; {3}). Thus, {({1, 3}; {2}), ({1, 2}; {3})}

is the set of minimal upper bounds of (S;P ) and (T ;Q).

Previously to the characterization of the set of minimal upper bounds of two elements

in FN , we obtain an auxiliary result related to two partitions and their infimum.

Lemma 3.2. Let N be a finite set, P, Q ∈ Π(N), and S ⊆ N . Then, P−S
∧
Q−S =

(P
∧
Q)−S.

Proof. Let N be a finite set, P, Q ∈ Π(N), and S ⊆ N . Let R ∈ P and R̃ ∈ Q.

Then, (R \S)∩ (R̃ \S) ∈ P−S
∧
Q−S and (R \S)∩ (R̃ \S) = (R∩ R̃) \S ∈ (P

∧
Q)−S .

Let R ∈ (P
∧
Q)−S . Then, there are R′ ∈ P and R̃ ∈ Q such that R = (R′ ∩ R̃) \ S =

(R′ \ S) ∩ (R̃ \ S) ∈ P−S
∧
Q−S . �

The next result characterizes the set of minimal upper bounds of two embedded

coalitions in FN .

Proposition 3.2. Let N be a finite set and (S;P ), (T ;Q) ∈ FN , M = P−T
∧
Q−S,

and L ⊆ N \ (S ∪ T ).

1. (R;M ′) ∈ FN is an upper bound of {(S;P ), (T ;Q)} if and only if R = S ∪ T ∪ L

with L ⊆ N \ (S ∪ T ), and M ′ = P−(T∪L) = Q−(S∪L).
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2. (S ∪ T ∪ L;P−(T∪L)) is a minimal upper bound of (S;P ) and (T ;Q) if and only

if P−(T∪L) = Q−(S∪L) = M−L and for every L′ ⊆ N \ (S ∪ T ) with P−(T∪L′) =

Q−(S∪L′) = M−L′ it holds L ⊆ L′ or L ⊆ N \ L′ .

Proof. Let N be a finite set, (S;P ), (T ;Q) ∈ FN and M = P−T
∧
Q−S .

1. Let (R;M ′) ∈ FN be an upper bound of {(S;P ), (T ;Q)}. Then, S ∪ T ⊆ R and

P−R = M ′ = Q−R. There is some L ⊆ N \ (S ∪ T ) such that R = S ∪ T ∪ L and

P−R = P−(T∪L) = M ′ = Q−R = Q−(S∪L).

If R = S ∪ T ∪ L with L ⊆ N \ (S ∪ T ) and M ′ = P−(T∪L′) = Q−(S∪L′), clearly

(S;P ), (T ;Q) v (R;M ′).

2. First, take L ⊆ N \ (S ∪ T ) such that (S ∪ T ∪ L;P−(T∪L)) is a minimal upper

bound of (S;P ) and (T ;Q). Then, (S;P ), (T ;Q) v (S ∪ T ∪ L;P−(T∪L)) and we

have P−(T∪L) = Q−(S∪L) = M−L using Lemma 3.2. Let L′ ⊆ N \ (S ∪ T ) with

P−(T∪L′) = Q−(S∪L′) = M−L′ . We consider two cases. If (S ∪ T ∪ L;P−(T∪L)) v

(S∪T∪L′;P−(T∪L′)), then L ⊆ L′. It remains to study the case (S∪T∪L;P−(T∪L))

and (S ∪ T ∪ L′;P−(T∪L′)) are not comparable. Since both are upper bounds

of (S;P ) and (T ;Q), we have P−(T∪L′) = Q−(S∪L′), S ∪ T ⊆ S ∪ T ∪ L, and

S ∪ T ⊆ S ∪ T ∪ L′. Then, L and L′ are not comparable. Let us assume that

R = L ∩ L′ 6= ∅ and L \ L′ 6= ∅. By Lemma 3.2, P−(T∪R)

∧
Q−(S∪R) = M−R,

then (S ∪ T ∪ R;M−R) is also an upper bound of (S;P ) and (T ;Q), but (S ∪

T ∪ R;M−R) @ (S ∪ T ∪ L;P−(T∪L)). And this fact contradicts the minimality

condition of (S ∪ T ∪ L;P−(T∪L)). Then, L ⊆ N \ L′ or L ⊆ L′.

On the other hand, let us take (S∪T∪L;P−(T∪L)) such that P−(T∪L) = Q−(S∪L) =

M−L and for every L′ ⊆ N \ (S ∪ T ) with P−(T∪L′) = Q−(S∪L′) = M−L′ it holds

L ⊆ L′ or L ⊆ N\L′ . Clearly, (S;P ), (T ;Q) v (S∪T∪L;P−(T∪L)). Let us assume

that there is (L′;M ′) such that (S;P ), (T ;Q) @ (L′;M ′) @ (S ∪ T ∪ L;P−T∪L).

Then, L′ = S ∪T ∪R′ with R′ ⊂ L. Using Item 1 above and Lemma 3.2, we have

M ′ = (P−T
∧
Q−S)−R′ = M−R′ . Thus, (L′;M ′) is an upper bound of (S;P ) and

(T ;Q). Then, L ⊆ R′ or L ⊆ N \ R′, getting a contradiction with the fact that
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R′ ⊂ L.

