Segueiment del medi marí al Parc Natural de Cap de Creus i al Parc Natural del Montgrí, les Illes Medes i el Baix Ter

Memòria 2018
SEGUIMENT DEL MEDI MARÍ AL PARC NATURAL DE CAP DE CREUS I AL PARC NATURAL DEL MONTGRÍ, LES ILLES MEDES I EL BAIX TER

MEMÒRIA 2018
Gestió i direcció del projecte:
Bernat Hereu Fina¹

Investigadors involucrats:
Eneko Aspillaga Cuevas¹
Jordi Boada García¹
Pol Capdevila Lanzaco¹
Cristina Linares Prats¹
Alba Medrano Cuevas¹
Marta Pagès Escolà¹
Marta Pérez Vallmitjana¹
Javier Romero Martínengo¹
Graciel·la Rovira Mestres¹
Neus Sanmartí Boixeda¹

¹. Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona. Av. Diagonal 643, 08028 Barcelona

Citar com:
Índex

Presentació .. 7
Introducció .. 9
 El Parc Natural de Cap de Creus ... 9
 El Parc Natural del Montgrí, les Illes Medes i el Baix Ter ... 10
 El seguiment del patrimoni natural com a guia per a la seva conservació 11
Bibliografia .. 13

Segueixment de les poblacions de peixos vulnerables a l'activitat pesquera 15
Introducció .. 16
Material i mètodes .. 17
 Estacions de mostreig ... 18
 Metodologia d'estudi .. 19
 Anàlisi de dades .. 23
Resultats ... 23
 Parc Natural de Cap de Creus .. 25
 Parc Natural del Montgrí, les Illes Medes i el Baix Ter .. 50
Discussió ... 77
 Parc Natural de Cap de Creus .. 77
 Parc Natural del Montgrí, les Illes Medes i el Baix Ter .. 80
Meridionalització ... 81
Conclusions ... 81
 Proposta de millors de gestió .. 82
Bibliografia .. 83
Seguiment de les poblacions de grans decàpodes .. 87
 Introducció .. 88
 Material i mètodes... 89
 Estacions de mostreig .. 89
 Metodologia d’estudi ... 91
 Resultats ... 93
 Parc Natural de Cap de Creus .. 93
 Parc Natural del Montgrí, les Illes Medes i el Baix Ter .. 95
 Discussió .. 97
 Parc Natural de Cap de Creus .. 97
 Parc Natural del Montgrí, les Illes Medes i el Baix Ter .. 99
 Altres grans decàpodes ... 102
 Conclusions .. 102
 Parc Natural de Cap de Creus .. 102
 Parc Natural del Montgrí, les Illes Medes i el Baix Ter .. 102
 Recomanacions per a la gestió .. 103
 Bibliografia ... 103

Seguiment de les praderies de posidònia i de les poblacions de nacres 105
 Introducció .. 106
 Material i mètodes... 109
 Els herbeis de Posidonia oceanica ... 109
 Les poblacions de Pinna nobilis .. 113
 Estacions de mostreig ... 114
 Descripció d’una campanya tipus ... 118
 Campanyes 2018 .. 120
 Anàlisi de dades ... 121
 Resultats .. 122
 Cap de Creus .. 122
 Montgrí - Medes .. 147
 Discussió .. 158
 Aspectes metodològics ... 158
 Valoració de l’estat actual de les praderies .. 160
Presentació

Aquesta memòria recull els resultats del grup de treball del Departament d’Ecologia de la Universitat de Barcelona relatiu al seguiment del medi marí al Parc Natural de Cap de Creus i al Parc Natural del Montgrí, les Illes Medes i el Baix Ter de l’any 2018, tal i com consta al plec de prescripcions amb expedient PTOP-2017-130 en compliment de la llei 19/1990 de 10 de desembre del Parlament de Catalunya, i amb les millorres proposades a l’oferta tècnica homònima.

Els resultats dels treballs de camp tenen com a objectiu central l’avaluació de l’estat de les poblacions i dels hàbitats marins en relació tant amb les activitats humanes que es duen a terme als espais naturals estudiats com amb els factors ambientals. Així mateix s’analitza la seva evolució en el temps dels descriptors i s’intenta avaluar l’efecte de la protecció. El darrer objectiu és de detectar altres situacions de risc pel patrimoni natural com podrien ser l’arribada d’espècies aliens o invasores o bé els possibles efectes del canvi climàtic.

- Peixos vulnerables a l’activitat pesquera
- Poblacions de grans decàpodes
- Praderies de posidònia i poblacions de nacres
- Prospeccions del fons marí
- Comunitats sensibles al canvi climàtic
Introducció

Les àrees marines protegides són una eina de gestió fonamental arreu del món per fer front a la degradació creixent dels ecosistemes litorals. Tanmateix, es tracta d’experiències relativament recents (sobretot si es té en compte la dinàmica de les espècies més longeves que poden arribar a tenir centenars d’anys) per saber realment quin grau de recuperació dels ecosistemes marins protegits es pot assolir i quina és la millor forma de regular-ne els usos. A Catalunya, els espais naturals protegits són una peça clau del patrimoni natural del país i tenen un paper preeminent cara a la conservació dels espais marins litorals, on la seva gestió es coordina seguint les figures de protecció establertes a la Llei 12/1985. Els espais marins protegits a Catalunya es basen en una gestió adaptativa, que implica l’avaluació periòdica del patrimoni natural cara a determinar l’efecte de les mesures endegades en la seva evolució i, per tant, es basa en el projecte de seguiment del medi marí al Parc Natural de Cap de Creus i al Parc Natural del Montgrí, les Illes Medes i el Baix Ter que ha d’aportar tota la informació rellevant per guiar correctament la gestió de les espècies i hàbitats que es troben dins aquests Parcs.

Els Parcs Naturals del Cap de Creus i del Montgrí, les Illes Medes i el Baix Ter i, concretament, les corresponents AMP, representen dues de les reserves marines més importants del litoral mediterrani. Salvant la singularitat, la comparació entre les illes Medes i la major part dels fons marins del cap de Creus amb qualsevol altre espai protegit és complexa, ateses les característiques especials d’aquests dos espais. La relació entre les mides de les àrees protegides, la quantitat del patrimoni natural present i la intensitat de les visites (sobretot en el cas de les illes Medes) determinen els trets característics de cadascun d’aquests espais. La intensitat d’utilització pels submarinistes d’esbarjo i un coneixement, en molts casos, encara imprecís sobre el comportament dels ecosistemes marins, representen el principal perill de degradació del patrimoni natural d’aquests espais.

El Parc Natural de Cap de Creus

Des d’un punt de vista geomorfològic, el cap de Creus està format per granits i esquists, una estructura força diferent d’aquella que caracteritza la costa del Montgrí, típicament calcària. A nivell climàtic, l’exposició a la tramuntana determina un clima relativament fred (hi trobem les aigües superficials més fredes de tota la Mediterrània Occidental) i corrents molt fortes. Mitjançant el Decret 328/1992 l’espai natural de Cap de Creus va ser inclòs dins del Pla d’Espais d’Interès Natural (PEIN) segons disposava la llei 12/1085 de 3 de juny. La protecció del Parc Natural de Cap de Creus arribà amb la Llei 4/1998 del 12 de març. L’àrea protegida s’estén des de la punta del Bol Nou, a cala Tamariua (Port de la Selva) fins a punta Falconera (Roses) amb l’exclusió de la badia de Cadaqués. Es tracta d’una zona marina protegida que conté tres zones, amb una amplitud que va des de les 0,2 fins les 1,3 milles mar endins, separades per extenses àrees amb menor
protecció: Els Farallons (entre el Brescó i la punta dels tres Frares), el cap de Creus (entre l’illa del Culleró i cala Jugadora) i el cap Norfeu. Finalment es creà una reserva natural integral marina al nord de l’illa de s’Encalladora.

Al Parc Natural de Cap de Creus, podem trobar diferents espais amb diferents nivells de protecció (Figura 1a): el Parc Natural (PN) on la pesca, inclosa la pesca submarina, està permesa amb poques limitacions; la Reserva Natural Parcial (RNP) on està permesa la pesca, tant professional com esportiva, però està prohibida la pesca submarina; i la Reserva Natural Integral (RNI) on es prohibeix qualsevol activitat, tant extractiva com no, inclent l’accés d’embarcacions i la immersió, a exceptió de la immersió amb motius científics, i que requereix permís previ de l’Administració del Parc.

El Parc Natural del Montgrí, les Illes Medes i el Baix Ter

El Montgrí és un massís calcari situat entre la badia de Pals i el Golf de Roses. Les illes Medes sorgeixen com a prolongació sud del massís i, tot i tenir una extensió força reduïda, són les illes més grans de tot el litoral català. La natura calcària del massís afavoreix la presència de coves submergides que augmenten la complexitat d’un espai ja per si mateix variegat. Les mesures de protecció a les Illes van entrar en vigor el 1983, amb una Ordre de la Generalitat de Catalunya que establia la Reserva Marina de les Illes Medes i que comportava restringir l’activitat. El 1985 una resolució establia normes de compliment obligatori a la zona vedada i el 1990 i la Llei 19/1990 va convertir-se en el marc jurídic de la protecció i conservació de la flora i fauna del fons marí de les illes Medes i del tros de costa del Montgrí, entre la roca del Molinet i la Punta Salines.

Finalment, El Parc Natural del Montgrí, les Illes Medes i el Baix Ter es va crear per la llei 15/2010, de 21 de maig de 2010, amb l’objectiu principal d’unificar la normativa de protecció dels tres espais que conformen el Parc Natural (massís del Montgrí, les Illes Medes i el Baix Ter). En aquest espai protegit podem trobar diferents zones amb diferents nivells de protecció (Figura 1b): 1) la zona de Parc Natural (PN) a la costa del Montgrí entre la punta del Milà i la punta Salines, on la pesca, inclosa la pesca submarina és permesa; 2) la Zona Perifèrica de Protecció (ZPP) que correspon al tram de costa entre punta Milà i punta del Molinet, on la pesca submarina és prohibida; i 3) la Reserva Natural Parcial (RNP), que comprèn les illes Medes, on no es permet cap tipus d’activitat pesquera. La normativa específica dels usos i activitats de la zona estan regulats pel Pla Rector d’Usos i Gestió recollit aprovat el 2008 (en el Decret 222/2008, d’11 de novembre, pel qual s’aprova el Pla rector d’ús i gestió de l’àrea dels ilots de les Illes Medes), i que recentment ha estat modificat en els seus annexes 1 i 6 (ORDRE AAM/112/2015, de 30 d’abril). En aquesta nova normativa s’ha determinat la zona de l’ilot del Medallot com a Zona de Control (ZC). D’aquesta manera, i per primer cop, es delimita una zona on s’hi anul·len els possibles efectes derivats de la pràctica del busseig i es regula el nombre de submarinistes segons el grau de fragilitat de les comunitats en les que s’hi desenvolupa aquesta activitat. Aquesta normativa preveu que aquest nombre pugui anar canviant al llarg del temps en funció de la informació que es vagi obtenint sobre l’estat de conservació es comunitats i l’impacte del submarinisme sobre els fons.
Figura 1. Localització i zonació de la part marina del Parc Natural de Cap de Creus i Parc Natural del Montgrí, Illes Medes i Baix Ter. Els colors indiquen els diferents graus de protecció. PN: zona de Parc Natural (blau), RNP: zona de Reserva Natural Parcial (groc), ZPP: Zona Perifèrica de Protecció (verd), RNI: zona de Reserva Natural Integral (vermell) i ZC: Zona de Control (taronja). Les coordenades estan referides al sistema Fus 31 del datum ETRS89.

El Parc Natural del Montgrí, les Illes Medes i el Baix Ter i, en segon terme, el Parc del Cap de Creus han esdevingut uns atractius turístics de primer ordre en les darreres dècades. L'efecte del turisme que practica el busseig i, en menor grau, altres activitats recreatives, ha tingut cada cop un pes més important sobre l'economia dels municipis de les àrees en qüestió, fins al punt que, tot sovint, s’han priorititzat les necessitats econòmiques sobre la protecció del medi natural. En concret, la conservació del patrimoni natural de la Reserva de les Illes Medes, ha esdevingut un objectiu molt important no sols des d'una perspectiva conservacionista, sinó també des d'una perspectiva econòmica.

El seguiment del patrimoni natural com a guia per a la seva conservació

El primer pas necessari per la conservació d’un patrimoni natural és la seva catalogació. Aquest objectiu va ser parcialment assolit ja fa dues dècades amb l'edició del llibre Els Sistemes Naturals de les Illes Medes, publicat per l'Institut d'Estudis Catalans sota la iniciativa del nostre Departament (Ros et al., 1984). Però és important tenir en compte que aquest tipus de catàlegs no existeix per al Parc Natural de Cap de Creus. El segon pas és l’estudi de l’evolució d’aquest patrimoni per tal d’estimar si, al llarg del temps, hi ha una capitalització o bé una pèrdua de patrimoni. Per a aquest objectiu fa falta més informació detallada i una metodologia escaient per a la quantificació dels possibles canvis. Per aquesta raó el nostre grup de treball va desenvolupar metodologies
específiques per a la monitorització d’una sèrie de paràmetres que permetessin diagnosticar l’evolució del patrimoni natural.

Com és impossible a nivell logístic i econòmic plantejar un seguiment de totes les espècies i hàbitats marins litorals que trobem en aquests espais, els esforços s’han centrat des dels inicis en algunes espècies i hàbitats marins concrets. Molts d’aquests organismes són peces clau en el funcionament dels ecosistemes marins, per varyes raons: són peces clau de la xarxa tròfica (per ex. són important preses o depredadors), han sigut o són l’objecte d’una pesca intensiva (per ex. les llagostes o corall vermell), constitueixen elements d’alt atractiu turístic (per ex. alguns grans peixos o les gorgònies), estan patint certa regressió per causes lligades al canvi climàtic (per ex. algunes espècies de cnidaris i d’algues), i, tot plegat, perquè són part del nostre patrimoni natural.

Tots aquests valors tant ecològics, com econòmics, culturals, o estètics representen això que avui en dia s’anomenen serveis ecosistèmics. Els descriptors triats per a aquest seguiment intenten, justament, d’avaluar l’evolució patrimonial dels principals serveis ecosistèmics a les àrees protegides.

Des de l’any 1990, concretament, el seguiment es va centrar en una sèrie d’espècies seleccionades: el corall vermell, *Corallium rubrum*; la gorgònia vermella, *Paramuricea clavata*; la garota comuna, *Paracentrotus lividus*; la llagosta vermella, *Palinurus elephas*; el nero, *Epinephelus marginatus* i tres comunitats emblemàtiques: l’herbei de posidònia, coral·ligen i la ictiofauna, que varen servir de línia de base, o situació zero, per estudiar llur evolució posterior. Aquests estudis s’han anat ampliant amb altres descriptors, com els briozous o les comunitats algals, i el 2003 es van estendre al Parc Natural de Cap de Creus. Podem afirmar que la sèrie de dades acumulada des de 1990 és la més llarga obtinguda mai en un espai protegit submarí mediterrani, i ha estat presa com a model per altres espais protegits, òrgans gestors i associacions internacionals com MEDPAN.

La gran quantitat d’informació obtinguda sobre l’evolució de les espècies i comunitats indicadores han permès descriure la dinàmica de les seves poblacions al llarg de tot aquest temps, pràcticament, d’any en any. Aquesta informació té un valor incalculable, d’una banda permet detectar canvis en les trajectòries poblacionals i estudiar-ne les possibles causes, i d’altra ens ajuda a conèixer els diferents nivells de protecció influencien la dinàmica de les poblacions de nombroses espècies d’interès. A banda de les aplicacions òbvises cara a la gestió dels espais naturals com ara i per primera vegada a la Mediterrània, l’estudi de l’efecte d’erosió involuntària per part dels visitants subaquàtics de la fauna invertebrada fixada al fons (Sala et al., 1997; Garrabou et al., 1998; Coma et al., 2004; Linares et al., 2012) o l’aportació de criteris quantitatius, tant per a la selecció dels llocs més idonis, com per a la delimitació de les intensitats d’ús que aquestes comunitats poden suportar, les recerques paral·leles estimulades pels seguiments han permès entendre millor la biologia i ecologia de les espècies i comunitats estudiateix així com fer nombrosos descobriments de gran rellevància científica. A tall d’exemple, podem esmentar la descripció del cicle reproductor de la gorgònia *Paramuricea clavata* (Coma et al. 1995; Linares et al. 2008), el comportament reproductor i de la fresa del nero *Epinephelus marginatus* (Zabala et al. 1997a,b), el període i el microhàbitat d’assentament al fons de la llagosta *Palinurus elephas* (Díaz et al. 2001), o el desenvolupament de tècniques de restauració pel corall vermell *Corallium rubrum* (Montero-Serra et al. 2018). A més, el seguiment ha estimulat l’elaboració de tesi.
doctorals, que entre d’altres temes, han abordat l’estudi dels factors que condicionen el desenvolupament de les poblacions de peixos (García-Rubies, 1997), han permès desenvolupar un model de les interaccions entre algues, garotes i peixos (Sala, 1996; Hereu, 2004), el cicle biològic de les llagostes (Díaz, 2010) o descriure la dinàmica poblacional (Coma, 1994; Garrabou, 1997; Linares, 2006) i l’alimentació (Coma, 1994; Ribes, 1998) dels organismes dominants a les comunitats del coral·ligen. La informació resumida de tota la recerca realitzada aplicada a la gestió fruit del programa de seguiment va ser revisada el 2012 amb el llibre El fons marí de les illes Medes i el Montgrí. Quatre dècades de recerca per a la conservació, editat per la càtedra d’ecosistemes litorals Mediterranis, del Museu de la Mediterrània de Torroella de Montgrí (Hereu i Quintana, 2012).

A la present memòria es presenten els resultats del seguiment de 5 descriptors dels Parc Natural del Montgrí, les Illes Medes i el Baix Ter i del Parc Natural de Cap de Creus. Aquests són: les poblacions de peixos vulnerables a la pesca, els grans decàpodes, les praderies de posidònia i les poblacions de nacres, les prospeccions del fons marí de la costa nord-est del Cap de Creus i les poblacions i comunitats sensibles al canvi climàtic. L’objectiu final d’aquest informe és avaluar l’estat actual d’aquestes poblacions i comunitats i en la mesura del possible incorporar aquestes dades a la sèrie temporal, per a conèixer la seva evolució, i així poder realitzar una correcta diagnosi de l’estat de conservació del patrimoni natural dins dels Parcs marins de Catalunya. Aquests resultats han de servir de guia per establir les mesures de gestió necessàries a realitzar dins del Parc Natural de Parc Natural de Cap de Creus i Parc Natural del Montgrí, les Illes Medes i Baix Ter per realitzar una correcte gestió adaptativa en cadascun d’aquests espais protegits.

Bibliografia

Seguiment de les poblacions de peixos vulnerables a l’activitat pesquera

Eneko Aspillaga, Mikel Zabala, Pol Capdevila, Graciellà Rovira, Antoni García-Rubies i Bernat Hereu

- La biomassa de les poblacions de peixos vulnerables a la pesca presenten la mateixa tendència dels últims anys, mostrant un cert augment a les zones de RNP i RNI de Cap de Creus i estabilitat al Montgrí i les Medes.

- L’increment de la biomassa i les densitats d’espècies vulnerables a Cap de Creus es principalment deguda a l’augment del nombre de neros i déntols a l’estació de Massa d’Or.

- La zona de ZPP del Montgrí segueix sense mostrar cap tipus de recuperació, segurament degut a la petita extensió d’habitats apropriats que cobreix aquesta zona i la seva connectivitat amb les zones de PN.

- Les figures de protecció més efectives són les zones on es prohibeix la pesca submarina.

- Es recomana restringir la pesca submarina dins de l’àmbit dels Parc Naturals de Catalunya.

Aquest capítol ha de ser citat com:

Introducció

L’activitat pesquera és una de les principals fonts d’impactes sobre els ecosistemes marins (Halpern et al. 2004). Les poblacions de peixos, en especial les litorals, es troben sota una forta pressió d’explotació; moltes presenten els símptomes clàssics de la sobrepesca i algunes poden donar-se pràcticament com a desaparegudes (Dayton 1998; Jackson et al. 2004). Aquesta situació és el resultat de milers d’anys d’explotació dels recursos, però s’ha vist agreujada durant l’últim segle pels avanços de la industrialització i la revolució tecnològica, que han permès la optimització dels mètodes de captura, no només de les pesqueries comercials, sinó també de les recreatives.

La pesca esportiva és una de les principals activitats d’oci que es practiquen en les àrees marines de la Mediterrània (Font i Lloret 2014), que està incrementant el nombre de practicants com a conseqüència de l’augment del turisme de costa i la popularització de la nàutica esportiva (Arlinghaus et al. 2015). Estudis recents demostren que la pesca esportiva pot explotar els recursos pesquers a nivells molt més elevats del que es pensava (Lloret et al. 2008, Font i Lloret 2014) i que pot arribar a generar efectes ecològics semblants als de la pesca comercial (Lewin et al. 2016). Entre les diferents modalitats dins la pesca recreativa, cal destacar la pesca submarina, possiblement la més selectiva de totes, que ha tingut una influencia molt notable en l’enrariment d’algunes espècies concretes (Coll et al. 2004; Lloret et al. 2008).

Les espècies més afectades per l’activitat pesquera són les espècies dels nivells tròfics més alts (piscívors), que presenten talles grans, un creixement lent i un caràcter marcadament sedentari. Aquestes característiques fan que aquestes espècies siguin altament vulnerables, ja que redueixen la capacitat de recuperació de les seves poblacions en períodes de temps curts (Myers i Worm 2005). A més, altres peculiaritats biològiques també poden tenir un efecte negatiu, com per exemple el caràcter hermafrodita proterògina d’algunes espècies com el nero (Epinephelus marginatus). Les modalitats de pesca altament selectives, com la pesca submarina, estan dirigides a la captura dels individus més grossos, és a dir, els mascles. La desapaèri de dels grans mascles compromet seriósament la capacitat reproductiva de les poblacions, no només per la pèrdua directa d’efectius altament fèrtils, sinó també per la reducció de la talla a la qual ocorre el canvi de sexe, la qual cosa limita la talla màxima que poden assolir les femelles (Provost i Jensen 2015).

Per altre banda, la desapaèri de certes espècies clau, com les espècies piscívores i carnívores de nivell tràfics superiors, pot generar efectes en cascada que poden alterar tot l’ecosistema (Estes et al. 2011). Un exemple clar a la Mediterrània és la formació de blancalls, paisatges empobrits i menys productius, generats per la sobrepastura per part d’herbívoros (principalment garotes), derivada de la desapaèri dels seus principals depredadors, els peixos (Sala et al. 1998).

Les reserves marines constitueixen la principal eina de gestió per afrontar l’efecte de la sobrepesca sobre les poblacions de peixos litorals. En l’actualitat, l’efectivitat d’aquestes figures de protecció per a recuperar les densitats i biomasses de les espècies explotades es pot considerar plenament demostrada (Guidetti i Sala 2007; Roberts et al. 2018). En molts casos, l’existència de reserves...
memòria 2018

El seguiment de peixos vulnerables a l'activitat pesquera es realitza mitjançant censos visuals amb escafandre autònom (Harmelin-Vivien et al. 1985), seguint la mateixa metodologia que s'ha fet servir des de l'inici del seguiment de les Reserva Marines de les Illes Medes i el Cap de Creus (Garcia-Rubies et al. 1991-2008; Hereu et al. 2014, 2016). El seguiment es centra en les espècies de peixos considerades com altament vulnerables (Figura 1) i moderadament vulnerables (Figura...
2) a l’activitat pesquera, així com en altres espècies d’interès, principalment grans piscívors, que poden aparèixer esporàdicament a l’àrea d’estudi.

![Imatge de diverses espècies de peixos](image)

Figura 1. Principals espècies altament vulnerables a la pesca objecte d’aquest d’estudi. A) Nero (*Epinephelus marginatus*); B) dentol (*Dentex dentex*); C) sarg imperial (*Diplodus cervinus*); D) llobarro (*Dicentrarchus labrax*); E) orada (*Sparus aurata*); F) corball, (*Scieaena umbra*).

Estacions de mostreig

Al Parc Natural de Cap de Creus es varen monitoritzar un total de 7 estacions, 1 a la Reserva Natural Integral (RNI), 3 dins de les Reserves Naturals Parcials (RNP) i 3 estacions a la zona de Parc Natural (PN) (Taula 1, Figura 3). Al Parc Natural del Montgrí, les Illes Medes i el Baix Ter es veren monitoritzar 11 estacions, 1 a la Zona de Control (ZC) del Medallot, 7 a la RNP, 2 a la Zona Perifèrica de Protecció (ZPP) i 4 a la zona de PN (Taula 1, Figura 4).
PEIXOS VULNERABLES A L’ACTIVITAT PESQUERA

Figura 2. Espècies mitjanament vulnerables a la pesca considerades en aquest estudi. A) sarg comú (*Diplodus sargus*); B) variada (*Diplodus vulgaris*); C) morruda (*Diplodus puntazzo*); D) càntara (*Spondylusoma cantharus*).

Metodologia d’estudi

El censos es realitzen sobre transsectes llargs, entre 450 i 700 m de llargada, paral·lels a la costa a una fondària de 15-20 m. Els transsectes es divideixen en trams consecutius de 5 minuts, en els quals els bussejadors neden a una velocitat constant per a recórrer uns 50 m de longitud. Al llarg d’aquests trams, s’identifiquen i comptabilitzzen tots els individus de les espècies objecte d’estudi (Taula 1) que es troben dins d’una amplada de 10 m (5 m a cada banda del recorregut del submarinista), aconseguint així rèpliques corresponents a una superfície mostrejada de 500 m2. Aquesta metodologia ens permet explorar un espai prou extens com per a poder observar, de manera significativa, les espècies més vulnerables, que poden ser difícils d’observar en àrees no protegides. La talla aproximada de tots els individus comptabilitzats s’estima de manera visual, en classes de talla de 2 cm per als individus més petits (< 40 cm) i classes de 5 cm per a les espècies que assoleixen talles més grans (> 40 cm).

Durant cada tram de 5 minuts, també s’apunten les principals variables ambientals que poden influir en l’abundància dels peixos objectes d’estudi: la fondària mitja, el tipus de substrat, la rugositat i el pendent. El tipus de substrat consisteix en la proporció aproximada de les tipologies principals de substrat: grans blocs (diàmetres superiors a 2 m), blocs mitjans (1–2 m de diàmetre), blocs petits (< 1 m de diàmetre), roca base, sorra i praderia de *Posidonia oceanica*. La rugositat del fons (*sensu* Lukhurst i Lukhurst 1978) s’estima de manera visual establint-se una escala de 4.
graus; 1: fons plans sense escletxes i anfractuositats aparents; 2: fons amb variacions verticals poc importants (menors de 2 m), amb poques escletxes i anfractuositats; 3: fons amb escletxes i anfractuositats de certa entitat, ocupant almenys un 25% de la longitud total del transsecte; 4: fons altament rugosos, amb escletxes i anfractuositats importants, més grans que la mida d'un submarinista. Finalment, la pendent de cada tram del transsecte també s’estima en base a una escala de l’1 al 4; 1: pendent entre 0° i 30°; 2: de 30° a 60°; 3: de 60° a 90°; 4: > 90° (superfícies extraplomades).

Taula 1. Estacions de mostreig de peixos vulnerables a la pesca de l’any 2018. Grau de protecció: Reserva Natural Integral (RNI), Zona de Control (ZC), Reserva Natural Parcial (RNP); Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN). Les coordenades geogràfiques estan referides al fus 31N del datum ETRS89.

<table>
<thead>
<tr>
<th>Parc</th>
<th>Prot</th>
<th>Estació</th>
<th>Codi estació</th>
<th>Rang fondària (m)</th>
<th>N trams</th>
<th>N repliques</th>
<th>Llargada approx. (m)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNI</td>
<td>Encalladora</td>
<td>ENCALL</td>
<td>12 - 18</td>
<td>8</td>
<td>3</td>
<td>570</td>
<td>07/2018</td>
<td></td>
</tr>
<tr>
<td>Cap de Creus</td>
<td>RNP</td>
<td>Tres Frares</td>
<td>TFRAR</td>
<td>10 - 16</td>
<td>8</td>
<td>2</td>
<td>623</td>
<td>07/2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Culip</td>
<td>CULIP</td>
<td>8 - 16</td>
<td>8</td>
<td>2</td>
<td>481</td>
<td>07/2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Massa d’Or</td>
<td>MASSA</td>
<td>8 - 18</td>
<td>10</td>
<td>2</td>
<td>770</td>
<td>07/2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cap Norfeu</td>
<td>CNORF</td>
<td>14 - 22</td>
<td>9</td>
<td>2</td>
<td>564</td>
<td>07/2018</td>
</tr>
<tr>
<td>PN</td>
<td></td>
<td>Portaló</td>
<td>PORTA</td>
<td>11 - 18</td>
<td>8</td>
<td>2</td>
<td>470</td>
<td>07/2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Illa Messina</td>
<td>MESSI</td>
<td>6 - 20</td>
<td>9</td>
<td>2</td>
<td>782</td>
<td>07/2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pta. Figuera</td>
<td>PFIG</td>
<td>12 - 21</td>
<td>8</td>
<td>2</td>
<td>638</td>
<td>07/2018</td>
</tr>
<tr>
<td>ZC</td>
<td>Medalot</td>
<td>MED</td>
<td>10 - 26</td>
<td>6</td>
<td>4</td>
<td>345</td>
<td>08/2018</td>
<td></td>
</tr>
<tr>
<td>RNP</td>
<td></td>
<td>Carall Bernat</td>
<td>TPCB</td>
<td>6 - 17</td>
<td>9</td>
<td>3</td>
<td>538</td>
<td>08/2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ferranelles</td>
<td>FETG</td>
<td>8 - 20</td>
<td>9</td>
<td>3</td>
<td>594</td>
<td>08/2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meda Petita</td>
<td>MP</td>
<td>8 - 18</td>
<td>10</td>
<td>1</td>
<td>621</td>
<td>08/2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meda Gran 1</td>
<td>ICV</td>
<td>10 - 24</td>
<td>11</td>
<td>1</td>
<td>527</td>
<td>08/2018</td>
</tr>
<tr>
<td>Medes i Montgrí</td>
<td>ZPP</td>
<td>Meda Gran 2</td>
<td>SCV</td>
<td>11 - 18</td>
<td>10</td>
<td>1</td>
<td>674</td>
<td>08/2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molinet</td>
<td>ARQMOL</td>
<td>10 - 21</td>
<td>9</td>
<td>3</td>
<td>574</td>
<td>08/2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arquets</td>
<td>PSALARQ</td>
<td>12 - 22</td>
<td>8</td>
<td>3</td>
<td>471</td>
<td>08/2018</td>
</tr>
<tr>
<td>PN</td>
<td></td>
<td>Dui</td>
<td>FALDUI</td>
<td>9 - 18</td>
<td>8</td>
<td>3</td>
<td>570</td>
<td>08/2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Falaguer</td>
<td>ROSFAL</td>
<td>12 - 26</td>
<td>10</td>
<td>3</td>
<td>664</td>
<td>08/2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cap Castell</td>
<td>PAMO</td>
<td>13 - 19</td>
<td>8</td>
<td>1</td>
<td>596</td>
<td>08/2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cala Ferró</td>
<td>FERRI</td>
<td>12 - 19</td>
<td>8</td>
<td>1</td>
<td>523</td>
<td>08/2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pta. del Milà</td>
<td>MILA</td>
<td>11 - 17</td>
<td>8</td>
<td>1</td>
<td>503</td>
<td>08/2018</td>
</tr>
</tbody>
</table>
Figura 3. Estacions de mostreig (transsectes) de peixos vulnerables a l’activitat pesquera al Parc Natural de Cap de Creus de l’any 2018. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).
Figura 4. Estacions de mostreig (transsectes) de peixos vulnerables a l’activitat pesquera al Parc Natural del Montgrí, les Illes Medes i el Baix Ter de l’any 2018. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).

Amb la finalitat de reduir la possible variabilitat que pugui haver degut a les condicions ambientals trobades cada dia de mostreig, els transsectes més representatius de cada zona han estat replicats en dies diferents (Taula 1). Tot i no estar determinat al plec de prescripcions tècniques, és important comparar i integrar en els anàlisis de dades els censos de dies diferents per a obtenir resultats consistents.
Tots els transsectes han estat filmats amb una càmera submarina GoPro4© pels submarinistes que realitzaven els censos. Aquestes filmacions ens permeten tenir un registre gràfic de cada cens, i ens han ajudat a determinar el nombre detallat d’individus en agrupacions nombroses i a verificar la presència d’espècies rares o que no hagin pogut ser correctament identificades als censos.

Anàlisi de dades

La biomassa de les espècies estudiades a cada tram es va calcular a partir de les estimes de les talles aplicant l’equació exponencial que relaciona els dos paràmetres:

\[W = a \cdot L^b \]

on \(W \) és la biomassa, \(L \) és la longitud total de l’individu, i \(a \) i \(b \) són dos coeficients especifics per a cada espècie. Els coeficients es van extreure de estudis previs realitzats al nord-oest de la Mediterrània (Morey et al. 2003; Crec’hriou et al. 2012) i de la base de dades FishBase (Froese i Pauly, 2018).

Amb les dades obtingudes, es van calcular les densitats i biomasses mitjanes de cada espècie per a cada estació i nivell de protecció. Les diferències entre estacions i nivells de protecció es varen testar utilitzant un model lineal generalitzat (GLM), assumint una distribució de “quasipoisson” i un posterior test de Tukey.

Per a analitzar si hi havia diferencies qualitatives importants entre els graus de protecció es va fer un anàlisi multivariant de coordenades principals (PCoA) i de similituds (ANOSIM), utilitzant l’abundància de totes les espècies censades a cada tram dins dels transsectes. Posteriorment, per tal de veure quines espècies eren les responsables principals de les diferencies observades, es va fer un anàlisi de percentatge de similituds (SIMPER). Finalment, també es va realitzar un anàlisi de redundància basat en distàncies (RDA) per a testar l’efecte del substrat sobre la composició de la comunitat de peixos a cada estació, utilitzant com a variables la fondària, pendent, rugositat i el percentatge de cada tipologia d’habitat.

Tots els càlculs i anàlisi estadístics han estat realitzats utilitzant el software de programari lliure “R” (R Core Team, 2018) i el paquet “vegan” per aquest mateix software (Oksasen et al. 2018).

Resultats

Aquest any s’ha observat un total de 29 espècies, 20 al Parc Natural de Cap de Creus i 26 al Parc Natural del Montgrí, les Illes Medes i el Baix Ter (Taula 2). Aquestes espècies corresponen a les espècies altament i moderadament vulnerables a l’activitat pesquera, així com a altres espècies de grans piscívors o d’interès particular.
Taula 2. Llista d’espècies, ordenades alfabèticament, que han estat observades durant els censos de l’any 2018 a les dues àrees d’estudi, el Parc Natural de Cap de Creus i el Parc Natural del Montgrí, les Illes Medes i el Baix Ter. La columna "Vulnerabilitat" indica les espècies que han estat considerades als posteriors anàlisis com alta i moderadament vulnerables a la pesca, i l’asterisc assenyala les espècies considerades com a grans piscívors.

<table>
<thead>
<tr>
<th>Espècie</th>
<th>Vulnerabilitat</th>
<th>Cap de Creus</th>
<th>Medes i Montgrí</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chelon labrosus</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Conger conger</td>
<td></td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Dasyatis pastinaca</td>
<td></td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Dentex dentex</td>
<td>Alta</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dentex gibbosus</td>
<td>Alta</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Dicentrarchus labrax</td>
<td>Alta</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Diplodus annularis</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Diplodus cervinus</td>
<td>Alta</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Diplodus puntazzo</td>
<td>Moderada</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Diplodus sargus</td>
<td>Moderada</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Diplodus vulgaris</td>
<td>Moderada</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Epinephelus marginatus</td>
<td>Alta</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Labrus merula</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Labrus mixtus</td>
<td></td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Labrus viridis</td>
<td></td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Mola mola</td>
<td></td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Muraena helena</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mycteroperca rubra</td>
<td>Alta</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Myliobatis aquila</td>
<td></td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Pagrus pagrus</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phycis phycis</td>
<td></td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Sarda sarda</td>
<td></td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Sciaena umbra</td>
<td>Alta</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Scorpaena scrofa</td>
<td></td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Seriola dumerili</td>
<td></td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Sparus aurata</td>
<td>Alta</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sphyraena viridensis</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Spondyliosoma cantharus</td>
<td>Moderada</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Torpedo marmorata</td>
<td></td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>20</td>
<td>26</td>
</tr>
</tbody>
</table>
Parc Natural de Cap de Creus

Patró general

El nombre d’espècies observades va variar entre estacions. Les estacions en les que es va observar un major nombre d’espècies per unitat de mostreig van ser Massa d’Or i Cap Norfeu a la RNP i Punta Figuera dins de la zona de PN (Figura 5). Al fer un anàlisi general agrupant les estacions per grau de protecció, les estacions de la RNP són les que van presentar un major nombre d’espècies mitjà, mentre que a les zones de RNI i PN els valors van ser significativament inferiors (Figura 5).

La biomassa de les espècies altament vulnerables censades va mostrar diferències molt marcades entre estacions (Figura 6). L’estació de la Massa d’Or va presentar uns valors de biomassa molt més elevats que la resta d’estacions, degut, sobre tot, a la gran abundància de neros (*Epinephelus marginatus*) i déntols (*Dentex dentex*). A l’analitzar la biomassa per nivell de protecció, es va observar una major biomassa d’espècies vulnerables a les zones de RNP i RNI, sense diferències significatives entre elles, respecte a les zones de PN.
Figura 6. Biomassa total d’espècies altament vulnerables a la pesca (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural de Cap de Creus a l’any 2018. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).

L’evolució temporal de la biomassa total d’espècies altament vulnerables a la pesca mostra un augment a la RNP durant els darrers anys de seguiment (Figura 7). També s’observa un cert augment de la biomassa a la RNI, encara que els valors estan molt per sota dels observats a la RNP. Les zones de PN segueixen sent les que mostren els valors més baixos, sense cap tendència positiva.

Figura 7. Evolució temporal de la biomassa total d’espècies altament vulnerables a la pesca (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural de Cap de Creus. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).
Al considerar les espècies piscívores, les diferències observades anteriorment es van reduir degut a la presència ocasional de grans bancs d’espets (*Sphyraena viridensis*) a les estacions de la Massa d’Or i Messi (Figura 8). Degut a la variabilitat afegida donada per aquests bancs d’espets, enguany no es van trobar diferències significatives en quant a la biomassa d’espècies piscívores entre els diferents graus de protecció del Parc Natural del Cap de Creus.

Figura 8. Biomassa total d’espècies piscívores (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural de Cap de Creus a l’any 2018. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).

L’evolució temporal de la biomassa d’espècies piscívores mostra, en general, valors superiors a la RNP respecte a les zones RNI i PN. No obstant això, mentre que aquest any la biomassa s’ha mantingut estable a la RNP, ha experimentat una pujada a les zones de RNI i PN, apropant-se als valors enregistrats a la RNP (Figura 9).

Figura 9. Evolució temporal de la biomassa total d’espècies piscívores (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural de Cap de Creus. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).
Espècies altament vulnerables

Epinephelus marginatus

El nombre i la biomassa de neros va mostrar diferències estadísticament significatives entre les estacions mostrejades (Figura 10). L’estació de la Massa d’Or va destacar sobre les altres, ja que va ser on, un any més, es va enregistrar la major densitat de neros de tot el parc. No obstant això, aquesta estació va mostrar una gran variabilitat, deguda a que la majoria dels individus es van observar en uns pocs trams de tot el recorregut. Aquests trams a on els neros tendeixen a agruparse corresponen a la zona de barres rocoses que es troben en el freu entre la Massa d’Or i l’illa de s’Encalladora. Les estacions de Cap Norfeu i Encalladora també van mostrar densitats i biomasses superiors a la resta, però molt inferiors a les de la Massa d’Or. L’abundància de nero a les zones de PN va ser pràcticament nul·la; només es van comptabilitzar dos individus a l’estació de Punta Figuera. A l’analitzar les densitats i biomasses de nero per nivell de protecció, no es van trobar diferències significatives entre les zones RNI i RNP, degut a la gran variabilitat que hi havia entre estacions, mentre que les zones de PN van mostrar valors significativament inferiors, propers al zero (Figura 10).

![Figura 10. Densitat (dalt) i biomassa (baix) de nero (Epinephelus marginatus) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural de Cap de Creus. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).](image_url)
L’estructura de talles de les poblacions de neros del Parc Natural de Cap de Creus va mostrar una talla mitjana de aproximadament 70 cm a les zones de RNP i PN, amb un domini de les classes de talla d’entre 60-80 cm (Figura 11). La talla màxima observada enguany va ser de 110 cm, corresponent a grans mascles. Aquesta distribució de talles va ser molt semblant a l’observada en anys anteriors. A la zona de PN, només es van observar dos individus de 50 cm.

![Figura 11](image1)

Figura 11. Estructures de talles de nero (*Epinephelus marginatus*) observades als diferents graus de protecció del Parc Natural de Cap de Creus a l’any 2018. La barra de la zona PN correspon a dos individus observats a l’estació de Punta Figuera. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).