�

An example of the result above is given next.

Example 3.8. Let N = {1, 2, 3, 4}, (S;P ) = (∅; {{1, 2}, b3, 4c}) and (T ;Q) = (∅; {{1, 3}, b2, 4c}).

Notice that

M = {{1, 2}, b3, 4c}
∧
{{1, 3}, b2, 4c} = b1, 2, 3, 4c.

Take L = {1}. We obtain P−(T∪L) = Q−(S∪L) = M−L = b2, 3, 4c. If we take L′ = {2, 3},

M−L′ = b1, 4c = P−(T∪L′) = Q−(S∪L′). Then, the set of minimal upper bounds of (S;P )

and (T ;Q) is given by

{({1}; b2, 3, 4c), ({2, 3}; b1, 4c)}.

We can generalize the result above to every finite subset of FN .

Corollary 3.2. Let N be a finite set and A ⊆ FN .

1. Every upper bound of A is of the form ((∪(S;P )∈AS) ∪ L;M ′) with L ⊆ N \

(∪(S;P )∈AS) and M ′ = P−((∪(T ;Q)∈AT )∪L).

2. ((∪(S;P )∈AS) ∪ L;P−((∪(S;P )∈AS)∪L)) is a minimal upper bound of A if and only if

P−((∪(T ;Q)∈AT )∪L) = M−L and for every L′ ⊆ N\(∪(S;P )∈AS) with P−((∪(T ;Q)∈AT )∪L′) =

M−L′, it holds L ⊆ L′ or L ⊆ N \ L′ , being M =
∧

(T ;Q)∈AQ−(∪(S;P )∈AS) ∈

Π(N \ ∪(S;P )∈AS).

The next example illustrate Item 2 in Corollary 3.2

Example 3.9. Let N = {1, 2, 3, 4, 5} and A = {(S;P ), (T ;Q), (H;L)} with (S;P ) =

({2}; {{1, 3, 4}, {5}}), (T ;Q) = ({3, 4}; {{1, 5}, {2}}), and (H;L) = ({2, 4}; {{1}, {3, 5}}).

Clearly, M = b1, 5c
∧
{1, 5}

∧
b1, 5c = b1, 5c and S ∪ T ∪H = {2, 3, 4}. Then, the set of

minimal upper bounds of A is the set

{({1, 2, 3, 4}; {5}), ({2, 3, 4, 5}; {1})}.
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Corollary 3.3. Let N be a finite set and (S;P ), (T ;Q) ∈ FN such that P−T = Q−S.

Then, {(S;P ), (T ;Q)} has a unique minimal upper bound given by sup{(S;P ), (T ;Q)} =

(S ∪ T ;P−T ).

Proof. Let N be a finite set and (S;P ), (T ;Q) ∈ FN such that P−T = Q−S . Then,

P−T
∧
Q−S = P−T = Q−S . It is clear that (S ∪ T ;P−T ) is an upper bound of (S;P )

and (T ;Q). Using Proposition 3.2, any upper bound is given by (S ∪ T ∪ L;P−(T∪L))

with L ⊆ N \ (S ∪ T ), and P−(T∪L) = Q−(S∪L). If L 6= ∅, we have (S ∪ T ;P−T ) @

(S ∪ T ∪ L;P−(T∪L)) and (S ∪ T ∪ L;P−(T∪L)) is not a minimal upper bound. Thus,

(S ∪ T ;P−T ) = sup{(S;P ), (T ;Q)}. �

In what follows, given a finite set A ⊆ FN , we denote by ∨(S;P )∈A(S;P ) the set of

minimal upper bounds of A. The operation ∨ does not satisfy the associative property.

Example 3.10. Let N = {1, 2, 3, 4, 5, 6}, (S;P ) = ({1, 2}; {{3, 4}, {5, 6}}), (T ;Q) =

({1, 3}; {{2, 5}, {4, 6}}), (L;M) = ({2, 3}; {{1, 6}, {4, 5}}). According to Corollary 3.2

and taking into account

{{4}, {5, 6}}
∧
{{5}, {4, 6}}

∧
{{4, 5}, {6}} = b4, 5, 6c,

the set of minimal upper bounds is given by

{({1, 2, 3, 4, 5}; {6}), ({1, 2, 3, 4, 6}; {5}), ({1, 2, 3, 5, 6}; {4})}.

Now we evaluate (S;P ) ∨ [(T ;Q) ∨ (L;M)]. First,

(T ;Q) ∨ (L;M) = {({1, 2, 3, 4}; b5, 6c), ({1, 2, 3, 5, 6}; {4}}.

Second, (S;P ) ∨ {({1, 2, 3, 4}; b5, 6c), ({1, 2, 3, 5, 6}; {4}} = (N ; ∅).

The operations ∨ and ∧ do not satisfy the distributive properties.

Example 3.11. Let N = {1, 2, 3, 4, 5, 6}, (S;P ) = ({1, 2}; {{3, 4}, {5, 6}}), (T ;Q) =

({1, 4}; {{3}, {2, 5, 6}}), and (L;M) = ({2, 3}; {b1, 4c, {5, 6}}). First, we check that
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(S;P ) ∨ [(T ;Q) ∧ (L;M)] 6= [(S;P ) ∨ (T ;Q)] ∧ [(S;P ) ∨ (L;M)]. Notice that

(T ;Q) ∧ (L;M) =

{(∅; {b1, 3, 4c, {2, 5, 6}}), (∅; {{1, 3}, {4}, {2, 5, 6}}), (∅; {{3, 4}, {1}, {2, 5, 6}})},

(S;P ) ∨ [(T ;Q) ∧ (L;M)] =

{({1, 2, 3}; {{4}, {5, 6}}), ({1, 2, 4}; {{3}, {5, 6}})},

but

[(S;P ) ∨ (T ;Q)] ∧ [(S;P ) ∨ (L;M)] =

{({1, 2, 4}; {{3}, {5, 6}})} ∧ {({1, 2, 3}; {{4}, {5, 6}})} =

{({1, 2}; {b3, 4c, {5, 6}}), ({1, 2}; {{3, 4}, {5, 6}})}.

Second, we also check that (T ;Q)∧[(S;P )∨(L;M)] 6= [(T ;Q)∧(S;P )]∨[(T ;Q)∧(L;M)].

Notice that

(T ;Q) ∧ [(S;P ) ∨ (L;M)] = (T ;Q) ∧ {({1, 2, 3}; {{4}, {5, 6}})}

= {({1}; {{2, 5, 6}, b3, 4c}), ({1}; {{2, 5, 6}, {3, 4}})}

(T ;Q) ∧ (S;P ) = ({1}; {{3, 4}, {2, 5, 6}}),

Thus, (T ;Q)∧[(S;P )∨(L;M)] 6= [(T ;Q)∧(S;P )]∨[(T ;Q)∧(L;M)] = {({1, 3}; {{2, 5, 6}, {4}}), ({1, 4}; {{2, 5, 6}, {3}})}

Proposition 3.3. Let (S;P ) ∈ FN \ {(N ; ∅)}. Then, the number of elements in FN

that cover (S;P ) is |N \ S|.

Proof. Let (S;P ) ∈ FN \ {(N ; ∅)} and i ∈ N \ S. Then, (S;P ) v (S ∪ {i};P−{i})

and there is no (L;M) ∈ FN such that (S;P ) @ (L;M) @ (S ∪ {i};P−{i}). �

Proposition 3.4. Let (S;P ) ∈ ECN .

1. If (S;P ) = (N ; ∅), then the number of elements in FN covered by (S;P ) is n.

2. If (S;P ) 6= (N ; ∅), then the number of elements in FN covered by (S;P ) is

|S|(|P |+ 1).

Proof. Let (S;P ) ∈ ECN .
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1. Let us consider (S;P ) = (N ; ∅). Then, for every i ∈ N , (N \ {i}; {i}) v (N ; ∅)

and there is no (T ;Q) ∈ FN such that (N \ {i}; {i}) @ (T ;Q) @ (N ; ∅).

2. Let us consider (S;P ) 6= (N ; ∅). For every i ∈ S and R ∈ P , we have (S\{i};P−R∪

{R ∪ {i}}) v (S;P ) and there is no (T ;Q) ∈ FN such that (S \ {i};P−R ∪ {R ∪

{i}}) @ (T ;Q) @ (S;P ). Additionally, for every i ∈ S, (S \ {i};P ∪ {i}) v (S;P )

and there is no (T ;Q) ∈ FN such that (S \ {i};P ∪ {i}) @ (T ;Q) @ (S;P ). As a

consequence of all this we have the result.

�

Proposition 3.5. (FN ,v) is a graded poset.

Proof. Let h : FN −→ N defined by h(S;P ) = |S|+ 1. It is clear that h is a height

function since if (S;P ) @ (T ;Q) then |S| < |T | and h(S;P ) < h(T ;Q). Additionally, if

(T ;Q) covers (S;P ) we have |T | = |S|+ 1. Thus, h(T ;Q) = h(S;P ) + 1. �

This function h is called the grading function. In our case h(S;P ) = 1 if and only

if S = ∅. Given 1 ≤ k ≤ n, we say that (S;P ) is in level k if h(S;P ) = k + 1. Hence,

FN has n+1 levels. From the above result, (FN ,v) has the Jordan-Dedekind property.

Now we compute the number of elements in each level.

Proposition 3.6. Let N be a finite set and 1 ≤ k ≤ |N |+ 1. Let (FN ,v). Then, there

are B|N\S|

(
|N |
k − 1

)
elements of FN at level k being |S| = k − 1 and B|N\S| the Bell

number of |N \ S|.