Aquest any s’han enregistrat les majors densitats i biomasses de neros de tota la sèrie de dades a les zones de RNI i RNP (Figura 12), seguint la tendència de pujada que es porta observant des de l’any 2014. La zona de PN no ha mostrat cap signe de recuperació al llarg dels anys de seguiment, amb densitats i biomasses de neros pràcticament nul·les (Figura 11).

![Figura 12](image2)

Figura 12. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de nero (*Epinephelus marginatus*) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural de Cap de Creus. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).
Dentex dentex

Les densitats i biomasses de déntols van mostrar una gran variabilitat, tant entre estacions com dins dels transectes (Figura 13). Els valors més elevats es van observar a les estacions de Massa d’Or (RNP), Punta Figuera (PN) i Cap Norfeu (RNP). Aquestes mateixes van presentar també una major variabilitat interna, degut a l’aparició dels individus agrupats en únicament alguns trams dels transectes. Les densitats i les biomasses a la resta d’estacions van ser molt baixes. Degut a aquesta variabilitat observada entre les estacions, no es van trobar diferencies significatives a l’anàlisi per grau de protecció.

![Figura 13. Densitat (dalt) i biomassa (baix) de déntol (*Dentex dentex*) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural de Cap de Creus. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).](image)

L’estructura de talles de les poblacions va mostrar una distribució semblant als diferents graus de protecció (Figura 14). La talla mitja des individus es va ser d’aproximadament 45-50 cm, amb una predomínància de les classes de talla d’entre 40-60 a totes les zones. Cal destacar el major nombre
d’individus de talla gran (classes de 60-70 cm i 70-80 cm) que es van observar a la zona de PN (sobretot a l’estació de Punta Figuera).

Figura 14. Estructures de talles de déntol (*Dentex dentex*) observades als diferents graus de protecció del Parc Natural de Cap de Creus a l’any 2018. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).

L’evolució temporal del déntol al Parc Natural de Cap de Creus mostra certes fluctuacions al llarg dels anys estudiats (Figura 15). Cap destacar la forta pujada observada a la zona de PN, que dels valors baixos observats als any 2014 i 2016, ha passat a mostrar densitats i biomasses tant elevades com les de la RNP. Aquesta pujada ha estat deguda al gran nombre de individus observats enguany a l’estació de Punta Figuera. La RNP mostra valors similars als observats a l’any 2016, lleugerament més elevats que els d’anys previs. Els valors que s’han observat a la RNI són dels més baixos i els menys variables de tota la sèrie de dades.

Figura 15. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de déntol (*Dentex dentex*) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural de Cap de Creus. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).
Diplodus cervinus

Les densitats i biomasses de sarg imperial van mostrar valors molt modests en gairebé totes les estacions, exceptuant la Massa d’Or i Punta Figuera (Figura 16). A l’anàlisi realitzat per grau de protecció es van observar densitats i biomasses significativament més elevades a la RNP en comparació amb el PN, mentre que la RNI va mostrar valors entremitjos (Figura 16).

![Gràfics mostra densitat i biomassa de sarg imperial per estació i grau de protecció](image)

Figura 16. Densitat (dalt) i biomassa (baix) de sarg imperial (*Diplodus cervinus*) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural de Cap de Creus. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).

L’estructura de talles del sarg imperial va mostrar una distribució de talles homogènia a tots els graus de protecció, amb una talla mitjana al voltant dels 45 cm i una talla màxima de 50 cm (Figura 17). Aquests resultats difereixen amb els observats al seguiment de l’any 2016, a on es varen trobar individus de mida més petita a les zones de RNI i PN en comparació amb la RNP, on van presentar una distribució molt semblant a la d’enguany.
Figura 17. Estructures de talles de sarg imperial (*Diplodus cervinus*) observades als diferents graus de protecció del Parc Natural de Cap de Creus a l’any 2018. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).

L’evolució temporal de les poblacions de sarg imperial no mostra cap patró remarcable (Figura 18). Aquest any es va observar un increment de la biomassa respecte l’any 2016 en tots els graus de protecció, però els valors es trobaven dins dels rangs observats prèviament a la sèrie de dades.

Figura 18. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de sarg imperial (*Diplodus cervinus*) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural de Cap de Creus. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).
Dicentrarchus labrax

A tots els transsectes realitzats enguany únicament es varen observar 17 exemplars de llobarro, distribuïts en tots els graus de protecció (9 a la RNP, 4 a la RNI i 4 al PN). Aquest nombre d'individus, tot i ser més elevat que l'observat en anys previs (al 2014 i 2016 només es va observar un exemplar per any), és encara molt baix i genera molta variabilitat, fet que evita que es puguin trobar diferències significatives entre estacions o graus de protecció, tant en la densitat com a la biomassa (Figura 19).

![Figura 19. Densitat (dalt) i biomassa (baix) de llobarro (*Dicentrarchus labrax*) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural de Cap de Creus. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).]

La estructura de talles que es va poder obtenir a partir dels pocs individus de llobarro observats enguany va mostrar una distribució unimodal, amb una talla mitja de 44 cm i una talla màxima de 60 cm (Figura 20).
Figura 20. Estructures de talles de llobarro (*Dicentrarchus labrax*) observades als diferents graus de protecció del Parc Natural de Cap de Creus a l’any 2018. La barra de la zona RNI correspon a un únic individu observat a l’estació de Encalladora. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).

Per tant, les densitats i biomasses de llobarro que s’han observat enguany presenten una lleugera recuperació després de la progressiva disminució que ha estat patint aquesta espècie al Parc Natural de Cap de Creus (Figura 21), encara que també pot ser que es tracti d’una pujada puntual. S’haurà d’esperar als propers períodes de seguiment per a comprovar aquets fet.

Figura 21. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de llobarro (*Dicentrarchus labrax*) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural de Cap de Creus. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).
Sparus aurata

La distribució d’orades va ser força similar a totes les estacions del Parc Natural de Cap de Creus, amb valors relativament baixos, exceptuant l’estació del Portaló, a la zona de PN, a on no es va observar cap exemplar (Figura 22). L’estació que va presentar unes densitats i biomasses majors va ser la de la Massa d’Or, encara que aquest valors no diferien significativament respecte a la resta d’estacions de la RNP i les de la zona de PN. De manera similar, no es va trobar cap diferència significativa entre les densitats i biomasses dels diferents graus de protecció.

![Figura 22](image)

Figura 22. Densitat (dalt) i biomassa (baix) d’orada (*Sparus aurata*) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural de Cap de Creus. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-value < 0.01) segons el test de Tukey. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).

Les classes de talla de les orades observades al Cap de Creus van mostrar una distribució diferent en funció del grau de protecció (Figura 23), encara que la talla mitjana a les tres zones va ser molt similar (36 cm). Les classes de talla predominants a les zones de RNI i PN van ser les de 40-45 cm i 35-40 cm, respectivament. A la zona RNP no va haver cap predominança clara de cap classe de talla, sent els individus petits (20-25 cm) tant abundants com els més grans (50-55 cm). En
aquesta última zona també es varen observar uns pocs exemplars de talles més grans, arribant als 60 cm de longitud total. Les dades d’enguany van ser força diferents en comparació a les de l’any 2016, on la classe de talla més abundant a la zona de PN va ser la de 25-30 cm i la proporción de individus petits a la zona de RNP va ser més petita en comparació a la de individus més grans.

Figura 23. Estructures de talles d’orada (*Sparus aurata*) observades als diferents graus de protecció del Parc Natural de Cap de Creus a l’any 2018. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).

L’evolució temporal d’aquesta espècie mostra una gran variabilitat, sobretot a la zona de RNP (Figura 24). En aquesta zona, les dades obtingudes enguany indiquen una certa recuperació de les poblacions després de la davallada observada a l’any 2016, de forma que les densitats d’aquesta espècie han tornat a valors semblants als observats en anys previs al 2016. No obstant això, la recuperació no ha estat tant evident pel que fa a la biomassa, el que indica que aquesta recuperació ha estat en gran part deguda a la presència de individus de mides més petites.

Figura 24. Evolució temporal de la densitat (esquerra) i biomassa (dreta) d’orada (*Sparus aurata*) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural de Cap de Creus. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).
Sciaena umbra

Tal i com va passar l’any 2016, enguany també es varen trobar molt pocs exemplars de corball al Parc Natural de Cap de Creus: 34 a l’estació de s’Encalladora (RNI), 13 a la Massa d’Or (RNP), i un únic exemplar a Culip (RNP). A més, aquesta espècie mostra una distribució molt irregular, ja que normalment es troba en grups agregats en zones relativament petites, com esquerdes i zones amb grans blocs. Degut a aquesta variabilitat i el baix nombre d’individus, enguany no vam trobar diferències significatives, tant entre estacions com entre els graus de protecció, a la densitat i biomassa mitjana d’aquesta espècie (Figura 25).

![Figura 25. Densitat (dalt) i biomassa (baix) de corball (Sciaena umbra) (mitjana ± error estándard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural de Cap de Creus. Les estacions marcats amb la mateixa lletra no difereixen de manera estadísticament significativa (p-value < 0.01) segons el test de Tukey. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).](image)

Degut als pocs individus observats, poc es pot extreure de la seva estructura de talles. Els individus observats a la zona de RNI van ser lleugerament més petits, sent la de 30-35 la talla més abundant, que els observats a la zona RNP, on la classe de talla més abundant va ser la de 40-45 cm (Figura 26).
Figura 26. Estructures de talles de corball (*Sciaena umbra*) observades als diferents graus de protecció del Parc Natural de Cap de Creus a l’any 2018. Grau de protecció: Reserva Natural Integral (RNI) i Reserva Natural Parcial (RNP). Enguany no s’ha observat cap individu a la zona de Parc Natural (PN).

La densitat d’aquesta espècie mostra un patró molt variable al llarg de la sèrie de dades del Parc Natural de Cap de Creus (Figura 27). El llobarro presenta sempre unes densitats i biomasses baixes tant a les zones de RNI com RNP, i nul·les a la zona de PN.

Figura 27. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de corball (*Sciaena umbra*) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural de Cap de Creus. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).
Espècies moderadament vulnerables

Diplodus sargus

El sarg és una espècie molt comuna a tot el Parc Natural de Cap de Creus, que presenta unes densitats i biomasses elevades i força homogènies a totes les estacions. Enguany, les diferencies entre estacions i graus de biomassa van ser més evidents al considerar la densitat en comparació a la biomassa. Les densitats de sarg trobades a les zones de la RNP van ser significativament més elevades que les de la RNI, mentre que les de les zones de PN es van trobar en un punt entremig (Figura 28). Les biomasses, però, no van diferir entre els graus de protecció degut a la presència d’individus de major mida a la zona de RNI.

Figura 28. Densitat (dalt) i biomassa (baix) de sarg (*Diplodus sargus*) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural de Cap de Creus. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).
L’anàlisi de l’estructura de talles va mostrar una distribució unimodal a totes les zones. La talla mitja a les zones de RNP i PN va ser de 22,4 i 23,4, respectivament, inferior a la observada a la zona de RNI (26,4 cm), a on hi havia una major prevalença d’individus de les classes de talla entre 30 cm i 40 cm (Figura 29).

Figura 29. Estructures de talles de sarg (*Diplodus sargus*) observades als diferents graus de protecció del Parc Natural de Cap de Creus a l’any 2018. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).

En l’evolució temporal de les poblacions de sargs del Parc Natural de Cap de Creus es pot observar que tant les densitats com les biomasses d’aquesta espècie han experimentat una petita pujada respecte als valors de l’any passat, encara que es mostren dins del rang observat des de l’any 2014 (Figura 30). La forta oscil·lació observada entre els anys 2009 i 2011 és possiblement atribuïble a un efecte del mostreig degut al canvi de mostrejadors.

Figura 30. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de sarg (*Diplodus sargus*) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural de Cap de Creus. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).
Diplodus vulgaris

La variada va ser l’espècie més freqüent observada a tots els censos. És tracta d’una espècie ubiqua, ocasionalment gregària, fet que implica una gran variància entre els censos. Per aquesta raó no es van trobar diferències significatives de la densitat i la biomassa entre estacions, a excepció de Messina, a on els valors van ser més baixos, ni tampoc entre els diferents graus de protecció (Figura 31).

![Diagrama de densitat i biomassa](image)

Figura 31. Densitat (dalt) i biomassa (baix) de variada (*Diplodus vulgaris*) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural de Cap de Creus. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).

L’estructura de la classe de talles de la variada va mostrar una distribució unimodal, amb talles mitjanes lleugerament més elevades a la RNI (23,8 cm) que a les zones de RNP i PN (19,0 cm en ambdues) (Figura 32).
Figura 32. Estructures de talles de variada (*Diplodus vulgaris*) observades als diferents graus de protecció del Parc Natural de Cap de Creus a l’any 2018. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).

L’evolució temporal de la variada al Parc Natural de Cap de Creus mostra un cert augment de les densitats al llarg del temps a les zones de RNP i PN, però que no queda reflectit en l’evolució de la biomassa, presumiblement per un descens en les mides dels individus (Figura 33). L’estació de s’Encalladora, l’única que es troba a la zona de RNI, és la que mostra una major variació interanual, segurament també deguda al menor nombre de transsectes que es realitzen.

Figura 33. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de variada (*Diplodus vulgaris*) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural de Cap de Creus. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).
Diplodus puntazzo

La distribució de la morruda al Parc Natural de Cap de Creus va mostrar diferències moderades entre estacions (Figura 34). Les majors densitats i biomasses de morruda es van trobar a la Massa d’Or (RNP), però amb una gran variabilitat que feia que aquests valors no fossin estatisticament diferents dels trobats a les estacions de Tres Frares (RNP), Cap Norfeu (RNP) i Punta Figuera (PN). A l’analitzar la densitats de morruda per grau de protecció, es van trobar diferències significatives entre la zona de RNP, amb valors més elevats, respecte a les zones de RNI i PN, que no diferien entre elles. La biomassa de morruda als diferents graus de protecció va mostrar un patró similar, amb valors significativament més elevats a la RNP en comparació al PN, encara que en aquest cas els valors de biomassa de la RNI no van diferir significativament de cap de les altres dues zones (Figura 34).

![Figura 34. Densitat (dalt) i biomassa (baix) de morruda (**Diplodus puntazzo**) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural de Cap de Creus. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).](image-url)
La distribució de les classes de talla va mostrar un patró unimodal en totes les zones de protecció, amb lleugeres diferències entre les talles mitges de les zones de RNI (32,9 cm), RNP (31,0 cm) i PN (30,36 cm) (Figura 35).

Figura 35. Estructures de talles de morruda (*Diplodus puntazzo*) observades als diferents graus de protecció del Parc Natural de Cap de Creus a l’any 2018. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).

Els valors de densitat i biomass enregistrats aquest any són els valors més elevats observats ens els últims anys de seguiment, sobretot en el que correspon a la zona de RNP (Figura 36), degut principalment al gran nombre d’individus observats enguany a l’estació de la Massa d’Or. Aquesta pujada puntual no és tan significant a les zones de RNI i PN, on els valors de densitat es mantenen dins del rang dels valors observats en anys passats.

Figura 36. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de morruda (*Diplodus puntazzo*) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural de Cap de Creus. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).
Spondyliosoma cantharus

La distribució de cànteres al Parc Natural del Cap de Creus va mostrar una gran variabilitat, tant entre estacions com dins dels mateixos transsectes. Aquesta variabilitat es veu molt condicionada per la presència d'individus juvenils, que en funció de les condicions ambientals i la zona, poden ser molt abundants. Les densitats i biomasses més elevades es van trobar a les estacions de la Massa d’Or (RNP) i la Messina (PN), però la variabilitat dins d’aquestes estacions va ser tant elevada que els valors no van diferir amb el de la resta d’estacions (Figura 37). No obstant, al fer l’anàlisi per grau de protecció, es van trobar diferències significatives entre les biomasses de la zona de PN i RNP, respecte a la de la RNI.

![Figura 37. Densitat (dalt) i biomassa (baix) de càntera (Spondyliosoma cantharus) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural de Cap de Creus. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).](image)
L’estructura de talles de les poblacions de cànteres mostren diferències entre els diferents graus de protecció (Figura 38). La classe de talles predominant a la zona de RNI (entre 15-20 cm) va ser inferior a la de les zones de RNP i PN (20-25 cm).

![Diagrama de la distribució de talles de càntera](image1)

Figura 38. Estructures de talles de càntera (*Spondyliosoma cantharus*) observades als diferents graus de protecció del Parc Natural de Cap de Creus a l’any 2018. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).

L’evolució temporal d’aquesta espècie al Parc Natural de Cap de Creus no mostra cap tendència significativa al llarg del temps. S’ha de destacar que aquest any s’han observat les densitats i biomasses més elevades de tota la sèrie de dades a la zona de PN (Figura 39). Aquesta pujada és deguda al gran nombre d’individs observats enguany a l’estació de la Messina. A la resta de zones, encara que sembla haver-hi una lleugera tendència positiva, els valors observats enguany es troben dins del rang dels valors enregistrats els darrers anys de seguiment.

![Evolució temporal de densitat i biomassa](image2)

Figura 39. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de càntera (*Spondyliosoma cantharus*) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural de Cap de Creus. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).
Altres espècies i observacions

Aquest any s’han observat diversos exemplars de l’espècie *Mycteroperca rubra* a l’estació de la Massa d’Or (Figura 40). Aquesta espècie de nero es considera rara en aquesta zona, ja que és més pròpia de latituds més meridionals, però ja havia sigut observada esporàdicament a la mateixa estació als anys 2011 i 2016. La seva presencia, així com la d’altres espècies que es consideren termòfils, podria estar influïda per l’augment gradual de la temperatura de l’aigua. Aquesta hipòtesi, però, haurà de corroborar-se amb l’evolució d’aquestes espècies en els propers anys.

![Figura 40. Exemplar de nero bord (*Mycteroperca rubra*) observat a l’estació de la Massa d’Or a l’any 2018.](image)

Anàlisi global

L’anàlisi de coordenades principals (PCoA) realitzat amb les biomasses de totes les espècies observades, incloent les que no s’han comentat a nivell individual més amunt, va mostrar que els trams estudiats es separaven en dos grups ben diferenciats (Figura 41). Un dels grups estava majoritàriament format per trams de les estacions de les zones de RNI i RNP, mentre que l’altre estava format per les estacions de la zona de PN. Les diferències entre grups estaven principalment causades per la diferència en les biomasses d’espècies com el nero (*Epinephelus marginatus*), el déntol (*Dentex dentex*), el sarg imperial (*Diplodus cervinus*) i la morena (*Muraena helena*). L’anàlisi de similituds (ANOSIM) va mostrar un efecte significatiu del grau de protecció (*R* = 0,15; *p*-valor = 0.001).
Figura 41. Anàlisi de coordenades principals (PCoA) dels diferents trams dels transsectes realitzats al Parc Natural de Cap de Creus, tenint en compte la biomassa de totes les espècies censades com a variables. Els dos primer eixos acumulen el 52% de la variància observada a les dades. Els colors dels símbols representen els diferents graus de protecció: Reserva Natural Integral (RNI, vermell), Reserva Natural Parcial (RNP, groc) i Parc Natural (PN, blau).

Per tal de determinar la importància que tenen les variables ambientals (i.e. tipus de fons, pendent, i rugositat) per determinar les diferències en la composició de les comunitats, es va realitzar un anàlisi de redundància (RDA). Aquest anàlisi va ordenar tots els trams censats en dos grups molt més diferenciats que el PCoA. El primer eix del RDA, que va explicar el 51% de la variància, va ordenar els trams clarament per grau de protecció, separant les mostres del RNI i RNP de les del PN (Figura 42). Aquest eix relaciona les estacions de la zona RNP, les que mostren una major biomassa, amb fons de megablocs d’elevada rugositat, que promouen la presència d’espècies piscívores com el nero (*Epinephelus marginatus*) i l’espet (*Shyraena viridensis*). A l’altra banda es troben els fons de menor complexitat estructural, com els formats per roca base, sorra o blocs petits i mitjans, que en general, mostren biomasses més baixes.
Figura 42. Anàlisi canònic de redundància (RDA) dels diferents trams dels transsectes realitzats al Parc Natural de Cap de Creus, tenint en compte la biomassa de totes les espècies censades i considerant com a covariables les variables ambientals mesurades (fondària, pendent, rugositat i les diverses tipologies de fons). Els dos primer eixos acumulen un 70% de la variància observada a les dades. Els colors dels símbols representen els diferents graus de protecció: Reserva Natural Integral (RNI, vermell), Reserva Natural Parcial (RNP, groc) i Parc Natural (PN, blau).

Parc Natural del Montgrí, les Illes Medes i el Baix Ter

Patró general

Les diferents estacions mostrejades al Parc Natural del Montgrí, les Illes Medes i el Baix Ter van mostrar diferencies en quant al nombre d’espècies observades per unitat de mostreig (Figura 43). Les estacions que van presentar un major nombre d’espècies van ser Ferranelles (FETG) i Meda Gran 2 (SCV), ambdues a la zona de RNP. A l’analitzar el nombre d’espècies observades per grau de protecció, la zona de RNP va mostrar valors estadísticament més elevats, seguits per la ZC i després per la zona de PN. La zona de ZPP va mostrar valors entremittjos entre la ZC i el PN (Figura 43).
PEIXOS VULNERABLES A L’ACTIVITAT PESQUERA

Figura 43. Nombre d’espècies observades (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural del Montgrí, les Illes Medes i el Baix Ter a l’any 2018. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).

La distribució de la biomassa total d’espècies altament vulnerables va mostrar diferències molt evidents i estadísticament significatives, relacionades indefectiblement amb el grau de protecció. Les estacions situades a les zones de RNP i ZC, on tot tipus de pesca està prohibida, van assolir valors de biomassa de fins a un ordre de magnitud superiors als observats a les zones de ZPP i PN (Figura 44). Per tant, la ZC i la RNP no van mostrar diferències significatives entre elles, però si respecte a les zones de ZPP i PN, que a la vegada, no diferien entre elles.

Figura 44. Biomassa total d’espècies altament vulnerables a la pesca (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural del Montgrí, les Illes Medes i el Baix Ter a l’any 2018. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).
Analitzant l’evolució temporal de la biomassa d’espècies altament vulnerables a la pesca, es pot observar un patró molt constant al llarg dels últims anys del seguiment, on la biomassa de les zones de ZC i RNP és molt superior a la observada en les zones de ZPP i PN (Figura 45). Les fortes fluctuacions observades a la ZC són degudes al menor nombre de mostres provinents de la única estació (Medallot) que representa aquesta zona, que a més, és el transsecte més curt de tots els que conformen el seguiment. Cal destacar l’augment de la biomassa observat enguany a la zona de RNP, causada en gran mesura pel gran nombre de neros observats a la zona del Carall Bernat (TPCB).

![Figura 45. Evolució temporal de la biomassa total d’espècies altament vulnerables a la pesca (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN). S’ha de destacar que el grau de protecció ZC correspon únicament a la estació del Medallot, designada com a tal a partir de l’any 2016.](image)

A l’analitzar la biomassa d’espècies piscívores, que incorpora altres espècies de grans depredadors com l’espet (*Sphyraena viridensis*) i la seriola (*Seriola dumerilii*) a les espècies ja incloses als altament vulnerables, les diferencies entre zones es van fer encara més evidents (Figura 46). La ZC i la RNP van mostrar biomasses d’espècies piscívores molt més elevades que les de les zones de ZPP i PN. En aquest cas, aquestes últimes zones també diferien entre elles, mostrant la zona de ZPP biomasses lleugerament més elevades que la zona de PN.
Figura 46. Biomassa total d’espècies piscívores (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural del Montgrí, les Illes Medes i el Baix Ter a l’any 2018. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).

L’evolució temporal de la biomassa d’espècies piscívores mostra un patró pràcticament similar al de les espècies altament vulnerables, ja que la major part de les diferències venen donades per espècies que estan incloses en els dos grups (i.e., el nero, el déntol i el corball). Les biomasses a cada grau de protecció es mantenen estables al llarg dels anys, a excepció del Medallot (ZC), que mostra grans fluctuacions degudes al limitat nombre de mostres (Figura 47).

Figura 47. Evolució temporal de la biomassa total d’espècies piscívores (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN). S’ha de destacar que el grau de protecció ZC correspon únicament a la estació del Medallot, designada com a tal a partir de l’any 2016.
Espècies altament vulnerables

Epinephelus marginatus

Les densitats i biomasses de nero van ser molt més elevades a les estacions de la Reserva Marina de les Illes Medes (ZC i RNP), en comparació a les de la costa veína (ZPP i PN). Totes les estacions dins de les zones de ZC i PN van mostrar densitats, i sobretot, biomasses molt més elevades que les de les altres zones (Figura 48). La zona de ZPP, tot i mostrar valors de densitat i biomassa molt reduïts, va presentar valors lleugerament superiors que diferien estadísticament dels de la zona de PN, on la densitat de neros van ser pràcticament nul·la.

Figura 48. Densitat (dalt) i biomassa (baix) de nero (Epinephelus marginatus) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).

La distribució de l’estructura de talles va presentar certes diferencies entre els graus de protecció (Figura 49). La talla mitja va ser lleugerament superior a la zona de RNP (67,3 cm) respecte a les zones de ZC (62 cm), ZPP (62,6 cm) i PN (62,5 cm). La classe de talles predominants a la majoria de zones estaven entre els 50-70 cm, a excepció de la ZC, on la classe predominant era la de 40-
50 cm. Els individus de major mida (classes de talla superiors a 90 cm) es van trobar únicament a les zones de RNP i ZC, a on es van trobar talles màximes de 105 i 100 cm, respectivament.

Figura 49. Estructures de talles de nero (*Epinephelus marginatus*) observades als diferents graus de protecció del Parc Natural del Montgrí, les Illes Medes i el Baix Ter a l’any 2018. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de ProteCCIó (ZPP) i Parc Natural (PN).

L’evolució temporal del nero al Parc Natural del Montgrí, les Illes Medes i el Baix Ter es caracteritza per certs alts i baixos d’un any a l’altre (Figura 50). La tendència general mostra una pujada inicial a partir de l’any 1990 a la zona de RNP, després de la qual les densitats i biomasses es varen estabilitzar en valors alts que varien moderadament d’any en any. Els valors de densitat i biomassa observats enguany han estat dels més elevats de la sèrie temporal. Aquest fet és degut a la gran agrupació de neros que s’ha observat enguany a la zona dels Tascons, probablement propiciat per condicions hidrogràfiques favorables per aquesta espècie (e.g. corrents, temperatura elevada) i el seu comportament d’agregació durant l’època de reproducció. A més, enguany també s’han observat les abundàncies de neros més elevades de la sèrie a la zona de ZPP, tot i que encara estaven lluny de les observades a les zones de RNP i ZC (Figura 50).

Figura 50. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de nero (*Epinephelus marginatus*) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de ProteCCIó (ZPP) i Parc Natural (PN). S’ha de destacar que el grau de protecció ZC correspon únicament a la estació del Medalloit, designada com a tal a partir de l’any 2016.
Dentex dentex

El déntol es una espècie que es va trobar a totes les estacions mostrejades, però presentant diferències significatives entre estacions i graus de protecció en quant a densitat i biomassa (Figura 51). Les estacions dins de la zona de RNP varen mostrar, en general, densitats i biomasses majors que les de les zones a la ZPP i el PN. No obstant, la distribució del déntol va mostrar una gran variabilitat, ja que aquesta espècie pot ser observada esporàdicament en grans grups d'individus que caçant conjuntament al llarg dels transsectes. Les estacions que van mostrar una major densitat i biomassa van ser la de Meda Gran 2 (SCV) i Carall Bernat (TPCB), ambdues a la zona de RNP. A la zona on la pesca es permesa, els majors valors de densitat i biomassa es van trobar a les estacions dels Arquets (PSALARQ, ZPP) i Cap Castell (PAMO, PN), aquesta última presentant valors molt variables, però que no es van diferenciar significativament de les estacions de la RNP (Figura 51). Al analitzar la densitat i biomassa de déntols per grau de protecció, es van trobar diferències significatives entre la zona de RNP i les zones de ZPP i PN, que no diferien entre elles. La ZC no va mostrar diferències significatives respecte a la zona de RNP en quant a densitats ni per les biomasses, i només es va diferenciar de les zones de ZPP i PN en quant a les biomasses.

Figura 51. Densitat (dalt) i biomassa (baix) de déntol (*Dentex dentex*) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).
L’estructura de talles del déntol mostra certes diferencies en funció del grau de protecció. Les majors proporcions d’individus de mida gran (> 50 cm) es varen observar a les zones de RNP i ZC, on les talles mitjanes mesurades van ser de 50,5 cm i 54,6 cm, respectivament (Figura 52). A les zones de ZPP i PN es van observar individus de mida mes petita, de talles mitjanes de 41,1 i 34,5 cm, respectivament. De fet, la major proporció d’individus petits es va trobar a la zona de PN, on la classe de talla més abundant va ser la de 20-30 cm.

Figura 52. Estructures de talles de déntol (*Dentex dentex*) observades als diferents graus de protecció del Parc Natural del Montgrí, les Illes Medes i el Baix Ter a l’any 2018. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).

L’evolució temporal de les densitats de déntol al Parc Natural del Montgrí mostra un patró mes o menys estable al llarg dels últims anys de seguiment, a excepció de l’estació del Medallot (ZC), que mostra una gran variabilitat degut al baix nombre de mostres (Figura 53). En quant a les biomasses, sembla haver-hi una lenta pujada al llarg dels anys a la zona de RNP, possiblement causada per la presencia d’individus de major mida, ja que aquesta tendència no queda tant clarament reflectida en les densitats. Les zones de ZPP i PN segueixen mostrant valors molt inferiors, propers al zero, però amb alguns pics moderats observats en cert anys.

Figura 53. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de déntol (*Dentex dentex*) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN). S’ha de destacar que el grau de protecció ZC correspon únicament a la estació del Medallot, designada com a tal a partir de l’any 2016.
Diplodus cervinus

La distribució del sarg imperial va mostrar diferències significatives entre estacions i graus de protecció (Figura 54). L’estació que va mostrar una major densitat i biomassa va ser Meda Gran 2 (SCV), encara que els valors no van diferir significativament dels trobats en altres estacions de la RNP com Carall Bernat (TPCB), Meda Petita (MP) i Ferranelles (FETG) o a l’estació del Medallot (MED, ZC). Les estacions de la ZPP i el PN van mostrar valors de densitat i biomassa inferiors. A l’analitzar l’efecte del grau de protecció, les zones de RNP i ZC es van diferenciar significativament de la ZPP i el PN (Figura 54).

![Figura 54. Densitat (dalt) i biomassa (baix) de sarg imperial (**Diplodus cervinus**) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).](image)

L’estructura de talles de sarg imperial va mostrar certes diferències entre els graus de protecció (Figura 55). Les classes de talla més abundants a cada zona van ser 40-50 cm a la RNP, 35-40 a les zones de ZPP i PN, i les de 30-35 cm a la zona de ZC. Així, la talla mitja dels individus va ser...
més baixa a la ZC (33,7 cm), que a les zones de PN i ZPP (35,5 cm i 34,2 cm, respectivament), mentre que la talla mitja més gran es va observar a la zona de RNP (38,1 cm). Aquestes dades diferencien de les obtingudes l’any 2016, a on les talles més grans (50-60 cm) van ser observades a la ZC.

Figura 55. Estructures de talles de sarg imperial (*Diplodus cervinus*) observades als diferents graus de protecció del Parc Natural del Montgrí, les Illes Medes i el Baix Ter a l’any 2018. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).

L’anàlisi de l’evolució temporal de les poblacions de sarg imperial al Parc Natural del Montgrí, les Illes Medes i el Baix Ter no mostra canvis significatius respecte els valors observats des de l’any 2009 (Figura 56). No obstant això, sí que es pot observar una davallada general entre els primers (1992-2008) i els darrers anys de seguiment (2009-2018), afectant a les zones de RNP, ZPP i PN. La ZC presenta una gran variabilitat deguda al baix nombre de mostres.

Figura 56. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de sarg imperial (*Diplodus cervinus*) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN). S’ha de destacar que el grau de protecció ZC correspon únicament a la estació del Medallot, designada com a tal a partir de l’any 2016.
Dicentrarchus labrax

El llobarro va ser una espècie molt escassa al Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Enguany només s’han observat 7 individus d’aquesta espècie a les estacions de Ferranelles (FETG) i Carall Bernat (TPCB), ambdues a la zona de RNP (Figura 57). Aquest nombre d’exemplars és massa baix com per a fer un ànàlisi estadístic robust per trobar diferències significatives entre zones o graus de protecció.

![Diagrama de densitat i biomassa per estació i grau de protecció](image)

Figura 57. Densitat (dalt) i biomassa (baix) de llobarro (*Dicentrarchus labrax*) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).

Degut al baix nombre d’exemplars observat, aquest any no es va poder treure cap conclusió de l’ànàlisi de la estructura de talles (Figura 58). La talla mitja dels individus observats va ser de 41,4 cm, i només corresponien a dos classes de talla: 40-45 i 45-50.
L’evolució temporal del llobarro mostra la forta davallada que ha patit aquesta espècie a la Reserva Marina de les Illes Medes des del inici del seguiment (Figura 59). A partir de l’any 2009, tant les densitats com les biomasses s’han mantingut molt baixes i força constants, sense arribar a assolir els valors que normalment s’observaven al període 1992-2008. La pujada puntual de les densitats i la biomass de llobarro a les zones de RNP i ZPP de l’any 2004 va ser a conseqüència d’un escapament d’individus d’una granja de llobarros de Castelló d’Empúries. Exceptuant aquest pic, les abundàncies de llobarro a les zones de ZPP i PN han estat pràcticament nul·les al llarg de tot el seguiment.

Figura 58. Estructures de talles de llobarro (*Dicentrarchus labrax*) observades als diferents graus de protecció del Parc Natural del Montgrí, les Illes Medes i el Baix Ter a l’any 2018. Grau de protecció: Reserva Natural Parcial (RNP). Enguany no s’ha trobat cap exemplar de llobarro a la Zona de Control (ZC), a la Zona Perifèrica de Protecció (ZPP) o al Parc Natural (PN).

Figura 59. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de llobarro (*Dicentrarchus labrax*) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN). S’ha de destacar que el grau de protecció ZC correspon únicament a la estació del Medallot, designada com a tal a partir de l’any 2016.
Sparus aurata

L’orada és una espècie que es va trobar de manera més o menys homogènia a les diferents zones del Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Les densitats i biomasses més elevades van ser observades a les estacions del Carall Bernat (TPCB) i Meda Gran 2 (SCV), encara que la gran variabilitat observada va fer que aquestes estacions no es diferenciessin significativament de moltes altres estacions d’arreu del parc (Figura 60). Al fer l’anàlisi per grau de protecció, es van trobar diferències clarament significatives entre les zones de ZPP i ZC, tant per densitat com per biomass. La zona de PN va mostrar valors entremítjos, que no la diferenciaven de les dues zones prèviament esmentades. La ZC també va mostrar valors entremítjos, però únicament per la biomass, ja que en quant a densitat, els baixos valors van diferir significativament dels observats a la RNP (Figura 60).

Figura 60. Densitat (dalt) i biomass (baix) d’orada (*Sparus aurata*) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Les estacions marcades amb la mateixa lletra no diferencien de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).
La major proporció d’individus d’orada de mida gran (40-50 cm) es van trobar a les zones RNP i ZC, mentre que els individus petits (20-30 cm) van ser relativament més abundants a les zones de ZPP i PN (Figura 61). Així, es van trobar certes diferències a la talla mitja dels individus a cada zona, més elevada a les zones de RNP i ZC (28 cm i 37,6 cm, respectivament), que a les zones de ZPP i PN (32,4 cm i 31 cm, respectivament).

Figura 61. Estructures de talles d’orada (Sparus aurata) observades als diferents graus de protecció del Parc Natural del Montgrí, les Illes Medes i el Baix Ter a l’any 2018. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).

L’evolució temporal de l’orada al Parc Natural del Montgrí, les Illes Medes i el Baix Ter mostra una pronunciada davallada a la zona de RNP durant els primers anys de seguiment (1993-1998), arribant a valors més baixos que s’han mantingut estables al llarg de la sèrie (Figura 62). Els valors observats a les zones de ZPP i PN han estat, en general, per sota dels observats a la RNP, mentre que la ZC ha mostrat una gran variabilitat degut al baix nombre de mostres que corresponen a aquesta categoria.

Figura 62. Evolució temporal de la densitat (esquerra) i biomassa (dreta) d’orada (Sparus aurata) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN). S’ha de destacar que el grau de protecció ZC correspon únicament a la estació del Medallot, designada com a tal a partir de l’any 2016.
Sciaena umbra

El corball va presentar una distribució pràcticament restringida a les Illes Medes. Aquesta espècie va mostrar una gran variabilitat, ja que el caràcter gregari d’aquesta espècie fa que es concentri en punts determinats del recorregut. En qualsevol cas, les densitats i biomasses d’aquesta espècie són significativament més elevades a totes les estacions de les zones de RNP i ZC respecte a la ZPP i el PN (Figura 63). Enguany només es va trobar un únic individu fora de les Illes Medes, concretament a l’estació del Falaguer (PN).

Figura 63. Densitat (dalt) i biomassa (baix) de corball (*Sciaena umbra*) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).

L’estructura de talles a la zona de RNP (on es varen observar la majoria dels individus) va mostrar una distribució unimodal, amb una talla mitjana de 40 cm (Figura 64). Els individus observats a la
PEIXOS VULNERABLES A L’ACTIVITAT PESQUERA

ZC van ser de talles més petites, amb una predominança de la classe de 30-35 cm i una talla mitjana de 32,2 cm.

Figura 64. Estructures de talles de corball (Sciaena umbra) observades als diferents graus de protecció del Parc Natural del Montgrí, les Illes Medes i el Baix Ter a l’any 2018. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP) i Parc Natural (PN). La barra de la zona PN correspon a un únic individu observat a l’estació del Falaguer. Enguany no s’ha trobat cap exemplar a la Zona Perifèrica de Protecció (ZPP).

L’evolució temporal d’aquesta espècie mostra una certa estabilitat dins de la zona de RNP. Enguany hem observat un augment de la densitat i la biomassa d’aquesta espècie respecte l’any 2016, però els valors encara es situen dins del rang dels observats al llarg del seguiment (Figura 65). Aquesta espècie es mostra absent a la ZPP i PN, exceptuant algunes pujades discretes i puntuals.

Figura 65. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de corball (Sciaena umbra) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN). S’ha de destacar que el grau de protecció ZC correspon únicament a la estació del Medallot, designada com a tal a partir de l’any 2016.
Espècies moderadament vulnerables

Diplodus sargus

El sarg és una espècie molt abundant al Parc Natural del Montgrí, les Illes Medes i el Baix Ter que va estar present a tots els censos realitzats. La distribució de la densitat de sargs va ser força homogènia, només presentant diferències significatives entre unes poques estacions (Figura 66). A l’analitzar la densitat de sarg per grau de protecció, només es varen observar diferencies estadísticament significatives entre la zona de RNP i el PN. La ZC i la ZPP van mostrar valors entremitjós que no diferien de les de les altres zones. Les diferencies entre estacions i graus de protecció, però, s’accentuen a l’analitzar la biomassa d’aquesta espècie (Figura 66). Les estacions dins de la zona RNP van mostrar una biomassa superior a la de la ZPP i el PN, mentre que únicament la ZC va mostrar valors entremitjós. Aquestes diferències van ser causades per la presencia d’individus de mida més gran a la RNP en comparació amb la ZPP.

Figura 66. Densitat (dalt) i biomassa (baix) de sarg (*Diplodus sargus*) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).
A l’analitzar l’estructura de talles, es va poder observar una distribució unimodal a la que predominaven les classes de talla entre 20 i 25 cm (Figura 67). No obstant això, les zones de RNP i ZC van mostrar una proporció relativa d’individus grans (>25 cm) major que les zones ZPP i PN, on hi havia una major abundància d’individus petits. Així, la talla mitja va ser superior a les zones de RNP (22,5 cm) i ZC (22 cm) respecte a la ZPP (17,9 cm) i el PN (18,9 cm).

Figura 67. Estructures de talles de sarg (Diplodus sargus) observades als diferents graus de protecció del Parc Natural del Montgrí, les Illes Medes i el Baix Ter a l’any 2018. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).

L’evolució temporal del sarg al Parc Natural del Montgrí, les Illes Medes i el Baix Ter mostra un patró força constant durant els últims anys de seguiment (Figura 68). Les densitats de sarg a totes les zones han variat poc, i s’han mostrat molt semblants entre els graus de protecció. La biomassa també s’ha mantingut estable, però mostrant valors superiors les zones de RNP i ZC en comparació a les zones ZPP i PN.

Figura 68. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de sarg (Diplodus sargus) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN). S’ha de destacar que el grau de protecció ZC correspon únicament a la estació del Medallot, designada com a tal a partir de l’any 2016.
Diplodus vulgaris

La variada va ser l’espècie més abundant a tot el Parc Natural del Montgrí, les Illes Medes i el Baix Ter. A més, la seva abundància va mostrar molta variabilitat, degut a que aquesta espècie sovint apareix en bancs compactes de varis centenars d’individus. Degut a això, no es van trobar diferències significatives a la densitat o la biomassa entre estacions (Figura 69). A l’agrupar les estacions per grau de protecció, es van trobar diferencies significatives, encara que petites, entre la ZC i les zones de PN i ZPP, mentre que la RNP va mostrar valors que no diferien de cap de les altres zones.