Proof. Let 1 ≤ k ≤ n+ 1. Using Proposition 3.5, an element (S;P ) ∈ FN at level

k satisfies |S| = k− 1 and P ∈ Π(N \S). Then, counting all the possibilities we get the

number |Π(N \ S)|
(
|N |
k − 1

)
= B|N\S|

(
|N |
k − 1

)
. �

Proposition 3.7. Let N be a finite set with |N | ≥ 2.
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i) The set of coatoms of (FN ,v) is given by C = {(N \ {i}; {i}) : i ∈ N}.

ii) The set of meet-irreducible elements of (FN ,v) is given by

M = C ∪ {(S;P ) ∈ FN : |S| = n− 2}

Proof. Let N be a finite set with |N | ≥ 2.

i) Let (S;P ) ∈ FN . A coatom (S;P ) belongs to the nth level. Then, |S| = n − 1

and (S;P ) = (N \ {i}; {i}) for some i ∈ N .

ii) Let us take i ∈ N and (S;P ) = (N \ {i}; {i}). Let us consider A ⊆ FN with

|A| ≥ 2 such that (S;P ) = inf(A). Thus, S = ∩(T ;Q)∈AT . This implies that

N \ {i} ⊆ T for every (T ;Q) ∈ A. Then, there is some (T ;Q) ∈ A such that

(T ;Q) = (S;P ).

Let i, j ∈ N , (S;P ) = (N \ {i, j}; {i, j}). Let us consider A ⊆ FN with |A| ≥ 2

such that (S;P ) = inf(A). Then, S = ∩(T ;Q)∈AT . Let us assume that (S;P ) 6∈

A. Hence, we have (N \ {i}; {i}), (N \ {j}; {j}) ∈ A and (S;P ) and (S; bi, jc)

are maximal lower bounds of A. Then, there is no infimum of A, which is a

contradiction. A similar reasoning proves that (S; bi, jc) is meet-irreducible.

Now it remains to check that only elements inM are meet-irreducible. If |N | = 2,

M = FN \ {(N ; ∅)} and then all elements are meet-irreducible. Let us take a

finite set N with |N | ≥ 3 and (S;P ) ∈ FN such that (S;P ) 6∈ M. In particular,

|S| ≤ n− 3. We distinguish two cases.

1. |S| = 0. If |P | = n or |P | = 1, take A = {({i};P−{i}) : i ∈ N \ S}.

Then, (S;P ) = inf(A), but (S;P ) 6∈ A which implies that (S;P ) is not

meet-irreducible. If 1 < |P | < n, there is some R ∈ P with |R| ≥ 2. Take

i ∈ R, j ∈ N \ R, and A = {({i};P−{i}), ({j};P−{j})}. It is clear that

(S;P ) = inf(A), but (S;P ) 6∈ A. Thus (S;P ) is not meet-irreducible.

2. |S| > 0. Let us take A = {(S ∪ {i};P−{i}) : i ∈ N \ S}. We have (S;P ) =

inf(A), but (S;P ) 6∈ A. Then, (S;P ) is not meet-irreducible.
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The set of atoms is empty because there is no bottom element.

Proposition 3.8. Let N be a finite set. The set of join-irreducible elements of (FN ,v)

is given by

I = {(S;P ) ∈ FN : |S| ≤ 1}.

Proof. Let (S;P ) ∈ I. If |S| = 0, then S = ∅ and (S;P ) is join-irreducible. If |S| = 1,

then (S;P ) = ({i};P ) with P ∈ Π(N \ {i}), for some i ∈ N . Let A ⊂ FN such

that ({i};P ) = sup(A). If ({i};P ) 6∈ A, then A ⊆ {(∅;Q) : Q ∈ Π(N), Q−{i} = P}.

Then, (N \ {i}; {i}) is also an upper bound of A, but ({i};P ) and (N \ {i}; {i}) are not

comparable. Then, the set of minimal upper bounds of A has more than one element

and there is no supremum, reaching a contradiction. Then, ({i};P ) is join-irreducible.

Finally, we check that every (S;P ) with |S| ≥ 2 and P ∈ Π(N \ S) is not a join-

irreducible embedded coalition. Take (S;P ) with |S| ≥ 2 and P ∈ Π(N \ S). Let

A = {(S \ {i};P ∪ {i}), (S \ {j};P ∪ {j})}, for some i, j ∈ S. Then, (S;P ) = sup(A)

according to Corollary 3.3, but (S;P ) 6∈ A.

We obtain an isomorphism between chains of (FN ,v) and (B(N),⊆).

Proposition 3.9. Let N be a finite set. Let (S;P ), (T ;Q) ∈ FN such that (S;P ) v

(T ;Q). Then, [(S;P ), (T ;Q)] is isomorphic to [S, T ]B(N).

Proof. Let (S;P ), (T ;Q) ∈ FN such that (S;P ) v (T ;Q). Notice that S ⊆ T

and Q = P−T . We define the mapping φ from [(S;P ), (T ;Q)] to [S, T ]B(N) as follows:

φ(L;P−L) = L for every (L;P−L) ∈ [(S;P ), (T ;Q)]. It is clear that if (L;P−L), (L′;P−L′) ∈

[(S;P ), (T ;Q)] with (L;P−L) v (L′;P−L′) we have, in particular, L ⊆ L′ and then,

φ(L;P−L) ⊆ φ(L′;P−L′). Take the mapping φ−1 from [S, T ]B(N) to [(S;P ), (T ;Q)] de-

fined by φ−1(L) = (L;P−L) for every L ∈ [S, T ]B(N). φ and φ−1 are inverse maps and

if L ⊆ L′ we have φ−1(L) v φ−1(L′). �

We can obtain Proposition 3.5 and Proposition 3.6 as a consequence of Proposi-

tion 3.9.
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Proposition 3.10. Let N be a finite set and i ∈ N . Let P ∈ Π(N), ({i};P−i), (T ;Q) ∈

FN with ({i};P−i) v (T ;Q).

1. The number of chains [({i};P−{i}), (T ;Q)] is (|T | − 1)!

2. The number of chains [(∅;P ), (T ;Q)] is |T |!

3. The total number of chains in (FN ,v) is |N |!Bn, being Bn the Bell number of

size |N | = n.

Proof. Items 1 and 2 follow directly from the isomorphism presented in Proposi-

tion 3.9.

Let us prove Item 3. Taking into account the first item, the total number of chains

in (FN ,v) from ({i};P ) to (N ; ∅) is (|N | − 1)!, for every i ∈ N and P ∈ Π(N \ {i}).

Additionally, there are |P | + 1 elements in level 1 linked to ({i};P ). Thus, the total

number of chains is∑
i∈N

∑
P∈Π(N\{i})(|N | − 1)!(|P |+ 1) = |N |!

∑
P∈Π(N\{i}(|P |+ 1)

= |N |!
∑n−1

r=1 (r + 1)Sn−1,r = |N |!Bn,

using the generalized recurrence expression provided in Spivey (2008) applied to n− 1

and 1. �

The isomorphism presented in Proposition 3.9 also allows us to characterize the

Möbius function of (FN ,v). Next, we recall the definition of the Möbius function of a

finite poset. Let (A,≤) be a finite poset. The Möbius function of (A,≤), µ, is given by

µ(x, y) =


1 if x = y

−
∑

x≤z<y µ(x, z) = −
∑

x<z≤y µ(z, y) if x < y

for every x, y ∈ A with x ≤ y. The Möbius function of (B(N),⊆) is given by µ̂(S, T ) =

(−1)|T |−|S|, for every S ⊆ T ⊆ N . Using Proposition 3.9 we obtain

µ((S;P ), (T ;Q)) =


(−1)|T |−|S| if (S;P ) v (T ;Q)

0 otherwise

(3)
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4 Partition function form games on (FN ,v)

Let N be a finite set. Let v : FN −→ R be a function such that v(∅;P ) = 0, for every

P ∈ Π(N). This type of function is usually called a partition function form game with

player set N . The family of all partition function form games with player set N will

be denoted by GN . Let (S;P ) ∈ ECN . The unanimity game associated to (S;P ) is

defined as

u(S;P )(T ;Q) =


1 if (S;P ) v (T ;Q)

0 otherwise

for every (T ;Q) ∈ FN . The family of unanimity games U = {u(S;P ) : (S;P ) ∈ ECN}

is a basis of the vector space of partition function form games. Then,

v =
∑

(S;P )∈ECN

δ(S;P )u(S;P )

for every partition function form game v. Using the Möbius function characterized in

Equation (3), we can obtain the coefficients of a game in the basis U .

Proposition 4.1. Let v be a partition function form game and (S;P ) ∈ ECN . Then,

δ(S;P ) =
∑

(T ;Q)v(S;P )

(−1)|S|−|T |v(T ;Q)

Proof. Let (S;P ) ∈ ECN . We obtain the coefficient δ(S;P ) through the Möbius

inversion formula as follows

δ(S;P ) =
∑

(T ;Q)v(S;P )

µ((T ;Q), (S;P ))v(T ;Q) =
∑

(T ;Q)v(S;P )

(−1)|S|−|T |v(T ;Q).

�

A cooperative game in characteristic function form (in short, classic game) is a partition

function form game v ∈ GN such that v(S;P ) = v(S;Q) for every (S;P ), (S;Q) ∈ ECN .

That is the worth of a coalition does not depend on how the remaining players are

organized. Superadditivity and convexity are two well-known and interesting properties

for games in characteristic function form. Nevertheless, there are several alternative
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ways to generalize these properties for partition function form games in the literature.

Here we present a new version of these two properties and analyze their relationship

with similar concepts already presented. First, we extend the concept of an essential

classic game to the framework of partition function form games.

Definition 4.1. Let v ∈ GN . We say that v is essential if and only if

∑
i∈N

v({i};P−{i}) ≤ v(N ; ∅), for every P ∈ Π(N).

This concept is less demanding that the notion of efficiency for the grand coalition

as it was presented in Hafalir (2007). A game in partition function form v ∈ GN is

efficient for the grand coalition if and only if

∑
S∈P

v(S;P \ S) ≤ v(N ; ∅), for every P ∈ Π(N), (4)

It is clear that if v ∈ GN is efficient for the grand coalition, it is also essential. The

reverse implication does not hold in general, as we illustrate next.