Figura 69. Densitat (dalt) i biomassa (baix) de variada (*Diplodus vulgaris*) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Les estacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).

L’estructura de talles de la població va mostrar un patró unimodal, amb petites diferencies entre els graus de protecció (Figura 70). Les classes de talla més abundants a les zones de RNP, ZC i ZPP van ser les d’entre 20 i 25 cm, i les d’entre 15 i 20 cm a la zona de PN. Així, les talles mitjanes
van ser de 19,7 cm, 19,2 cm, 17,1 cm i 18,28 cm per a les zones ZC, RNP, ZPP i PN, respectivament.

Figura 70. Estructures de talles de variada (*Diplodus vulgaris*) observades als diferents graus de protecció del Parc Natural del Montgrí, les Illes Medes i el Baix Ter a l’any 2018. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).

L’evolució temporal de les biomasses de variada al Parc Natural del Montgrí, les Illes Medes i el Baix Ter no mostra cap tendència significativa al llarg dels anys ni diferencies entre estacions (Figura 71). Tots els valors que es van observar enguany es troben dins dels valors habituals a cada zona.

Figura 71. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de variada (*Diplodus vulgaris*) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN). S’ha de destacar que el grau de protecció ZC correspon únicament a la estació del Medallot, designada com a tal a partir de l’any 2016.
Diplodus puntazzo

L’abundància de morruda va mostrar diferències significatives entre estacions i graus de protecció, sent més elevades les densitats i biomasses assolides dins de la reserva de les illes Medes, corresponent a la RNP i la ZC (Figura 72). Les estacions amb majors valors de densitats i biomassa van ser la del Medallob (MED), Carall Bernat (TPCB) i Meda Gran 2 (SCV), encara que, degut a l’elevada variabilitat trobada en aquestes estacions, no es van trobar diferències significatives amb moltes de les altres estacions estudiades. A l’agrupar les estacions per graus de protecció, les diferències en quant a la densitat van ser estadísticament significatives entre les zones de RNP i ZC i les zones de ZPP i PN. En termes de biomassa, però, també es varen trobar diferències entre la zona de ZPP i el PN.

Figura 72. Densitat (dalt) i biomassa (baix) de morruda (Diplodus puntazzo) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Les estacions marcades amb la mateixa lletra no difereixen de manera estatisticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).
L’estructura de talles de la població de morrudes a totes les zones va presentar una distribució unimodal, on les classes de talles de 25 a 30 cm van predominar (Figura 73). Les talles mitjanes van ser lleugerament superiors a la zona de RNP (27,3 cm) en comparació a les zones de ZC (26,4 cm), ZPP (26,4 cm) i PN (25,4 cm).

Figura 73. Estructures de talles de morruda (*Diplodus puntazzo*) observades als diferents graus de protecció del Parc Natural del Montgrí, les Illes Medes i el Baix Ter a l’any 2018. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).

L’evolució temporal de la morruda al Parc Natural del Montgrí, les Illes Medes i el Baix Ter no mostra cap tendència significativa (Figura 74). Els valors de densitat i biomassa observats a les zones de RNP i ZC són sempre superiors als de les zones de PN i ZPP. Aquest any s’ha trobat el mateix patró, amb valors que es troben dins del rang dels valors observats habitualment.

Figura 74. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de morruda (*Diplodus puntazzo*) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN). S’ha de destacar que el grau de protecció ZC correspon únicament a la estació del Medallot, designada com a tal a partir de l’any 2016.
Spondyliosoma cantharus

La càntera va mostrar unes abundàncies força homogènies a la majoria d'estacions, exceptuant la del Carall Bernat (TPCB) i Arquets (PSALARQ), on tant les densitats com les biomasses van ser més elevades que a la resta (Figura 75). A l’agrupar les estacions per grau de protecció, les densitats a les zones de RNP i ZPP van ser significativament més elevades que a la ZC i el PN. En quant a la biomassa, les úniques zones que van diferir entre elles van ser RNP i PN, sent la primera la que va assolir les biomasses més elevades.

Figura 75. Densitat (dalt) i biomassa (baix) de càntera (*Spondyliosoma cantharus*) (mitjana ± error estàndard) per estació (esquerra) i per grau de protecció (dreta) al Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Les estacions marcades amb la mateixa lletra no difereixen d manera estadísticament significativa (p-valor < 0.01) segons el test de Tukey. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).
L’estructura de talles de la càntera va mostrar diferències en funció del grau de protecció, a totes les zones es va trobar una distribució unimodal, però amb diferents talles predominants (Figura 76). Els individus de les talles més grans es van trobar a la ZC, amb una talla mitja de 19,8 cm i 18,8 cm, respectivament, i unes classes de talla predominants entre 20 i 25 cm. A les zones de ZPP i PN es va trobar una abundància relativa major de individus més petits, amb una classe predominant de entre 10 i 15 cm i una talla mitjana de 14 cm.

Figura 76. Estructures de talles de càntera (*Spondyliosoma cantharus*) observades als diferents graus de protecció del Parc Natural del Montgrí, les Illes Medes i el Baix Ter a l’any 2018. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).

L’anàlisi de la sèrie temporal, mostra aquest any un augment dels valors de densitat a les zones de RNP i ZPP, i de biomassa a la RNP i ZC. Així, aquest any s’han observat els valors de densitat i biomassa més elevat de tota la sèrie, específicament a la zona de RNP (Figura 77).

Figura 77. Evolució temporal de la densitat (esquerra) i biomassa (dreta) de càntera (*Spondyliosoma cantharus*) (mitjana ± error estàndard) per grau de protecció al llarg dels anys de seguiment del Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN). S’ha de destacar que el grau de protecció ZC correspon únicament a la estació del Medallot, designada com a tal a partir de l’any 2016.
Altres espècies i observacions

![Figura 78. Exemplar de *Dentex gibbosus* observat a l’estació de la Carall Bernat a l’any 2018.](image)

Enguany, durant les campanyes d’altres descriptors del seguiment, es varen poder observar diversos exemplars de escurçana violeta *Pteropleurytrygon violacea*. Aquesta espècie de rajada es una espècie pelàgica que es distribueix en zones més meridionals de la Mediterrània i l’Atlàntic, i que s’observa rarament a les costes catalanes. No obstant, des de juliol es varen començar a observar nombrosos exemplars d’aquesta espècie en nombrosos platges de la Mediterrània, incloent Catalunya, Balears i València, però també a les costes franceses, italianes i gregues. L’aparició d’aquesta espècie podria estar lligada a la reproducció i a les altes temperatures de l’aigua de mar enregistrades enguany.
Anàlisi global

L’anàlisi de coordenades principals (PCoA) realitzat amb les biomasses de totes les espècies observades, incloent les que no s’han comentat al nivell individual més amunt, va mostrar una certa separació entre els trams estudiats en funció del grau de protecció. Aquesta separació es va poder observar al llarg del primer eix, que recollia un 40% de la variància, i on les estacions de les zones de RNP i PN es situaven a la part esquerra, en comparació amb els trams de les zones de ZPP i PN (Figura 79). A més, les estacions de la RNP i la ZC van mostrar una major dispersió que les de les altres zones. Tant la separació de les mostres com la seva dispersió va ser deguda a l’abundància de les principals espècies vulnerables, com el nero (*Epinephelus marginatus*), el déntol (*Dentex dentex*) i el corball (*Sciaena umbra*), i la seva elevada variabilitat. Les estacions de la ZPP i el PN, en canvi, van mostrar abundàncies baixes i constants en la majoria d’espècies, pel que apareixen més agrupades al PCoA. Així, l’anàlisi de similituds (ANOSIM) va mostrar un efecte significatiu del grau de protecció (R = 0,27; p-valor = 0.001).

Figura 79. Anàlisi de coordenades principals (PCoA) dels diferents trams dels transsectes realitzats al Parc Natural del Montgrí, les Illes Medes i el Baix Ter, tenint en compte la biomassa de totes les espècies censades com a variables. Els dos primer eixos acumulen el 57,8% de la variància observada a les dades. Els colors dels símbols representen els diferents graus de protecció: Zona de Control (ZC, taronja), Reserva Natural Parcial (RNP, groc), Zona Perifèrica de Protecció (ZPP, verd) i Parc Natural (PN, blau).
L’anàlisi de redundància (RDA) va mostrar una clara segregació dels trams estudiats, amb una important influència de les característiques del fons (Figura 80). El primer eix, que recollia el 69% de la variància observada, va ordenar els trams per grau de protecció, separant els trams de la zona RNP dels de la ZPP i PN. Aquesta separació va ser en gran part deguda a les abundàncies de les diferents espècies abans comentades. El segon eix va organitzar les estacions en funció del tipus de fons, sobretot en funció de la pendent.

Figura 80. Anàlisi canònic de redundància (RDA) dels diferents trams dels transsectes realitzats al Parc Natural del Montgrí, les Illes Medes i el Baix Ter, tenint en compte la biomassa de totes les espècies censades i considerant com a covariables les variables ambientals mesurades (fondària, pendent, rugositat i les diverses tipologies de fons). Els dos primer eixos acumulen un 83,4% de la variància observada a les dades. Els colors dels símbols representen els diferents graus de protecció: Zona de Control (ZC, taronja), Reserva Natural Parcial (RNP, groc), Zona Perifèrica de Protecció (ZPP, verd) i Parc Natural (PN, blau).
Discussió

Parc Natural de Cap de Creus

Els beneficis esperats d'una xarxa de zones protegides, com el Parc Natural de Cap de Creus, on hi ha diverses figures de protecció intercalades, són diversos. Per una banda, a les zones on certs tipus de pesca estan prohibits, s'espera un augment generalitzat tant en l'abundància com en la mida de les espècies objectiu. Per altra banda, també s'espera un augment de les poblacions a zones no protegides degut a l'exportació de larves i individus adults des de les zones protegides intercalades. Al Parc Natural de Cap de Creus, les zones protegides estan intercalades al llarg de la mateixa línia de costa que les zones pescades, cosa que facilita que les espècies més mòbils es moguin d'una zona a l'altra. Això dona com a resultat un efecte de la protecció més subtil i menys acusat que a la Reserva Natural Parcial (RNP) de les Illes Medes, que es troba aïllada de la costa.

Els resultats d'enguany confirmen la tendència observada als censos realitzats en els dos anys previs, en els que es va observar un augment a les biomasses d'espècies altament vulnerables a les zones de RNP i RNI. A més, aquest any s'ha observat una pujada en les densitats i biomasses de moltes d'aquestes espècies a la zona de PN. Així, aquest any s'han enregistrat les densitats i biomasses de nero (*Epinephelus marginatus*), déntol (*Dentex dentex*) i sarg imperial (*Diplodus cervinus*) més elevades de la sèrie de dades a les zones de RNI i RNP, encara que les diferències amb l'any 2016 no han estat significatives. En quant a la zona de PN, enguany també s'han observat els valors més elevats en quant a espècies com el déntol, la orada (*Sparus aurata*) i altres espècies piscívores com l'espet (*Sphyraena viridensis*). No obstant, aquesta pujada s'atribueix a una única estació, Punta Figuera, ja que les altres dues estacions de la zona de PN mostren valors molt inferiors, semblants als observats en anys previs. Caldrà esperar als censos dels anys vinents per a confirmar si es tracta d'una pujada puntual, deguda a les condicions hidrogràfiques i ambientals d'enguany, o d'una tendència positiva de recuperació que es mantindrà en el temps.

La zona de RNI (estació de s'Encalladora), tot i ser la zona on la pesca està completament prohibida, ha mostrat, un any més, densitats i biomasses inferiors o, com a molt, similars a les de la zona de RNP, on la pesca artesanal i la recreativa amb canya estan permeses. Aquest fet demostra la limitada capacitat d'aquesta zona per acumular biomassa, segurament causada per l'efecte combinat de la seva limitada extensió, que facilita la sortida d'individus a zones on poden ser pescats, i l'absència d'una quantitat suficient d'habitats favorables, com fons heterogenis de blocs grans i exposats a les corrents.

L'estació de la Massa d'Or, dins de la zona de RNP, manté les abundàncies i biomasses d'espècies altament vulnerables (nero, déntol, sarg imperial, orada), moderadament vulnerables (sarg, morruda, càntera) i d'altres piscívores (espet) més elevades de tot el parc. També és l'estació on enguany s'ha observat la major quantitat de llobarros (*Dicentrarchus labrax*), una espècie que s'havia observat de manera molt ocasional en els últims anys de seguiment. L'èxit en la
reconstrucció de les poblacions de peixos en aquesta estació és deguda a una combinació de factors favorables. Per una banda, l'hàbitat d'aquesta zona és l'òptim per a que s'hi acumuli una gran biomassa de peixos, ja que es tracta d'un fons dominat per grans blocs que generen una elevada complexitat espacial, amb multitud de microhàbitats i refugis, i alhora un pendent pronunciat però regular que permet arribar a grans fondàries al costat de zones someres. A més, la situació de l'illa Massa d'Or, a l'extrem més oriental del Cap de Creus, està exposada a les fortes corrents que dominen la zona, fet que afavoreix la presència d'espècies plantòfagues que serveixen d'aliment als grans depredadors. Finalment, aquesta zona, molt exposada als vents i als temporals, és segurament la que rep una menor pressió de la pesca artesanal i recreativa, ja que les condicions meteorològiques adverses són habituals i dificultan aquestes pràctiques.

Volem destacar que la zona de la Massa d'Or és una zona de gran importància per a la reproducció del nero. Durant els mesos d'estiu (de juliol a agost), aquesta espècie forma agregacions de reproducció en aquesta zona. Enguany hem tornat a observar grans agrupacions d'individus, formats per femelles de varies mides i grans mascles, presentant la lliurea reproductora i el comportament d'aparellament típic de l'espècie. Així, la població de la Massa d'Or representa una de les poques poblacions reproductores conegudes a la costa catalana, juntament amb les de Cap Norfeu i la de les Illes Medes (Zabala et al. 1997a, 1997b; Hereu et al. 2008), fet que posa encara més valor en la riquesa i excepcionalitat d'aquesta zona.

L'estació de Cap Norfeu també presenta valors elevats de biomassa i densitat d'espècies vulnerables dins la zona de RNP, però sense arribar als valors de la Massa d'Or. Les altres estacions dins de la zona RNP (Tres Frares i Culip), en canvi, mostren valors que no es diferencien de les zones de PN. Hi ha diverses possibles raons per aquestes diferències entre zones. Per una banda, tot i que aquestes zones mostren hàbitats de gran qualitat semblants als de la Massa d'Or, aquests es troben en menor quantitat i la seva exposició a les corrents és menor. A més, aquestes zones es troben molt més protegides de les corrents i les onades que la Massa d'Or, de manera que permeten una major activitat pesquera. Finalment, els hàbitats entre les zones de la RNP i les zones de PN són continus, fet que facilita el moviment de les espècies, que poden sortir de la zona protegida i ser pescades també mitjançant pesca submarina a la zona de PN. Tenint tot això en compte, podem concloure que l'efecte de la pesca artesanal i esportiva en les zones de RNP és suficientment important com per a mantenir les poblacions de peixos sobrepescades.

Les densitats i biomasses d'espècies vulnerables més baixes es troben a les estacions del PN (Portaló, Messina i Punta Figuera). En aquestes estacions, espècies com el nero i el corball estan pràcticament absents, i traient els valors observats enguany a Punta Figuera, és difícil trobar d'altres com el déntol o el sarg imperial, tot i que hi ha una elevada presència de hàbitats que podrien ser favorables per aquestes espècies. Aquest fet evidencia que hi ha una forta sobrepesca a les zones del PN.

L'existència de zones dins de la RNP amb altos valors de biomassa demostren que les activitats de pesca artesanal i esportiva que s'hi desenvolupen són compatibles amb la conservació d'espècies d'interés comercial. Al contrari, a les zones de PN, on l'única diferència amb les zones de RNP és que la pesca submarina està permesa, les poblacions de peixos vulnerables en general, i de nero.
en particular, són pràcticament inexistents. Aquest fet posa en evidència els efectes dràstics de la pesca submarina, que és capaç de reduir a nivells mínims les poblacions de peixos vulnerables en zones molt extenses del Parc Natural de Cap de Creus.

S’ha demostrat que la pesca submarina, és un factor que pot afectar a la composició i l’estructura de les comunitats de peixos litorals (Coll et al., 2004). Aquesta és una pesca molt selectiva i altament eficient, amb eines de captura per unitat d’esforç (CPU) d’uns 1.300 grams de peix per persona i hora, molt per sobre dels 300 grams per persona i hora de la pesca recreativa des d’embarcació, o els 100 grams per persona i hora de la pesca des de roques (Font i Lloret, 2010).

La pesca submarina, al ser una pesca molt selectiva, té un major impacte sobre les espècies altament vulnerables, com el nero, el corball, i l’orada, i sol capturar individus de talles més grans que no pas amb els altres dos mètodes de pesca esportiva, afectant al potencial reproductor de les espècies explotades (Font i Lloret, 2010). A més, degut a que la pràctica d’aquest tipus de pesca es fa normalment des de l’aigua, pot passar més desapercebuda, i és més fàcil que es produeixin episodis de furtivisme. En un informe de Font i Lloret (2010), on varen entrevistar 65 pescadors submarins que normalment pesquen per tota la costa del cap de Creus, un 9% varen reconèixer que pescaven dins les Reserves Naturals Parcials, i fins i tot a la Reserva Natural Integral (Font i Lloret, 2010). En els informes del seguiment dels anys 2008, 2014 i 2016 ja s’alertava que la pesca submarina furtiva també afectava, poc o molt, fins i tot la Reserva Natural Integral de s’Encalladora on es va observar un exemplar de nero amb una ferida d’arpó molt òbvia (Ballesteros et al., 2008). A més, si tenim en compte que aquest tipus de pesca és practicada per un nombre molt baix de persones (65 pescadors submarins poden pescar 19 tones de peix l’any d’espècies altament vulnerables i de talles grans), i que pràcticament la mateixa quantitat de peix (23 tones l’any d’espècies no seleccionades) són pescades per 485 pescadors de canya (Font i Lloret, 2010), arribem a la conclusió que aquesta activitat causa uns perjudicis molt elevats que no és compatible en un Parc Natural que té per objectius la conservació el patrimoni natural per el gaudi i aprofitament de moltes persones.

Tenint en compte aquests resultats, podem concloure que l’efecte de la gestió en la majoria de les zones de RNP, exceptuant el cas especial de la Massa d’Or, no acaba de permetre una recuperació òptima de les poblacions de peixos vulnerables a la pesca. A més, les zones de PN, on, a més, s’hi permet la pesca submarina, la presència de peixos vulnerables es molt menor, presentant signes encara més evidents de sobrepesca.

Es per això que es recomana implementar les mateixes reglamentacions que estan establertes al Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Per una banda, es recomana mantenir les zones de RNP sense cap tipus de pesca. A més, es proposa introduir la figura de Zones Perifèriques de Protecció (ZPP), on es permeti només la pesca artesanal i la pesca esportiva amb una sola canya.
Parc Natural del Montgrí, les Illes Medes i el Baix Ter

En general, les poblacions de peixos del Parc Natural del Montgrí, les Illes Medes i el Baix Ter, han mostrat la mateixa tendència estable observada durant els darrers exercicis de seguiment. Així, els resultats obtinguts confirman un any més l’efecte de la protecció de l’àmbit protegit de les Illes Medes sobre les espècies de peixos vulnerables. Les zones de RNP i ZC mostren, amb gran diferència, unes densitats i biomasses d’espècies vulnerables i piscívores més elevades que les zones de ZPP i PN de la costa del Montgrí. L’efecte de la protecció és especialment evident en aquelles espècies més sedentàries, com ara el nero i el corball, que són pràcticament impossibles d’observar fora de l’àmbit de les Illes Medes. Espècies vulnerables però amb un caràcter més mòbil, com el déntol, l’orada i el sarg imperial, també mostren una clara resposta a les mesures de protecció, tot i que es poden trobar esporàdicament a la costa de Montgrí. De fet, la capacitat de les reserves marines per a generar i exportar un excedent d’individus a zones obertes a la pesca, generant així els beneficis socioeconòmics desitjats, recau en gran mesura en aquestes espècies que es dispersen amb més facilitat.

A part de la mesura de gestió corresponent a la prohibició de tot tipus de pesca, hi ha altres factors que contribueixen a les elevades biomasses de peixos observades al voltant de les Illes Medes, de la mateixa manera que ja s’ha comentat per al Cap de Creus. Per una banda, les Illes Medes presenten un fons marí d’una elevada complexitat estructural, amb una gran diversitat d’hàbitats i amples extensions dominades per grans blocs, juntament amb forts gradients batimètrics. A més, aquests habitats rocosos es troben aïllats respecte els mateixos hàbitats de la costa del Montgrí, la qual cosa afavoreix que els individus de les espècies objectiu es mantinguin dins de la reserva. Finalment, les Illes Medes estan molt exposades a les corrents, i degut a l’aportació de nutrients per part del riu Ter, són una zona d’una elevada producció primària.

La costa del Montgrí, degut a la seva proximitat a les Illes Medes i a que mostra unes característiques similars, també té un potencial molt elevat per a generar biomassa de peixos. Per tant, les baixes abundàncies d’espècies vulnerables observades en aquestes estacions demostren que les mesures de gestió que s’estan prenent no són eficients. Aquest fet és especialment important per a la zona de ZPP, on tot i la regulació de la pesca (i.e. la pesca submarina està prohibida), mai ha mostrat cap signe de recuperació i les poblacions de peixos vulnerables no es diferencien de les observades a les zones de PN. La falta d’eficiència de la protecció parcial és deguda, en part, a que el tipus de fons d’aquesta zona no és en gran part favorable per a que s’instal·lin grans concentracions de peixos altament vulnerables. A més, l’extensió d’habitat rocós inclòs d’aquesta figura de protecció és molt reduïda, la qual cosa fa que, per una banda, la pressió pesquera, tot i ser més baixa que en altres zones, sigui suficient per a reduir al mínim aquestes poblacions, i per altra, que els individus que hi resideixin es moguin amb facilitat i puguin ser capturats a zones amb una pressió més elevada. A més, tampoc es pot descartar l’efecte d’episodis puntuals de furtivisme en aquesta zona per parts de pescadors submarins, ja sigui de forma voluntària o involuntària. Molts dels pescadors que es detecten en aquesta àrea al·leguen que desconeixen la prohibició per la manca de senyalització.
L’absència total d’espècies altament vulnerables a la pesca i d’altres espècies piscívores a tota la costa del Montgrí, demostra que la regulació corresponsant a les zones de PN no és compatible amb la seva conservació, sobretot per l’efecte de la pesca submarina, sent aplicable tot el que s’ha comentat anteriorment pel cas del Cap de Creus. La costa del Montgrí inclou multidú d’indrets que presenten característiques ambientals similars a les de les Illes Medes, i que serien idonis per a mantenir poblacions abundants d’espècies vulnerables, com per exemple, la zona de cap Castell. Des del nostre punt de vista, el Parc Natural del Montgrí, les Illes Medes i el Baix Ter es podria beneficiar amb l’ampliació de la zona parcialment protegida, sense pesca submarina, en aquests indrets excepcionals.

Meridionalització

Un dels efectes més evidents que el canvi climàtic té sobre els ecosistemes són els canvis en el rang de distribució d’espècies, que a l’hemisferi nord es tradueix com una expansió cap al nord de les espècies afins a àigües calentes, procés que és conegut com a “meridionalització”. En l’actualitat, més d’una trentena d’espècies de peixos mediterranis comunes a les nostres costes, com Thalassoma pavo, Xyrichthis novacula, Pomatomus saltatrix, Epinephelus marginatus, Mycteroperca rubra, Epinephelus costae, Diplodus cervinus, Pagrus auriga, i Sphyraena viridensis, han estat citats en zones més septentrionals respecte al seu rang de distribució original. A les zones corresponents al seu límit de distribució septentrional, la meridionalització està provocant un augment a les seves poblacions.

En aquest context, l’observació de certes espècies considerades rares a la nostra zona, com Mycteroperca rubra, Dentex gibbosus i Pteroplatytrygon violacea, podrien constituir indicis d’aquest efecte de meridionalització, així com l’augment, lent però constant, del déntol a gairebé totes les zones. No obstant, caldrà esperar als propers anys per a confirmar aquestes tendències.

Conclusions

En general, hem constatat que les figures de protecció més efectives són les zones on cap tipus de pesca és permesa o la pesca submarina és prohibida, com les zones de RNP i ZC de les Illes Medes. En aquestes zones, l’evolució de les poblacions d’espècies vulnerables és favorable. Al Cap de Creus, les zones de RNP funcionen parcialment, exceptuant la zona de la Massa d’Or, ja que, a diferència de la RNP de les Medes, està permesa la pesca, i la RNI està limitada probablement per l’efecte de la seva mida i l’hàbitat. Al contrari, les zones sense cap tipus de regulació especial, com les zones de PN, on tot tipus de pesca és permesa, han tingut en tots els anys de seguiment uns resultats negatius. En aquestes zones, les abundàncies de peixos vulnerables a la pesca són molt baixes, i no han evolucionat en cap moment, com mostren les sèries històriques del seguiment. Creiem que la sobrepesca, especialment la causada per la pesca submarina, és la causant d’aquest estat. Aquest fet deixa en evidència el fort impacte de la pesca
submarina, i creiem que aquesta activitat es incompatible dins de l’àmbit dels Parcs Naturals de Catalunya.

Si el que es pretén amb la gestió és millorar les poblacions d’aquestes espècies vulnerables, és necessari doncs replantejar-se mesures de gestió com la re-zonificació de les activitats extractives (sobretot referent a la pesca esportiva), i un manteniment de la vigilància de forma que es respecti la normativa.

Proposta de millores de gestió

Generals

a) Mantenir i augmentar el nivell de vigilància. Tot i que és un tema recurrent, aquestes activitats poden perjudicar de forma molt significativa i evident la biodiversitat i els recursos pesquers que generen els parcs. Aquesta vigilància no només s’ha de restringir als òrgans del parc, sinó que ha d’implicar també de forma coordinada les diverses administracions amb competències sobre el mar i les diferents activitats que s’hi desenvolupen, incloent el sector pesquers.

b) No permetre l’activitat de la pesca submarina en tot l’àmbit del Parc Natural de Cap de Creus i Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Si els objectius de la gestió són conservar i millorar l’estat de conservació del patrimoni natural, i que el major nombre de ciutadans i actors del territori en gaudeixin i se’n beneficïïn, creiem que aquesta activitat és incompatible amb la conservació i explotació sostenible dels recursos pesquers.

c) Conèixer i incorporar les agregacions reproductores en la gestió dels parcs. El cas de l’orada ens ha permès constatar que protegir les agregacions reproductores d’algunes espècies, tot i que es produeixin fora de l’àmbit del parc, pot contribuir en gran mesura a la recuperació de les seves poblacions. No obstant, encara cal investigar per a conèixer millor quines zones i èpoques són les més sensibles per a poder focalitzar la vigilància sobre una possible explotació il·legal d’aquestes agregacions.

Parc Natural de Cap de Creus

a) Equiparar la reglamentació de les RNP al Cap de Creus amb la restricció de tot tipus de pesca. Pel que fa a la pesca submarina, alternativament a la prohibició en tot el parc, es recomana implementar Zones Perifèriques de Protecció, on només la pesca artesanal i la pesca esportiva amb canya estaran permeses.

b) Augmentar la zona de Reserva Integral. Degut a que la Reserva de s’Encalladora sembla ser petita per la retenció de biomassa, es recomana augmentar la zona de Reserva Integral, incloent tot el perímetre de l’illa de s’Encalladora. A més, degut a que la veïna illa Massa d’Or aglutina una gran quantitat de biomassa, aquesta zona es podria incorporar en aquesta figura de protecció.
Parc Natural del Montgrí, les Illes Medes i el Baix Ter

c) Augmentar la superfície on la pesca submarina està prohibida a la costa del Montgrí, augmentant la mida de l’actual ZPP o emplaçant noves zones de RNP o ZPP als llocs més interessants per a les poblacions de peixos vulnerables.

d) Fer més evident (rètols i/o boies) que la pesca submarina és una activitat prohibida a la ZPP i augmentar la vigilància per a fer respectar aquesta normativa.

Bibliografia

Seguiment de les poblacions de grans decàpodes

David Díaz, Anabel Muñoz, Eneko Aspillaga, Pol Capdevila, Graciela Rovira, Mikel Zabala i Bernat Hereu

- Al Cap de Creus s’ha censat aproximadament el mateix nombre de llagostes que l’any 2016.
- La costa del Montgrí segueix essent la zona on s’observa el major assentament, així com el major nombre de llagostes petites.
- A les Medes es troben els pocs exemplars de llagostes adultes, llamàntols i escllops observats en aquesta àrea.
- Els pescadors també van aconseguir que el seu nombre siga considerablement major al Cap de Creus i a les Illes Medes en comparació amb l’any 2016.

Aquest capítol ha de ser citat com:

Els crustacis decàpodes presenten una gran varietat de formes, fruit de seva adaptació evolutiva als diferents hàbitats. En aquest grup trobem moltes de les espècies marines més conegudes, des dels crancs, escamarlans i llagostins, fins a les llagostes, les cigales o els crancs ermitans. Els censos del seguiment de grans decàpodes del Parc Natural de Cap de Creus i del Parc Natural del Montgrí, les Illes Medes i el Baix Ter, es centren en quatre espècies ben conegudes. Dues d’aquestes espècies, la llagosta vermella (*Palinurus elephas*) i l’esclop (*Scyllarides latus*), pertanyen a la família Palinuridae, la cranca o cabra de mar (*Maja squinado*) pertany a la família Majidae i per últim, el llobregant o llamàntol (*Homarus gammarus*), a la família dels Nephropidae. D’aquestes quatre espècies, la llagosta representa el descriptor principal d’aquest estudi, ja que es tracta de l’espècie actualment més important tant com a recurs pesquer com per l’interès de part dels escafandristes. A més, la llagosta s’utilitza sovint com a emblema del bon estat de conservació dels hàbitats on viu, és sinònim de qualitat i la seva presència a les nostres costes és un valor afegit per qualsevol zona turística. Malauradament, hi ha espècies de grans decàpodes que a les costes catalanes ja no es poden considerar d’interès pesquer degut a la manca de captures regulars. Hom coneix que espècies de grans decàpodes com el llamàntol, l’esclop o la cabra de mar, representaven fa unes dècades captures freqüents o es podien observar bussejant. La sobrepesca a la qual han estat sotmeses n’ha determinat la seva quasi completa desaparició, i, com en el cas de la cranca, es poden considerar pràcticament extinudes. Per aquesta raó, actualment s’estan duent a terme diversos projectes d’investigació i reintroducció focalitzats en aquestes espècies de grans decàpodes. És per això que bàsicament centrem l’estudi del descriptor grans decàpodes al seguiment i evolució de la llagosta vermella.

La llagosta vermella (*Palinurus elephas*) (Crustacea: Decapoda: Palinuridae) és una espècie de gran interès econòmic, tradicionalment vinculada a les activitats pesqueres artesànals de les costes de la Mediterrània occidental. A l’interès pesquer s’hi afegaix un innegable valor turístic, lligat al caràcter d’espècie bandera o emblemàtica que indubtablement té en la gastronomia i el busseig d’esbarjo. La popularització de les activitats subaquàtiques ha convertit moltes zones de la costa Mediterrània més atractives i ben conservades en centres on els turistes esperen de contemplar, sobretot, espècies emblemàtiques com el corall, les gorgònies, els grans peixos i la mateixa llagosta. D’aquesta manera, l’espècie esdevé d’interès per a l’economia dels pobles mariners tant si la seva activitat principal és la pesca, cosa ja rara al nostre país, com si, seguint la tendència actual, és el turisme. Paradoxalment, la importància creixent ve acompanyada d’una evident rarificació a les costes catalanes d’espècies com el corall, la llagosta i els grans peixos; això obliga a l’administració a gestionar amb molta cura les seves poblacions per intentar canviar aquesta tendència.

Un punt clau en la gestió de les espècies de grans decàpodes rau en conèixer els factors que causen la seva rarificació. De fet, la pesca artesanal és el factor més important de la davallada de la població, en part degut a la seva gran eficiència en la captura d’aquestes espècies. Això es veu afavorit, de ben segur, per la manca de control i compliment de la normativa pesquera, que tot i
ser restrictiva, no es compleix fil per randa. Per altra banda, factors com la depredació o la destrucció dels hàbitats són elements clau cara a la presència de la llagosta en un espai natural. En tots aquest factors en certa manera l’administració hi pot intervenir per tal d’afavorir la recuperació de les poblacions. Contràriament, hi ha un factor essencial en la dinàmica poblacional d’aquestes espècies sobre el qual no podem intervenir, i que és determinant per l’evolució de la població; estem parland del reclutament. Entenem com a reclutament el nombre d’individus nous que provenen de l’assentament larvari i que s’incorporen a la població en una fase que són explotables.

Seguir el reclutament a la població explotable, passa per realitzar pesques experimentals, a la fi de minimitzar l’esforç i emprar tècniques menys invasives per el medi natural, i a la vegada establir amb més cura la dinàmica poblacional. Però per tal d’emprar un mètode menys invasiu es va decidir avaluar els individus recent assentats, els anomenats post-puérulus. Aquesta fase pràcticament només pot ser avaluada per escaufandristes amb un elevat grau d’experiència, ja que els individus recentment assentats, els primers estadis bentònics, per poder ser observats pels bussejadors menys experimentats han de passar almenys un any als fons marins perquè es puguin observar. Tanmateix, per poder pescar llagostes amb els actuals ormeigs (tresmall llagoster), han de passar un mínim de 3 anys. Aquest individus de 3 anys són els anomenats reclutes. A més el seguiment d’individus recent assentats, ofereix un índex independent de la pesqueria que resulta essencial per obtenir un valor de la dinàmica anual de l’espècie. És per aquest motiu que és molt important poder establir un índex d’assentament anual de l’espècie a les nostres costes, ja que això permetrà d’obtenir una capacitat de gestió de les poblacions a llarg termini i poder establir les àrees amb millor capacitat de recuperació de les poblacions.

Pel que fa al seguiment de grans decàpodes, l’objectiu d’aquest treball ha estat avaluar la població de llagosta (Palinurus elephas) al Parc Natural de Cap de Creus i al Parc Natural del Montgrí, les Illes Medes i el Baix Ter, detectar zones d’assentament i la abundància d’individus adults, així com avaluar la presència d’altres grans decàpodes com el llamàntol (Homerus gammarus), l’escllop (Scyllarides latus)i cranca (Maja squinado).

Material i mètodes

Estacions de mostreig

Es van dur a terme censos de grans decàpodes al Parc Natural de Cap de Creus (Figura 1) i al Parc Natural del Montgrí, les Illes Medes i el Baix Ter (Figura 2). S’han mostrejat un total de 11 estacions al Parc Natural de Cap de Creus i 13 estacions al Parc Natural del Montgrí, les Illes Medes i el Baix Ter; 8 d’aquestes a les Illes Medes i 5 a la costa del Montgrí (Taula 1). El mostreig es va dur a terme mitjançant censos visuals amb escafandre autònom. A cada mostreig van participar dos submarinistes amb una àmplia experiència en la realització d’aquests censos visuals. Com les abundàncies de gran decàpodes són molt baixes i aquestes espècies tenen un
hàbitat molt definit, els transsectes de mostreig no van ser realitzats a l’atzar, sinó dins de l’hàbitat que prèviament es coneix com a idoni per la presència de l’espècie.

Figura 1. Estacions de mostreig de grans decàpodes al Parc Natural de Cap de Creus de l’any 2018. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).
POBLACIONS DE GRANS DECÀPODES

Figura 2. Estacions de mostreig de grans decàpodes al Parc Natural del Montgrí, les Illes Medes i el Baix Ter de l’any 2018. Grau de protecció: Zona de Control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN).

Metodologia d’estudi

Les poblacions dels grans decàpodes han estat estimades mitjançant censos visuals amb escafandre autònom per un equip de dos persones, que prospecten un transsecte adreçat a trobar el màxim nombre de decàpodes. Tots els mostrejos s’han realitzat amb llanterna ja que durant les hores diürnes, les espècies objectiu es troben encauades en refugis i en condicions de baixa lluminositat. Per cada transsecte, es va comptar el nombre d’individus de cada espècie i s’ha anotat la mida del cefalotòrax segons la següent subdivisió: menor de 25mm (post-puérulus), T1: entre 25 i 60mm, T2: entre 60 i 80mm, T3: entre 80 i 120mm i T4: majors de 120mm, el sexe (quan és possible), la fondària i el tipus de fons. També s’han enregistrat altres observacions destacables com arts de pesca, zones de post-puérulus, o presència d’espècies invasores.

A cada cens, cada observador prospecta un corredor d’una amplada d’uns 2 m, que es pot reduir a un metre als censos realitzats dins de coves, a profunditats elevades o en aigües brutes, i també durant els censos dels individus més petits. Cada cens dura aproximadament 5 minuts i, a cada immersió, l’observador realitza un màxim de 6 censos. Si sumem l’esforç dels dos observadors podem tenir un màxim de 12 censos, per una durada en total d’una hora efectiva d’observació per immersió. Desplaçant-se a una velocitat mitjana de 10 metres per minut, cada observador prospecta per cada transsecte una superfície d’aproximadament 50 -100 m².
Taula 1. Estacions de mostreig de grans decàpodes de l’any 2018. Grau de protecció: Reserva Natural Integral (RNI), Zona de Control (ZC); Reserva Natural Parcial (RNP); Zona Perifèrica de Protecció (ZPP) i Parc Natural (PN). Les coordenades geogràfiques estan referides al fus 31N del datum ETRS89.

<table>
<thead>
<tr>
<th>Parc</th>
<th>Prot.</th>
<th>Estació</th>
<th>Data</th>
<th>Fondària màx. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNI</td>
<td>Encalladora</td>
<td>2018-07-18</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>RNP</td>
<td>Farallons</td>
<td>2018-07-19</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Massa d’Or</td>
<td>2018-07-26</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forcats</td>
<td>2018-07-26</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>El Gat</td>
<td>2018-07-25</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Cap de Creus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cap Gros</td>
<td>2018-07-19</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Portaló</td>
<td>2018-07-18</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Messina</td>
<td>2018-07-26</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caials</td>
<td>2018-07-25</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Punta Figuera</td>
<td>2018-07-25</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Punta Falconera</td>
<td>2018-07-25</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>PN</td>
<td>Cap Gros</td>
<td>2018-07-19</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Portaló</td>
<td>2018-07-18</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Messina</td>
<td>2018-07-26</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caials</td>
<td>2018-07-25</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Punta Figuera</td>
<td>2018-07-25</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Punta Falconera</td>
<td>2018-07-25</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>ZC</td>
<td>Medallot</td>
<td>2018-08-28</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pedra de Déu</td>
<td>2018-08-28</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pota del Llop</td>
<td>2018-08-27</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barda del Sastre</td>
<td>2018-08-29</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cova Reina</td>
<td>2018-08-29</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Medes i Montgrí</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNP</td>
<td>Montnegre</td>
<td>2018-08-27</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cova del Dofi</td>
<td>2018-08-27</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serra Ventosa</td>
<td>2018-08-26</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carall Bernat</td>
<td>2018-08-30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Escribana</td>
<td>2018-08-30</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>ZPP</td>
<td>Arquets</td>
<td>2018-08-30</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Falaguer</td>
<td>2018-08-31</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>PN</td>
<td>Puig de la Sardina</td>
<td>2018-08-31</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baix de Cols</td>
<td>2018-09-01</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

La llagosta i els altres grans decàpodes tenen una distribució extremadament contagiosa i fidel a roques o indrets determinats. Fora d’aquests indrets la probabilitat de trobar-ne és molt reduïda. Sovint l’amplada de la zona propícia és tan limitada, que el segon observador no té opció de fer recomptes positius. Essent zero tots els seus censos, la inclusió dels seus resultats en el còmput total reixa sistèmaticament les estimes de densitat. De la mateixa manera, és molt important tenir en compte que qualsevol cens realitzat fora de les zones o dels habitats on més sovint viuen els grans decàpodes pot dur a estimes de densitats que s’apropen a zero tot i la presència d’individus en un punt concret del transsecte. Tot això fa que convertir els resultats dels censos a valors de densitat, així com es pot fer per molts organismes amb distribucions menys agregades, no tingui massa sentit en el cas dels grans decàpodes. Pel baix nombre d’individus censats i per les diferències a nivell dels recorreguts duts a terme a les diferents localitats (llargada, durada, profunditats, etc.), aquest any hem optat per proporcionar dades de densitats de grans decàpodes en individus per minut mostrejat.
Finalment, per calcular la biomassa en grams (pes fresc, \(W \)) en el cas de les llagostes, s’han utilitzat les següents fórmules de conversió, en funció de si es tractava d’individus mascles o femelles, on \(CL \) és la longitud del cefalotòrax en mm:

\[
W = 0,0012 \cdot CL^{2,882} \quad \text{(mascles, rang 45-169 mm CL)}
\]

\[
W = 0,0016 \cdot CL^{2,834} \quad \text{(femelles, rang 41-142 mm CL)}
\]

\[\text{Resultats}\]

\[\text{Parc Natural de Cap de Creus}\]

\[\text{Llagostes}\]

Aquest any es van censar 34 llagostes al Parc Natural de Cap de Creus (Figura 3). En general, les abundàncies trobades van ser molt baixes (Figura 4), exceptuant les estacions de Messina i Farallons, a on es varen trobar 10 i 8 individus, respectivament. En moltes de les estacions (i.e., Encalladora, Massa d’Or, el Gat, Cap Gros i Punta Figuera) no es va trobar cap individu de llagosta. Els valors obtinguts enguany van ser molt semblants als observats al període de seguiment previ (any 2016) (Figura 4). Degut al baix nombre d’individus i la variabilitat observada entre estacions, en cap dels anys mostrejats es va observar un efecte clar de la protecció sobre la abundància de llagostes.

\[\text{Figura 3. Fotografies d’un recluta de llagosta trobada a l’estació de Punta Falconera (esquerra) i d’una llagosta de talla T1 trobada a l’estació de Farallons (dreta).}\]
Figura 4. Mitjanes de les abundàncies (individus/minut) de llagostes a les estacions mostrejades al Parc Natural de Cap de Creus als anys 2016 i 2018. Els números damunt de les barres indiquen el nombre d'individus censats. La localització de les estacions marcades amb un asterisc han estat modificades d’un any a l’altre, ja que es varen desplaçar a zones properes, però amb habitats més adients per a grans decàpodes. Grau de protecció: Reserva Natural Integral (RNI); Reserva Natural Parcial (RNP) i Parc Natural (PN).