Example 4.1. Let us take N = {1, 2, 3}. We consider v ∈ GN as follows:

v(N ; ∅) = 7, v({1}; {2, 3}) = 1, v({1}; b2, 3c) = 0,

v({i};P−{i}) = 2, for every i ∈ N \ {1}, P ∈ Π(N), and

v({j, k}; {i}) = 6, for every j, k ∈ N \ {i}, j 6= k, i ∈ N.

Then, this game is essential, but it is not efficient for the grand coalition. For instance,

v({1, 3}; {2}) + v({2}; {1, 3}) = 6 + 2 > 7 = v(N ; ∅).

Definition 4.2. Let v ∈ GN . We say that v is superadditive if and only if

v(S ∪ T ;P−(S∪T )) ≥ v(S;P ) + v(T ;Q)

for every (S;P ), (T ;Q) ∈ FN such that S ∩ T = ∅ and P−T = Q−S.

If (S;P ), (T ;Q) ∈ FN such that P−T = Q−S and S ∩ T = ∅, then the set of

maximal lower bounds is non-empty. Indeed, all of them are of the type (∅;M) for
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some M ∈ Π(N) (see Proposition 3.1), and sup({(S;P ), (T ;Q))}) = (S ∪ T ;P−(S∪T ))

(see Corollary 3.3). Any superadditive game is also essential. Since every classic game is

a game in partition function form and the definitions of essentiality and superadditivity

in this framework extend the homonymous properties for classic games, we can assert

that there are some essential partition function form games that are not superadditive.

Additionally, the result is true if we take partition function form games wich are not

classic games as we illustrate next.

Example 4.2. Let us take N = {1, 2, 3}. We consider v ∈ GN as follows:

v(N ; ∅) = 7, v({1}; {2, 3}) = 1, v({1}; b2, 3c) = 0,

v({i};P−i) = 2, for every i ∈ N \ {1}, P ∈ Π(N), and

v({j, k}; {i}) = 0, for every j, k ∈ N \ {i}, j 6= k, i ∈ N.

Then, the game is essential, but it is not superadditive as we can see by taking (S;P ) =

({2}; {1, 3}) and (T ;Q) = ({1}; b2, 3c).

Maskin (2003) and Hafalir (2007) use the following definition of superadditivity.

Definition 4.3. Let v ∈ GN . A game v is superadditive in Maskin’s sense if and only

if

v(S ∪ T ;P ) ≥ v(S;P ∪ {T}) + v(T ;P ∪ {S})

for every S, T ⊆ N such that S ∩ T = ∅ and P ∈ Π(N \ (S ∪ T )).

Our notion of superadditiviy is different from Maskin’s notion of superadditivity.

We see this by revisiting Example 1 in Hafalir (2007).

Example 4.3. (Hafalir, 2007) Let N = {1, 2, 3} and v ∈ GN defined by

v(N ; ∅) = 11,

v({i}; bj, kc) = 4, for every j, k ∈ N \ {i}, j 6= k, i ∈ N,

v({j, k}; {i}) = 9, for every j, k ∈ N \ {i}, j 6= k, i ∈ N, and

v({i}; {j, k}) = 1, for every j, k ∈ N \ {i}, j 6= k, i ∈ N.
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This game is superadditive in Maskin’s sense, but it is not superadditive according to

Definition 4.2. This follows directly from the fact that this game is not essential using

Definition 4.1.

Now we present our definition of convexity for partition function form games.

Definition 4.4. Let v ∈ GN . We say that v is convex if and only if

v(S ∪ T ;P−T ) + v(S ∩ T ;M) ≥ v(S;P ) + v(T ;Q) (5)

for every (S;P ), (T ;Q) ∈ FN with P−T = Q−S and (S ∩ T ;M) a maximal lower bound

of {(S;P ), (T ;Q)}.

It is clear that if v ∈ GN is convex, then it is also superadditive.

Remark 4.1. Hafalir (2007) provides the following definition of convexity. Let v ∈ GN .

A game v is convex if and only if

v(S ∪ T ;P ) + v(S ∩ T ;P ∪ {S \ T, T \ S}) ≥ v(S;P ∪ {T \ S}) + v(T ;P ∪ {S \ T})

for every S, T ⊆ N and P ∈ Π(N \ (S ∪ T )).

Notice that for every S, T ⊆ N and P ∈ Π(N \ (S ∪T )), we have (P ∪{T \S})−T =

P = (P ∪ {S \ T})−S. Moreover,

(P ∪ {T \ S} ∪ bS \ T c)
∨

(P ∪ {S \ T} ∪ bT \ Sc) = P ∪ {S \ T, T \ S}.

Then, the set of maximal lower bounds for (S;P ∪ {T \S}) and (T ;P ∪ {S \ T}), using

Proposition 3.1, is given by

{(S ∩ T ;P ∪ {S \ T, T \ S}), (S ∩ T ;P ∪ {S∆T})},

being S∆T = (S ∪ T ) \ (S ∩ T ). This implies that if v satisfies our notion of convexity,

then it also satisfies Hafalir’s condition. In the example below we show that both concepts

are not the same.