A l’analitzar l’estructura de les classes de talla (Figura 5), es va poder observar una predominança de la classe de talla T1 (entre 25 i 60 mm) amb un total de 26 llagostes (Figura 5). Només es varen trobar 6 llagostes recent assentades (Rec, < 25 mm), 4 a l’estació de Caials i una a cada una de les estacions del Portaló i Punta Falconera (Figura 5). Les llagostes de classe T2 (60-80 mm) van ser encara més escasses, ja que només es van censar dues, una a la estacions de Farallons i l’altre a la Messina. No es va trobar cap llagosta de talla gran (> 80 mm, classes T3 i T4).

Figura 5. Distribució en funció de la classe de talla del total d’individus de llagosta censats a Parc Natural de Cap de Creus a l’any 2018. Grau de protecció: Reserva Natural Integral (RNI); Reserva Natural Parcial (RNP) i Parc Natural (PN).
Altres decàpodes

Aquest any no es va observar cap altre espècie de gran decàpode als censos realitzats al Parc Natural de Cap de Creus.

Parc Natural del Montgrí, les Illes Medes i el Baix Ter

Llagostes

Aquest any s’han censat 158 individus de llagosta al Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Tal com va passar l’any 2016, les densitats de llagostes més elevades es varen trobar a les estacions de la zona de PN, on van destacar les estacions de Punta de la Sardina i Baix del Cols (Figura 6). Les estacions situades a les zones estrictament protegides de les Illes Medes (zones RNP i ZC) varen mostrar una menor abundància de llagostes.

![Figura 6. Mitjanes de les abundàncies (individus/minut) de llagostes a les estacions mostrejades al Parc Natural del Montgrí, les Illes Medes i el Baix als anys 2016 i 2018. Els números damunt de les barres indiquen el nombre d’individus censats. Grau de protecció: Zona de Control (ZC); Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció i Parc Natural (PN).](image)

La classe de talla de llagosta més abundant va estar la T1 (25-60 mm), de la qual es varen trobar 101 individus, seguida per la de llagostes recent assentades (Rec, < 25 mm), amb 45 individus (Figura 7). Es van trobar 6 individus de llagostes de la classe T2 (60-80 mm) a les estacions de Puig de la Sardina (n = 2) i Baix de Cols (n = 4). Les llagostes de talles més grans (classes T3, 80-120 mm, i T4, > 120 mm) es varen trobar a les estacions de Pota del Llop (1 llagosta de classe T3 i 3 de classe T4) i el Medallot (1 individu de classe T3).
Figura 7. Distribució en funció de la classe de talla del total d’individus de llagosta censats a Parc Natural del Montgrí, les Illes Medes i el Baix a l’any 2018. Grau de protecció: Zona de Control (ZC); Reserva Natural Parcial (RNP), Zona Perifèrica de Protecció i Parc Natural (PN).

Evolució temporal de l’abundància i la biomassa a les Illes Medes

Les dades obtingudes enguany es varen afegir a la sèrie de dades històrica disponible per a les Illes Medes. Com ja es comentava als informes de seguiment dels anys 2014 i 2016, les abundàncies i biomasses de llagostes actuals es troben molt per sota dels valors que s’observaven a inicis de la dècada del 1990 (Figura 8). Les dades d’enguany mantenen la tendència observada des de l’any 2004, que manté els valors baixos després de la davallada observada entre els anys 1994 i 2002.

Figura 8. Evolució temporal del nombre total de llagostes observades a les Illes Medes, exceptuant els individus recent assentats. L’abundància es representa com el nombre total d’individus, i la biomassa en grams de pes fresc. Cal destacar que no hi ha dades per tots els anys.
Altres decàpodes

Enguany es varen trobar només dos llamàntols (*Homarus gammarus*), 1 a l’estació de Carall Bernat i l’altre a Pota del Llop (Figura 9). No es va observat cap individu de esclop (*Scyllarides latus*) ni de cabra de mar (*Maja squinado*).

![Llamàntol de talla T3 (*Homarus gammarus*) censat sota un gran bloc amb fons detritic, a 37 metres a l’estació de Pota del Llop.](image)

Figura 9. Llamàntol de talla T3 (*Homarus gammarus*) censat sota un gran bloc amb fons detritic, a 37 metres a l’estació de Pota del Llop.

Discussió

Parc Natural de Cap de Creus

El nombre total de grans decàpodes censats enguany és pràcticament el mateix que al seguiment previ (33 el 2016 i 34 al 2018), però la distribució d’aquests entre les localitats mostrejades no ha estat la mateixa. Les abundàncies enregistrades són molt irregulars entre les estacions mostrejades, havent-se trobar registres positius en 6 de les 11 estacions. Enguany es repeteix el mateix resultat nul que fa dos anys a l’Encalladora i Massa d’Or. A més, al Gat (estació afegida el 2016 i que semblava ser una bona incorporació al seguiment degut a l’existència d’hàbitat idoni per a la llagosta) i Punta Figuera, a on es van trobar 3 i 5 llagostes l’any 2016, enguany no s’hi ha trobat cap gran decàpode. Per altra banda, a Farallons i Messina, les abundàncies han passat de 0 (al 2016) a 8 i 10, respectivament, essent les major abundàncies del seguiment al Cap de Creus.
Si ens fixem en la distribució de les classes de talla veiem que hi ha una predominança de la talla T1 (25 – 60 mm LC), amb més del 76% del total de llagostes censades majoritàriament entre 3 estacions de mostreig que ofereixen zones molt bones de refugis per a les llagostes d’aquestes talles (Farallons, Forcats i Messina). El fet que aquest resultat sigui tan diferent del trobat al seguiment del 2016 es deu a la pròpia dinàmica poblacional de l’espècie i possiblement a altres factors implicats, com el furtivisme.

Als anys 2014 i 2015 l’assentament no va destacar massa al Cap de Creus (com. pers. David Díaz), explicant les baixes abundàncies de llagostes de talla T1 en endavant trobades el 2016. Per altra banda, el 2016 va ser un bon any per l’assentament, tot i que aquest fet no és apreciable si valorem totes les dades del seguiment ja que no totes les estacions tenen un hàbitat idoni per donar refugi als individus recent assentats. Tenint en compte aquest fet, les abundàncies de llagostes T1 i T2 trobades al Cap de Creus han estat les esperables.

Pel que fa als exemplars de talla inferior a 25 mm LC, enguany s’han censat 6 individus, 4 als Caials, localitat estrella per l’assentament entre les estacions mostrejades. Uns dels hàbitats òptims per les llagostes son els forats buits de dàtil de mar. La roca metamòrfica del Cap de Creus no és una superfície adequada per l’assentament de L. lithophaga, fet que fa que la presència del mol·lusc sigui molt baixa i, per tant, difcilment s’hi troben exemplars recent assentats de llagosta. El fet que els Caials s’haguin trobat una presència més elevada de recent assentats que a la resta de les estacions del Cap de Creus, pot ser degut a que les condicions geomorfològiques i orogràfiques que fan que sigui una zona d’especial retenció d’influx de larves de llagostes, però aquest fet es només una hipòtesi molt complexa de demostrar.

Si analitzem l’efecte del nivell de protecció al Cap de Creus vers l’abundància de llagostes, podem observar que no hi ha cap efecte significatiu, però sí que es manté el patró de les Illes Medes i el Montgrí, en el sentit que a la zona on hi ha més protecció, i on a priori esperaríem trobar abundàncies més elevades, ja que l’efecte de la pesca no hi és present, les abundàncies són menors. A la zona de l’Encalladora no es va trobar cap individu de grans decàpodes. Les zones parcialment protegides tenen major abundància que l’Encalladora, i finalment les abundàncies màximes de grans decàpodes les trobem a les cinc zones restricció amb menys protecció.

Aquest fenomen respon l’efecte de la protecció en condicions de poblacions poc estables i una dinàmica molt dirigida pels processos anuals d’assentament. L’efecte de la depredació sobre fases juvenils es molt més elevat en zones on hi ha molta més presència de depredadors, que habitualment són les zones on hi ha més nivell de protecció. Per tant, si tenim en compte que la major part dels exemplars que formen part de la població són individus immaturs, aquest seran en major abundància en zones on hi hagi menys depredadors.
Parc Natural del Montgrí, les Illes Medes i el Baix Ter

En les estacions històriques del seguiment (iniciat el 1992) s’han censat un total de 160 grans decàpodes (121 llagostes a la zona del Montgrí, i 43 llagostes i dos llamàntols a les Illes Medes). Tot i el nombre força elevat de llagostes que aquest any s’han pogut censar, cal remarcar que més del 35% dels individus es va veure una única estació, al Baix de Cols.

Pel que fa al Montgrí, a les estacions del Falaguer i els Arquets les abundàncies de llagosta observades enguany han estat molt similars al seguiment del 2016, però a la resta d’estacions del Montgrí s’han trobat abundàncies relatives molt disperses. Al Puig de la Sardina aquest seguiment s’ha trobat menys de la meitat de llagostes que fa dos anys. Aquests númers són perfectament comprensibles si tenim en compte l’alt risc de furtivisme a la zona, ja que en molt poca àrea es solen concentrar grans quantitats de llagostes de talla T1 refugiades es escletxes de molt fàcil accés. Per contra, en l’estació del Baix de Cols s’han observat el triple de llagostes que l’any 2016. Creiem que l’explicació radica en la presència d’habitat adequat per l’assentament de la llagosta i l’existència d’una cova amb refugis idonis per a als individus juvenils, que ha permès que els anys que hi ha un elevat reclutament les densitats augmentin molt considerablement. Enguany, s’han trobat més de 40 llagostes de talla 1, mentre que l’absència de llagostes en aquesta cova fa dos anys fa que es vegin grans diferències en les densitats. El fet que només es vegin individus juvenils i aquests no assoleixin talles més elevades, fa sospitar que el furtivisme pot tenir un paper important, i explicaria també aquestes fluctuacions.

Pel que fa a les estacions de les Illes Medes, enguany s’ha observat aproximadament la mateixa abundància total que al seguiment previ, exceptuant l’estació del Montnegre i el Carall Bernat, a on s’ha observat un augment del número de llagostes, i a la Cova de la Reina, a on aquestes han disminuït.

La major part dels individus totals censat han estat exemplars no reproductors (153) i els únics individus madurs (5) (Talles 3 i 4, ja que la maduresa s’assesoleix als 80 mm LC aproximadament) s’han trobat a les Illes Medes. No obstant aquesta abundància de grans individus a les Illes Medes és molt baixa, ja que tant per les fondàries mostrejades com pel tipus d’habitat, n’esperaríem trobar moltes més. Cada anys és més comú no trobar grans abundàncies de llagostes als llocs que tradicionalment es consideraven llagosters, així des de fa anys l’Escribana, la roca del Montnegre i la Barda del Sastre han deixat de ser els únics reductes on trobar llagostes. L’únic indret que encara podem observar llagostes grans de manera habitual i sense tenir en compte la dinàmica anual del procés d’assentament és la cova de la Pota del Llop, a on aquest any s’hi ha trobat 4.

Seguint el patró ja trobat el 2014 i el 2016, i tenint en compte les classes de talla, a la zona de les Illes Medes es troben molt menys exemplars de T1 que a la zona de la costa del Montgrí, com és habitual, donat que la pressió per depredació és molt més gran en l’àrea estrictament protegida, efecte que hem explicat per el cas del Cap de Creus. El fet d’haver trobat enguany individus més grans podria fer pensar en un efecte positiu de la protecció, tot i que, per molts motius, aquest efecte és molt poc efectiu.
Enguany sembla no haver estat un bon any per l’assentament, ja que s’han trobat força menys exemplars recent assentats (47, respecte de les 64 censades l’any 2016). L’alta variabilitat en les dades d’assentament de la sèrie temporal ens fa pensar que aquest procés està sotmès a condicions ambientals que controlen el patró general anual, de manera que no tenen relació directa amb les poblacions establertes a la zona on s’assenten. Les fluctuacions d’aquest procés són complexes de predir, tot i que tenen una forta influència en l’estat futur de les poblacions que s’han de gestionar.

Illes Medes

La sèrie temporal acumulada (anyos 1993-2018) de biomassa i abundància a les illes Medes, malgrat ser incompleta, mostra clarament la baixíssima capacitat de recuperació demogràfica de la llagosta vermella (*Palinurus elephas*) dins l’àrea protegida de les Medes. Podríem dir que des de fa 16 anys, any 2002, les poblacions de llagostes de les Illes Medes no sobrepassen massa el llindar de les 40 llagostes. Aquest límit no té cap sentit biològic, però veient l’evolució dels valors propers a aquest nombre algun cop s’havien assolit com a valors baixos de la sèrie, però des de fa 14 anys sembla ser el valor límit a sobrepassar. El declivi de la població és patent i constant a llarg dels anys, tot i probablement les mesures de restricció i la conservació de l’espècie per part de bussejadors i pescadors sigui més elevada.

El declivi ha de ser entès irreversible ja que, en una situació tant deprimida, resulta dificilment recuperable. Tant sols podrien ser susceptibles de recuperació aquelles zones on hi ha un reclutament consistente, malgrat les fluctuacions anuals pròpies del procés, amb una gestió adequada. El fracàs de la reserva envers la població de llagostes contrasta amb l’evolució favorable de la població de llagostes de la Reserva Marina de Columbretes (Goñi et al. 2006). Hi ha una sèrie de circumstàncies (que anomenem a continuació) que han fet accelerar la depressió de la població fins a límits que creiem irrecuperables a la reserva de les Illes Medes:

1) Mida petita de la reserva (200 metres de perímetre) en comparació al moviment de les llagostes
2) Hábitat de reclutament molt restringit
3) Augment de la pressió de depredació per part dels peixos sobre les fases juvenils
4) Pesca intensiva al voltant de la reserva
5) Pesca de talles il·legals (< 90 mm LC) en l’entorn de la reserva
6) Impacte de bussejadors sobre l’espècie
7) Variabilitat de l’assentament durant els últims anys.

Segons el nostre criteri expert, podríem dir que les llagostes estan extingides pràcticament, *sensu stricto* de les Illes Medes, ja que aquesta la seva situació és dificilment recuperable amb l’actual gestió, tot al contrari que al Parc Natural del Montgrí. No obstant, Sí que es podrien implementar mesures de gestió addicionals a la reserva marina, i focalitzades en aquesta espècie per a la seva millora.
Costa del Montgrí

En canvi, la costa del Montgrí és una altre cas força singular i diferent a les altres gran àrees. El litoral és un fons rocós continu fins al límit amb la sorra, que no sobrepassa els 40 - 45 metres de fondària i presenta zones molt adequades per l’assentament donada la naturalesa calcària del substrat, afavorint molts tipus d’hàbitats òptims per les llagostes. Aquestes característiques la converteixen en un lloc ideal per al creixement de les poblacions de llagostes. No obstant, no trobem llagostes de talles superiors a 90 mm LC degut a la sobrepesca i la pesca irresponsable de talles petites. Malgrat aquesta sobrepesca, el reclutament en certes localitats és realment excepcional, i en certa forma compensa la forta mortalitat per pesca, tot i que presenta fluctuacions anuals degudes a la variabilitat anual associada a processos oceànics i gratament és independent de l’estat de les poblacions locals. Aquest potencial de reclutament, independent de les poblacions adultes, converteix la costa del Montgrí en una zona totalment adequada per poder plantejar un pla de rescat de la població amb moltes garanties d’èxit.

Un dels problemes que hom ha trobat en totes les estacions de Montgrí-Medes, ha estat la falta de talles reproductores superiors a 90 mm LC. Això implica que el potencial reproductor està molt malmès de manera que només podem esperar que la població pugui ser rescatada per poblacions d’altres àmbits geogràfics mitjançant processos connectius de dispersió larvària. Per tant, la monitorització de l’assentament és clau per gestionar futures recuperacions de les poblacions.

En relació al nivell de protecció, hem vist que realment no es compleix la hipòtesis esperada (a més protecció, més llagostes). Això ho veiem reflectit en les densitats de la costa del Montgrí. Els resultats d’aquesta monitorització mostren clarament que la població de llagostes (*Palinurus elephas*) de la costa del Montgrí–Medes és una població oberta, no auto-suficient i que evita l’extinció local gràcies a una dinàmica meta-poblacional en la que actua com embornal (*sink*) sense que coneguem on resideix la font (*source*) que cada any garanteix el seu rescat a través de l’assentament. A la fi de poder establir aquestes fons cal poder avaluar la dinàmica larvària, però la llarga durada de la fase de vida larvària planctònica (4-5 mesos) dificulta la recerca, doncs el poder conèixer la variabilitat d’aquest procés i determinar l’origen dels recent assentats. Hem d’entendre que llocs com el Puig de la Sardina, el Baix de Cols o les roques del Falaguer han de ser considerades com uns dels punts més excepcionals d’assentament de llagostes de la Mediterrània occidental.

Mentrestant, hem pogut demostrar que l’assentament, que es repeteix cada any en quantitats significatives, dona pas a una fase de mortalitat juvenil que és molt més important dins les Illes Medes que fora d’elles, degut a l’elevada densitat de peixos a la reserva. Tanmateix, l’extraordinària densitat de peixos de les illes Medes representa un cas excepcional a la costa catalana, així doncs, la causa de la regresió de la llagosta a nivell més general l’hem de buscar en un altre lloc. I la causa principal a Catalunya és la sobrepesca, ja que es tracta d’una espècie de creixement molt lent que dificilment pot neutralitzar el gran esforç de pesca a què està sotmesa actualment. En cap cas es compleix la mida legal de captura, i aquest seria el primer pas important per complir en cas que es tingués intenció ferma de recuperar les poblacions de llagostes.
Altres grans decàpodes

Les poblacions de grans decàpodes d’interès pesquer és anecdòtica tant al Montgrí com a les Illes Medes i al Cap de Creus. Cal remarcar que, tal i com era d’esperar, no s’ha trobat cap cabra de mar ni al Cap de Creus ni a les Illes Medes i al Montgrí. La presència de llamàntols, en tot el temps que hem estat realitzant censos en les Illes Medes i costa del Montgrí, sembla molt fluctuant. Mai s’han vist exemplars juvenils i tots els exemplars s’han trobat en el límit més profund de les immersions. Els caus solitaris en fons detritics o de grapissar son l’hàbitat preferit. Les abundàncies d’aquests exemplars són en molts casos fluctuacions de la pròpia població i per tant si els censos es poguessin fer en una alta època de l’any, es podria determinar si existeix un efecte de la estacionalitat anual, igual que passa amb els esclops. És ben conegut en altres indrets del Mediterrani que els esclops s’agreguen entre els mesos de maig i juny i, per tant, caldria realitzar els censos per a aquesta espècies en aquesta època de l’any.

Conclusions

Parc Natural de Cap de Creus

Finalment enguany, s’ha censat aproximadament el mateix nombre de grans decàpodes al Cap de Creus que en l’anterior exercici 2016. Tot i havent-hi inclòs noves estacions de mostreig amb fons idonis per a la llagosta, la gran variabilitat en el procés d’assentament ha fet que la potencial abundància total de llagostes, sobretot de recent assentades, hagi estat baixa. És clau en aquestes poblacions, que mostren un fort declivi, conèixer on són els punts calents d’agregació, però això és molt complex d’esbrinar, tot i que caldria fer un esforç en aquest sentit.

Parc Natural del Montgrí, les Illes Medes i el Baix Ter

La costa del Montgrí segueix essent la zona on s’ha observat una major assentament, i també és on es troba un major nombre de llagostes petites (T1 i T2). En canvi a les Illes Medes trobem els pocs exemplars de llagostes adultes, així com els únics llamàntols i esclops observats en aquesta àrea. Però no veiem recuperació demogràfica de la llagosta vermella (Palinurus elephas) dins l’àrea protegida de les Illes Medes. Així, el declivi d’aquesta població ha de ser entès irreversible ja que en una situació tant deprimida resulta difícilment recuperable. Tant sols podrien ser susceptibles de recuperació aquelles zones on hi ha un reclutament consistent, malgrat les fluctuacions anuals pròpies del procés, amb una gestió adequada.
Recomanacions per a la gestió

Una població tant deprimida com la de les llagostes és irrecuperable simplement amb la creació de figures de protecció, ja que les talles que es veurien afavorides, els adults de més de 90 mm LC, pràcticament no existeixen. Per tant, les nostres recomanacions són:

a) Mantenir les estacions històriques de seguiment de grans decàpodes a la zona del Montgrí i Illes Medes.

b) Fer un seguiment acurat de l’assentament de manera que, aplicant mesures de protecció específiques per aquestes fases, es pugui millorar el futur reclutament a la població.

c) Identificar les zones d’assentament, i considerar-les i gestionar-les com a hàbits essencials per a aquesta espècie.

d) Fer accessible i promoure el coneixement de la normativa de pesca i biologia de la llagosta a tots els pescadors artesanals, ja que s’ha detectat un gran desconeixement, però no per falta de voluntat dels implicats.

e) Augmentar els controls i la vigilància en les embarcacions que es dediquen a la captura de la llagosta, així com les ventes que es fan a la llotja.

f) Es recomana millorar la informació referent a l’espècie que apareix al web corporatiu i material didàctic de la Generalitat de Catalunya, ja que hi ha informació errònia de la biologia de les espècies i la seva nomenclatura, i sobretot perquè provoca confusió pel que fa a la talla mínima de captura:

A més d’aquestes recomanacions generals, al Parc Natural del Montgrí, les Illes Medes i el Baix Ter i en cas d’existir la voluntat per part dels gestors d’aplicar un pla de rescat per la població de llagostes, es recomana, amb moltes garanties d’èxit, a) que es promogui una ària d’especial interès per la protecció de la llagosta a la costa del Massís de Montgrí, b) obligar a una moratòria de pesca de llagosta durant els propers 5 anys, i c) fer un seguiment continuat de l’assentament amb la participació activa del sector pesquer per poder fer una avaluació directa de la capacitat de recuperació de les poblacions de llagosta.

Bibliografia

Seguiment de les praderies de posidònia i de les poblacions de nacres

Javier Romero, Marta Pérez, Jordi Boada, Neus Sanmartí i Graciela Rovira

Aquest capítol ha de ser citat com:
Introducció

Les fanerògames o angiospermes marines formen un grup de plantes singular, especialment per la seva història evolutiva. Tanmateix, les funcions ecològiques que duen a terme són molt importants (Romero, 2004; Romero et al., 2012). Es tracta d’un grup relativament petit (unes 70 espècies a tot el món) de plantes superiors adaptades secundàriament a la vida al mar. Des d’un punt de vista taxonòmic, són espermatòfits o fanerògames, és a dir, plantes amb flor, arrel, tija i fulles, amb llavors embolcallades per un fruit (angiospermes) i emparentades, tot i que de manera llunyana, amb herbes terrestres com ara les granínies (monocotiledònies). La seva diferenciació histològica i la seva anatòmia, com així també els seus òrgans florals, són resultat d’una història evolutiva terrestre, i les separen de manera molt clara d’altres vegetals marins com ara les algues, grup molt diversificat, heterogeni i nombrós, però de constitució i estructura més simple. Les angiospermes marines, a més de flors, presenten una diferenciació clara de fulles, tiges i arrels. Són precisament les arrels les que han permès colonitzar els fons de sediment, molt més extensos que els fons rocosos, de manera que les seves praderies poden arribar a ocupar grans superfícies.

Les angiospermes marines, i les praderies que constitueixen, duen a terme funcions ecològiques crucials en les aigües costaneres, algunes de les quals tenen repercussions regionals o fins i tot globals. A tall d’exemple, esmentarem:

a) el seu paper com a constructores d’hàbitat, pel fet que tant les fulles com les tiges, modificades en forma de rizomes (parcialment enterrats, alguns d’ells amb creixement horitzontal i d’altres amb creixement vertical), formen un suport físicobiològic que dóna protecció o proveeix de substrat a una enorme varietat d’espècies vegetals i animals;
b) la seva funció com reservoris de biodiversitat, funció que es deriva del seu paper de constructores d’hàbitat, però també la seva producció d’aliment, que nodreix les xarxes trófiques;
c) els serveis ecològics del quals són responsables, com ara producció d’oxigen, protecció de platges, filtrat natural o embornal de carboni, entre d’altres.

Les praderies d’angiospermes marines són molt sensibles a l’acció humana, de manera que hi ha una certa preocupació d’abast mundial pel seu futur (Waycott et al., 2009), així com una demanda de mesures de protecció que la societat comença a fer seva.

En general, els mecanismes bàsics pels quals els diferents impactes originats per les activitats humanes poden afectar aquestes praderies es classifiquen en:

a) Modificacions directes dels recursos o factors primaris que controlen la producció, com la reducció de la llum incident, l’aument de temperatura (en particular, el derivat de l’escalfament global) o l’aument de la disponibilitat de nutrients (eutrofització).
b) Modificacions indirectes de la disponibilitat de recursos a través de l’alteració d’altres factors del medi, de les característiques de l’hàbitat i/o de les interaccions biòtiques (per exemple: augment d’epífits, major incidència d’herbivors i mortalitat d’arrels per manca d’oxigen al sediment, entre d’altres).

c) Mortalitat per efectes directes sobre les plantes organismes, principalment per impactes mecànics, com ara certs tipus de pesca, ancoratge, obres costaneres...

d) Bioacumulació i efectes tòxics de contaminants (metalls, detergents, hidrocarburs, etc.) sobre el metabolisme i el creixement de la planta o dels organismes que viuen a la praderia.

Els valors patrimonials associats a les praderies d’angiospermes marines, així com els serveis que subministren, fan que el seu seguiment en general i, especialment, en l’àmbit d’espais marins protegits, sigui de gran importància. D’una banda, és cert que als espais marins protegits moltes de les activitats humanes amb impacte negatiu sobre les praderies estan minimitzades. Ara bé, això no vol dir que no hi hagi pressions. Dos exemples, força diferents, són especialment aplicables al cas de les praderies: la pressió exercida per la nàutica d’esbarjo, i en particular pels fondejos (activitat susceptible de regulació), i els possibles efectes de l’escalfament global (aspecte no susceptible de regulació però amb què cal estar atent). Per l’òrgan gestor dels espais protegits és essencial disposar d’informació fiable sobre l’estat d’aquests ecosistemes, tant per determinar i avaluat mesures i actuacions, com per saber l’evolució del patrimoni submarí que tenen sota la seva custòdia.

De les cinc espècies d’angiospermes marines existents a la Mediterrània (excloses les pertanyents al gènere *Ruppia*), a Catalunya es coneix la presència de tres: *Posidonia oceanica*, coneguda popularment com a alga de vidriers, *Cymodocea nodosa*, de nom popular algueró o alga de les nimfes, i *Zostera noltii*. Una quarta espècie, *Zostera marina*, havia estat vista, almenys a Portlligat, cala Jonquet (badia de Guillola) i a la badia dels Alfacs (delta de l’Ebre), si bé és pràcticament segur que ja no es trobi a les costes catalanes. Més concretament, en l’àrea protegida del Parc Natural del Montgrí, les Illes Medes i el Baix Ter trobem només *P. oceanica* i *C. nodosa*. Pel que fa a l’àrea que correspon al Parc Natural de Cap de Creus, a més d’aquestes dues espècies trobem també *Z. noltii*.

D’aquestes tres espècies, i tal com constava al plec de condicions, s’ha escollit *P. oceanica* per fer el seguiment. Aquesta elecció es basa en un seguit de raons:

i. És la que forma les praderies amb un valor ecològic més elevat, tant pel que fa a funcions ecològiques (biodiversitat, producció, etc.) com a serveis ecosistèmics.

ii. És la més abundant i la que forma praderies més extenses.

iii. És la més sensible a alteracions antròpiques, pel qual pot donar informació sobre la qualitat general del medi.
Val a dir, també, que les praderies de *P. oceanica* es troben en l’annex I de la Directiva Hàbitats (Directiva 92/43/CEE, de 21 de maig), que fa referència als hàbitats naturals d’interès comunitari pels quals és necessari designar zones especials de conservació. A més, enguany, tot aprofitant una sèrie d’observacions qualitatives (vegeu apartat metodològic corresponent), hem intentat identificar els llocs on les altres espècies (*C. nodosa* i *Z. noltii*) hi viuen.

Finalment, i com ja s’ha dit, les praderies d’angiospermes marines, i en particular les de *P. oceanica*, hostatgen una rica comunitat animal. Un dels organismes singulars d’aquesta comunitat és el mol·lusc *Pinna nobilis*, endèmic de la Mediterrània. És probablement el bivalve de major mida de les nostres aigües, i les seves poblacions han estat greument alterades per l’home, tant per pertorbacions mecàniques (fondejos, xarxes de pesca, etc.) com per captures amb finalitats ornamentals, fins a conduir-les a una situació que alguns autors havien qualificat de vulnerable (Guallart i Templado, 2012). Per aquest motiu, l’espècie es troba en l’annex IV de la Directiva Hàbitats (Directiva 92/43/CEE, de 21 de maig). En anys anteriors, les dades obtingudes pel nostre equip varen demostrar una certa recuperació de les poblacions de *Pinna nobilis*, especialment en els punts on l’ ancoratge d’embarcacions era mínim o nul (Romero et al., 2014, Romero et al., 2016). Ara bé, a finals de 2016 les poblacions de *Pinna nobilis* de la Mediterrània occidental es varen començar a veure afectades de manera molt dràstica per l’arribada d’un protozou paràsit (*Haplosporidium pinnae*) que en causava la seva mort (Catanese et al., 2018). L’epizootia va començar per les aigües del S de la península Ibérica, i ben aviat s’estengué pel Llevant i les Balears. En una primera fase, les poblacions catalanes varen semblar quedar al marge, fins al punt que al seguiment de 2016 no es varen detectar símptomes d’aquesta mortalitat a cap de Creus ni a les Illes Medes, més enllà d’un 8% d’indivíduos morts, xifra aparentment atribuïble a la mortalitat natural (Romero et al., 2016). Malauradament, a finals de 2017 i, i molt especialment, a principis de 2018, la mortalitat per la parasitosi es va disparar a les costes catalanes, i diverses observacions van indicar una minva important de les poblacions de nacres a ambdós espais protegits. L’interés en conservació d’aquest mol·lusc com espècies emblemàtica, la seva vulnerabilitat a aquest paràsit i la seva associació a les praderies d’angiospermes marines, especialment de *P. oceanica*, fan que el seguiment de les seves poblacions, en el marc del seguiment de les praderies dels espais marins protegits de Catalunya, sigui d’una especial oportunitat en aquest context.

L’objectiu del present treball, per tant, és avaluar l’estat de les praderies de *P. oceanica* així com les abundàncies de *P. nobilis* a elles associades en els Parcs Naturals marins de Catalunya (Cap de Creus i Montgrí, Illes Medes i Baix Ter) per tal d’obtenir una diagnosi del seu estat actual, relacionar-la amb les activitats que s’hi desenvolupen, comparar-lo amb l’estat passat i aportar informació contrastada per seguir l’evolució d’aquests ecosistemes en els pròxims anys.
Material i mètodes

El treball s’ha dut a terme en dues-tres grans fases: presa de dades al camp (aproximació qualitativa i aproximació quantitativa) i elaboració de la informació obtinguda. El mostreig i la presa de dades de camp s’han dut a terme mitjançant busseig amb escafandres autònoms, per part d’un equip de quatre bussejadors experimentats en treball de camp amb *P. oceanica* i un barquer a superfície com a mesura de seguretat. En alguns casos s’han fet també observacions en apnea.

Els herbeis de Posidonia oceanica

Pel seguiment dels alguers de *P. oceanica*, i com als exercicis anteriors de 2014 i 2016, s’ha utilitzat una simplificació del mètode desenvolupat pels membres de l’equip de treball per diagnosticar l’estat ecològic de les masses d’aigua a partir de variables biològiques d’aquesta espècie i de l’ecosistema que forma. Aquest mètode es basa en la construcció d’un índex biòtic (*Posidonia Oceanica* Multivariate Index: POMI, Romero et al., 2007), acceptat oficialment per la UE durant el desplegament de la Directiva Marc de l’Aigua (2000/60/EC), després d’un rigorós procés d’intercalibració (Mascaró et al., 2012). Aquest índex no s’aplica en la seva totalitat per no ser necessari en espais naturals protegits ni estar dissenyat pels objectius del seguiment, però d’ell se n’han extret les variables i metodologies més adients. Part d’aquest mètode, a més, ja s’havia emprat anteriorment en el seguiment de la Reserva Marina de les Illes Medes des de l’any 1984 (Romero et al., 2012), de forma que la utilització de la mateixa metodologia i les mateixes estacions de mostreig emprades fins al moment podrà donar continuitat a les sèries temporals obtingudes fins ara per membres de l’equip de treball, que són les més llargues de tota la Mediterrània. Enguany, com a complement a aquestes mesures, s’han efectuat una sèrie de prospeccions qualitatives per ampliar el coneixement de les praderies, tot obtenint una sèrie de descriptors basats en l’observació. Això s’ha fet per tal de complementar l’aproximació fonamentalment intensiva del mètode esmentat abans amb una aproximació extensiva, potser no tan quantitativa, però amb la qual hem estat capaços d’abastar escales espacials de major magnitud.

Aproximació qualitativa

L’aproximació qualitativa (extensiva) s’ha basat en observacions sobre la superfície més gran possible de cada una de les praderies o estacions estudiades (vegeu apartat sobre estacions). A cada estació, aquestes observacions es varen fer al llarg d’una sèrie de recorreguts, fonamentalment de dos tipus: uns que anaven des del límit superficial de la praderia fins al límit profund, que també s’inspeccionava amb un cert detall (o bé a l’inrevés, del profund al superficial), i uns altres que se centraven en el límit superficial. Segons la fondària i la distància a recórrer, les observacions es feien en apnea o amb equips de busseig autònoms; per distàncies llargues, ens vàrem ajudar d’un parell de petits escúters submarins. En alguns casos, es van modificar aquestes pautes per tal d’adaptar-les a les especials característiques de les praderies.
La major part dels recorreguts varen ser filmats amb càmera de vídeo submarí i, a la vegada, el bussejador anotava tot un seguit d’observacions, algunes d’elles sistemàtiques, i de característiques de l’herbei rellevants per la seva diagnosi. L’equip de superfície, des de l’embarcació, seguia els bussejadors i anotava, mitjançant un receptor GPS, les posicions de tots aquells punts d’interès (limits, estructures notables, etc.). Un cop a terra, es varen visualitzar els enregistraments en vídeo i se’n va extreure la informació pertinent, tot combinant-la amb les anotacions preses. Per tal d’estandarditzar al màxim la presentació de tota aquesta informació, per a cada estació hem elaborat una mena de petit dossier que consta de quatre parts:

a) Un mapa on es representen els recorreguts fets i s’assenyala la toponímia més important
b) Una fitxa-resum descriptiva
c) Una descripció que podríem dir-ne *narrativa* de la praderia
d) Una fitxa-resum de la seva diagnosi.

Els continguts dels ítems b) i d) s’expliquen en l’apartat de resultats, per facilitar una millor comprensió.

Aproximació quantitativa

Les variables que es mesuren són la densitat, la cobertura i el grau d’enterrament dels feixos. També es prenen dades complementàries sobre l’abundància de la macrofauna d’equinoderms (garotes i holotúries). A més, es comproven les fites del limit profund, o se’n posen de noves si hi manquen. Tot i ser persones amb una llarga experiència mostrejant en herbeis de *P. oceanica*, abans de començar la primera estació, els bussejadors passen per un procés d’intercalibració, de forma que tots ells estimen la densitat i cobertura en un mateix quadrat (comparant els resultats i ajustant la metodologia i els criteris si s’escau), per tal de mitigar biaixos per l’efecte de la subjectivitat del mostrejador.

Densitat

La densitat és el nombre de peus (generalment anomenats feixos) per unitat de superfície. Els feixos de *P. oceanica* són agrupacions individualitzades de fulles (de 3 a 7 fulles per feix) que s’uneixen per la base, producte de la ramificació de les tiges (anomenades rizomes en estar parcialment o totalment enterrades). La densitat és un descriptor bàsic de vitalitat de la praderia, així com una primera aproximació a altres variables quantitatives ecolònicament rellevants (producció, biomassa, etc.). La densitat s’estima a partir del recompte del nombre de feixos que trobem a l’interior d’un quadrat de 40x40 cm, el qual està dividit en 4 subquadrats de 20x20 cm amb l’objectiu de facilitar el comptatge. A cada punt de mostreig (o subestació, veure més endavant) es fan 10 mesures de densitat, anotant els feixos presents a cada subquadrat. Els 10 quadrats es distribueixen a l’atzar sobre la superfície que constitueix el punt de mostreig, és a dir, uns 500 m² al voltant del punt marcat per les coordenades i sempre sobre zones amb planta, és a
dir, amb cobertura no nul·la (Romero, 1986). La distribució dels quadrats a l’atzar se sol fer mitjançant algun criteri adequat, com ara situar-se 1 m per sobre el fons i deixar-lo caure (Pergent et al., 1995), nedar un cert nombre de cops d’aleta en direccions aleatòries, o disposar una cinta mètrica sobre la qual es determinen unes distàncies a l’atzar per fer les mesures. Nosaltres vam fer servir la segona d’aquestes opcions. És molt important recordar que si algun quadrat o algun dels seus subquadrats cau en una zona sense feixos, resta invalidat i es fa una nova col·locació a l’atzar. Pel càlcul de la densitat, es considera que cada quadrat de 40x40 cm és una rèplica, i per tant el nombre de rèpliques és de 10 per punt de mostreig o subestació. La densitat s’expressa en feixos m⁻².

Cobertura

La cobertura és la fracció del substrat recobert per *P. oceanica* viva, és a dir, el quocient (com a percentatge) entre la superfície ocupada per la planta viva i la superfície ocupada per la planta més la no vegetada (clapes o clarianes, tant de sorra com de mata morta; Romero, 1986). Igual que la densitat, la cobertura és una expressió de l’abundància de la planta, i un indicador de la vitalitat de l’herbei, encara que a una altra escala d’observació.

La cobertura s’estima mitjançant transsectes de 10 m de longitud, disposats en direccions aleatòries amb origen en un punt situat dins d’un radi no superior a 5 metres al voltant del punt que defineix la subestació. El transsecte es marca amb una cinta mètrica, i a cada metre de la cinta es col·loca un quadrat de 40x40 cm dividit en 4 subquadrats de 20x20 cm. El transsecte es recorregut per dos bussejadors, que, de manera independent, estimen visualment la cobertura en cada subquadrat (en percentatge), de manera que a cada transsecte es prenen 10x4 estimacions per duplicat. És important remarcar que la cobertura es refereix al percentatge de substrat recobert per la base dels feixos, i no per les fulles, la llargada de les quals pot variar estacionalment i donar lloc a estimacions errònies. Això vol dir que s’ha de treballar molt a prop del fons per tal d’esbrinar si un substrat està realment cobert o no per la base dels feixos, o bé és substrat no vegetat cobert per les fulles; quan cal, s’ha d’explorar amb les mans per major certesa. És molt important també tenir en compte que les petites clapes (de menys de 100 cm²) no es consideren; és a dir, si dos feixos estan separats per menys de 10 cm, es considera que recobreixen el 100 % del substrat.

El valor de cobertura resultant s’obté de la següent manera. Primer es calcula la mitjana aritmètica, per a cada quadrat, a partir de les estimes de cada subquadrat. Després es calculen les mitjanes per transsecte obtingudes per cadascun dels dos bussejadors, i finalment es calcula el promig entre els dos bussejadors per obtenir un valor únic per transsecte. Finalment es calcula la mitjana de tots els transsectes a partir dels valors resultants per obtenir el valor per l’estació. Cada transsecte és, per tant, una rèplica, i el nombre final de rèpliques és de 3 per punt de mostreig o subestació. Aquesta mida mostral pot semblar petita, però cal recordar que el valor de cada rèplica s’obté de la mitjana de 80 observacions.
Enterrament dels feixos

L’enterrament d’un feix és la distància vertical entre la superfície del sediment i la lígula (sutura en forma de mitja lluna entre el limbe i el pecíol) de la seva fulla més externa. Quan la lígula està per sota la superfície del sediment (base dels feixos enterrada) considerem aquest valor negatiu, i quan la trobem per sobre (base dels feixos descalçada), positiu. L’enterrament indica si l’herbei està sotmès a un déficit o a un excés de sediments. Per alguns autors, també, una major exposició (descalçament) dels rizomes pot implicar una major sensibilitat a les pertorbacions mecàniques, com el fondeig (Francour et al., 1999).

L’enterrament es determina mitjançant un regle graduat, en un feix escollit a l’atzar dins de cada subquadrat de cada recompte de densitat (vegeu secció densitat); s’obtenen per tant 40 mesures per punt de mostreig o subestació, de les quals es calcula la mitjana. Per tant, el nombre final de rèpliques és de 40 per punt de mostreig o subestació.

Intensitat de floració

La floració de P. oceanica té lloc, principalment, entre els mesos de setembre i novembre. Aquest fenomen és de caràcter molt heterogèni tant en l’espai com en el temps, i sembla ser relativament freqüent a determinades àrees geogràfiques (per exemple, les illes Balears), mentre que a la costa catalana és més aviat escàs. Certs estudis relacionen períodes de temperatures més altes amb un increment en la intensitat de floració de les praderies de P. oceanica (Ruiz et al, 2017). Durant l’execució d’aquest treball s’ha detectat floració en diferents estacions visitades, i per tal d’avaluar la seva intensitat, s’ha comptabilitzat, dins els quadrats de densitat, el nombre d’inflorescències. Entenem com a intensitat de floració el nombre d’inflorescències trobades dividit pel nombre de feixos total.

Abundància d’equinoders

Entre la macrofauna més conspícu que podem trobar a les praderies de P. oceanica destaquen sobretot els equinoders, que, com a herbívors (com ara la garota comuna, Paracentrotus lividus) o com a detritívors (la garota de pues blanques, Sphaerechinus granularis i les holotúries, Holothuria spp.), hi tenen papers ecològics importants.

Per l’estimació de l’abundància d’equinoders, s’inspeccionen curosament els quadrats de densitat (vegeu secció densitat, 10 rèpliques per subestació) i s’anota el nombre de garotes i la seva espècie (encara que gairebé sempre es tracta de la garota comuna, P. lividus) i d’holotúries (Holothuria poli o complex Holothuria tubulosa-mamatta). Aquest mostreig, amb 10 quadrats de 40x40 cm, és probablement insuficient per fer una bona apreciació de les poblacions d’equinoders, de manera que les dades resultants cal considerar-les només informació complementària.
Comprovació i fitació del límit profund

El límit profund de distribució de les praderies està molt freqüentment determinat per la transparència de l’aigua. La cinètica (canvis en el temps) del límit profund proporciona informació sobre variacions en l’extensió de les praderies en el seu límit de distribució probablement més sensible. Aquest seguiment pot fer-se amb mètodes cartogràfics, molt costosos, o bé amb tècniques in situ (fitació) molt més econòmiques i, paradoxalment, molt més acurades.

La tècnica de fitació emprada consisteix en, un cop localitzat el límit de distribució profund de l’herbei, clavar un cert nombre de barres de ferro (entre 5 i 10) separades deu metres cada una de la següent, i cada barra just a tocar la darrera planta viva del lloc que li pertoca, tot resseguint el límit. D’aquesta manera queden, marcats entre 40 i 90 metres de límit de l’herbei. Les barres, de 2 m de llargària, es claven 1 m en el substrat, deixant 1 m vist fora del sediment. Es pren la profunditat a la base de cada barra, i a la barra considerada origen es deixa anar un globus de descompressió per poder georeferenciar-la (posició GPS) des de la superfície. S’anoten també les característiques del límit (Boudouresque i Meinesz, 1982; Pergent et al., 1995), és a dir, si és net, progressiu o regressiu, si hi ha evidències de mata morta més enllà del límit, etc. Aquesta tècnica de seguiment s’ha aplicat a les estacions “completes”, és a dir, les que tenien subestació profunda i subestació superficial (vegeu l’apartat “estacions”). En totes les estacions ja hi havia fites instal·lades d’anys anteriors (algunes anteriors a les campanyes de seguiment pròpiament dites), de manera que el què s’ha fet enguany és controlar les fites existents (comprovant, per cada una d’elles, si seguia tocant l’última posidònia viva, o bé si la praderia havia retrocedit o avançat, i quant) i posar-ne de noves si havien desaparegut.

Les poblacions de Pinna nobilis

En anys anteriors (2014 i 2016), l’estudi de les poblacions de nacres s’havia fet per cada estació, sense distingir entre subestacions (superficial i profunda). Així, a cada estació es realitzaven 3 transsectes de 50 metres de llarg, iniciats a la subestació superficial de la praderia (llevat dels casos que només hi hagi una subestació fonda), i seguint (cap al fons) la línia de màxim pendent. El transsecte es marcava amb una cinta mètrica, a banda i banda de la qual nedaven dos bussejadors, inspeccionant la superfície compresa entre el transsecte i un metre de distància, cadascú a la seva banda. La superfície total inspeccionada per transsecte fou per tant de 100 m², amb 3 rèpliques per estació. Cada cop que es trobava un individu de P. nobilis s’anotaven les seves dimensions (alçada, des del sediment fins a la part més alta de les valves, i amplada màxima).

Per estimar l’alçada real de l’individu de P. nobilis (part del qual restava enterrat al sediment) es feia servir l’equació de García-March (2005):

\[H_t = 1,29 \times W^{1.24} \]

que es basa en la relació empèrica entre \(H_t \) (alçada o longitud total de les valves) i \(W \) (amplada màxima de les valves). \(H_t \) i \(W \) s’expressen en cm.
Enguany, i com era d’esperar (vegeu introducció) ens vàrem trobar amb una alta mortalitat, fet pel qual vàrem canviar una mica l’estratègia de mostreig. De fet, es varen fer els mateixos tres transsectes a cada estació, i es varen mesurar totes les nacres, mortes (la gran majoria) o vives, anotant el seu estat. Les nacres mortes encara ancorades al sediment es van mesurar com les vives. Les nacres mortes tombades es van mesurar en la seva totalitat. Per tal d’avaluar el nombre d’individus supervivents, durant totes les nostres immersions (aproximació qualitativa o quantitativa) vam estar amatents a la presència de nacres vives, recollint aquesta informació en tots els casos, encara que fos fora de transsecte. Amb les dades dels transsectes podem aproximar la supervivència de les nacres als àmbits estudiats, i amb el conjunt de dades fer una estima, poc precisa i merament orientativa, sobre la mida actual de les poblacions de nacres, sempre als àmbits estudiats.

Estacions de mostreig

La selecció de les estacions mostrejades s’ha fet, d’acord amb els responsables dels espais protegits, per abastar un ventall prou ampli de praderies, que inclougués diferents àmbits, diferents nivells de protecció, i diferents zones dins les àrees protegides. Com els any 2014 i 2016, s’han seleccionat com a fondàries-tipus els 5 i els 15 metres, per tal de fer les dades comparables. En alguns casos, i per la naturalesa de la praderia, ha calgut ajustar aquestes fondàries. Definim com a estació una localització concreta dins de les àrees d’estudi (per exemple, una cala o un punt de la costa), i com a subestació, o punt de mostreig, una fondària concreta dins d’aquesta localització. Així doncs, les observacions qualitatives es fan sobre el conjunt de l’estació, mentre que la presa de dades es fa a la subestació. Per tant, hi ha tantes fitxes qualitatives com estacions i tantes preses de dades quantitatives com subestacions. S’han seleccionat un total de 13 estacions: 8 a cap de Creus, 3 a les illes Medes i 2 a la costa del Montgrí (taula 1, i figures 1 i 2). D’aquestes estacions, 9 (5 a cap de Creus, 3 a les illes Medes i 1 al Montgrí) consten de dues subestacions, corresponen a les dues fondàries-tipus, i les altres 4 tenen una única subestació, el que dóna un total de 22 punts de mostreig quantitatiu.

Per reduir la variabilitat espacial de les dades, és important que les mesures per cada subestació, es facin sempre al mateix lloc, és a dir, dintre d’una superfície d’uns 500 m² (vegeu metodologia) que no variï d’un any a l’altre. Així, totes les subestacions estan georeferenciades amb una opció avançada del GPS. Aquesta opció permet fer una mitjana de les coordenades preses durant un temps mínim de 10 minuts, el que augmenta molt la precisió de la posició.
Taula 1. Estacions mostrejades en el seguiment de fanerògames i nacres de l’any 2018. **Prot:** grau de protecció, on **PN:** zona de Parc Natural, **RNP:** zona de Reserva Natural Parcial; **Fondària:** fondària en metres; coordenades **X** i **Y:** posició en UTM fus 31 utilitzant el sistema de referència ESTR89.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Estació</th>
<th>Prot.</th>
<th>Codi</th>
<th>Subestació</th>
<th>Fond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap de Creus</td>
<td>Cala Taballera</td>
<td>PN</td>
<td>CCPOSI-1</td>
<td>Tab-SUP</td>
<td>6,5</td>
</tr>
<tr>
<td></td>
<td>Cala Taballera</td>
<td>PN</td>
<td>CCPOSI-1</td>
<td>Tab-FONS</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Cala Culip</td>
<td>RNP</td>
<td>CCPOSI-2</td>
<td>Cul-SUP</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Cala Culip</td>
<td>RNP</td>
<td>CCPOSI-2</td>
<td>Cul-FONS</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Cala Jugadora</td>
<td>RNP</td>
<td>CCPOSI-3</td>
<td>Jug-SUP</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Cala Jugadora</td>
<td>RNP</td>
<td>CCPOSI-3</td>
<td>Jug-FONS</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Cala Guillola</td>
<td>PN</td>
<td>CCPOSI-4</td>
<td>Guill-SUP</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Cala Guillola</td>
<td>PN</td>
<td>CCPOSI-4</td>
<td>Guill-FONS</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Portlligat</td>
<td>PN</td>
<td>CCPOSI-5</td>
<td>Portlligat</td>
<td>4,5</td>
</tr>
<tr>
<td></td>
<td>Norfeu Nord</td>
<td>RNP</td>
<td>CCPOSI-6</td>
<td>Norfeu N</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Cala Pelosa</td>
<td>PN</td>
<td>CCPOSI-7</td>
<td>Pelosa</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Cala Montjoi</td>
<td>PN</td>
<td>CCPOSI-8</td>
<td>Montj-SUP</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Cala Montjoi</td>
<td>PN</td>
<td>CCPOSI-8</td>
<td>Montj-FONS</td>
<td>16</td>
</tr>
<tr>
<td>Montgrí</td>
<td>Montgó</td>
<td>PN</td>
<td>MMPOSI-5</td>
<td>Montg-SUP</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Montgó</td>
<td>PN</td>
<td>MMPOSI-5</td>
<td>Montg-FONS</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Cala Pedrosa</td>
<td>PN</td>
<td>MMPOSI-4</td>
<td>Pedrosa</td>
<td>6,5</td>
</tr>
<tr>
<td>Medes</td>
<td>Meda Petita</td>
<td>RNP</td>
<td>MMPOSI-1</td>
<td>MedPet-SUP</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Meda Petita</td>
<td>RNP</td>
<td>MMPOSI-1</td>
<td>MedPet-FONS</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Meda Gran 1</td>
<td>RNP</td>
<td>MMPOSI-2</td>
<td>MedGran1-SUP</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Meda Gran 1</td>
<td>RNP</td>
<td>MMPOSI-2</td>
<td>MedGran1-FONS</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Meda Gran 2</td>
<td>RNP</td>
<td>MMPOSI-3</td>
<td>MedGran2-SUP</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Meda Gran 2</td>
<td>RNP</td>
<td>MMPOSI-3</td>
<td>MedGran2-FONS</td>
<td>15</td>
</tr>
</tbody>
</table>
Figura 1. Localització de les subestacions, marcades en color verd, del seguiment de posidònia i nacres al Parc Natural de Cap de Creus. Els colors indiquen els diferents graus de protecció. **PN:** zona de Parc Natural (blau), **RNP:** zona de Reserva Natural Parcial (groc-verd pàlid) i **RNI:** zona de Reserva Natural Integral (vermellós). Les coordenades es donen en UTM fus 31, utilitzant el sistema de referència ETRS89.
Figura 2. Localització de les subestacions, marcades en color verd, del seguiment de posidònia i nacres al Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Els colors indiquen els diferents graus de protecció. PN: zona de Parc Natural (blau), RNP: zona de Reserva Natural Parcial (groc-verd pàl·lid) i ZPP: zona Perifèrica de Protecció (verd). Les coordenades es donen en UTM fus 31, utilitzant el sistema de referència ETRS89.
Descripció d'una campanya tipus

Es descriuen a continuació dos dies tipus de campanya, un corresponent a l’aproximació qualitativa i un altre a la quantitativa. La descripció correspon a una situació ideal, és a dir, en la qual no es presenten dificultats o imprevistos, com podrien ser mala mar, corrent fort, dificultat en localitzar el límit, poca visibilitat o altres contingències que alenteixen el ritme de treball. Evidentment, la varietat de morfologies de les cales i dels seus herbeis va provocar nombroses modificacions sobre aquest model bàsic que descrivim aquí.

Dia de campanya per les observacions qualitatives

Val a dir que, per raons logístiques d’optimització, el seguiment de les fites al límit profund, que tractem com a mesura quantitativa, es va fer simultàniament a les observacions qualitatives stricto sensu, i per tant s’explica aquí.

L’equip el formen quatre bussejadors, A, B, C, D i un barquer. En primer lloc, i vista la previsió meteorològica i l’estat de la mar, es decideixen els objectius de la jornada. Un cop decidits, es carrega la barca amb els equips, el material de mostreig i 8 ampolles d’aire de 15 litres més una de seguretat de 10 litres, i es navega fins a l’estació. Arribats a l’estació, i mitjançant la sonda manual i el GPS, se situa la barca el més a prop possible d’on es pensa que es troba el límit profund (i les fites) i es tira l’àncora (excepte a les illes Medes, on s’amarra l’embarcació a una boia). Baixen A i B seguint el cap de l’àncora, i la situen fora de l’herbei o en una clapa sense vegetació, i a partir de l’àncora neden un màxim de 50 metres cap a mar obert (si l’àncora està situada a l’herbei) o cap a terra (si l’àncora està situada a fora de l’herbei), tot desplegant una cinta mètrica per facilitar el retorn al punt d’origen. Un cop trobat el límit, es busquen les fites i es comprova el seu estat. Cal dir que la precisa georeferenciació dels punts on estan les fites en anys anteriors ha permès, enguany, escurçar notablement aquest pas amb un 100% d’encerts (ànora a menys de 50 metres de les fites) al primer intent. Si no manca cap fita, A i B prenen les mesures indicades a l’apartat de metodologia; si manquen, A i B pugen a superfície, agafen les barres de ferro necessàries i tornen a baixar. Les barres es claven com s’ha indicat a l’apartat corresponent, i es prenen les dades de les fites romanents. A i B fan, a més, un recorregut pel límit per tal d’observar les seves característiques i fer-ne fotos o vídeos. Un cop acabada la feina, pugen a superfície amb una parada de seguretat allargada. Temps al fons: uns 30-40 minuts.

A continuació C i D marquen des de superfície el rumb a seguir i baixen amb un escúter cadascú. D’aquesta manera fan un recorregut des del límit profund fins a la superfície, amb una boia a superfície que permeti situar-los des de l’embarcació. C i D van filmant el recorregut i anotant les observacions pertinents, fins que troben el límit superficial de la praderia. La barca els segueix gràcies al globus, i es van prenent posicions amb el GPS per conèixer per on s’ha passat exactament. Al final del recorregut C i D pugen a superfície, amb parada de seguretat. Temps al fons: uns 30 minuts.
Un cop fet aquest recorregut, que normalment segueix l’eix longitudinal de la cala, la barca se situa a prop del límit som, i la zona s’inspecciona nedant o amb petites apnees, en parelles de bussejadors (A, B i C, D) mentre el barquer actua com a suport i ajuda a georeferenciar punts destacables.

Habitualment, es poden fer dues estacions en un dia, fent un descans i avituallament a bord després d’aquesta feina i repetint-la en una altra estació a la tarda.

Un cop tot enllestit, es navega fins a port, es descarreguen els equips i altre material i es porta tot fins a la base. Es netegen els equips, es porten les ampolles a carregar i es passen a net totes les dades i observacions de la jornada; s’arxiva i documenta el material fotogràfic i videogràfic.

Dia de campanya per la presa de dades quantitativa

La descripció que fem correspondrà a un dia de campanya fet en una estació on tenim tant subestació profunda com superficial. L’equip el formen quatre bussejadors, A, B, C, D i un barquer. Com abans, primer es decideixen els objectius de la jornada, es carrega la barca amb els equips, el material de mostreig i 8 ampolles d’aire de 15 litres més una de seguretat de 10 litres, i es navega fins a l’estació.

Arribats a l’estació, i mitjançant la sonda manual i el GPS, se situa la barca sobre la subestació profunda i s’hi tira l’àncora, excepte a les illes Medes, on s’amarra a una boia. Hi baixen A i B formant una parella i C i D formant-ne una altra, i en primer lloc el que fan és col·locar l’àncora en un lloc que no malmeti cap planta (clarianes, clapes sense vegetació...). A continuació es fan les mesures, totes elles en una superfície de 500 m² al voltant de l’àncora. Els dos equips fan mesures de densitat (i paràmetres associats) i cobertura fins a enllestar la feina, i després fan un recorregut en un radi de 50 metres de la subestació per tal d’observar-ne les característiques generals i prendre documentació visual. Pugen a superfície allargant les parades de descompressió o fent una parada de seguretat si no és el cas. Temps al fons: entre 60 i 90 minuts.

Després d’un temps de descans, se situa l’embarcació sobre una fondària de 5 metres per fer la subestació superficial. Es canvien les parelles (o en algun cas el barquer substitueix a algun dels bussejadors), i, per exemple, A i C fan un transsecte pels recomptes de nacres, 5 quadrats de densitats i dos transsectes de cobertura, i B i D fan dos transsectes pel recompte de nacres, 5 quadrats de densitats i un transsecte de cobertura. D’aquesta manera, tots els bussejadors participen en les mesures de totes les variables, i les parelles no són fixes, el qual evita possibles biaixos. Un cop enllestides aquestes tasques, ambdós equips pugen a superfície. Temps al fons: uns 90 minuts.

Com abans, un cop tot enllestit, es navega fins a port, es descarreguen els equips i altre material i es porta tot fins a la base. Es netegen els equips, es porten les ampolles a carregar i es passen a net totes les dades i observacions de la jornada; s’arxiva i documenta el material fotogràfic i videogràfic.
Per la realització de tot el mostreig és necessari, per una banda, material de navegació i submarinisme i per l’altra, material pel recompte i observació de les variables (taula 2).

Taula 2. Relació de material necessari per realitzar el mostreig del seguiment de praderies de posidònia i poblacions de nacres.

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embarcació pneumàtica</td>
<td>-</td>
</tr>
<tr>
<td>4 equips complets d'immersió autònoma</td>
<td>-</td>
</tr>
<tr>
<td>8 ampolles (15 l)</td>
<td>-</td>
</tr>
<tr>
<td>1 ampolla d’aire de reserva (10 l)</td>
<td>-</td>
</tr>
<tr>
<td>GPS</td>
<td>-</td>
</tr>
<tr>
<td>Sonda manual</td>
<td>-</td>
</tr>
<tr>
<td>Boia de superfície i globus de descompressió</td>
<td>-</td>
</tr>
<tr>
<td>Càmera fotogràfica i de vídeo</td>
<td>-</td>
</tr>
<tr>
<td>Bossa de reixa per portar el material</td>
<td>-</td>
</tr>
<tr>
<td>Cintes mètriques (de 10 i 50m) i piquetes de ferro</td>
<td>-</td>
</tr>
<tr>
<td>Quadrats de PVC de 40x40 cm subdividits en 20x20 cm</td>
<td>-</td>
</tr>
<tr>
<td>Pissarres subaquàtiques amb llapis i regle</td>
<td>-</td>
</tr>
<tr>
<td>Barres metàl·liques, brides i martell</td>
<td>-</td>
</tr>
<tr>
<td>4 cintes mètriques d’un metre</td>
<td>-</td>
</tr>
<tr>
<td>2 escúters (propulsors submarins)</td>
<td>-</td>
</tr>
</tbody>
</table>

Campanyes 2018

Per poder desenvolupar les tasques de seguiment, el nostre equip ha realitzat 27 immersions a les 8 estacions de cap de Creus, i 13 immersions a les 5 estacions del Montgrí i les illes Medes (immersions en equip). En total es van dur a terme 137 immersions individuals. Addicionalment, l’equip va realitzar un total de 26 recorreguts superficials (amb un total de 54 recorregus individuals). Val a dir que enguany el temps no ha estat particularment bo, i, a més a més dels dies expressats a la taula 3, hi ha hagut uns quants dies més en què no s’ha pogut sortir, o bé s’ha sortit i no s’ha pogut treballar per les condicions de visibilitat.
Taula 3. Relació de les estacions i esforç de mostreig realitzat. La columna “fondàries” es refereix als punts visitats a cada estació; a més, a totes elles es van fer els recorreguts d’observació indicats. Les immersions de la part qualitativa són de 2 o 3 persones, els recorreguts de 2 a 4 persones i les immersions de la part quantitativa de 4 persones. Entre parèntesi s’indica el nombre d’immersions totals. El nombre de dies de mostreig fa referència al nombre de dies totals invertits en l’estudi de l’estació. L’apartat qualitatiu inclou també el control de les fites.

<table>
<thead>
<tr>
<th>Estació</th>
<th>Codi</th>
<th>Fondàries</th>
<th>Nombre immersions (qualitatiu)</th>
<th>Nombre recorreguts superficials</th>
<th>Nombre immersions (quantitatiu)</th>
<th>Dies de mostreig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taballera</td>
<td>CCPOSI-1</td>
<td>sup, fons, fites</td>
<td>3 (7)</td>
<td>2 (4)</td>
<td>2 (8)</td>
<td>1,5</td>
</tr>
<tr>
<td>Culip</td>
<td>CCPOSI-2</td>
<td>sup, fons, fites</td>
<td>2 (5)</td>
<td>3 (6)</td>
<td>2 (8)</td>
<td>2</td>
</tr>
<tr>
<td>Jugadora</td>
<td>CCPOSI-3</td>
<td>sup, fons, fites</td>
<td>2 (5)</td>
<td>2 (4)</td>
<td>2 (8)</td>
<td>1,5</td>
</tr>
<tr>
<td>Guillola</td>
<td>CCPOSI-4</td>
<td>sup, fons, fites</td>
<td>3 (7)</td>
<td>4 (10)</td>
<td>2 (8)</td>
<td>2,5</td>
</tr>
<tr>
<td>Portlligat</td>
<td>CCPOSI-5</td>
<td>sup</td>
<td>0</td>
<td>1 (2)</td>
<td>1 (4)</td>
<td>0,5</td>
</tr>
<tr>
<td>Norfeu N</td>
<td>CCPOSI-6</td>
<td>fons</td>
<td>1 (2)</td>
<td>0</td>
<td>1 (4)</td>
<td>1</td>
</tr>
<tr>
<td>Pelosa</td>
<td>CCPOSI-7</td>
<td>sup</td>
<td>1 (2)</td>
<td>2 (4)</td>
<td>1 (4)</td>
<td>1</td>
</tr>
<tr>
<td>Montjo</td>
<td>CCPOSI-8</td>
<td>sup, fons, fites</td>
<td>2 (5)</td>
<td>3 (6)</td>
<td>2 (8)</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>14 (33)</td>
<td>17 (36)</td>
<td>13 (52)</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estació</th>
<th>Codi</th>
<th>Fondàries</th>
<th>Nombre immersions (qualitatiu)</th>
<th>Nombre recorreguts superficials</th>
<th>Nombre immersions (quantitatiu)</th>
<th>Dies de mostreig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montgó</td>
<td>MMPOSI-5</td>
<td>sup, fons, fites</td>
<td>2 (5)</td>
<td>3 (6)</td>
<td>2 (8)</td>
<td>2</td>
</tr>
<tr>
<td>Pedrosa</td>
<td>MMPOSI-4</td>
<td>sup</td>
<td>1 (2)</td>
<td>0</td>
<td>1 (4)</td>
<td>1</td>
</tr>
<tr>
<td>Meda Gran2</td>
<td>MMPOSI-3</td>
<td>sup, fons, fites</td>
<td>2 (5)</td>
<td>2 (4)</td>
<td>2 (8)</td>
<td>2</td>
</tr>
<tr>
<td>Meda Gran1</td>
<td>MMPOSI-2</td>
<td>sup, fons, fites</td>
<td>2 (5)</td>
<td>2 (4)</td>
<td>2 (8)</td>
<td>2</td>
</tr>
<tr>
<td>Meda Petita</td>
<td>MMPOSI-1</td>
<td>sup, fons, fites</td>
<td>1 (2)</td>
<td>2 (4)</td>
<td>2 (8)</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>7 (16)</td>
<td>9 (18)</td>
<td>6 (36)</td>
<td>9</td>
</tr>
</tbody>
</table>

Anàlisi de dades

La variabilitat en les dades dels principals descriptors mesurats ha estat avaluada mitjançant tècniques d’anàlisi de la variància. Per tal de no dur a terme anàlisis amb resultats obvis i que només servirien per fer feixuga la memòria, hem reduït l’aplicació de les tècniques estadístiques; tanmateix, i per aquest motiu, les referències estadístiques a l’apartat de resultats s’han mantingut en un mínim estricte.

Les anàlisis fetes han estat les següents:

i. S’han comparat les densitats i cobertures trobades a diferents fondàries, considerant independentment (per tant, fent diferents anàlisis) les estacions de cap de Creus i de Montgrí-Medes. S’ha considerat el factor fondària fix (superficial o profund), introduint el factor estació com a factor aleatori.

ii. Per les variables densitat i cobertura (de les praderies), s’ha avaluat la significació estadística de les diferències entre estacions per un mateix àmbit geogràfic (cap de Creus o Montgrí-Medes) i franja batimètrica en el cas dels descriptors de les praderies (superfície o fons, és a dir, 5 o 15 metres o fondària assimilable) utilitzant l’anàlisi de la variància d’un
factor (subestació pels descriptors de les praderies), i aplicant, en cas de resultar significatiu aquest factor, el test post-hoc de Tukey per esbrinar entre quines estacions o subestacions apareixien les diferències.

iii. S’ha avaluat la significació estadística de les diferències en densitat i cobertura a les zones on es fondegen embarcacions i a les zones a on no es fondeja o el fondeig està regulat per l’ús de boies de fondeig ecològic, mitjançant una anàlisi de la variància amb dos factors fixos, fondària (superfície o fons) i fondeig (si o no) i un d’aleatori (estació).

iv. S’ha avaluat la significació estadística de les diferències en densitat i cobertura de les praderies entre els anys 2014, 2016 (seguiments anteriors) i 2018 (aquest estudi), mitjançant una anàlisi de la variància amb tres factors fixos, fondària (superfície o fons), pressió de fondeig (si o no) i any (2014, 2016 o 2018) i un d’aleatori (estació). Les comparacions subestació a subestació entre 2014, 2016 i 2018 s’han fet mitjançant l’anàlisi de la variància (densitat i cobertura).

Per totes les variables, s’ha testat la seva normalitat i homoscedasticitat mitjançant inspecció visual dels residus (representacions dels residus amb els valors ajustats i complets). El llindar de significació de tots els tests estadístics s’ha establert a p=0,05 a excepció dels que no es complia amb la hipòtesi de normalitat, per als quals s’ha establert el llindar de significació a p=0,01. Tots els càlculs estadístics han estat fets amb el programari lliure “R” (R Core Team, 2016), paquets lmer i aov, i la llibreria lme4 (Bates et al., 2014).

Resultats

Els resultats es presenten separadament per cada un dels espais naturals estudiats (Cap de Creus i Montgrí-Medes). Per cada àmbit geogràfic, l’exposició de resultats s’estrenuctura en un apartat de resultats qualitatius i un altre de quantitatius.

Cap de Creus

Avaluació qualitativa de les estacions

A continuació es mostren els resultats de l’anàlisi qualitatiu de les estacions, ordenat per estacions (del nord cap al sud) i estructurat, per cada estació, en tres parts: una fitxa-resum descriptiva, una descripció narrativa i una altra fitxa-resum per la seva diagnosi; a tot això s’afegeix un mapa de cada estació amb els recorreguts fets. Per tal de fer més entenedor les explicacions, presentem en primer lloc les dues fitxes-tipus (de descripció i de diagnosi), on s’indiquen les opcions que poden assignar-se per cada descriptor i estació.
Descripció: Nom de la cala

<table>
<thead>
<tr>
<th>Limit superior</th>
<th>Zona central</th>
<th>Limit profund</th>
<th>Aplica a zona central?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profunditat</td>
<td>En metres</td>
<td>Interval en metres</td>
<td>En metres</td>
</tr>
<tr>
<td>Morfologia¹</td>
<td>Rectliní, ondulat, retallat, a taques, amb esglaó²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relleu</td>
<td>Acusat (>1 m), moderat (0,5-1 m), escàs (0,25 a 0,5 m), absent (<0,25 m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altres espècies¹,³</td>
<td>Zostera noltii o Cymodocea nodosa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tipologia

| | Progresivi, regressivi, estable (en funció de la presencia de mata mes enllà i de la presència de runners) | | | NO |

Clarianes (abundància)

| | Abundants, poc abundants, escasses, absent | | | SI |

Clarianes (mida)

| | Grans (>5m²), mitjançanes (1<x<5 m²), petites (< 1 m²) | | | SI |

Clarianes (substrat)

| | Mata, roca, sorra | | | SI |

Anomalies densitat

| | Sí/No⁴ | | | SI |

Anomalies cobertura

| | Sí/No⁴ | | | SI |

Feixos arrencats

| | Abundants, escassos, cap | | | SI |

Macroalgues

| | En la praderia o fora, recobriment, espècies⁵ | | | SI |

Deixalles

| | Abundància (moltes abundants, poc abundants, escasses, no) i tipus (plàstics, envasos, restes orgàniques, etc.) | | | SI |

Fondejos

| | Presència i tipus (ecològics, mort amb o sense cadenes, altres) | | | SI |

Observacions

| | Qualsevol observació addicional d’interès | | | SI |

¹No s’aplica a la zona central; les caselles corresponents apareixen ombrejades a les taules.
³No s’aplica a la zona profunda; la casella corresponent apareix ombrejada a la taula.
⁴Densitats i/o cobertures visualment i apreciablement inferiors a les que correspondria per la seva fondària.
⁵Només en quantitats anormals o espècies exòtiques.

Diagnosi: Nom de la cala

<table>
<thead>
<tr>
<th>Estat</th>
<th>Excel·lent/bo/acceptable/pobre/dolent¹,²</th>
</tr>
</thead>
</table>

Simptomes de degradació

<table>
<thead>
<tr>
<th>Nivell de preocupació</th>
<th>Observacions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lleu, moderat, alt, molt alt¹</td>
<td>Qualsevol explicació breu</td>
</tr>
</tbody>
</table>

¹Criteri expert
²Malgrat que es fa servir un criteri expert (apreciacions consensuades entre els membres de l’equip), en general l’estat no pot ser “excel·lent” si hi ha algun aspecte preocupant de nivell “alt” o “moderat”, ni pot ser “bo” si hi ha algun aspecte preocupant de nivell “alt” o dos o més de nivell “moderat”.

MEMÒRIA 2018 123
Cala Taballera

Descripció: CALA TABALLERA

<table>
<thead>
<tr>
<th></th>
<th>Limit superior</th>
<th>Zona central***</th>
<th>Limit profund****</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profunditat (m)</td>
<td>5</td>
<td>5-11,5</td>
<td>17-18</td>
</tr>
<tr>
<td>Morfologia</td>
<td>Retallat</td>
<td>Retallat</td>
<td></td>
</tr>
<tr>
<td>Relleu</td>
<td>Moderat/escàs</td>
<td>Escàs</td>
<td>No</td>
</tr>
<tr>
<td>Altres espècies</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipologia</td>
<td>Estable/ regressiu*</td>
<td></td>
<td>Estable/progressiu/regressiu*****</td>
</tr>
<tr>
<td>Clarianes (abundància)</td>
<td>Escasses</td>
<td>Poc abundants</td>
<td>Escasses</td>
</tr>
<tr>
<td>Clarianes (mida)</td>
<td>Petites</td>
<td>Petites</td>
<td>Mitjanes</td>
</tr>
<tr>
<td>Clarianes (substrat)</td>
<td>Mata/sorra</td>
<td>Mata</td>
<td>Mata</td>
</tr>
<tr>
<td>Anomalies densitat</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Anomalies cobertura</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Feixos arrencats</td>
<td>Escassos</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Macroalgues</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Deixalles</td>
<td>Abundants**</td>
<td>Escasses</td>
<td>No</td>
</tr>
<tr>
<td>Fondejos</td>
<td>Un</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Observacions</td>
<td>Alguns canals internata</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*cantó E: estable; cantó W: regressiu.
**un derelicte, pneumàtics, plàstics...
***es refereix a la praderia situada a la zona central de la cala (veure text).
****correspon al límit profund de la part lateral de la cala, cantó E.
*****segons la zona, el regressiu és el menys frequent.

La praderia de cala Taballera se situa dins la zona de El Golfet, a la mar d'Amunt. La praderia té una forma una mica atípica, sobretot pel que fa al seu límit profund, que no segueix una isòbata sinó que té forma de ferradura, amb menys profunditat a la zona central i anant cap al fons pels laterals de la cala. Així, la praderia comença a uns 100 m de la platja, amb un límit retallat cap a 5-6 m de fondària. A aquesta fondària la praderia ocupa la major part de l’amplada de la cala, fins als 8,5 metres com a mínim (distància aproximada entre els límits som i profund en aquesta zona: 35 metres), on acaba en la seva part central. Al contrari, a les parts...
laterals de la cala s'estén fins més enllà de la punta del Santet, assolint fondàries que van augmentant progressivament (10-11 metres a uns 150-200 m de la platja) fins a 18 metres (costat de llevant) o una mica més (costat de ponent), on es situa el seu límit profund, paral·lel a les parets de roca dels laterals de la cala.

En aquesta cala es van fer dos recorreguts, un de profund i un altre de més superficial (vegeu mapa).

En el primer recorregut a prop del límit profund pel cantó de llevant s'observa un límit bastant variable, amb zones progradants, d'altres estables i netes i algun punt regressiu. Aquesta llengua de praderia de llevant s'estén, batimètricament, des de la seva profunditat màxima (16-18 metres, segons les zones) fins a uns 15 metres, on termina en contacte amb la roca. La praderia presenta bon aspecte, és continua amb no gaires clarianes i la seva densitat és normal.

En el segon recorregut, entre els límits superior i profund (8,5-11 metres) a la part central de la cala, no s'observen estructures regressives rellevants, encara que s'aprecien algunes clarianes a la part central, i el límit profund és de tipus regressiu. S'hi troben deixalles abundants, incloent-hi el derelicte d'una petita embarcació auxiliar de fibra. A la part més soma, els rizomes estan descalçats, i es veuen colonitzats per poblacions denses d’algues esciófiles, de les que la més abundant és *Peyssonnelia* spp. En aquesta zona també hi trobem garotes abundants.

Finalment, el límit superficial paral·lel a la platja presenta una estructura complexa i és molt retallat i amb força relleu, destacant alguns canals internata. En general és força net, amb algunes zones a taques, i limita amb sorra (cascall cap a ponent), encara que en alguns punts s’observa la presència de mata morta.

Segons les nostres observacions, l’estat d’aquesta praderia és bo, encara que amb una presència important de deixalles.

Diagnosi cala Taballera

<table>
<thead>
<tr>
<th>Simptomes de degradació</th>
<th>Nivell de preocupació</th>
<th>Observacions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algun límit regressiu</td>
<td>Lleu</td>
<td></td>
</tr>
<tr>
<td>Feixos arrancats</td>
<td>Lleu</td>
<td></td>
</tr>
<tr>
<td>Deixalles</td>
<td>Moderat</td>
<td></td>
</tr>
</tbody>
</table>
La praderia de cala Culip és molt extensa, i ocupa una gran part dels seus substrats sedimentaris, és a dir, la major part de la cala fins als 23 metres, llevat dels seus costats i algunes altres petites formacions rocoses que afloren en forma de baus (baixos). Comença cap als 2-5 metres de fondària, del cantó de S’Arenella de Culip, encara que a taques una mica irregulars, i s’estén fins a 20-23 metres de fondària, en un límit bastant perpendicular a l’eix principal de la cala. Aquesta elevada amplitud batimètrica permet una gran variabilitat en el seu aspecte i constitució.
En aquesta cala es van fer un total de quatre recorreguts, un de longitudinal (del límit profund al superficial) i tres de superficials (vegeu mapa).

El recorregut des del límit profund fins al límit som (a la part de S’Arenella), d’uns 400 metres aproximadament, va permetre abastar tot el seu rang batimètric. Al començament, entre el límit i els 20 metres de fondària, la praderia està molt esclarissada, amb grans clarianes de mata. El límit està una mica desdibuixat, i és clarament regressiu, amb mata abundant més enllà dels últims feixos vius. Entre els 20 i els 15 metres, la praderia guanya entitat, encara amb grans clarianes amb mata (més rarament amb sorra), que aniran sent menys freqüents en perdre fondària. A partir dels 15 metres, la praderia ja és continu, i va augmentant en cobertura i densitat a mesura que es remunta cap a la superfície. Entre 20 i 10 metres de fondària, i al mes de Juliol, es va observar una gran abundància de xucles (*Spicara maena*), peixos que fan el seu niu entre els rizomes de la posidònia i que poden malmetre-la localment. També es va observar una zona, entre 10 i 12 metres de fondària, on la praderia s’alternava amb petits afloraments rocosos, perdent puntualment cobertura. Justament en aquest lloc es van trobar nombrosos blocs de ciment cilíndrics que semblaven abandonats, o almenys no semblaven ser utilitzats com a morts de fondeig. Al llarg d’aquest recorregut es van detectar algunes deixalles i alguns feixos arrencats.

El límit som es va inspeccionar en tres recorreguts, que van cobrir des de S’Arenella fins a la platja Gran de Culip. El límit de l’herbei segueix molt a prop els marges rocosos de la cala. A la zona de S’Arenella, el límit és bastant net, i la praderia acaba en un fons de sorra, amb alguna petita clapa de plantes més enllà o, més rarament, alguna clapa de mata. Aquest límit remunta, en alguns punts, fins als dos metres. Cap al racó del Saragà l’aspecte és una mica diferent, i el límit imprecís, ja que s’alternen taques de posidònia i blocs de pedra. Finalment, cap a la barraca, la Platja Gran i es Gentils aquesta part soma de la praderia esdevé més heterogènia. En efecte, si bé en general la praderia és força continu, cap als 5 metres, a prop de la barraca, apareixen dues terrasses molt acusades, que desapareixen a la Platja Gran. Cal fer esment de la presència de grans clarianes (fins a uns 50 m²), especialment a prop de l’antic embarcador. En aquesta zona també s’hi troben alguns blocs de ciment (més d’1 m³) amb cadena, i clapes de mata probablement creades per la seva presència.

Segons aquestes observacions, l’estat global d’aquesta praderia el considerem moderat. En destaquem, com a punts negatius, l’abundant mata morta superficial, el límit profund regressiu i la presència de morts de ciment.
Diagnosi cala Culp

<table>
<thead>
<tr>
<th>Estat</th>
<th>Moderat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Síntomes de degradació</td>
<td>Nivell de preocupació</td>
</tr>
<tr>
<td>Gran zona de mata morta vora l’embarcador</td>
<td>Moderat</td>
</tr>
<tr>
<td>Algunes deixalles</td>
<td>Lleu</td>
</tr>
<tr>
<td>Clarianes a la part central</td>
<td>Lleu</td>
</tr>
<tr>
<td>Morts de ciment abundants a la part central i algun prop de la platja</td>
<td>Lleu</td>
</tr>
<tr>
<td>Limit profund regressiu i amb grans clarianes amb mata</td>
<td>Alt</td>
</tr>
</tbody>
</table>

Cala Jugadora

Descripció: CALA JUGADORA

<table>
<thead>
<tr>
<th>Límit superior</th>
<th>Zona central</th>
<th>Limit profund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profunditat (m)</td>
<td>2</td>
<td>11-21</td>
</tr>
<tr>
<td>Morfologia</td>
<td>Molt complex *</td>
<td>Rectilini</td>
</tr>
<tr>
<td>Rellue</td>
<td>Acusat</td>
<td>No</td>
</tr>
<tr>
<td>Altres espècies</td>
<td>Zostera noltii</td>
<td></td>
</tr>
<tr>
<td>Tipologia</td>
<td>No atribuïble*</td>
<td>Regressiu</td>
</tr>
<tr>
<td>Clarianes (abundància)</td>
<td>Escasses</td>
<td>Escasses per sota dels 16 m</td>
</tr>
<tr>
<td>Clarianes (mida)</td>
<td>Petites**</td>
<td>Petites</td>
</tr>
<tr>
<td>Clarianes (substrat)</td>
<td>Mata</td>
<td>Mata</td>
</tr>
<tr>
<td>Anomalies densitat</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Anomalies cobertura</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Feixos arrencats</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Macroalgues</td>
<td>Cobertura densa (fora de la praderia)***</td>
<td>No</td>
</tr>
<tr>
<td>Deixalles</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Fondejos</td>
<td>Morts d’abalitament de la zona de bany</td>
<td>Un****</td>
</tr>
<tr>
<td>Observacions</td>
<td>Restes d’antigues estructures d’esclulls</td>
<td></td>
</tr>
</tbody>
</table>

*la part interior de la cala és un mosaic complex de roca, mata, praderia i taques de posidònia i roca.
**levat de la mata morta de les estructures de possibles esculls relicts.
***probablement Lophocladia lallemandii.
****un petit mort de ciment.
Cala Jugadora la podem considerar dividida en dues parts, una interior, limitada per l'illa (illot) de cala Jugadora, i una segona exterior, de l'illa cap a fora. La part interior està ocupada per una praderia heterogènia que s’estén entre els 2 i els 6-7 metres de fondària. A la part exterior s'hi troba una praderia més regular, que s’estén des d’uns 8 metres fins més enllà dels 20. Les praderies d’aquestes dues parts estan enllaçades per una petita llengua de vegetació a prop de la part E de la cala.