25



Example 4.4. Let N = {1, 2, 3} and v ∈ GN defined as follows:

v({i}; {j, k}) = 1, v({i}; bj, kc) = 2, v({i, j}; {k}) = 4, v(N ; ∅) = 6.

Clearly, this game is superadditive according to Definition 4.2 and convex in Hafalir’s

sense. Nevertheless, it is not convex according to Definition 4.4. For instance, take

(S;P ) = ({1, 3}; {2}) and (T ;Q) = ({1, 2}; {3}). The embedded coalition ({1}; {2, 3})

is a maximal lower bound of {(S;P ), (T ;Q)}, but

v(N ; ∅) + v({1}; {2, 3}) = 6 + 1 < 4 + 4 = v({1, 3}; {2}) + v({1, 2}; {3}).

Thus, this game is not convex according to Definition 4.4.

If we consider w ∈ GN defined as w(S;P ) = v(S;P ) if (S;P ) 6= (N ; ∅) and

w(N ; ∅) = 10, we obtain a convex game according to Definition 4.4.

Next, we present a characterization of convexity that is parallel to a well known

result for games in characteristic function form.

Proposition 4.2. Let v ∈ GN . The game v is convex if and only if for every i ∈ N

and (S;P ) v (T ;Q) v (N \ {i}; {i}) we have

v(T ∪ {i};Q−{i})− v(T ;Q) ≥ v(S ∪ {i};P−{i})− v(S;P ). (6)

Proof. Let v ∈ GN . Let us assume that v is convex. Take i ∈ N and (S;P ) v

(T ;Q) v (N \ {i}; {i}). The elements (S ∪ {i};P−{i}) and (T ;Q) satisfy the conditions

in Definition 4.4 since (S;P ) v (T ;Q) implies S ⊆ T and P−T = Q . Hence, P−(T∪{i}) =

Q−{i}. Using Corollary 3.3, the supremum of (S ∪{i};P−{i}) and (T ;Q) exists and it is

given by (T ∪ {i};Q−{i}) = (T ∪ {i};P−(T∪{i})). Notice that (S;P ) is a maximal lower

bound of {(S ∪ {i};P−{i}), (T ;Q)}. Applying Inequality (5) to (S ∪ {i};P−{i}), (T ;Q)

we get

v(T ∪ {i};Q−{i}) + v(S;P ) ≥ v(S ∪ {i};P−{i}) + v(T ;Q),

and Inequality (6) holds.

Now let us assume that v satisfies Inequality (6) for every i ∈ N and (S;P ) v

(T ;Q) v (N \ {i}; {i}). Let us take (S;P ), (T ;Q) ∈ FN such that P−T = Q−S and
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(S ∩ T ;M ′) be a maximal lower bound of (S;P ) and (T ;Q). We proceed by induction

on |S \ T |. If |S \ T | = 0 then, S ⊆ T . Since P−T = Q, we have (S;P ) v (T ;Q). Then,

(S ∩ T ;M ′) = (S;P ), (S ∪ T ;P−T ) = (T ;Q), and Inequality (5) holds. Let us assume

that |S \ T | = 1 and S \ T = {i}. Then, S ∩ T = S \ {i} and a maximal lower bound of

(S;P ) and (T ;Q) belongs to the set

{(S \ {i};M)} ∪ {(S \ {i};M−(R∪R′) ∪ {R ∪R′}) : R ⊆ T,R′ ⊆ S,R,R′ ∈M}

with M = (P ∪ {i})
∨

(Q ∪ bT \ Sc). Let (S \ {i};M ′) be a maximal lower bound of

(S;P ) and (T ;Q). Then, (S \ {i};M ′) v (S;P ) and P = M ′−S = M ′−{i}. Besides,

(S \ {i};M ′) v (T ;Q) v (N \ {i}; {i}) which implies M ′−T = Q. Since P−T = Q−S and

the choice of i, we get P−(T∪{i}) = P−T = Q−S = Q−{i}. Applying Inequality (6) to

(S \ {i};M ′) and (T ;Q), we obtain

v(T ∪ i;P−(T∪{i}))− v(T ;Q) ≥ v(S;P )− v(S \ {i};M ′), or

v(S ∪ T ;P−T ) + v(S ∩ T ;M ′) ≥ v(S;P ) + v(T ;Q)

and Inequality (5) holds.

Let us assume that the result holds for every (S;P ), (T ;Q) ∈ FN with |S \ T | ≤ k,

P−T = Q−S , and (S ∩ T ;M ′) a maximal lower bound of (S;P ) and (T ;Q). Now, take

(S;P ), (T ;Q) ∈ FN such that |S \ T | = k + 1, P−T = Q−S , and (S ∩ T ;M ′) a maximal

lower bound of (S;P ) and (T ;Q). Let us take i ∈ S \ T and (T ∪ (S \ {i});Q−(S\{i})).