En aquesta cala es van fer dos recorreguts, un a la part externa, rectilini (profund) i un altre intentant abastar la major part de la zona interior (superficial; vegeu mapa).

El primer d’aquests recorreguts va començar a prop de l’illa de cala Jugadora i va acabar a tocar el límit profund. Les parts més somes d’aquest recorregut, entre 8 i 16 metres, són denses i contínues, amb aspecte saludable i sense gaires clarianes. Entre els 16 i els 19-20 metres comencen a aparèixer clapes de mata morta, encara que de poca importància. El límit profund se situà entre 20 i 22 metres a la part central de la cala, i una mica menys (19-20) a les parts laterals. Estracta d’un límit regressiu, retallat però no gaire esclarissat. Una part del límit està situat sobre un esglaó de mata; aquest esglaó se separa de la praderia viva i assoleix més fondària, ja sense planta viva. Això, juntament amb l’existència de mata morta abundant més enllà del límit, confirma que hi ha hagut una regressió notable, la major part de la qual és anterior a 1998 (data de la qual tenim observacions similars a les exposades aquí), pot ser fins i tot molt anterior.

Pel que fa a la part interior, val a dir que presenta aspectes molt variats. Entre 2-3 i 5-6 metres, la praderia és contínua i homogènia, sense clarianes (llevat d’una taca central de mata morta) ni anomalies evidents de densitat. A la platja on estan les ruïnes de l’antiga barraca, i al racó d’es Barrilers trobem el que molt probablement són els restes d’una estructura tipus récif-barrière (escull barrera) de posidònia relicta, amb una clara pujada cap a la superfície sobre un substrat de mata morta (entre 1 i 2 metres de desnivell). En la seva part superior, i en direcció a les platges, tot el substrat és mata morta recoberta d’algues, llevat d’algunes molt petites taques de planta viva i algunes taques denses de Zostera noltii. Més cap a l’est, i a les zones superiors, s’alternen taques de plantes amb pedres i blocs. Cap a la part central vàrem observar una altra taca força gran i molt densa de Zostera noltii. Una gran part dels substrats de mata morta i sorra cap al cantó de la platja estaven recoberts d’una acumulació d’algues molt atapeïda, probablement Lophocladia lallemandii. Aquestes acumulacions creaven zones anòxiques.

L’estat global d’aquestes praderies el considerem bo, encara que cal destacar el límit profund regressiu.
Diagnosi cala Jugadora

<table>
<thead>
<tr>
<th>Estat</th>
<th>Bo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Símptomes de degradació</td>
<td>Nivell de preocupació</td>
</tr>
<tr>
<td>Grans zones de mata morta a la part interna</td>
<td>Lleu</td>
</tr>
<tr>
<td>Algues filamentoses</td>
<td>Lleu</td>
</tr>
<tr>
<td>Limit profund regressiu</td>
<td>Moderat</td>
</tr>
<tr>
<td>Morts de ciment a la part interna</td>
<td>Lleu</td>
</tr>
</tbody>
</table>

Cala Bona

Aquesta cala no forma part de les estacions de seguiment, però va ser visitada per certificar la presència de fanerògames marines altres que *Posidonia oceanica* i fer-ne una valoració qualitativa. S'hi va fer tan sols un recorregut superficial a la seva part distal (vegeu mapa).

La cala és de forma allargada, orientada cap a llebeig (SW), i la major part dels seus fons estan ocupats per l'alguer de posidònia, que va remuntant a poc a poc cap a la superfície a mesura que ens hi endinsem. En arribar a la part distal, hi ha un petit estretament, que coincideix amb una elevació de la praderia, que forma una mena de barrera on les fulles de la planta s'apropen considerablement a la superfície, en el que és una construcció biològica tipus escull barrera. Això crea, més enllà, una zona molt arrecerada on trobem algunes clapes de mata i alguna taca de *P. oceanica*. En aquest ambient pseudolagunar vam observar poblacions més o menys denses de *Zostera noltii* (entre 0,5 i 1 m de fondària) i poblacions molt denses, a la part perifèrica, de *Cymodocea nodosa* (gairebé a tocar la superfície). La presència d’aquestes dues espècies, junt amb l’estructura d’escull, fan la zona força interessant des del punt de vista de les fanerògames marines.
Badia de Guillola

La badia de Guillola és una de les cales més grans de cap de Creus, amb la boca orientada a Xaloc. La seva estructura és complexa, amb una línia de costa retallada que conté nombrosos entrants, racons i diverticles, i un nombre elevat de platges de còdols, moltes d’elles de mida reduïda. La podem considerar dividida en dues grans subunits, una d’elles, més gran, cap a llevant (més exactament cap al NE), que inclou la platja de Guillola, la platja de Sant Lluis i la platja d’en Noues) i l’altra, més petita, cap a ponent (més exactament cap al NW), amb el Jonquet, el racó d’en Paquila i les platges d’en Ballesta i Talladofins. Per abastar aquesta heterogeneïtat, aquestes dues parts varen ser explorades separatament, prenent com a límit una línia imaginària que aniria des de l’illot d’Es Jonquet, en direcció aproximadament NW, fins a la punta d’en Paquila, amb un recorregut superficial i un de profund a cada una d’elles (vegeu mapa).
La part superficial del cantó E de Guillola presenta una fisonomia variada. En molts trams, la praderia es recolza sobre la roca, i la fondària del seu límit superficial està marcada precisament per la transició roca-posidònia. Aquesta transició té lloc entre els 2 i els 5 metres, i no s’hi observen estructures o clapes que puguin indicar degradació, tan sols unes clarianes de sorra sense mata morta entre la platja de Sant Lluís i la barraca d’en Ballesta. A les dues platges visitades, el límit es retira una mica de la línia de costa, i l’estructura esdevé més complexa. Així, a la platja d’en Noues el límit superficial se situa entre 1 i 5 metres, i hi apareixen abundants estructures de relleu, com canals intermates i un gran canal de retorn. En alguns indrets trobem mata morta entre el límit i la platja. A la platja de Guillola, el límit se situa a la part central a uns 100 metres de la platja, i presenta mata morta abundant. Cap als costats, la praderia remunta fins a molt a prop de la superfície en forma de taques denses, que es barreuen amb rocs i algunes clapes de mata morta.

El recorregut profund d’aquesta part de Guillola va començar a 10 m de fondària, prop de la platja de Sant Lluís, tot nedant amb rumb aproximadament SE (vegeu mapa). Al principi, la praderia és densa i contínua, fins a arribar als 12 metres de fondària, on un esglaó de mata dóna pas a una zona on s’alternen clarianes de mata morta amb rodals de posidònia (fins a un 40% de cobertura de plantes). A mesura que guanyem fondària, la praderia sembla millorar, i cap als 17 metres torna a ser una praderia contínua, o amb clapes de sorra sense mata morta, situació que continua fins als 19 metres, on la praderia té ja una densitat i una cobertura molt baixes. El substrat, més o menys a l’altura de la platja de Guillola, passa a ser una mena de cascall amb elements detrítics, i el límit se situa cap als 20 metres, amb el mateix fons de cascall. Més enllà del límit hi ha mata morta almenys fins als 24 metres. Aquest límit es manté amb les mateixes característiques (regressiu, cascall, esclarissat, 20 metres de fondària) fins una mica més enllà de la punta d’Es Gavià, a uns 20 metres de fondària. En aquest punt el límit es trobava a 24 metres el 1998, amb una praderia molt esclarissada.

L’estat global de les praderies de la zona de llevant de Guillola el considerem moderat. Cal destacar la presència d’una zona amb grans clarianes de mata morta, entre 12 i 17 metres de fondària, així com un límit profund clarament regressiu.
Diagnosi Guillola E

<table>
<thead>
<tr>
<th>Estat</th>
<th>Moderat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simptomes de degradació</td>
<td>Nivell de preocupació</td>
</tr>
<tr>
<td>Algunes zones de mata morta a la part superficial</td>
<td>Lieu</td>
</tr>
<tr>
<td>Zona amb grans clarianes de mata morta, entre 12 i 17 metres de fondària</td>
<td>Alt</td>
</tr>
<tr>
<td>Límit profund amb grans clarianes i clarament regressiu</td>
<td>Alt</td>
</tr>
</tbody>
</table>

Descripció: GUILLOLA W

<table>
<thead>
<tr>
<th>Limit superior*</th>
<th>Zona central</th>
<th>Limit profund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profunditat (m)</td>
<td>1</td>
<td>7 - 21</td>
</tr>
<tr>
<td>Morfologia</td>
<td>Rectlini/ondulat/retallat**</td>
<td>Lineal</td>
</tr>
<tr>
<td>Relleu</td>
<td>Esglàó de mata</td>
<td>Esglàó de mata a 9 m</td>
</tr>
<tr>
<td>Altres espècies</td>
<td>Z. noltii/C. nodosa***</td>
<td></td>
</tr>
<tr>
<td>Tipologia</td>
<td>Estable****</td>
<td>Estable</td>
</tr>
<tr>
<td>Clarianes (abundància)</td>
<td>Escasses</td>
<td>Abundants (9-14 m)</td>
</tr>
<tr>
<td>Clarianes (mida)</td>
<td>Grans*****</td>
<td>Grans (9-14 m)</td>
</tr>
<tr>
<td>Clarianes (substrat)</td>
<td>Mata</td>
<td>Mata (9-14 m)/ sorra (14-19 m)</td>
</tr>
<tr>
<td>Anomalies densitat</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Anomalies cobertura</td>
<td>No</td>
<td>Baixes cobertures entre 9 i 14 m</td>
</tr>
<tr>
<td>Feixos arrencats</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Macroalgues</td>
<td>Algues filamentoses en alguna zona</td>
<td>No</td>
</tr>
<tr>
<td>Deixalles</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Fondejos</td>
<td>Morts d’abalismament de la zona de bany</td>
<td>No</td>
</tr>
<tr>
<td>Observacions</td>
<td>Zona molt complexa, amb el límit molt heterogeni</td>
<td></td>
</tr>
</tbody>
</table>

*aquest conjunt d’observacions es refereixen a cala Jonquet**

coexisteixen diversos tipus de límit, alguns nets i poc retallats (cala Jonquet) i d’altres a taques i ondulats.*

diversos rodals de Z. noltii entre 6 i 0,2 metres, i un parell de rodals molt soms de C. Nodosa.*

****més enllà (cap a la superfície) d’aquest límit estable, apareixen alguns rodals de P. oceanica que arriben a aigües molt somes, en ocasions amb les fulles que sobresurten de l’aigua, juntament amb algunes taques de mata morta.*****

clariana important a 4-6 m de profunditat.
L’exploració de la zona superficial es va iniciar a un punt central a l’altura del racó d’en Paquela, i es va estendre fins al fons de la platja d’Es Jonquet, incloent-hi les parts marginals de la zona. A l’inici, a uns 8 m de fondària, la praderia és densa i continua. En direcció ESE, a la part central, s’observa una gran clapa de sorra sense mata a uns 6 m de fondària, passada la qual la praderia, densa i contínua de nou, remunta cap a la superfície en suau pendent. A partir dels 2 metres esdevé esclarissada, amb claranies ocupades per mata morta i un límit, net i una mica ondulat, a 1 m de fondària. Aquest límit (de la praderia pròpiament dita, encara hi ha petits rodals de planta més enllà) se situa a l’altura del punt on la costa gira en direcció NW per endinsar-se al Jonquet, una mica abans d’arribar a la platja d’en Ballesta. Més cap al Jonquet encara s’hi troben taques aïllades de posidònia, a fondàries entre 1 i 0,5 metres, d’1-2 m², força denses i alternant amb grans taques de mata morta, mentre que al costat W de la cala apareixen dos esglions de mata. Les últimes taques de posidònia se situen a uns 40-50 m de distància de la platja, i en alguns indrets les seves fulles sobresurten a la superfície de l’aigua. També desapareix la mata morta, i el substrat passa a ser sedimentari (de molt fi a groller). A part de la posidònia, s’observen nombroses taques, algunes de mida considerable (fins a uns 50 m²) de *Zostera noltii*, que comencen a aparèixer a uns 6 m de fondària, una mica més endins del racó d’en Paquela, sobretot a ambdues parts laterals, i es van fent progressivament més somes, sempre en forma de taques, a mesura que ens endinsem al Jonquet. Les taques estan, principalment, ocupant els marges, i en alguns casos són força denses, i fins i tot les fulles afloren a superfície. La darrera taca apareix del cantó NW i a pocs metres de la platja. També trobem *Cymodocea nodosa*, en forma de feixos dispersos aquí i allà pel mig de la cala o en forma de petites taquetes. Molt a prop de la platja, i en el seu cantó NE, destaquen dues taques (5-10 m²) molt somes i molt denses d’aquesta espècie.

L’exploració de la part profunda va consistir en un recorregut des del mateix punt de partida esmentat (zona central a l’altura del racó d’en Paquela), a uns 8 metres de fondària, en direcció E fins a arribar al límit profund, una mica passada l’illa d’Es Jonquet. A 8 metres de fondària, com s’ha dit abans, la praderia és densa i continua, però en guanyar fondària es creua un esglá de mata, passat el qual hi ha una zona on s’alternen taques de posidònia d’aspecte una mica empobrit i clapes de mata morta, que continua fins als 14 m de fondària, on s’obre una gran clariana de sorra sense mata morta aparent. Cap a la dreta d’aquesta clariana hi ha una banda de posidònia que es recolza a la roca. La clapa de sorra termina als 18,7 metres, on es recupera una praderia densa, bastant contínua i d’aparença saludable, que continua fins als 21,2 metres, on se situa el límit profund, net i estable.

Considerem l’estat global de les praderies d’aquesta zona de ponent de Guillola moderat i, en negatiu, destacariem la presència d’una zona empobrida amb molta mata morta, entre 8 i 14 metres de fondària, semblant a la vista del cantó de llevant. Ara bé, els esglaons de mata situats a l’entrada del Jonquet són, probablement, les restes d’una estructura d’escull barrera encara no gaire malmesa. Això, juntament amb la presència d’altres espècies (*Z. noltii* i *C. nodosa*) en taques denses, fan que aquesta part de Guillola sigui força interessant des del punt de vista de les praderies d’angiospermes marines.
Diagnosi Guillola W

<table>
<thead>
<tr>
<th>Estat</th>
<th>Observacions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderat</td>
<td>Corresponents a construccions de mata, són molt somes</td>
</tr>
<tr>
<td>Lleu</td>
<td>Se’n desconeix l’origen, aquesta zona ja estava alterada al 1998</td>
</tr>
<tr>
<td>Moderat</td>
<td>Ja existia al 1998, probablement és una estructura natural força antiga</td>
</tr>
<tr>
<td>Lleu</td>
<td>Petits morts de ciment d’abalísament de la zona de bany</td>
</tr>
</tbody>
</table>

Badia de Portlligat

A Portlligat trobem la praderia més extensa de totes les del Parc Natural de Cap de Creus, que s’estén entre quasi la superfície (hi ha fulles que sobresurten de l’aigua a la platja de Sant Antoni, per exemple, o a Sota es Moli) i uns 15 metres de fondària cap a l’entrada de la badia, amb taques que baixen fins a 20-21 metres del costat de Sa Farnera. La major part de la praderia, força plana, se situa entre els 3 i els 6-7 m de fondària. L’estructura és molt complexa, i hi ha moltes estructures de relleu, amb esglaons de mata notables. També hi trobem abundants clarianes, algunes de mida considerable i amb mata morta, més rarament amb sorra, tant al mig de la praderia com a la seva perifèria. El sediment és de color fosc, indicant una elevada demanda d’oxigen, probablement d’origen natural. Hi hem trobat bastants deixalles, inclosa una àncora abandonada. Cal remarcar la presència de les altres dues espècies d’angiospermes marines (*Cymodocea nodosa* i *Zostera noltii*). Per motius tècnics (nombre excessiu d’embarcacions circulants i pèssimes condicions de visibilitat) no es varen poder dur a terme les observacions qualitatives sistemàtiques. Ara bé, bastant-nos en el nostre coneixement de l’estació, podem donar una apreciació del seu estat (moderat, vegeu taula).
Diagnosi Portlligat

<table>
<thead>
<tr>
<th>Estat</th>
<th>Moderat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simptomes de degradació</td>
<td>Nivell de preocupació</td>
</tr>
<tr>
<td>Grans zones de mata morta a tota la seva superfície</td>
<td>Moderat</td>
</tr>
<tr>
<td>Extensions de mata morta en la seva periferia</td>
<td>Moderat</td>
</tr>
<tr>
<td>Deixalles</td>
<td>Moderat</td>
</tr>
<tr>
<td>Sediment de color fosc (anòxia)</td>
<td>Lleu</td>
</tr>
<tr>
<td>Fondejos ecològics</td>
<td>Lleu</td>
</tr>
</tbody>
</table>

Norfeu Nord

Descripció: NORFEU N (CALA CANADELL)*

<table>
<thead>
<tr>
<th></th>
<th>Límit superior</th>
<th>Zona central</th>
<th>Límit profund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profunditat (m)</td>
<td>No visitat</td>
<td>15-18</td>
<td>18,5</td>
</tr>
<tr>
<td>Morfologia</td>
<td>-</td>
<td>Rectilini/ondulat</td>
<td></td>
</tr>
<tr>
<td>Relleu</td>
<td>-</td>
<td>Lleu</td>
<td>Absent</td>
</tr>
<tr>
<td>Altres espècies</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipologia</td>
<td>-</td>
<td>Estable</td>
<td></td>
</tr>
<tr>
<td>Clarianes (abundància)</td>
<td>-</td>
<td>Abundants**</td>
<td>Escasses</td>
</tr>
<tr>
<td>Clarianes (mitjans)</td>
<td>-</td>
<td>Mitjans i grans</td>
<td>Mitjans</td>
</tr>
<tr>
<td>Clarianes (substrat)</td>
<td>-</td>
<td>Sorra</td>
<td>Mata</td>
</tr>
<tr>
<td>Anomalies densitat</td>
<td>-</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Anomalies cobertura</td>
<td>-</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Feixos arrencats</td>
<td>-</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Macroalgues</td>
<td>-</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Deixalles</td>
<td>-</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Fondejos</td>
<td>-</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Observacions</td>
<td>-</td>
<td>Sediment molt groller amb grans ripples</td>
<td></td>
</tr>
</tbody>
</table>

*la praderia està constituïda per un conjunt de taques o rodals, els límits de les quals no s’han pogut precisar. Només s’han visitat les taques de la zona més profunda. **les clarianes corresponen a les zones no vegetades entre taques, més que no pas a fenòmens de degradació o erosió.
Correspon a la zona entre cala Canadell, la costa del Tabal i la punta del Lloar, aproximadament, on se situen una sèrie de taques de posidònia més que no pas una praderia pròpiament dita.

El recorregut es va fer per part d’aquestes taques (vegeu mapa), situades a certa fondària. L’exploració va començar en el punt on es troba l’estació de seguiment, a 15 metres de profunditat. Les taques són de mida gran (>10 m de diàmetre), de densitat relativament elevada per la fondària a què es troben i estan separades per un substrat de sorra gruixuda amb grans ripples. L’exploració es va continuar en direcció SE, guanyant fondària, i passat un tram no vegetat es va poder observar una taca més extensa que les anteriors, bastant gran (uns 30-40 m de diàmetre), que manté una estructura contínua i una densitat elevada. El seu perímetre forma un límit net, estable i generalment en bon estat, amb només unes petites entrades amb mata morta.

Segons aquestes observacions, l’estat d’aquestes praderies el considerem bo.

<table>
<thead>
<tr>
<th>Diagnosi Norfeu Nord</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estat</td>
</tr>
<tr>
<td>Simptomes de degradació</td>
</tr>
<tr>
<td>Praderia a taques grans i disperses</td>
</tr>
<tr>
<td>Petites clapes de mata morta vora el límit profund</td>
</tr>
</tbody>
</table>
Descripció: PELOSA

<table>
<thead>
<tr>
<th></th>
<th>Límit superior</th>
<th>Zona central</th>
<th>Límit profund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profunditat (m)</td>
<td>1,5-5</td>
<td>5-15</td>
<td>No trobat****</td>
</tr>
<tr>
<td>Morfologia</td>
<td>Taques/retallat</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Relieu</td>
<td>Acusat</td>
<td>Acusat a la part més som, absent o lleu a la resta</td>
<td>-</td>
</tr>
<tr>
<td>Altres espècies</td>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tipologia</td>
<td>Estable</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clarianes (abundància)</td>
<td>Abundants*</td>
<td>No s’aplica**</td>
<td>-</td>
</tr>
<tr>
<td>Clarianes (mida)</td>
<td>Mitjanes</td>
<td>No s’aplica**</td>
<td>-</td>
</tr>
<tr>
<td>Clarianes (substrat)</td>
<td>Sorra</td>
<td>Mata</td>
<td>-</td>
</tr>
<tr>
<td>Anomalies densitat</td>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anomalies cobertura</td>
<td>No</td>
<td>Sí (veure nota)**</td>
<td>-</td>
</tr>
<tr>
<td>Feixos arrencats</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Macroalgues</td>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deixalles</td>
<td>Escasses</td>
<td>Abundants***</td>
<td>-</td>
</tr>
<tr>
<td>Fondejos</td>
<td>Nombrosos (mort i cadena)</td>
<td>Nombrosos (mort i cadena)</td>
<td>-</td>
</tr>
<tr>
<td>Observacions</td>
<td>El límit superior s’aproa a la platja en els seus extrems E i W, i se’n allunya a la part central</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*les clarianes corresponen a l’estructura a taques, i són gairebé totes de sorra. També hi trobem canals intemata.

**a partir dels 6 m (zona central) o 8 m (zona E) la cobertura va disminuint i, passada una petita zona de transició, la praderia desapareix, deixant pas a una gran extensió de mata morta, que comença entre 7 i 11 m.

***ulleres de busseig, ampolles de plàstic, etc.

****es va explorar fins a una profunditat de 15 m, sense trobar plantes vives.

La praderia de cala Pelosa, a la banda de llevant de la badia de Montjoï, és molt extensa, i de fet s’estén, sense discontinuï tats, fins a cala Calitjar, cala veïna pel costat de ponent, a fondàries que van dels 1-6 fins als 21-22 metres aproximadament. Segons el pla de mostreig, en aquest programa de seguiment només s’estudia la part de Pelosa, part superficial, on se situa l’únia estació (vegueu mapa). En aquesta cala es van fer dos recorreguts, un superficial i un altre a una mica més de fondària, encara que sense arribar al límit profund (vegueu mapa).
Aquesta exploració més profunda es va començar a l’estació de seguiment, a una fondària de 5 metres, on l’herbei és molt dens i en general continu, encara que amb algunes clapes, i diverses estructures de relleu de la mata. Les fulles són curtes, possiblement a causa de l’acció de peixos herbívors. Nedant cap a mar obert (rumb aproximadament S), i a uns 25-30 metres de distància del punt d’entrada, comença una clariana molt important de mata morta, a 6-7 metres de fondària, ja observada en anys anteriors (2014 i 2016) i que s’estén almenys fins als 15 metres de fondària, fondària màxima assolida en l’exploració, on segueix la mata morta. La causa més probable d’aquesta gran clariana és la detonació d’una mina a la zona el mes d’octubre de 2013. El retorn cap a la platja, amb un rumb NE aproximadament, permet comprovar la gran extensió d’aquesta zona de mata morta; en el rumb de retorn, la transició cap a praderia contínua té cap als 8 metres, i entre els 8 i els 11 metres queden uns pocs feixos vius dispersos. No vam trobar posidònia viva ni en l’anada ni en la tornada entre els 7-11 i els 15 metres. Encara que no tenim dades molt acurades, semblaria que no ha augmentat del 2014 ençà.

En el recorregut més superficial es va observar que el límit som fa forma de mitja lluna, apropiant-se molt a la platja pels seus extrems SE (a uns 20 metres de distància de la platja i 1 m de fondària) i NW (1,5 metres de fondària), i separat-se per la part central (més de 100 metres de distància de la platja, a 4 metres de fondària). Totes les zones tenen molt de relleu i són morfològicament complexes i irregulares, amb taques denses en general sobre fons de sorra neta, canals intermates i molt poca mata morta.

Segons aquestes observacions, considerem l’estat d’aquesta praderia moderat, sobretot a causa de la gran extensió de mata morta, si bé aquesta destrucció va ser accidental i suposa la disminució del patrimoni natural, però no una causa d’alarma que anuncii futurs deterioraments.

<table>
<thead>
<tr>
<th>Diagnosi Pelosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estat</td>
</tr>
<tr>
<td>Síntomes de degradació</td>
</tr>
<tr>
<td>Gran extensió de mata morta, que s’estén des dels 6-8 metres fins, probablement, el límit profund, al menys en una porció important de la praderia</td>
</tr>
<tr>
<td>Ecombraries abundants</td>
</tr>
<tr>
<td>Morts de ciment</td>
</tr>
</tbody>
</table>
Cala Montjoï

Descripció: CALA MONTJOI

<table>
<thead>
<tr>
<th></th>
<th>Limit superior*</th>
<th>Zona central*</th>
<th>Límit profund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profunditat (m)</td>
<td>1,5-2</td>
<td>5-16</td>
<td>22,5</td>
</tr>
<tr>
<td>Morfologia</td>
<td>A taques/esglaó parcial</td>
<td>A taques</td>
<td></td>
</tr>
<tr>
<td>Relleu</td>
<td>Acusat</td>
<td>De moderat a acusat entre 5 i 6,5 m; absent a la resta</td>
<td>No</td>
</tr>
<tr>
<td>Altres espècies</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipologia</td>
<td>Estable</td>
<td>Parcialment regressiu</td>
<td></td>
</tr>
<tr>
<td>Clarianes (abundància)</td>
<td>Escasses</td>
<td>Poc abundants</td>
<td>Abundants</td>
</tr>
<tr>
<td>Clarianes (mida)</td>
<td>Mitjanes</td>
<td>Mitjanes i grans</td>
<td>Petites</td>
</tr>
<tr>
<td>Clarianes (substrat)</td>
<td>Mata/sorra</td>
<td>Sediment gruixut</td>
<td>Mata</td>
</tr>
<tr>
<td>Anomalies densitat</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Anomalies cobertura</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Feixos arrencats</td>
<td>Abundants</td>
<td>No</td>
<td>Escassos</td>
</tr>
<tr>
<td>Macroalgues</td>
<td>Sí (sobre mata)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Deixalges</td>
<td>Escasses</td>
<td>Escasses</td>
<td>No</td>
</tr>
<tr>
<td>Fondejos</td>
<td>Nombrosos (mort i cadena)</td>
<td>Nombrosos (mort i cadena)</td>
<td>No</td>
</tr>
</tbody>
</table>

Observacions

Moltes clarianes a prop del límit, però la cobertura es recupera ràpidament dels 20 metres cap amunt

*a la zona central de la cala hi ha un ampli canal de retorn sense vegetació.

La praderia de cala Montjoï és també força extensa. Comença bastant a prop de la platja, i va baixant en pendent suau fins als 21-23 metres. Ocupa la major part dels fons de la cala, i tan sols és interrompuda per un canal perpendicular a la platja sense vegetació, entre la superfície i uns 10 metres de fondària, amb forma vagament triangular. Aquest canal és, molt probablement, un canal de retorn d’aigües i sediments; es tractaria, per tant, d’un fenomen natural.

En aquesta cala es va fer un recorregut longitudinal, del límit profund al superficial, i un seguit d’observacions al límit superficial (vegeu mapa).
El recorregut longitudinal es va començar al límit profund, cap als 22,5 metres de fondària. Aquest límit profund és poc definit, constitúit per taques de planta que, a poc a poc, perden identitat fins a desaparèixer. S’observa una mica de mata morta més enllà del límit, encara que no sembla tractar-se d’una regressió important, i es fa una mica més som cap al cantó de ponent. Nedant cap a superfície, hom es troba aviat un guany net en continuïtat i densitat, i la praderia adquiereix un aspecte més saludable, amb algunes petites clarianes que van minvant a mesura que perdem fondària. A partir d’uns 10 metres, les estructures de relleu (canals, esglaons) es fan abundants, i pel cantó NE de la cala hi ha una gran llosa que s’interna a la praderia, vora els 5 metres de fondària. La praderia continua fins ben a prop de la platja (15-20 metres), on acaba, en aquest cantó NE, amb un petit esglaó a una fondària inferior a 1 metre.

Les observacions a la part superficial revelen un límit morfològicament complex, amb canals, força relleu i alternança de taques de posidònia i sorra. A la part central, com ja s’ha dit, es forma una mena de canal triangular amb el vèrtex mirant cap a mar desproveït de vegetació, llevat d’una taca de posidònia densa que se situa prop de la platja. El límit de la praderia es troba aquí a més de 200 metres de distància de la platja. Cap a l’extrem de ponent, la posidònia apareix en alguns indrets barrejada amb roques o al seu costat. Segueix havent-hi força relleu, i hi trobem algunes zones amb mata morta.

Basant-nos en aquest seguit d’observacions, considerem l’estat d’aquesta praderia bo, i destaquem com a punt negatiu la presència de morts amb cadena de fondejos de temporada.

<table>
<thead>
<tr>
<th>Diagnosi Montjoi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estat</td>
</tr>
<tr>
<td>Simptomes de degradació</td>
</tr>
<tr>
<td>Alguns feixos arrancats</td>
</tr>
<tr>
<td>Algunes clarianes amb mata a zones intermèdies i somes</td>
</tr>
<tr>
<td>Morts de ciment grans amb cadena. Altres morts més petits</td>
</tr>
<tr>
<td>Limit profund parcialment regressiu i bastant esclarissat</td>
</tr>
</tbody>
</table>
Avaluació quantitativa de les estacions: els herbeis de posidònia

Densitat
A les subestacions superflors, els valors de densitat obtinguts (taula 4, Figura 3, esquerra) són bastant variables, amb valors que oscil·len entre el mínim de Jugadora (315 ± 26 feixos m$^{-2}$) i el màxim de Pelosa (679 ± 19 feixos m$^{-2}$). Jugadora i Portlligat presenten una densitat significativament menor a la resta (Figura 3), que varia entre els 400-500 (Montjoi, Culip i Guillola) i els 500-700 feixos m$^{-2}$ (Taballera i Pelosa).

Els valors de densitat de les subestacions profundes són més homogenis, i significativament inferiors als de les subestacions superflors (Figura 3, dreta). La major part està compresa entre 200 i 300 feixos m$^{-2}$. Les subestacions profundes no presenten diferències significatives entre elles, amb l’únic excepció de Norfeu Nord, que, amb 394 ± 28 feixos m$^{-2}$, se situa per sobre de la resta.

Figura 3. Densitat (en feixos m$^{-2}$) de les subestacions superflors i profundes de cap de Creus. Es donen la mitjana i l’error estàndard. Les subestacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa en la seva densitat. Les anàlisis han estat fetes independentment per les subestacions superflors i profundes, i per tant les lletres són només vàlides dins de cada figura.

Cobertura
A grans trets, els patrons trobats a la densitat es repeteixen als valors de cobertura (taula 4, Figura 4), amb valors més grans i dispersos a superfície i més petits i homogenis al fons.

Els valors de les subestacions superflors van del 42 ± 5 % de Portlligat i el 53 ± 7 % de Guillola, fins el 71 ± 4 % de Pelosa. La resta de subestacions (Culip, Montjoi, Taballera i Jugadora) presenten valors entre el 55 i el 63 % i no hi ha diferències significatives entre elles.

Els valors de cobertura de les subestacions profundes se situen en l’interval que va del 36 ± 5 % (Montjoi) fins al 42 ± 3 % (Taballera), sense diferències significatives entre elles.
Figura 4. Cobertura (en %) de les subestacions superficials i profundes de cap de Creus. Es donen la mitjana i l'error estàndard. Les subestacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa en la seva cobertura. Les anàlisis han estat fetes independentment per les subestacions superficials i profundes, i per tant les lletres són només vàlides dins de cada figura.

Enterrament dels feixos

Tots els valors mitjans d’enterrament obtinguts han estat positius (taula 4, Figura 5), el que indica que les plantes de les estacions prospectades estan majoritàriament descalçades, i que no es produeixen situacions de colgament dels feixos. La major part de subestacions superficials presenten valors que se situen entre els 4 i els 5,5 cm, i només ultrapassa aquest valor Taballera, amb uns 6 cm d’enterrament mitjà.

Tant les subestacions superficials com les profundes presenten valors d’enterrament dels feixos similars que se situen entre una mica menys de 5 i 7,5 cm.

Figura 5. Enterrament dels feixos (en cm) de les subestacions superficials i profundes de cap de Creus. Es donen la mitjana i l'error estàndard. Cal recordar que l'enterrament positiu indica un descalçament dels feixos. Les subestacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa en la seva cobertura. Les anàlisis han estat fetes independentment per les subestacions superficials i profundes, i per tant les lletres són només vàlides dins de cada figura.
Taula 4. Valors dels principals descriptors estudiats a les praderies de cap de Creus el 2018. Es presenten la mitjana (\(\bar{y}\)) i l’error estàndard (ES).

<table>
<thead>
<tr>
<th>Subestació</th>
<th>Cobertura (%)</th>
<th>Densitat (feixos m(^{-2}))</th>
<th>Enterrament (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{y})</td>
<td>ES</td>
<td>(\bar{y})</td>
</tr>
<tr>
<td>Taballera</td>
<td>63</td>
<td>3</td>
<td>577</td>
</tr>
<tr>
<td>Taballera</td>
<td>42</td>
<td>3</td>
<td>252</td>
</tr>
<tr>
<td>Culip</td>
<td>62</td>
<td>4</td>
<td>408</td>
</tr>
<tr>
<td>Culip</td>
<td>39</td>
<td>1</td>
<td>249</td>
</tr>
<tr>
<td>Jugadora sup</td>
<td>65</td>
<td>5</td>
<td>315</td>
</tr>
<tr>
<td>Jugadora prof</td>
<td>40</td>
<td>3</td>
<td>213</td>
</tr>
<tr>
<td>Guillola sup</td>
<td>53</td>
<td>7</td>
<td>467</td>
</tr>
<tr>
<td>Guillola prof</td>
<td>40</td>
<td>5</td>
<td>277</td>
</tr>
<tr>
<td>Portlligat</td>
<td>42</td>
<td>5</td>
<td>351</td>
</tr>
<tr>
<td>Norfeu N</td>
<td>36</td>
<td>6</td>
<td>394</td>
</tr>
<tr>
<td>Pelosa</td>
<td>71</td>
<td>4</td>
<td>679</td>
</tr>
<tr>
<td>Montjoi sup</td>
<td>59</td>
<td>7</td>
<td>430</td>
</tr>
<tr>
<td>Montjoi prof</td>
<td>36</td>
<td>5</td>
<td>218</td>
</tr>
</tbody>
</table>

Intensitat de floració

Les estacions de Pelosa i Guillola (només a superfície) presentaven flors durant les campanyes. L’absència de flors a les altres estacions no significa necessàriament que les praderies no hagin flort l’any 2018, sinó que potser no ho havien fet encara quan vàrem visitar l’estació. Com s’explica a la introducció, la floració de *P. oceanica* és molt heterogènia en l’espai. La intensitat de floració a les praderies de Pelosa i Guillola ha estat de 4,6% i 5,4% respectivament.

Limits profunds

S’han valorat i s’han comprovat les fites existents (o, en el seu cas, renovat les perdudes) els limits profunds de les estacions de cala Taballera, cala Culip, cala Jugadora, cala Guillola i cala Montjoi (taula 5). La cinètica dels límits en el seu conjunt és pràcticament estable (de fet, molt lleugerament regressiva: 2 cm) durant el període 2014-2018, si bé individualment hi ha una estació (cala Jugadora) amb un retrocés una mica més important en aquest període (uns 30 cm). Això queda compensat per les petites progressions o l’estabilitat a les altres. El que sí sembla haver existit és una regressió anterior al 2014, sobretot a cala Culip (més de 2 m des de 1998), però també a cala Montjoi i a cala Jugadora (des de 2007). La situació actual, no obstant això, sembla bastant estabilitzada (taula 5).
Taula 5. Resum de l’estat i de la fitació dels límits estudiats a cap de Creus. S’esmenta la fondària de les fites, l’any o anys de fitació i el nombre de barres o fites, els canvis nets en els diferents períodes de temps i el canvi acumulat (i el període a què correspon) d’ençà es tenen dades.

<table>
<thead>
<tr>
<th>Estació</th>
<th>Fondària (m)</th>
<th>Fitació (any)</th>
<th>Canvi net anterior a 2014 (cm)</th>
<th>Canvi net 2014-2016 (cm)</th>
<th>Canvi net 2016-2018 (cm)</th>
<th>Canvi acumulat (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taballera</td>
<td>15-19</td>
<td>2016 (9 barres)</td>
<td>Sense dades</td>
<td>Sense dades</td>
<td>+2 (8 barres)</td>
<td>+2 (2016-2018)</td>
</tr>
<tr>
<td>Culip</td>
<td>23-24</td>
<td>1998 (limit profund, 10 barres), 2007 (limit lateral(^1), 5 barres), 2018 (limit profund 6 barres)</td>
<td>-210 (5 barres)</td>
<td>0 (4 barres)</td>
<td>-210 (1998-2018)</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)No es fa seguiment del límit lateral

Macrofauna associada

S’ha trobat una baixa abundància de garotes, que només han estat observats en densitats suficients per a ser comptades a les subestacions superficiais de Taballera (5,6 individus m\(^{-2}\)) i Culip (1,3 individus m\(^{-2}\)). En algunes estacions (particularment, a Guillola superficie), s’han trobat nombroses closques de garotes mortes. Alhora no s’ha trobat cap holotúria a dins dels quadrats de mostreig (taula 6).
Les poblacions de nacres

En l’avaluació mitjançant transsectes duta a terme en el present exercici de seguiment només han aparegut vives 9 nacres a les estacions de cap de Creus (4 a Taballera, 1 a Portlligat, 2 a Pelosa i 2 a Jugadora), d’un total de 119 nacres (vives més mortes) observades, el que ve a ser poc més d’un 7%. Atenent aquests valors, poc adients per a dur a terme extrapolacions pel petit nombre de supervivents observats, la densitat actual de nacres a cap de Creus seria de 0,4 individus per cada 100 m². En l’anterior avaluació de les poblacions de nacres (2016, Romero et al. 2016), l’abundància de nacres va ser molt variable, entre 2 i 11 ind 100 m², amb 116 individus totals (vius més morts) trobats. El recompte de nacres mortes va ser llavors de 9 individus, el que representa que el 93% dels individus trobats eren vius aleshores. A totes les estacions estudiades la mortalitat de nacres ha estat elevada, romanent-ne viu només un percentatge molt reduït de supervivents. En comparació amb la densitat trobada el 2016 (4,84 individus per cada 100 m²), estimem que la supervivència pel període 2016-2018 ha estat del 8%. La mida mitjana de les nacres trobades mortes a cap de Creus és de 50,7 ± 1,2 cm, i el de les vives 37,6 ± 6,6 cm. La gran variabilitat en les mides de les nacres trobades vives i el nombre d’individus tan reduït no ens permet confirmar que la supervivència sigui selectiva per mides, malgrat les vivs semblen ser lleugerament més petites que les mortes. Com a referència, la mida mitjana de les nacres trobades vives a cap de Creus l’any 2016 va ser de 45,2 ± 1,4 cm. A més de les nacres observades als transsectes, hem observat 3 individus vius, 1 a Taballera, 1 a Culip i 1 a Montjoï.

Taula 6. Abundància de la macrofauna associada (en ind m⁻²), on les garotes son de la espècie *P. lividus*. Es donen la mitjana i l’error estàndard (ES).

<table>
<thead>
<tr>
<th>Subestació</th>
<th>Fondària (m)</th>
<th>Garotes (ind m⁻²)</th>
<th>ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taballera sup</td>
<td>6,5</td>
<td>5,6</td>
<td>1</td>
</tr>
<tr>
<td>Taballera prof</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Culip sup</td>
<td>5</td>
<td>1,2</td>
<td>0,8</td>
</tr>
<tr>
<td>Culip prof</td>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jugadora sup</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jugadora prof</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Guillola sup</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Guillola prof</td>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Portlligat</td>
<td>4,5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Norfeu N</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pelosa</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Montjoï sup</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Montjoï prof</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Montgrí - Medes

Avaluació qualitativa de les estacions

Cala Montgó

<table>
<thead>
<tr>
<th>Descripció: CALA MONTGÓ</th>
<th>Límit superior</th>
<th>Zona central</th>
<th>Límit profund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profunditat (m)</td>
<td>5-9*</td>
<td>8-16</td>
<td>16-18</td>
</tr>
<tr>
<td>Morfologia</td>
<td>Rectilini/esglao/a taques</td>
<td></td>
<td>Retallat</td>
</tr>
<tr>
<td>Rellue</td>
<td>Llieu</td>
<td>Llieu</td>
<td>No</td>
</tr>
<tr>
<td>Altes espècies</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipologia</td>
<td>Regressiu**</td>
<td>Estable</td>
<td></td>
</tr>
<tr>
<td>Clarianes (abundància)</td>
<td>Abundants</td>
<td>Escasses/abundants***</td>
<td>Abundants</td>
</tr>
<tr>
<td>Clarianes (mida)</td>
<td>Mitjanes</td>
<td>Grans/mitjanes***</td>
<td>Petites</td>
</tr>
<tr>
<td>Clarianes (substrat)</td>
<td>Mata</td>
<td>Sorra/mata</td>
<td>Mata</td>
</tr>
<tr>
<td>Anomalies densitat</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Anomalies cobertura</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Feixos arrencats</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Macroalgues</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Deixalles</td>
<td>Escasses</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Fondejos</td>
<td>Nombrosos (mort i cadena)</td>
<td>Nombrosos (mort i cadena)</td>
<td>No</td>
</tr>
</tbody>
</table>

Observacions

*el límit superficial és més profund en la part central de la platja, i més som als laterals
**gran heterogeneïtat. És freqüent trobar mata morta abundant entre el límit i la platja. En alguns punts és net i estable, o està barrejat amb rocs i blocs
***s'observa una gran clariana a la part central de la praderia, a profunditats entre 16 i 13 metres. A part, s'observen altres clarianes de mida variable entre 12 i 9 metres

Cala Montgó, situada, al sud de l'Escala, és una cala extensa amb la seva platja encarada a llevant. Una bona part dels seus fons menys profunds i propers a la platja estan ocupats per la praderia de *P. oceanica* entre 5-9 i 18 metres. En general, la praderia és força irregular, i s'alternen zones coninues amb d'altres amb evidents discontinuïtats, degudes a grans clapes de sorra (per exemple, a la part central), zones esclarissades a prop del límit profund o mosaics de mata, plantes vives i blocs a la part superficial.
En aquesta cala s’han fet dos recorreguts superficials i un altre del límit profund al superficial (vegeu mapa).

El límit profund se situa entre 16 i 18 metres de fondària, una mica més pel costat N i una mica menys pel costat S. Es tracta d’un límit net i retallat, amb molt poca presència de mata més enllà. El recorregut d’exploració es va fer des d’aquest límit profund cap a la platja, fent un rumb aproximadament W, seguint més o menys el terç N de la cala. A fondàries compreses entre 15,9 i 12,7 metres s’observa una clapa molt gran de sorra, sense restes de mata aparents. La seva mida en sentit E-W és d’uns 35 metres, i la seva mida en sentit N-S no va poder ser avaluada. A bona part d’aquesta clariana, i cap al cantó N de la cala, se situa una roca de grans dimensions, així com algunes petites mates disperses de posidònia. Un cop acabada la clariana, toma a aparèixer la praderia, que esdevé bastant densa i contínua, encara que amb certes clarianes de mida mitjana i amb mata. La praderia guanya una mica en contínuitat fins als 10 metres, en què les clarianes es fan més abundants, amb algunes de força grans fins als 9 metres. A partir d’aquesta fondària, la praderia assoleix cobertura i densitat notables, fins a arribar al seu límit superior, a 7 metres i a uns 150 metres de distància de la platja en el nostre recorregut. Entre el límit i la platja hi ha una extensió de mata considerable de 30-50 metres, amb uns pocs i petits rodals de posidònia, que acaba, donant pas a un fons de sorra, a uns 5 metres de fondària i a uns 100 metres de la platja.

Els recorreguts superficials varen permetre observar que el límit superior és força irregular, i sembla haver patit una regressió important, molt probablement recent (entre 5 i 10 anys, potser) segons les fotografies disponibles a Google Earth. El límit actual se situa entre 5 i 9 metres de fondària, més som a la zona N, més profund a la central i intermedi a la zona S. Cap als extrems de la cala el límit està barrejat amb pedres i blocs petits, especialment a la banda S. Els fondejos (morts de ciment amb cadenes) són nombrosos.

Segons aquestes observacions, considerem l’estat de la praderia moderat, a causa de la presència de grans zones de mata morta a la part superficial i nombrosos morts de ciment.

Diagnosi cala Montgó

<table>
<thead>
<tr>
<th>Estat</th>
<th>Moderat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simptomes de degradació</td>
<td>Nivell de preocupació</td>
</tr>
<tr>
<td>Grans zones de mata morta a la part superficial</td>
<td>Moderat</td>
</tr>
<tr>
<td>Clarianes amb mata a fondàries intermèdies</td>
<td>Lleu</td>
</tr>
<tr>
<td>Gran clariana amb sorra</td>
<td>Lleu</td>
</tr>
<tr>
<td>Limit profund amb nombroses clarianes</td>
<td>Moderat</td>
</tr>
<tr>
<td>Morts de ciment</td>
<td>Moderat</td>
</tr>
</tbody>
</table>
La praderia de cala Pedrosa, entre cala Montgó i l'Estartit (vegeu mapa), és petita, de forma irregular i amb una superfície probable (estimada visualment) no superior a 0,25 ha. Se situa adjacent a l’illa Pedrosa, a fondàries entre 6 i 8 metres aproximadament. Gairebé per tots els seus costats limita amb la roca. Es tracta d’una praderia relativament atípica, tant pel seu substrat com per la seva fisonomia. Pel que fa al substrat, val a dir que és molt pedregós, amb elements que van des de blocs de gairebé un metre fins a petits còdols. Sota aquest substrat pedregós hi trobem un sediment gruixut amb força elements organògens. Pel que fa al seu aspecte, cal destacar que és una praderia relativament esclarissada, amb densitats i cobertures una mica baixes per la profunditat a què se situa. Cap a
la banda de terra apareixen clapes de mata morta d’alguns metres quadrats. S’observen bastants feixos terminals, que s’identifiquen fàcilment per les seves fulles corbades.

A partir d’aquestes observacions considerem l’estat de la praderia de cala Pedrosa moderat, si bé cal recordar que les desviacions d’un estat óptim poden ser per causes naturals.

Diagnosi Cala Pedrosa

<table>
<thead>
<tr>
<th>Simptomes de degradació</th>
<th>Nivell de preocupació</th>
<th>Observacions</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Praderia de petites dimensions</td>
<td>Nul</td>
<td>Causes naturals</td>
</tr>
<tr>
<td>- Cobertures i densitats una mica per sota de l’esperat</td>
<td>Lleu</td>
<td>Anomalies que poden ser causades pel tipus de substrat</td>
</tr>
</tbody>
</table>

illes Medes: Meda Gran 1 i 2 i Meda Petita

Descripció: ILLES MEDES - MEDA PETITA

<table>
<thead>
<tr>
<th></th>
<th>Límit superior</th>
<th>Zona central</th>
<th>Limit profund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profunditat (m)</td>
<td>7</td>
<td>7-16</td>
<td>16</td>
</tr>
<tr>
<td>Morfologia</td>
<td>Mosaic*</td>
<td>Ondulat</td>
<td></td>
</tr>
<tr>
<td>Relleu</td>
<td>No</td>
<td>Lleu</td>
<td>No</td>
</tr>
<tr>
<td>Altres espècies</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipologia</td>
<td>Estable</td>
<td>Regressiu***</td>
<td></td>
</tr>
<tr>
<td>Clarianes (abundància)</td>
<td>No</td>
<td>Escasses</td>
<td>Escasses</td>
</tr>
<tr>
<td>Clarianes (mida)</td>
<td>-</td>
<td>Mitjanes i petites</td>
<td>Petites</td>
</tr>
<tr>
<td>Clarianes (substrat)</td>
<td>-</td>
<td>Mata</td>
<td>Mata</td>
</tr>
<tr>
<td>Anomalies densitat</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Anomalies cobertura</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Feixos arrencats</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Macroalgues</td>
<td>No**</td>
<td>Escasses</td>
<td>No</td>
</tr>
<tr>
<td>Deixalles</td>
<td>No</td>
<td>Un mort</td>
<td>Tres morts****</td>
</tr>
</tbody>
</table>

Observacions

1fondejos ecològics de caragol amb cap
*la praderia acaba en contacte amb la roca, amb petites taques de plantes entre pedres
**però un bidó metàl·lic més enllà del límit
***la mata s’estén fins a més de 20-23 metres de fondària
****tres grans morts, un fora de la praderia, un altre una mica a dins i un tercer just en el límit
Descripció: ILLES MEDES - MEDA GRAN (Freuetó a Estació 1)

<table>
<thead>
<tr>
<th></th>
<th>Limit superior</th>
<th>Zona central</th>
<th>Limit profund***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profunditat (m)</td>
<td>2-5</td>
<td>5-14</td>
<td>14-15</td>
</tr>
<tr>
<td>Morfologia</td>
<td>Mosaic*</td>
<td>Taques</td>
<td></td>
</tr>
<tr>
<td>Relleu</td>
<td>Un petit esglaó</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Altres espècies</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipologia</td>
<td>Estable/regressiu</td>
<td></td>
<td>Regressiu (zona S)</td>
</tr>
<tr>
<td>Clarianes (abundància)</td>
<td>Abundants</td>
<td>Escasses**</td>
<td>Abundants</td>
</tr>
<tr>
<td>Clarianes (mitja)</td>
<td>Mitjanes i grans</td>
<td>Petites ***</td>
<td>Mitjanes i grans</td>
</tr>
<tr>
<td>Clarianes (substrat)</td>
<td>Mata/sorra</td>
<td>Mata</td>
<td>Mata/sorra</td>
</tr>
<tr>
<td>Anomalies densitat</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Anomalies cobertura</td>
<td>No</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>Feixos arrencats</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Macroalgues</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Deixalles</td>
<td>No</td>
<td>Escasses</td>
<td>No</td>
</tr>
<tr>
<td>Fondejos¹</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Observacions

¹Nombrosos fondejos ecològics de caragol amb cap.

*roca, sorra, posidònia i mata.

**sobretot a prop de la superfície.

***llevat d’una gran clariana que es va obrir a mitjans del 90; veure text.

Descripció: ILLES MEDES - MEDA GRAN (Estació 1 a Estació 2)

<table>
<thead>
<tr>
<th></th>
<th>Limit superior</th>
<th>Zona central</th>
<th>Limit profund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profunditat (m)</td>
<td>2-5</td>
<td>6-15</td>
<td>15</td>
</tr>
<tr>
<td>Morfologia</td>
<td>Mosaic*</td>
<td>ondulat</td>
<td></td>
</tr>
<tr>
<td>Relleu</td>
<td>No</td>
<td>Acusat**</td>
<td>No/esglaó casi 2m zona NW</td>
</tr>
<tr>
<td>Altres espècies</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipologia</td>
<td>Regressiu</td>
<td>Estable/progressiu</td>
<td></td>
</tr>
<tr>
<td>Clarianes (abundància)</td>
<td>Abundants</td>
<td>Escasses</td>
<td>Escasses (alguns canals intermates zona W)</td>
</tr>
<tr>
<td>Clarianes (mitja)</td>
<td>Mitjanes i grans</td>
<td>Petites</td>
<td>Petites</td>
</tr>
<tr>
<td>Clarianes (substrat)</td>
<td>Mata/sorra</td>
<td>Mata/sorra</td>
<td>Mata</td>
</tr>
<tr>
<td>Anomalies densitat</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Anomalies cobertura</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Feixos arrencats</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Macroalgues</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Deixalles</td>
<td>Abundants***</td>
<td>Escasses</td>
<td>Escasses</td>
</tr>
<tr>
<td>Fondejos¹</td>
<td>No</td>
<td>Dos morts****</td>
<td>Un mort</td>
</tr>
</tbody>
</table>

Observacions

¹Nombrosos fondejos ecològics de caragol amb cap.

*sorra, mata i posidònia; una mica de roca i pedres a l’extrem NW.

**un gran esglaó (13 m a la base, 10 metres a la part de dalt) i una “marmita de gegant” (estructura erosiva en forma circular).

***ulleres i tubs de busseig, ampolles de plàstic, etc.

****junts, corresponen a la bola d’embarcacions per fer snorkel, dins la marmita de gegant.
La praderia de les illes Medes se situa a la seva cara que mira al SW, és a dir, cap a la platja de Pals, i s’estén en paral·lel a les illes des de la Meda Petita fins a l’extrem de la Meda Gran. La seva superfície supera les 8 ha, i malgrat que a la praderia de les illes Medes hi tenim tres estacions de seguiment, exposarem les nostres observacions en conjunt, en tres parts diferenciades segons la fondària: (a) el límit profund (un recorregut); (b) les zones intermèdies (tres recorreguts); (c) el límit superior (quatre recorreguts; vegeu mapa).

(a) El límit profund

El límit profund es va explorar de manera exhaustiva, començant a l’extrem SE de la Meda Petita i acabant al final de la praderia, a l’extrem NW de la Meda Gran, el que vol dir uns 800-900 metres lineals. Al començament (és a dir, a l’altura de la Meda Petita), el límit profund se situa entre 16 i 17 metres, és una mica sinuós i la praderia presenta cobertura i densitat normals. Es tracta d’un límit regressiu, amb una gran extensió de mata més enllà. Aquesta observació concorda amb dades antigues, que indiquen que el límit profund cap a finals dels anys 80 se situava aquí cap als 23 metres. En aquesta zona de la Meda Petita observem tres morts de ciment, dos dels quals estan just a sobre el límit de la praderia, i el tercer es troba més a fora. A l’altura del Freuotó la mata morta s’estén només uns 4-5 metres cap a fora, fins a una fondària de 17 metres. De mica en mica, aquesta franja de mata morta es va apropan al límit actual, i ja entrats a la part que correspon a la Meda Gran, desapareix, pel qual a partir d’aquí considerem el límit estable. A uns 150 metres a comptar a partir de l’inici de la Meda Gran, el límit, aquí cap als 15 m de fondària, gira bruscament cap a l’illa tot remuntant, per tant, cap a la superfície. Es tracta d’una llarga llengua de sorra que suposa una discontinuïtat total en la praderia. Aquesta llengua existeix almenys des de finals dels anys 80, i no s’aprecia existència de mata morta, pel qual no es considera una estructura regressiva sinó, amb quasi total seguretat, natural. Travessada la llengua de sorra, el límit passa a ser més som (10-12 metres) i regressiu. De fet, es tracta d’una gran clariana d’uns 80-90 metres de llargada (en direcció paral·lela a les illes) i d’uns 10-20 metres d’amplada (en perpendicular), que es va obrir per raons desconegudes a mitjans dels anys 90. Tota aquesta clariana està ocupada per mata morta, i no sembla haver-se recuperat de manera apreciable des de la seva obertura. A l’altura de l’embarcador vell (si fa o no fa, a l’alçada de la nostra estació Meda Gran 1), desapareix la clariana, i el límit (a uns 14-15 metres) torna a ser estable, primer amb la praderia esclarissada i després més continuà. Una mica més enllà de l’embarcador nou ens trobem un altre mort de ciment dins de la praderia, i s’observen alguns canals internal·lats. Progressivament, el límit torna a remuntar, fins a una fondària de 13,5 metres. Aquí la praderia termina en un petit escarpament o esglaó de mata de 2 metres de potència. Una mica més enllà,
el límit gira cap a les illes, tot seguint un escarpament encara més potent, de fins a 4 metres, que marca el final de la praderia.

(b) La part central

Es varen fer tres recorreguts seguint la línia de màxim pendent, a prop de cadascuna de les tres estacions de seguiment, entre els 5-7 metres i el límit profund (vegeu mapa). A la part de la Meda Petita, la praderia és en general densa i bastant contínua, amb alguna petita clariana i bastant relleu. La praderia pròpiament dita acaba a uns 7 metres de fondària en contacte amb la roca, i a aquesta zona hi ha una clariana d’uns 3-4 m². Entre 5 i 7 metres trobem alguns rodals aïllats de plantes, que més enllà desapareixen deixant pas al substrat rocós. A la zona a prop de l’embarcador vell, on se situà l’estació de seguiment Meda Gran 1, la praderia és, a la part superficial, molt densa, encara que s’observen algunes clarines de mida variable. Aquesta tònica es manté, si bé amb menys densitat, fins a uns 10 metres de fondària, on totem amb la gran clariana de la qual hem parlat anteriorment, tota ella amb mata morta. Cap als 13 metres es recupera la praderia, en forma d’una banda bastant estreta (uns 3-4 metres) que dóna pas al límit profund. El tercer recorregut comença una mica més cap a la costa de l’embarcador nou, prop de l’estació de seguiment Meda Gran 2. Cap als 3 metres de fondària la praderia limita amb roca i pedres, i fins als 5 metres hi ha bastants clapes de sorra neta. Als 5 metres comença una praderia més contínua, encara que amb una gran clapa erosiva rodona (“marmita de gegant”) amb dos morts de ciment, corresponents a una de les boies per les embarcacions de snorkel. Nedant cap al fons s’aprecia una praderia bastant densa i contínua, amb petites clarines de mata dissimulades per la llargària de les fulles. Als 10 metres de fondària s’hi troba un esglaó de mata molt acusat, que baixa de cop fins als 13,4 metres. A partir d’aquest punt, i fins als 15,2 metres, on se situà el límit profund, la praderia és una mica més esclarissada, com correspon a aquesta fondària.

(c) El límit superficial

El límit superficial és molt complex i heterogeni, i es diferencia clarament entre la Meda Gran i la Petita. A la Meda Gran les plantes més superficials les trobem a 2-3 metres. Entre 2 i 4 metres, la posidònia apareix com petites taques disperses però bastant denses sobre un fons de sorra, encara que a alguns llocs (per exemple, prop de l’embarcador nou), les taques es fusionen per formar petites praderies molt denses. Entre 4 i 6 metres es troben zones amb importants clarines, que poden estar ocupades per mata o per sorra; la superfície es reparteix, de manera aproximadament equitativa, entre la sorra, la mata i la planta. En apropar-nos al Freuetó, a la praderia comencen a aparèixer roques i petits blocs. A l’altura del Freuetó el límit superficial de la praderia es veu interromput per un fons de roca i blocs, i recula cap a més fondària. Aquesta dominància de roca i blocs a poca fondària es manté a tota la Meda Petita, on es poden trobar alguns feixos dispersos cap als 3 metres, barrejats amb roca i blocs de mida diversa, però la praderia no comença fins als 5-7 metres, en un substrat molt groller.

L’estat d’aquesta praderia, a partir de les nostres observacions, el considerem bo, malgrat la regressió important del límit profund pel cantó de la Meda Petita i la clariana antiga (i estabilitzada) al SE de la Meda Gran. D’aquestes dues observacions, la més preocupant és la regressió del
cantó de la Meda Petita, que faria que aquesta part, separada de la resta, la consideréssim en estat moderat. Cal dir, però, que la regressió no sembla atribuïble a cap impacte identificat.

Diagnosi Illes Medes

<table>
<thead>
<tr>
<th>Estat:</th>
<th>Bo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simptomes de degradació</td>
<td>Nivell de preocupació</td>
</tr>
<tr>
<td>Presència de mata morta a la part superficial</td>
<td>Lleu</td>
</tr>
<tr>
<td>Clarianes amb mata a fondàries intermèdies</td>
<td>Lleu</td>
</tr>
<tr>
<td>Gran clariana amb sorra que travessa la praderia</td>
<td>Nul</td>
</tr>
<tr>
<td>Gran clariana de mata entre 10 i 12 metres</td>
<td>Moderat</td>
</tr>
<tr>
<td>Regressió important del límit profund pel cantó de la Meda Petita</td>
<td>Moderat</td>
</tr>
<tr>
<td>Deixalles abundants</td>
<td>Lleu</td>
</tr>
<tr>
<td>Morts de ciment</td>
<td>Lleu</td>
</tr>
<tr>
<td>Alguns fondejos ecològics tenen la boia trencada i s’han enfonsat; el cap malmet les plantes veïnes</td>
<td>Lleu</td>
</tr>
</tbody>
</table>

Avaluació qualitativa de les estacions: els herbeis de posidònia

Densitat

Les densitats a les subestacions superficials (taula 7, Figura 6 esquerra) estan al voltant dels 600 feixos m⁻², sense diferències significatives entre estacions, llevat el cas de la Meda Petita (436 ± 20 feixos m⁻²), encara que cal recordar que la subestació superficial de la Meda Petita era a 7 metres de fondària, i no a 5 com les altres.

A les subestacions profundes (Figura 6, dreta) els valors són clarament i significativa menors i molt més homogenis que a les superficials, amb valors que ronden els 250 feixos m⁻², a excepció de Meda Gran 2 amb una densitat de 180 ± 16 feixos m⁻².
Figura 6. Densitat (en feixos m\(^{-2}\)) de les subestacions superficials i profundes de Montgrí-Medes. Es donen la mitjana i l’error estàndard. Les subestacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa en la seva densitat. Les anàlisi han estat fetes independentment per les subestacions superficials i profundes, i per tant les lletres són només vàlides dins de cada figura.

Cobertura

Els valors de cobertura de les subestacions superficials (taula 7, Figura 7, esquerra) varien entre el 56 ± 1 % (Meda Petita) i el 76 ± 4% (Montgó). A les subestacions profundes (Figura 7, dreta) la cobertura és significativament inferior, amb menys variabilitat que a superfície i valors que ronden el 35%.

Figura 7. Cobertura (en %) de les subestacions superficials i profundes de Montgrí-Medes. Es donen la mitjana i l’error estàndard. Les subestacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa en la seva cobertura. Les anàlisi han estat fetes independentment per les subestacions superficials i profundes, i per tant les lletres són només vàlides dins de cada figura.

Enterrament dels feixos

L’enterrament és sempre, almenys en valors mitjans, positiu, indicant per tant que hi ha un cert grau de descalçament. Les subestacions fondes presenten valors d’enterrament significativament superiors que les estacions superficials (p<0.01). L’enterrament és molt variable tant en la zona del Montgrí com a les illes Medes amb valors que oscil·len al voltant dels 4 cm a excepció de les estacions profundes de la Meda Gran 1 i 2 (6 i 5 cm respectivament) i l’estació superficial de la Meda Gran 2 (2 cm).
Figura 8. Enterrament dels feixos (en cm) de les subestacions superficiales i profundes de Montgrí-Medes. Es donen la mitjana i l'error estàndard. Cal recordar que l'enterrament positiu indica un descalçament dels feixos. Les subestacions marcades amb la mateixa lletra no difereixen de manera estadísticament significativa en la seva cobertura. Les anàlisis han estat fetes independentment per les subestacions superficiales i profundes, i per tant les lletres són només vàlides dins de cada figura.

<table>
<thead>
<tr>
<th>Subestació</th>
<th>Cobertura (%)</th>
<th>Densitat (feixos m⁻²)</th>
<th>Enterrament (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ȳ</td>
<td>ES</td>
<td>ȳ</td>
</tr>
<tr>
<td>Montgó sup</td>
<td>76</td>
<td>4</td>
<td>660</td>
</tr>
<tr>
<td>Montgó prof</td>
<td>36</td>
<td>5</td>
<td>285</td>
</tr>
<tr>
<td>Pedrosa</td>
<td>68</td>
<td>3</td>
<td>625</td>
</tr>
<tr>
<td>Meda Gran 1 sup</td>
<td>64</td>
<td>5</td>
<td>652</td>
</tr>
<tr>
<td>Meda Gran1 prof</td>
<td>34</td>
<td>2</td>
<td>259</td>
</tr>
<tr>
<td>Meda Gran 2 sup</td>
<td>64</td>
<td>4</td>
<td>589</td>
</tr>
<tr>
<td>Meda Gran2 prof</td>
<td>32</td>
<td>2</td>
<td>180</td>
</tr>
<tr>
<td>Meda Petita sup</td>
<td>56</td>
<td>1</td>
<td>436</td>
</tr>
<tr>
<td>Meda Petita prof</td>
<td>37</td>
<td>4</td>
<td>239</td>
</tr>
</tbody>
</table>

Intensitat de floració

Les subestacions superficials de la Meda Gran 1 i de la Meda Petita presentaven flors durant les campanyes, amb valors d’intensitat de floració de 3,9% i 0,4% respectivament. L’absència de flors a les altres estacions no significa necessàriament que les praderies no hagin florit l’any 2018, sinó que potser no ho havien fet encara quan vàrem visitar l’estació. Com s’explica a la introducció, la floració de *P. oceanica* és molt heterogènia en l’espai.

Limits

S’han valorat els límits profunds de totes les estacions de les illes Medes i de la costa del Montgrí, llevat la de cala Pedrosa, per la seva reduïda extensió; és a dir, un total de 4 estacions (taula 8), de les quals presentem dues juntes per la seva proximitat (Meda Gran 1 i Meda Gran 2).
A una de les estacions (Meda Petita) ja s’havien produït regressions importants en el període 1987-2014, d’entre 5 i 10 metres pel cap baix. Aquesta regressió continuava en el període 2014-2016, però sembla haver-se aturat al 2018. Les dues estacions de la Meda Gran, pel contrari, semblen estar en un lent procés de progressió. Finalment, a cala Montgó, encara que han desaparegut algunes fites, la situació sembla ser de regressió lliure o fins i tot d’estabilitat en el darrer període.

Taula 8. Resum de l’estat i de la fitació dels límits estudiats a Montgrí-Medes. S’esmenta la fondària de les fites, l’any o anys de fitació i el nombre de barres o fites, els canvis nets en els diferents períodes de temps i el canvi acumulat d’ençà es tenen dades.

<table>
<thead>
<tr>
<th>Estació</th>
<th>Fondària (m)</th>
<th>Fitació (any)</th>
<th>Canvi net anterior a 2014 (cm)</th>
<th>Canvi net 2014-2016 (cm)</th>
<th>Canvi net 2016-2018 (cm)</th>
<th>Canvi acumulat (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montgó</td>
<td>17-18</td>
<td>2007-2018 (5 barres)</td>
<td>-50 (4 barres)</td>
<td>-9 (1 barra)</td>
<td>0 (3 barres)</td>
<td>-59 (2007-2018)</td>
</tr>
<tr>
<td>Meda Petita</td>
<td>16-17</td>
<td>2014 (5 barres)</td>
<td>Sense dades¹</td>
<td>-126 (4 barres)</td>
<td>0</td>
<td>-126 (2014-2018)</td>
</tr>
<tr>
<td>Meda Gran 1 i 2</td>
<td>14-15</td>
<td>2007-2014 (5 barres)</td>
<td>+13²</td>
<td>+10 (13 barres)</td>
<td>+3 (3 barres)</td>
<td>+26 (2014-2018)</td>
</tr>
</tbody>
</table>

¹Es van instal·lar unes fites de ciment l’1987, però no s’han pogut retrobar. Ara bé, les dades de geolocalitzacions i la presència de mata morta permeten suposar una regressió, de 1987 ençà, d’un mínim de 5-10 metres.

²A més, tenim evidències de què el límit s’ha mantingut pràcticament constant de 1982 ençà.

Macrofauna associada

A les estacions de les illes Medes no trobem cap garota mentre que a les praderies de Pedrosa i de Montgó (subestació superficial) hi trobem una gran abundància (entre 7 i 8 ind m⁻²; taula 9). Per contra, a dues de les estacions de les illes Medes, trobem holotúries a densitats variables.

Taula 9. Abundància de la macrofauna associada (en ind m⁻²), on les garotes son de la espècie *P. lividus* i les holotúries del complex *Holothuria tubulosa-mammata*. Es donen la mitjana (ʎ) i l’error estàndard (ES).

<table>
<thead>
<tr>
<th>Subestació</th>
<th>Fondària (m)</th>
<th>Garotes (ind m⁻²)</th>
<th>Holotúries (ind m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montgó sup</td>
<td>5</td>
<td>6,9</td>
<td>0</td>
</tr>
<tr>
<td>Montgó prof</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pedrosa</td>
<td>6,5</td>
<td>8,1</td>
<td>0</td>
</tr>
<tr>
<td>Meda Gran 1 sup</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meda Gran 1 prof</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meda Gran 2 sup</td>
<td>5</td>
<td>0</td>
<td>3,1</td>
</tr>
<tr>
<td>Meda Gran 2 prof</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meda Petita sup</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meda Petita prof</td>
<td>14</td>
<td>0</td>
<td>0,6</td>
</tr>
</tbody>
</table>

MEMÒRIA 2018 157
Les poblacions de nacres

Abundància
No s’ha trobat cap individu viu a cap dels transsectes realitzats, però s’han observat tres individus vius (un a l’estació de la Meda Gran 1, un a la Meda Gran 2 i un altre a la Meda Petita) fora de transsecte. Les mides dels individus trobats fora de transsectes no es van enregistrar de manera que no podem estimar les possibles diferències entre les talles de les nacres vives i mortes. Com a referència, la mitjana de les talles de les nacres trobades vives l’any 2016 a Medes i Montgrí va ser de 55 ± 1.4 cm, molt similar a la de les trobades mortes enguany (47.1 ± 1 cm). Fent una extrapolació no gaire precisa, això voldria dir uns 0.3 individus·100 m2, i per tant, comparant amb les dades de 2016 (8.8 individus·100 m2), una supervivència del 3%. Aquestes dades es refereixen exclusivament a la praderia de les illes Medes. Pel que fa a les praderies de la costa del Montgrí (Montgó i Pedrosa) no hem trobat cap individu viu.

Discussió
Les campanyes dutes a terme el 2018 per l’estudi de les praderies de $P. oceanica$ i de les poblacions associades de $P. nobilis$ dels Parcs Naturals de Cap de Creus i Montgrí, les Illes Medes i el Baix Ter, En general, i sense deixar de banda l’anàlisi més detallada que farem en els apartats següents, podem dir que les praderies d’aquestes dues àrees protegides, considerades globalment, mostren un bon estat, encara que no òptim en alguns casos. També globalment, la diagnosi és d’estabilitat, és a dir, de manteniment dels valors dels descriptors i de la qualitat global. En qualsevol cas, la variabilitat de les dades, tant qualitatives com quantitatives, no sembla inequívocament associada a activitats humans. Al costat d’aquesta visió moderadament optimista tenim una visió oposada en el que es refereix a les nacres. La mortalitat de nacres en el període considerat (2016-2018, però probablement concentrada al 2018) ha estat molt alta, sempre superior al 90%. Aquesta mortalitat és similar, fins i tot una mica més baixa, que la que s’esmenta per episodis anteriors descrits a Balears, a les costes de Llevant o a altres indrets de la Mediterrània, i és causada per un protozou paràsit, el $Haplosporidium pinnae$.

Aspectes metodològics
En conjunt, la realització de les campanyes i les dades obtingudes han mostrat que el disseny emprat, un cop incloses les observacions qualitatives que s’han incorporat a la metodologia enguany, està ben optimitzat.
Estacions de mostreig

En funció dels recursos (temps i esforç) disponibles, es considera que la selecció de les estacions és óptima. L’elecció de dues profunditats fixes (subestacions) per a cada estació ja va clarificar en el seu moment la interpretació dels resultats, tot fent més entenedora la comparació entre estacions, per exemple per tal d’obtenir conclusions amb base estadística sobre els efectes de l’activitat humana. Pel que fa a Montgrí-Medes, totes les praderies estan adientment mostrejades, i per tant les dades proporcionen una visió molt completa d’aquest ecosistema a l’espai protegit. Pel que fa a cap de Creus, i degut tant a la seva major extensió com a la dispersió de praderies en almenys una trentena de cales, el què s’ha estudiat és una mostra, que entenem prou representativa, del conjunt, encara que no abasta la totalitat de l’ecosistema a l’espai protegit. En qualsevol cas, les estacions visitades ofereixen un bon ventall de tipus de praderia, de graus de freqüentació i de distàncies als nuclis urbans o a les bases nàutiques, i estan situades a àrees amb diferents figures de protecció. De cara al futur, seria probablement desitjable afegir alguna subestació profunda (per exemple a Pelosa), i potser duplicar l’estació de Portlligat, encara que això demanaria més temps i esforç, i per tant un increment pressupostari. L’única estació que veiem prescindible (per a ser substituïda per alguna de les esmentades) és l’estació de Norfeu Nord, ja que no constitueix una praderia gaire extensa ni ben desenvolupada, encara que és la única a la Reserva Natural Parcial de Norfeu, fet que li dóna valor. També potser caldrà, en funció de com quedí el PRUG actualment en redacció, afegir o modificar algunes de les estacions d’aquest seguiment de praderies. Sigui com sigui, cal remarcar la importància de fer sempre les mesures als mateixos punts per tal de poder detectar possibles canvis al llarg del temps.

Descriptors de l’estat de les praderies

Els tres descriptors de més utilitat, tant pels resultats obtinguts com pel que s’indica a la bibliografia (Pergent *et al.*, 1995; Boudouresque *et al.*, 2006), són la densitat, la cobertura i la cinètica del límit profund, als que caldria afegir l’estudi de les poblacions de nacres (abundància i talles) i, en cas de trobar-ne, altres elements rellevants de la macrofauna (per exemple, garotes). Pel que fa a l’enterrament dels feixos, encara que no s’ha determinat una clara relació amb possibles impactes humans, pot aportar informació sobre la vulnerabilitat dels herbiet a pertorbacions mecàniques, com ara el fondeig (Francour *et al.*, 1999). Els descriptors qualitius han afegit una visió més estesa en l’espai (vegeu apartat “Estratègia”).

Metodologia de camp

El concepte de densitat va ser introduït per l’escola francesa a mitjans dels anys 70 (Giraud, 1977), i millorat i matisat per treballs posteriors (Boudouresque i Pergent, 1992). Aquest concepte va ser completat amb el de cobertura pel nostre equip (Romero, 1986), i en l’actualitat ambdues variables són utilitzades rutinàriament en programes d’avaluació i vigilància de tot tipus (Pergent-Martini *et al.*, 2005; Boudouresque *et al.*, 2006; Romero *et al.*, 2007; Martínez-Crego *et al.*, 2008), fins al punt que s’han convertit en estàndards internacionals. Malgrat tot, és essencial definir curosament el protocol de mesura d’aquests dos descriptors, especialment en programes de seguiment a llarg
termini, per tal que les dades d’un any a l’altre siguin comparables, amb independència de l’equip que executi les feines. És una llàstima, per exemple, que les dades obtingudes en seguiments anteriors (Pozo et al., 2009 i 2011) no siguin comparables a les nostres, probablement per manca d’uniformitat metodològica. En el present informe, ens hem esforçat a donar el màxim de detalls sobre la metodologia emprada, per tal que sigui reproducible en el futur. El nombre de rèpliques utilitzades per la densitat (n=10), és més que suficient, ja que dona errors estàndard de menys del 20% de la mitjana, tal com es recomana (Pergent et al. 1995), i de fet en gairebé tots els casos, de menys del 10%. El nombre de rèpliques per la cobertura (n=3) pot semblar una mica reduït, però cal recordar que cada dada de cobertura prové d’un total de 80 observacions, i també es compleix la condició d’estimacions d’errors de menys del 10% de la mitjana, llevat d’unes poques excepcions.

Estratègia

El treball de seguiment havia estat orientat fins ara a l’avaluació d’una sèrie de punts mitjançant una sèrie de mesures puntuals, com les de densitat i cobertura ja comentades; es pot per tant qualificar d’estratègia intensiva. Aquesta estratègia es considera prou adient i correcta. Ara bé, enguany s’ha complementat amb una sèrie d’exploracions addicionals que ens han fornit una visió molt més extensiva, gràcies a recorreguts i observacions d’un abast espacial més gran. Aquesta estratègia complementària ha ampliat el coneixement de les praderies dels espais protegits i ens ha ajudat a identificar problemes potencials. De cara a futurs seguiments, es recomana mantenir aquesta estratègia intensiva, com a millora de la metodologia d’anys anteriors. Ara bé, el cost en termes d’esforç és força elevat, i caldrà decidir entre algunes de les següents alternatives:

a) Mantenir qualitatiu y quantitatiu com aquest any en tots els exercicis.

b) Alternar un qualitatiu “complet” com el d’enguany amb un qualitatiu “selectiu” (anant només allà on s’han detectat problemes).

c) Modificar les exploracions qualitatives, de manera a fer-les amb menys esforç (per exemple, utilitzant drons i vehicles submarins operats remotament de baix cost).

Valoració de l’estat actual de les praderies

En primer lloc, cal deixar ben clar que la cinètica del límit (canvis en l’extensió), la cobertura i la densitat no constitueixen, per si soles, variables sobre les que fonamentar un criteri unívoc per la diagnosi de l’estat de salut de les praderies, sinó, més aviat, mesures de l’abundància fetes a tres escales d’observació diferents. Sobre aquesta abundància poden influir molts factors, entre ells els relacionats amb l’activitat humana, però també fonts de variabilitat natural; uns i altres són difícils de destriar. Així, d’una banda, és innegable que el deteriorament de les praderies comporta una disminució de l’abundància de les plantes, en una o més de les tres escales esmentades, pel qual la informació que ens proporcionen aquestes tres mesures ens és molt útil per detectar possibles situacions de risc. Ara bé, d’altra banda, cal una mica de prudència a l’hora d’interpretar les dades i tenir en compte els possibles fenòmens naturals que també poden influir sobre aquests descriptors.
Tenint presents les precaucions expressades, en aquest apartat intentarem dur a terme una valoració de l’estat de les praderies de cap de Creus i de Montgrí-Medes, primer respecte dels valors de referència definits en anys anteriors, i després analitzant la seva evolució temporal pel període 2014-2018. La valoració es completarà amb les dades obtingudes de les exploracions qualitatives.

Valors de referència

Entenem per valors de referència els valors de densitat i cobertura que s'esperarien obtenir en praderies en estat de conservació òptim. El concepte és molt senzill d'entendre, però la seva aplicació porta uns certs problemes, relacionats amb la forta variabilitat natural d'aquests dos descriptors. Aquesta variabilitat està associada a factors que van de l’escala local (com ara la fondària o el tipus de sediment) a l’escala regional (per exemple, la transparència de l’aigua o la temperatura). Cal per tant, ser molt curiosos amb l’elecció dels valors de referència, ja que una atribució errònia pot portar a diagnosis igualment errònies i, encara pitjor, a decisions de gestió que poden resultar tant excessives com insuficients. El que exposem a continuació és gairebé idèntic al que ja va ser exposat a ls informes anteriors (Romero et al. 2014; Romero et al. 2016). Malgrat això, creiem oportú repetir-ho, per la importància del tema en la diagnosi dels espais protegits.

En el cas del present treball, el fet d’haver fixat dues profunditats ja ajuda a tenir en compte la variabilitat associada a la fondària, i proposem per tant uns valors de referència específics per a cadascuna de les d’elles (5 i 15 metres). Ara bé, com no existeixen uns valors de referència normalitzats i acceptats, hem provat d’obtenir-los seguint diverses metodologies i criteris, per després contrastar els resultats i arribar a una proposta raonable. Els procediments es descriuen a continuació.

a) **Utilització dels valors proposats per Pergent et al. (1995).** Aquests autors es basen en un recull ampli de dades de gran abast geogràfic (el conjunt de la Mediterrània), i separen praderies antropitzades de les no antropitzades, tot utilitzant una expressió logarítmica per relacionar densitat i fondària. Hem agafat els valors de les praderies no antropitzades per les fondàries de 5 i 15 metres. Aquest procediment té com a punts forts el fet de partir d’una base de dades prou completa, i un bon tractament estadístic, i com a punts febles la manca d’especificitat per un entorn geogràfic precis com el nostre, així com una certa dispersió metodològica, ja que les dades tenen procedències molt diverses. Només inclou dades de densitat, no de cobertura.

b) **Dades de la costa catalana - Directiva Marc de l’Aigua.** Durant els anys 2004-2010, l’Agència Catalana de l’Aigua (ACA) va posar en funcionament unes xarxes de control, sota el mandat de la Directiva Marc de l’Aigua (DMA). Una d’elles utilitzava *P. oceanica* com espècie indicadora (Roca et al., 2015), el que fa que es disposi d’una bona base de dades de densitats i cobertures. D’aquesta base de dades (Romero et al., 2010), hem pres
els valors de densitat i cobertura dels tres últims anys disponibles, i hem extret els corresponents a les tres estacions amb valors més alts de densitat o de cobertura, seguint una metodologia acceptada en la implementació de la DMA. Aquest procediment té com a punts forts una molt major coherència geogràfica que en el procediment (a), així com la total comparabilitat metodològica (ja que les dades varen ser preses pel nostre mateix equip). Té com a punt feble el fet que, malgrat que la base de dades és àmplia, no estem totalment segurs de què les tres praderies escollides siguin realment praderies totalment inalterades. Les dades (densitat i cobertura) corresponen totes a 15 m de fondària, i per tant no hi ha referències, segons aquest procediment, per les subestacions a 5 metres.

c) **Dades de la costa catalana - Xarxa de Vigilància de la Qualitat del Herbassars de Fanerògames Marines.** Aquesta xarxa de vigilància ha anat acumulant dades durant més de 10 anys (Submon, 2013). Els autors proposen una expressió exponencial negativa (vegeu també Renom i Romero, 2001) que relaciona densitat òptima i fondària, que nosaltres hem aplicat a les fondàries de 5 i 15 metres. Aquest procediment té com a punts forts la coherència geogràfica i com a punts febles, a més de l’esmentat pel procediment (b), la manca de suport estadístic, ja que no es dóna informació sobre la bondat dels ajustos, per exemple, ni una estimació de la seva variabilitat, i una metodologia de presa de dades de camp probablement no del tot comparable amb la nostra. No hi ha expressió que relacioni fondària i cobertura, pel que només podem obtenir valors de referència per la densitat.

d) **Dades històriques de les illes Medes.** La sèrie històrica de densitats i cobertures de les illes Medes, iniciada el 1984 (Romero et al., 2012), és una font de possibles valors de referència, encara que, per acceptar aquests valors cal assumir que es tracta d’una estació no pertorbada i en condicions òptimes. Això no es pot garantir totalment, encara que d’una de les pressions que més preocupen en el marc d’aquest estudi (l’ancoratge) sí que n’està exclosa, almenys des de principis dels anys 90. Hem agafat els valors mitjans (densitat i cobertura) dels tres anys anteriors a l’inici d’aquest seguiment (per a les profunditats de 5 i 14 metres) com a possibles valors de referència. Aquest procediment té com a punts forts l’elevada coherència geogràfica i metodològica, l’ampla dimensió temporal i la garantia d’absència d’ancoratges. Té com a punt feble el fet de tractar-se d’un únic punt, així com els dubtes expressats sobre la hipòtesi que es tracti d’una estació en condicions veritablement òptimes.

e) **Construcció d’una referència interna.** Finalment, existeix el recurs d’assumir que, entre les estacions mostrejades per nosaltres en els dos darrers anys de seguiment (2014 i 2016), hi ha algunes que es troben en condicions òptimes. Això sembla raonable en un entorn com l’estudiat, i en particular per l’existència d’estacions on la possible principal pressió (l’ancoratge) resta exclosa. Ara bé, hi ha el risc, derivat de la limitació de la base de dades, de què els valors de referència quedin esbiaixats per la presència de punts amb densitats o cobertures puntuals i anòmalament elevats. Hem agafat, com a exercici, els valors situats per sobre del percentil 90 de les dades dels dos darrers anys estudis (2014 i 2016), tant de densitat com de cobertura, per a cada fondària, i n’hem calculat la mitjana.
A més, enguany hem incorporat les dades del 2018, sense que es produïx cap canvi als òptims estimats. Aquest procediment té com a punts forts la total coherència geogràfica i metodològica, i com a punt feble el baix esmentat.