We can assume that (S ∩ T ;M ′) is not covered by (S;P ). Otherwise, |S \ T | = 1

and we have just proved the result for this situation. Take (S \ {i}; M̂) such that

(S ∩ T ;M ′) v (S \ {i}; M̂) v (S;P ). Since i ∈ S \ T and (S ∩ T ;M ′) is a maximal

lower bound of {(S;P ), (T ;Q)}, (S \ {i}; M̂) does not precede (T ;Q). Nevertheless,

(S ∩ T ;M ′) v (T ∪ (S \ {i});Q−(S\{i})) because S ∩ T ⊂ T ∪ (S \ {i}), M ′−T = Q, and

M ′−(T∪(S\{i})) = Q−(S\{i}). Besides, (S \ {i}; M̂) v (T ∪ (S \ {i});Q−(S\{i})) because

S \ {i} ⊆ T ∪ (S \ {i}) and M̂−T = M ′−(T∪(S\{i})) = Q−(S\{i}) as a consequence of

M ′−(S\{i}) = M̂ and M ′−(T∪(S\{i})) = Q−(S\{i}). Applying Inequality (6) to (S \ {i}; M̂)

and (T ∪ (S \ {i});Q−(S\{i})), we obtain

v(T ∪ S;Q−S)− v(T ∪ (S \ {i});Q−(S\{i})) ≥ v(S;P )− v(S \ {i}; M̂). (7)
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Notice that |S \ (T ∪ {i})| = k. We apply the induction hypothesis to (S \ {i}; M̂),

(T ;Q) and (S ∩ T ;M ′) because M̂−T = Q−(S\{i}) and (S ∩ T ;M ′) is also a maximal

lower bound of {(S \ {i}; M̂), (T ;Q)}. Thus,

v(T ∪ (S \ {i});Q−(S\{i})) + v(S ∩ T ;M ′) ≥ v(T ;Q) + v(S \ {i}; M̂). (8)

Finally, adding up Inequalities (7)-(8), we obtain Inequality (5), concluding the proof. �

As a consequence of Proposition 4.2 we have the following result.

Proposition 4.3. Let v ∈ GN . The game v is convex if and only if, for every P ∈ Π(N),

vP is also a classic convex game with vP (S) = v(S;P−S), for every S ⊆ N .

Proof. Let v ∈ GN . First, let us assume that v is convex. Let P ∈ Π(N) and

consider the classic game vP defined as follows: vP (S) = v(S;P−S), for every S ⊆ N .

Let i ∈ N and S ⊆ T ⊆ N \ {i}. Take (S;P−S), (T ;P−T ) ∈ FN . It is clear that

(S;P−S) v (T ;P−T ) v (N \ {i}; {i}). Since v is convex, using Inequality (6), we have

v(T ∪ {i};P−(T∪{i}))− v(T ;P−T ) ≥ v(S ∪ {i};P−(S∪{i}))− v(S;P−S). (9)

Rewriting both sides in Inequality (9), we have

vP (T ∪ {i})− vP (T ) ≥ vP (S ∪ {i})− vP (S),

concluding that vP is a classic convex game.

Second, let us assume that vP is a classic convex game for every P ∈ Π(N). We

check Inequality (6). Let i ∈ N , (S;P ), (T ;Q) ∈ FN such that (S;P ) v (T ;Q) v

(N \ {i}; {i}). Let M ∈ Π(N) such that M−S = P . Then, M−T = P−T = Q because

(S;P ) v (T ;Q) and the choice of M . Take the classic game vM . Since vM is a convex

classic game, we get

vM (T ∪ {i})− vM (T ) ≥ vM (S ∪ {i})− vM (S).

Taking into account the definition of vM , and the fact that M−T = P−T = Q and

M−S = P , we have

v(T ∪ {i};Q−{i})− v(T ;Q) ≥ v(S ∪ {i};P−{i})− v(S;P ).
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We have proved Inequality (6) and conclude that v is convex. �

We point out that convexity in Hafalir’s sense does not satisfy an analogous result

to the one in Proposition 4.3. We take Example 2 in Hafalir (2007) to illustrate this.

Example 4.5. (Hafalir, 2007) Let N = {1, 2, 3} and v ∈ GN defined by

v(N ; ∅) = 16,

v({i}; bj, kc) = 4, for every j, k ∈ N \ {i}, j 6= k, i ∈ N,

v({j, k}; {i}) = 9, for every j, k ∈ N \ {i}, j 6= k, i ∈ N, and

v({i}; {j, k}) = 6, for every j, k ∈ N \ {i}, j 6= k, i ∈ N.

This game is convex in Hafalir’s sense, but it is not convex according to Definition 4.4.

This can be checked by using the embedded coalitions (S;P ) = (1; {2, 3}) and (T ;Q) =

({2}; b1, 3c). Let us take P = {N}. Define the classic game vN as vN ({i}) = 6,

vN ({i, j}) = 9, and vN (N) = 16. This game has an empty core and, then, it is not

convex. Thus, we see that an analogous result to the one established in Proposition 4.3

does not hold using Hafalir’s notion of convexity.
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Alonso-Meijide, J. M., Álvarez-Mozos, M., Fiestras-Janeiro, M. G., and Jiménez-
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