Els resultats obtinguts d’aplicar els procediments descrits, resumits a la taula 10, un cop analitzats críticament en funció dels punts forts i dels punts febles de cada procediment, ens fan proposar que les densitats de referència a una profunditat de 5 m se situin entre 550 i 700 feixos m\(^{-2}\), i a 15 m entre 250 i 400 feixos m\(^{-2}\). Anàlogament, i encara que es disposen de menys dades, suggerim uns valors de referència per les cobertures d’entre 55 i 70 % a 5 metres i d’entre 25 i 35 % a 15 metres. Aquestes referències no procedeixen d’un mètode de càlcul rigorós, sinó que han estat extrets dels valors de la taula mitjançant un criteri expert. Podem acceptar que les praderies amb valors entre la mitjana i el límit inferior de l’interval estan en condicions bones, i en condicions molt bones les que estan per sobre de la mitjana. Estarien, per tant, en condicions no satisfactòries les praderies amb valors per sota als valors mínims de l’interval. Cal remarcar que les dades que aquí proposem per la forma de càlcul són les mateixes a les propostades el 2016.

Taula 10. Valors de referència de densitat (feixos m\(^{-2}\)) i cobertura (%) segons els diferents autors i procediments emprats, i proposta pel present projecte de seguiment. El procediment (a) es basa en el treball de Pergent et al. (1995); el (b) en dades de les xarxes de la Directiva Marc de l’Aigua (Romero et al., 2010); el (c) en dades de Submon (2013); el (d) en dades de la sèrie històrica de les illes Medes (Romero et al., 2012) i el procediment (e) en les dades de les campanyes realitzades pel nostre equip en els seguiments de 2014 i 2016.

<table>
<thead>
<tr>
<th>Procediment</th>
<th>5 metres</th>
<th>15 metres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Densitat</td>
<td>Cobertura</td>
</tr>
<tr>
<td>(a)</td>
<td>Mitjana</td>
<td>637</td>
</tr>
<tr>
<td></td>
<td>Interval</td>
<td>525-749</td>
</tr>
<tr>
<td>(b)</td>
<td>Mitjana</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Interval</td>
<td>-</td>
</tr>
<tr>
<td>(c)</td>
<td>Mitjana</td>
<td>511</td>
</tr>
<tr>
<td>(d)</td>
<td>Mitjana</td>
<td>618</td>
</tr>
<tr>
<td>(e)</td>
<td>Mitjana</td>
<td>676</td>
</tr>
<tr>
<td></td>
<td>Interval</td>
<td>654-711</td>
</tr>
<tr>
<td>PROPOSTA</td>
<td>Mitjana</td>
<td>611</td>
</tr>
<tr>
<td></td>
<td>Interval</td>
<td>550-700</td>
</tr>
</tbody>
</table>

Pel que fa a l’extensió (o més exactament als seus canvis) mesurada mitjançant el seguiment de les fites, donada la baixa taxa de canvi i colonització de _P. oceanica_, la condició òptima hauria de ser la no regressió, és a dir, almenys l’estabilitat dels límits.
Valoració de les praderies: densitat i cobertura

a) Cap de Creus

Totes les subestacions superficiales del Parc Natural de Cap de Creus estan a dins de l'interval de valors de referència (o bé per sobre) pel que fa a la cobertura, llevat de Portlligat i, molt lleugerament, Guillola. En canvi, pel que fa a la densitat, més de la meitat estan per sota, moderadament (Guillola, Culip i Montjoi) o molt per sota (Jugadora i Portlligat; Figura 9).

Pel que fa a les subestacions fondes del Parc Natural de Cap de Creus, totes elles presenten valors de cobertura per sobre o dins de l'interval de referència. Pel que fa a la densitat, totes les estacions presenten valors dins o al límit de l'interval de referència a excepció de Jugadora i Montjoi amb valors moderadament inferiors (Figura 9).

b) Montgrí-Medes

Gairebé totes les subestacions superficiales del Parc Natural del Montgrí, les Illes Medes i el Baix Ter presenten valors de cobertura i densitat dins dels intervals de referència. L'única excepció és l’estació de la Meda Petita, amb valors de densitat moderadament per sota del límit inferior de l'interval considerat de referència (Figura 9). Cal senyalar, però, que aquesta estació està situada a més fondària (7 m), el que explicaria, almenys en gran part, aquesta desviació.

Totes les subestacions fondes presenten valors de cobertura dins o per sobre els valors de referència establerts. Pel que fa a la densitat, però, l’estació de Meda Petita es troba una mica per sota els valors de referència descrits, i Meda Gran 2 moderadament per sota (Figura 9).

Figura 9. Representació dels valors de densitat en funció dels de cobertura, per a totes les estacions i subestacions. S'han representat també els valors de referència, en forma d'interval, que corresponen als dos quadrats dibuixats en traç discontinu.
Valoració basada en les fites

Pel que fa al seguiment de les fites cal, abans de tot, recordar que es tracta d’un mètode que dóna una idea de l’evolució del sistema, en el seu límit inferior, a llarg termini, i que de manera més o menys sistemàtica tenim tan sols dades del període 2014-2018. Amb aquesta limitació present, podem remarcar alguns fets a tall de consideracions provisionals que caldrà verificar en exercicis successius.

a) Praderies de cap de Creus: la tendència global entre 2016 i 2018 és d’estabilitat. Particularitzant per estacions, en trobem amb progressions (Taballera i Montjoi), estables (Culip i Guillola) i amb regressió evident (Jugadora, 25 cm). Aquesta situació estable, i per tant optimista, contrasta amb la situació anterior a 2014, ja que tenim constància de regressions d’una certa importància a Jugadora, Montjoi i, sobre tot, Culip.

b) Praderies de Medes-Montrig: la tendència general entre 2016 i 2016 és clarament estable, diagnosi que afecta a totes les praderies, amb una lleugera progressió a les estacions de la Meda Gran (3 cm). Si eixamplam una mica l’horitzó temporal (2014-2018), la diagnosi canvia, amb una regressió important a la Meda Petita i més limitada a Montgó, i progressió a la Meda Gran. La tendència regressiva a la part de la Meda Petita està recolzada per dades històriques, algunes de les quals es remunten a 1987, i semblen indicar bastants metres de regressió.

Valoració basada en les observacions qualitatives

Les observacions qualitatives ens han permès observar algunes situacions o alguns símptomes de deteriorament a algunes de les estacions visitades. En general, cal dir que cap de les praderies l’hem trobada en un estat excel·lent, ni tan sols la de les illes Medes. Aquestes valoracions s’exposen i es discuteixen més endavant.

Valoració basada en l’evolució en el temps de les praderies

La diagnosi de l’evolució en el temps dels valors de densitat i cobertura de les praderies es pot abordar de dues formes: una, analitzant dades bibliogràfiques i documentals anteriors al 2014, i l’altra comparant els resultats del present exercici amb les nostres dades del 2014 i 2016. Donat que la comparació bibliogràfica ja es va exposar amb prou detall a les memòries de 2014 i 2016, per evitar ser reiteratius i alleugerir una mica aquest document, no les repetirem aquí. Tan sols recordarem que la conclusió general que se n’extreia era que, amb les prevencions adients al fet de barrejar dades de diverses procedències, ni la cobertura ni la densitat havien sofert cap davallada durant el període anterior al 2014 del qual es disposava de dades (2008-2014).

Ens centrarem per tant en l’anàlisi de les tendències temporals de les tres campanyes de seguiment (2014, 2016 i 2018) fetes pel nostre equip. En primer lloc cal dir que no hi ha una tendència temporal, ni en densitat ni en cobertura, estadísticament significativa, i per tant la diagnosi global és d’estabilitat (vegeu taula 15, més endavant).
Taula 11. Comparació de dades mitjanes (\(\bar{y}\)) de densitat de feixos (amb el seu error estàndard, ES) de les praderies de les subestacions de cap de Creus i de Montgrí-Medes corresponents al seguiment dels anys 2014, 2016 i 2018. A la darrera columna s’indica la tendència estadísticament significativa creixent (verd) o decreixent (vermell), o NT cas de que no n’hi hagi cap. Els valors colorejats mostren el període que marca la tendència trobada.

<table>
<thead>
<tr>
<th>Subestació</th>
<th>Densitat</th>
<th>Tendències</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014(\bar{y}) ES</td>
<td>2016(\bar{y}) ES</td>
</tr>
<tr>
<td>Taballera sup</td>
<td>584 27</td>
<td>546 24</td>
</tr>
<tr>
<td>Taballera prof</td>
<td>- -</td>
<td>259 13</td>
</tr>
<tr>
<td>Culip sup</td>
<td>456 14</td>
<td>484 25</td>
</tr>
<tr>
<td>Culip prof</td>
<td>212 11</td>
<td>221 15</td>
</tr>
<tr>
<td>Jugadora sup</td>
<td>459 36</td>
<td>368 19</td>
</tr>
<tr>
<td>Jugadora prof</td>
<td>247 25</td>
<td>306 20</td>
</tr>
<tr>
<td>Guillola sup</td>
<td>628 31</td>
<td>482 21</td>
</tr>
<tr>
<td>Guillola prof</td>
<td>276 22</td>
<td>296 19</td>
</tr>
<tr>
<td>Portlligat</td>
<td>259 20</td>
<td>369 27</td>
</tr>
<tr>
<td>Norfeu N</td>
<td>394 28</td>
<td>450 38</td>
</tr>
<tr>
<td>Pelosa</td>
<td>711 29</td>
<td>602 46</td>
</tr>
<tr>
<td>Montjoí sup</td>
<td>439 43</td>
<td>434 26</td>
</tr>
<tr>
<td>Montjoí prof</td>
<td>268 19</td>
<td>284 11</td>
</tr>
<tr>
<td>Montgó sup</td>
<td>556 15</td>
<td>654 29</td>
</tr>
<tr>
<td>Montgó prof</td>
<td>253 16</td>
<td>271 18</td>
</tr>
<tr>
<td>Pedrosa</td>
<td>584 18</td>
<td>591 19</td>
</tr>
<tr>
<td>Meda Gran 1 sup</td>
<td>663 27</td>
<td>589 32</td>
</tr>
<tr>
<td>Meda Gran1 prof</td>
<td>335 16</td>
<td>235 23</td>
</tr>
<tr>
<td>Meda Gran 2 sup</td>
<td>602 37</td>
<td>584 52</td>
</tr>
<tr>
<td>Meda Gran2 prof</td>
<td>267 27</td>
<td>238 24</td>
</tr>
<tr>
<td>Meda Petita sup</td>
<td>436 26</td>
<td>457 25</td>
</tr>
<tr>
<td>Meda Petita prof</td>
<td>233 15</td>
<td>216 17</td>
</tr>
</tbody>
</table>
Taula 12. Comparació de dades mitjanes (\(\bar{y}\)) de cobertura (amb el seu error estàndard, ES) de les praderies de les subestacions de cap de Creus i de Montgrí-Medes corresponents al seguiment dels anys 2014, 2016 i 2018. A la darrera columna s’indica la tendència estadísticament significativa creixent (verd) o decreixent (vermell), o NT cas de que no n’hi hagi cap. Els valors colorejats mostren el període que marca la tendència trobada.

<table>
<thead>
<tr>
<th>Subestació</th>
<th>2014</th>
<th>2016</th>
<th>2018</th>
<th>Tendències (p<0,05)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{y})</td>
<td>ES</td>
<td>(\bar{y})</td>
<td>ES</td>
</tr>
<tr>
<td>Taballera sup</td>
<td>59</td>
<td>3</td>
<td>82</td>
<td>5</td>
</tr>
<tr>
<td>Taballera prof</td>
<td>-</td>
<td>-</td>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>Culip sup</td>
<td>80</td>
<td>5</td>
<td>68</td>
<td>4</td>
</tr>
<tr>
<td>Culip prof</td>
<td>34</td>
<td>6</td>
<td>42</td>
<td>4</td>
</tr>
<tr>
<td>Jugadora sup</td>
<td>67</td>
<td>4</td>
<td>56</td>
<td>4</td>
</tr>
<tr>
<td>Jugadora prof</td>
<td>36</td>
<td>6</td>
<td>41</td>
<td>6</td>
</tr>
<tr>
<td>Guillola sup</td>
<td>74</td>
<td>4</td>
<td>67</td>
<td>8</td>
</tr>
<tr>
<td>Guillola prof</td>
<td>32</td>
<td>6</td>
<td>39</td>
<td>4</td>
</tr>
<tr>
<td>Portlligat</td>
<td>52</td>
<td>7</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>Norfeu N</td>
<td>39</td>
<td>2</td>
<td>37</td>
<td>2</td>
</tr>
<tr>
<td>Pelosa</td>
<td>70</td>
<td>5</td>
<td>73</td>
<td>4</td>
</tr>
<tr>
<td>Montjoi sup</td>
<td>55</td>
<td>4</td>
<td>66</td>
<td>2</td>
</tr>
<tr>
<td>Montjoi prof</td>
<td>30</td>
<td>4</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>Montgó sup</td>
<td>67</td>
<td>5</td>
<td>69</td>
<td>2</td>
</tr>
<tr>
<td>Montgó prof</td>
<td>31</td>
<td>5</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>Pedrosa</td>
<td>60</td>
<td>3</td>
<td>70</td>
<td>3</td>
</tr>
<tr>
<td>Meda Gran 1 sup</td>
<td>78</td>
<td>4</td>
<td>79</td>
<td>3</td>
</tr>
<tr>
<td>Meda Gran1 prof</td>
<td>25</td>
<td>3</td>
<td>32</td>
<td>4</td>
</tr>
<tr>
<td>Meda Gran 2 sup</td>
<td>80</td>
<td>5</td>
<td>69</td>
<td>4</td>
</tr>
<tr>
<td>Meda Gran2 prof</td>
<td>37</td>
<td>1</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>Meda Petita sup</td>
<td>70</td>
<td>3</td>
<td>65</td>
<td>2</td>
</tr>
<tr>
<td>Meda Petita prof</td>
<td>24</td>
<td>3</td>
<td>33</td>
<td>1</td>
</tr>
</tbody>
</table>

Ara bé, hem intentat anar una mica més enllà d’aquesta diagnosi global d’estabilitat, i fer una anàlisi més detallada de les dades de densitat i cobertura estació per estació. Del total de 46 observacions de què disposem (23 subestacions amb dos descriptor: cobertura i densitat), s’observen 37 sense cap tendència (és a dir, estables), 3 amb tendència a augmentar els descriptor i 8 (17% del total d’observacions) a disminuir (taules 11 i 12). És important remarcar que d’aquestes 8, només 4 (9%) mantenen aquesta tendència en l’actualitat, pel conjunt del període (Jugadora superficial, Meda Gran 2 profunda i Meda Petita superficial) o pel bienni 2016-2018 (Montjoi profunda). La tendència decreixent de les altres 4 només es va manifestar entre
2014 i 2016, i sembla estabilitzada en l’actualitat. Els increments són, en principi, una bona notícia, encara que cal ser prudents, i comprovar si les tendències positives es mantenen en el futur o són simplement una fluctuació esporàdica. Tota aquesta informació es presenta en forma gràfica a les figures 10 a 13.

Per tant, la diagnosi que podem extreure d’aquestes dades i consideracions és que si bé els casos de regressió superen una mica als de progressió, la norma és l’estabilitat. En qualsevol cas, sembla evident que no trobem davallades de densitat o cobertura preocupants, encara que caldrà restar amatents als casos particulars que hem esmentat. Aquesta conclusió val igualment per les praderies de cap de Creus com per les de Medes-Montgrí, ja que els casos “problemàtics” es reparteixen per igual entre ambdós espais. Aquesta visió d’estabilitat es pot copsar també a la Figura 14.

Figura 10. Tendències temporals de la densitat per a les subestacions superficiales i profundes de cap de Creus. En vermell i verd, estacions amb densitats significativament decreixents o creixents respectivament. En gris, estacions sense tendència significativa.

Figura 11. Tendències temporals de la cobertura per a les subestacions superficiales i profundes de cap de Creus. En vermell i verd, estacions amb densitats significativament decreixents o creixents, respectivament. En gris, estacions sense tendència significativa.
Figura 12. Tendències temporals de la densitat per a les subestacions superficials i profundes de la costa de Montgrí i les illes Medes. En vermell i verd, estacions amb densitats significativament decreixents o creixents, respectivament. En gris, estacions sense tendència significativa.

Figura 13. Tendències temporals de la cobertura per a les subestacions superficials i profundes de la costa de Montgrí i les illes Medes. En vermell i verd, estacions amb densitats significativament decreixents o creixents, respectivament. En gris, estacions sense tendència significativa.

Aquesta visió d’una certa estabilitat es pot copsar també a la Figura 14.
Figura 14. Comparació entre el promig de les dades de 2014 i 2016 (abscisses) i les dades de 2018 (ordenades), tant per la densitat (esquerra) com per la cobertura (dreta). Es representa la recta de pendent 1, on es situarien els punts si no s’hagués produït cap canvi, i un interval de confiança aproximat.

Nacres

La mortalitat de nacres causada pel paràsit *Haplosporidium pinnae* ha estat devastadora, i les poblacions de nacres d’ambdós espais protegits han quedat pràcticament eliminades, llevat d’un petit nombre d’individus que, a dia d’avui, no sabem si són resistentes al paràsit o es tracta tan sols d’individus que patiran la mortalitat en els propers mesos. La comparativa amb anys anteriors (Taula 13) permet deduir una mortalitat d’entre el 92 i el 95%.

<table>
<thead>
<tr>
<th>Estació</th>
<th>Abundància Nacres Vives (ind 100m⁻²)</th>
<th>Abundància Nacres Mortes (ind 100m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>y</td>
<td>ES</td>
</tr>
<tr>
<td>Taballera sup</td>
<td>0,7</td>
<td>0,30</td>
</tr>
<tr>
<td>Culip sup</td>
<td>3</td>
<td>1,50</td>
</tr>
<tr>
<td>Jugadora sup</td>
<td>4</td>
<td>2,00</td>
</tr>
<tr>
<td>Guillola sup</td>
<td>2,3</td>
<td>1,30</td>
</tr>
<tr>
<td>Portligat</td>
<td>11,3</td>
<td>2,80</td>
</tr>
<tr>
<td>Norfeu N</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>Pelosa</td>
<td>4,7</td>
<td>1,70</td>
</tr>
<tr>
<td>Montjoi sup</td>
<td>4,7</td>
<td>0,90</td>
</tr>
<tr>
<td>Montgò sup</td>
<td>1</td>
<td>0,60</td>
</tr>
<tr>
<td>Pedrosa</td>
<td>1</td>
<td>0,60</td>
</tr>
<tr>
<td>Meda Gran 1 sup</td>
<td>15</td>
<td>1,50</td>
</tr>
<tr>
<td>Meda Gran 2 sup</td>
<td>10,7</td>
<td>2,20</td>
</tr>
<tr>
<td>Meda Petita sup</td>
<td>9,3</td>
<td>2,90</td>
</tr>
</tbody>
</table>
El fondeig i altres pressions

Donat que la pressió més evident sobre les praderies de les zones estudiades i que més preocupa als gestors i al públic en general és la freqüentació i ancoratge per part d’embarcacions esportives, i malgrat que el treball no estava dissenyat per avaluar els possibles impactes d’aquesta pressió, hem intentat veure si amb les nostres dades es podien esbrinar alguns dels seus efectes potencials. La major part d’embarcacions esportives que visiten les cales o trams de costa estudiats hi fondegen, tirant l’ànora, o bé agafant-se a morts o altres tipus de fondeig allà on l’àncoratge és prohibit o regulat. En principi, cal distingir entre el fondeig de dia (el què fan els vaixells esportius durant un temps que oscil·la entre uns minuts i unes poques hores, més rarament un dia o més) i el fondeig de temporada o permanent (el què fan per la temporada estival). El primer es du a terme amb l’àncora o ruixó, llevat de les zones on hi ha camp de boies; els seus efectes destructius s’originen, sobretot, per l’arrencament de feixos en el moment de llevar l’àncora, o si l’embarcació garreja. El segon es basa en estructures permanents (morts de formigó, o més rarament àncores de mida gran, amb cadenes o caps i una boia a superfície). El seu efecte destructiu el produeix l’estructures en sí mateixa, a més de l’arrossegament de les cadenes, quan n’hi ha, pel fons. Alguns fondejós permanents, o alguns camps de boies per fondeig de dia, són de baix impacte (també anomenats ecològics); les illes Medes i Portlligat en són els exemples més importants. Malgrat el seu disseny respectuós amb les plantes, un manteniment incorrecte dels camps de boies ecològiques pot impactar sobre les praderies, per exemple en el cas en què les boies es malmetin, s’enfonsin amb el cap i s’arrosegueguin pel fons. A banda dels efectes mecànics, la freqüentació per embarcacions pot comportar altres tipus de danys sobre les praderies, com ara eutrofització per descàrregues de matèria orgànica (encara que avui dia la major part dels vaixells amb inodor no llencen les aigües brutes al mar), contaminació per hidrocarburs (olis de sentines, restes de combustible, etc.) o altres contaminants (per exemple, per les pintures antifouling o, com indiquen alguns autors, les cremes protectores solars). Aquesta freqüentació és també l’origen de les deixalles diverses que hem anat observant i que, encara que no tenen un impacte ecològic significatiu, sí que ho tenen visual.

Hem recopilat dades per tal d’avaluar la intensitat de l’ancoratge, i en general del fondeig, sobre les diferents estacions estudiades, i a tal efecte hem recorregut als treballs de Romero et al. (2004), Lloret et al. (2008, citat a la memòria del PRUG de cap de Creus 2014) i Fuentes-Rosúa (2011). Tot i que les dades són una mica antigues i el nombre de vaixells pot haver-se modificat, segurament els hàbits dels usuaris no ho han fet, fet pel qua, amb finalitat comparativa (entre cales) considerem les dades prou adients. Els valors aportats (taula 14) són força informatius, però fan difícil establir diversos nivells d’intensitat de l’activitat, especialment perquè el nombre de vaixells fondejats està en gran mesura influït per la grandària de la superfície on es pot fondejar a cada cala, i la pressió és funcion de del nombre total d’embarcacions sinó d’altres variables (densitat, temps de permanència i renovació, etc.). A banda d’això, la meteorologia de la zona, canviant i no sempre benigna, fa que les àrees de fondeig vagin variant, i que sense un seguiment molt exhaustiu es faci difícil tenir una bona estimació de la pressió acumulada al llarg de l’any. Per tant, i a manca d’una informació més acurada sobre la distribució espaciotemporal de barques dins les cales, hem decidit dur a terme l’anàlisi amb dos nivells de pressió: d’una banda, totes les
estacions on es pot tirar l’àncora o bé hi ha fondejos permanents amb blocs de formigó (pressió “alta”) i de l’altra totes les estacions on no es pot tirar l’àncora i els fondejos, en cas d’haver-n’hi, són ecològics (pressió “baixa”; no hem considerat mai la pressió nul·la per la potencial existència d’impactes lligats a la freqüentació no causats per l’àncora o el mort, com s’ha explicat anteriorment). Els treballs esmentats es refereixen només a cap de Creus; pel que fa a les illes Medes, l’ancoratge és prohibits, i els fondejos fixes són de baix impacte, i per tant considerem la pressió “baixa”, mentre que a les estacions de Pedrosa i Montgó l’hem considerada “alta”, per l’elevat nombre de vaixells que hi tiren l’àncora a l’estiu i, a Montgó, a més, la presència de fondejos permanents amb blocs de formigó.

Taula 14. Recull de dades sobre el nombre d’embarcacions fondejades a les estacions, i atribució del valor de pressió a cada una.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap de Creus</td>
<td>Taballera</td>
<td>40</td>
<td>25-50</td>
<td>12</td>
<td>dia</td>
<td>-</td>
<td>alta</td>
</tr>
<tr>
<td></td>
<td>Culip sup</td>
<td>40</td>
<td><25</td>
<td>38</td>
<td>dia</td>
<td>-</td>
<td>alta</td>
</tr>
<tr>
<td></td>
<td>Jugadora sup</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ancoratge exclòs per zona abalizada de bany fins 2017. Ara ancoratge permés</td>
<td>baixa</td>
</tr>
<tr>
<td></td>
<td>Jugadora prof</td>
<td>22</td>
<td><25</td>
<td>9</td>
<td>dia</td>
<td>-</td>
<td>alta</td>
</tr>
<tr>
<td></td>
<td>Guillola</td>
<td>60</td>
<td>25-50</td>
<td>26</td>
<td>dia</td>
<td>-</td>
<td>alta</td>
</tr>
<tr>
<td></td>
<td>Portlligat</td>
<td>150</td>
<td>-</td>
<td>temporada</td>
<td>-</td>
<td>Fondejos de tipus ecològic</td>
<td>baixa</td>
</tr>
<tr>
<td></td>
<td>Norfeu N</td>
<td>-</td>
<td>25-50</td>
<td>-</td>
<td>dia</td>
<td>-</td>
<td>alta</td>
</tr>
<tr>
<td></td>
<td>Pelosa</td>
<td>40</td>
<td>>50</td>
<td>29</td>
<td>dia/ temporada</td>
<td>Ancoratges i fondejos permanentes amb blocs de formigó</td>
<td>alta</td>
</tr>
<tr>
<td></td>
<td>Montjoi</td>
<td>90</td>
<td>>50</td>
<td>42</td>
<td>dia/ temporada</td>
<td>Ancoratges i fondejos permanentes amb blocs de formigó</td>
<td>alta</td>
</tr>
<tr>
<td>Medes-Montgrí</td>
<td>Montgó</td>
<td>-</td>
<td>-</td>
<td>dia/ temporada</td>
<td>Ancoratges i fondejos permanentes amb blocs de formigó i altres</td>
<td>alta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pedrosa</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>dia</td>
<td>-</td>
<td>alta</td>
</tr>
<tr>
<td></td>
<td>Meda Petita</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Zona estrictament protegida; fondejos de dia amb sistema ecològic</td>
<td>baixa</td>
</tr>
<tr>
<td></td>
<td>Meda Gran 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>baixa</td>
</tr>
<tr>
<td></td>
<td>Meda Gran 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>baixa</td>
</tr>
</tbody>
</table>

S’han analitzat els dos descriptors quantitatius (densitat i cobertura) en funció de la profunditat, de la intensitat de la pressió de fondeig i de l’any. Els resultats mostren diferències significatives en la densitat de feixos segons la pressió de fondeig, però en el sentit oposat al que es podria esperar; és a dir, les estacions amb més pressió de fondeig presenten valors més elevats de densitat tant en les subestacions superficials com en les profundes (taula 15, Figura 15). La mateixa tendència
apareix per la cobertura, encara que sense significació estadística (taula 15, Figura 15). Per tant, i amb les precaucions expressades al principi d’aquest apartat, hem de dir que no hi ha efectes clars de l’ancoratge sobre aquests dos descriptors de les praderies. D’altra banda, i sense recórrer a’anàlisis tan formals, val a dir que les estacions on hem detectat una disminució amb el temps de cobertura o densitat (vegeu Taules 11 i 12) corresponen, gairebé al 50%, tant a estacions amb pressió de fondeig alta com baixa. Tampoc les observacions qualitatives no ens han posat en evidència cap símptoma de degradació a praderies amb pressió de fondeig alta que no trobem també a praderies amb pressió de fondeig baixa. Finalment, i encara que es tracta d’un descriptor relativament poc important, hem de recordar que l’enterrament de totes les praderies visitades no indica un grau de descalçament que les faci més vulnerables del normal als efectes de les àncores.

No hem estimat necessari fer cap anàlisi en funció del nivell de protecció “administratiu”, donat que almenys a cap de Creus, les activitats amb impacte potencial sobre les praderies estan igualment permeses a les reserves parciales que al parc natural.

Taula 15. Resum de l’anàlisi estadística per establir la significació dels efectes de la pressió de fondeig, segons les tècniques explicades al capítol de metodologia. S’especificuen les quatre variables independents analitzades com a factors (fixos i aleatoris) i el valor p (probabilitat d’error al rebutjar que hi ha un efecte del factor considerat)

<table>
<thead>
<tr>
<th>Variable Dependent</th>
<th>Tipus de factor</th>
<th>Variables independents</th>
<th>Significació (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densitat</td>
<td>Fix</td>
<td>Fondària</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>Fix</td>
<td>Pressió</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>Fix</td>
<td>Any</td>
<td>0.04³</td>
</tr>
<tr>
<td></td>
<td>Aleatori</td>
<td>Estació</td>
<td>-</td>
</tr>
<tr>
<td>Cobertura</td>
<td>Fix</td>
<td>Fondària</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>Fix</td>
<td>Pressió</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Fix</td>
<td>Any</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Aleatori</td>
<td>Estació</td>
<td>-</td>
</tr>
</tbody>
</table>

³Les dades no segueixen una distribució normal, per això el llindar de significació es aquí p=0.01 (veure metodologia).
Valoració global

Tenint en compte tots els aspectes discutits fins ara, és a dir, els valors actuals de densitat i cobertura (comparació amb els valors de referència), l’evolució en el temps (comparació amb dades anteriors i evolució dels límits) i les observacions qualitatives fetes enguany per primer cop, hem intentat una valoració sintètica de les praderies estudiades (taula 18). que es presenta acompanyada dels resums quantitatiu (taula 16), qualitatiu (taula 17) i una diagnosi global.

Taula 16 Resum de diferents aspectes quantitatius que ens serveixen per avaluar les subestacions estudiades, i valoració global pel 2018. Pels valors de densitat i de cobertura s’indica si es troben dins de l’interval considerat normal o bé per sota, i en quina mesura (lleugerament, moderadament, netament); s’indica també si s’han produït canvis significatius en la densitat o la cobertura (nc: no canvia), així com alteracions en el límit profund, detectats gràcies a la fitació.

<table>
<thead>
<tr>
<th>Parc natural</th>
<th>Subestació</th>
<th>Valors densitat</th>
<th>Valors cobertura</th>
<th>Canvis densitat</th>
<th>Canvis cobertura</th>
<th>Canvis limit profund</th>
<th>Diagnosi 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap de Creus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taballera sup</td>
<td>Normals</td>
<td>Normals</td>
<td>nc</td>
<td>nc</td>
<td>sd</td>
<td>MOLT BO</td>
</tr>
<tr>
<td></td>
<td>Taballera prof</td>
<td>Normals</td>
<td>Normals</td>
<td>nc</td>
<td>nc</td>
<td>Progressions centímètriques</td>
<td>MOLT BO</td>
</tr>
<tr>
<td></td>
<td>Culip sup</td>
<td>Moderadament inferiors</td>
<td>Normals</td>
<td>nc</td>
<td>Disminueix</td>
<td>sd</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Culip prof</td>
<td>Normals</td>
<td>Normals</td>
<td>Augmenta</td>
<td>nc</td>
<td>Regressió antiga, estabilitzat</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Jugadora sup</td>
<td>Netament inferiors</td>
<td>Normals</td>
<td>Disminueix</td>
<td>nc</td>
<td>sd</td>
<td>MODERAT</td>
</tr>
<tr>
<td></td>
<td>Jugadora prof</td>
<td>Moderadament inferiors</td>
<td>Normals</td>
<td>nc</td>
<td>nc</td>
<td>Regressió antiga, regressió actual de 30 cm</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Guillola sup</td>
<td>Moderadament inferior</td>
<td>Moderadament inferiors</td>
<td>Disminueix</td>
<td>nc</td>
<td>sd</td>
<td>MODERAT</td>
</tr>
<tr>
<td></td>
<td>Guillola prof</td>
<td>Normals</td>
<td>Normals</td>
<td>nc</td>
<td>nc</td>
<td>Estabilitat</td>
<td>BO*</td>
</tr>
<tr>
<td></td>
<td>Portlligat</td>
<td>Netament inferior</td>
<td>Netament inferior</td>
<td>Augmenta</td>
<td>nc</td>
<td>sd</td>
<td>MODERAT</td>
</tr>
<tr>
<td></td>
<td>Norgeu N</td>
<td>Normals</td>
<td>Normals</td>
<td>nc</td>
<td>nc</td>
<td>sd</td>
<td>MOLT BO</td>
</tr>
<tr>
<td></td>
<td>Pelosa</td>
<td>Normals</td>
<td>Normals</td>
<td>pc</td>
<td>pc</td>
<td>Disminueix</td>
<td>MOLT BO</td>
</tr>
<tr>
<td></td>
<td>Montjoi sup</td>
<td>Moderadament inferiors</td>
<td>Normals</td>
<td>nc</td>
<td>nc</td>
<td>sd</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Montjoi prof</td>
<td>Moderadament inferiors</td>
<td>Normals</td>
<td>Disminueix</td>
<td>nc</td>
<td>Regressió antiga lieu, progressions recents</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Montgò sup</td>
<td>Normals</td>
<td>Normals</td>
<td>nc</td>
<td>nc</td>
<td>sd</td>
<td>MOLT BO</td>
</tr>
<tr>
<td></td>
<td>Montgò prof</td>
<td>Normals</td>
<td>Normals</td>
<td>nc</td>
<td>nc</td>
<td>Estabilitat</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Pedrosa</td>
<td>Normals</td>
<td>Normals</td>
<td>nc</td>
<td>nc</td>
<td>sd</td>
<td>BO</td>
</tr>
<tr>
<td>Montgrí- Medes</td>
<td>Meda Gran 1 sup</td>
<td>Normals</td>
<td>Normals</td>
<td>nc</td>
<td>nc</td>
<td>sd</td>
<td>MOLT BO</td>
</tr>
<tr>
<td></td>
<td>Meda Gran1 prof</td>
<td>Normals</td>
<td>Normals</td>
<td>Disminueix</td>
<td>nc</td>
<td>Progressions centímètriques</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Meda Gran 2 sup</td>
<td>Normals</td>
<td>Normals</td>
<td>nc</td>
<td>Disminueix</td>
<td>sd</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Meda Gran2 prof</td>
<td>Moderadament inferiors</td>
<td>Normals</td>
<td>Disminueix</td>
<td>nc</td>
<td>Progressions centímètriques</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Meda Petita sup</td>
<td>Moderadament inferior</td>
<td>Normals</td>
<td>Disminueix</td>
<td>nc</td>
<td>sd</td>
<td>MODERAT</td>
</tr>
<tr>
<td></td>
<td>Meda Petita prof</td>
<td>Moderadament inferiors</td>
<td>Normals</td>
<td>Augmenta</td>
<td>Estable</td>
<td>BO</td>
<td></td>
</tr>
</tbody>
</table>
Pradesies de Posidònia i poblacions de nacres

Taula 17. Resum de diferents aspectes qualitatius que ens serveixen per avaluar les subestacions estudiades, i diagnosi pel 2018 basada en aquest aspectes.

<table>
<thead>
<tr>
<th>Parc natural</th>
<th>Estació</th>
<th>Feixos arrencats</th>
<th>Mata morta</th>
<th>Claranes</th>
<th>Limit profund regressiu</th>
<th>Deixalles</th>
<th>Morts</th>
<th>Diagnosi 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap de Creus</td>
<td>Taballera</td>
<td>lleu</td>
<td>-</td>
<td>-</td>
<td>lleu</td>
<td>moderat</td>
<td>-</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Culip</td>
<td>-</td>
<td>moderat</td>
<td>lleu</td>
<td>alt</td>
<td>lleu</td>
<td>lleu</td>
<td>MODERAT</td>
</tr>
<tr>
<td></td>
<td>Jugadora</td>
<td>-</td>
<td>lleu</td>
<td>-</td>
<td>moderat</td>
<td>-</td>
<td>lleu</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Guillola</td>
<td>-</td>
<td>alt</td>
<td>alt</td>
<td>alt</td>
<td>-</td>
<td>lleu</td>
<td>MODERAT</td>
</tr>
<tr>
<td></td>
<td>Portlligat</td>
<td>-</td>
<td>moderat</td>
<td>moderat</td>
<td>?</td>
<td>moderat</td>
<td>lleu</td>
<td>MODERAT</td>
</tr>
<tr>
<td></td>
<td>Norfeu N</td>
<td>-</td>
<td>lleu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Pelosa</td>
<td>-</td>
<td>molt alt</td>
<td>-</td>
<td>-</td>
<td>moderat</td>
<td>moderat</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Montgrí-Medes</td>
<td>Montjoi</td>
<td>lleu</td>
<td>lleu</td>
<td>lleu</td>
<td>lleu</td>
<td>-</td>
<td>moderat</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Montgó</td>
<td>-</td>
<td>moderat</td>
<td>lleu</td>
<td>moderat</td>
<td>-</td>
<td>moderat</td>
<td>MODERAT</td>
</tr>
<tr>
<td></td>
<td>Pedrosa</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Medes</td>
<td>-</td>
<td>lleu</td>
<td>lleu</td>
<td>moderat</td>
<td>-</td>
<td>lleu</td>
<td>BO</td>
</tr>
</tbody>
</table>

Taula 18. Resum dels resultats de les avaluacions qualitativa i quantitativa de 2018 i diagnosi global tenint en compte ambdues valoracions.

<table>
<thead>
<tr>
<th>Parc Natural</th>
<th>Estació</th>
<th>Subestació</th>
<th>Diagnosi quantitativa 2018</th>
<th>Diagnosi qualitativa 2018</th>
<th>Diagnosi global 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap de Creus</td>
<td>Taballera</td>
<td>Taballera sup</td>
<td>MOLT BO</td>
<td>BO</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Taballera prof</td>
<td>MOLT BO</td>
<td>BO</td>
<td>BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Culip</td>
<td>Culip sup</td>
<td>BO</td>
<td>MODERAT</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Culip prof</td>
<td>BO</td>
<td>MODERAT</td>
<td>BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jugadora</td>
<td>Jugadora sup</td>
<td>MODERAT</td>
<td>BO</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Jugadora prof</td>
<td>MODERAT</td>
<td>BO</td>
<td>BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guillola</td>
<td>Guillola sup</td>
<td>MODERAT</td>
<td>BO</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Guillola prof</td>
<td>MODERAT</td>
<td>MODERAT</td>
<td>MODERAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Portlligat</td>
<td>Portlligat</td>
<td>MODERAT</td>
<td>MODERAT</td>
<td>MODERAT</td>
</tr>
<tr>
<td></td>
<td>Norfeu N</td>
<td>Norfeu N</td>
<td>MOLT BO</td>
<td>BO</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Pelosa</td>
<td>Pelosa</td>
<td>MOLT BO</td>
<td>MODERAT</td>
<td>MODERAT</td>
</tr>
<tr>
<td>Montgrí-Medes</td>
<td>Montjoi</td>
<td>Montjoi sup</td>
<td>BO</td>
<td>BO</td>
<td>BO</td>
</tr>
<tr>
<td></td>
<td>Montjoi prof</td>
<td>BO</td>
<td>BO</td>
<td>BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Montgó</td>
<td>Montgó sup</td>
<td>MOLT BO</td>
<td>MODERAT</td>
<td>MODERAT</td>
</tr>
<tr>
<td></td>
<td>Montgó prof</td>
<td>BO</td>
<td>MODERAT</td>
<td>MODERAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pedrosa</td>
<td>Pedrosa</td>
<td>BO</td>
<td>BO</td>
<td>BO</td>
</tr>
<tr>
<td>Medes</td>
<td>Meda Gran 1 sup</td>
<td>MOLT BO</td>
<td>BO</td>
<td>BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meda Gran 1 prof</td>
<td>BO</td>
<td>BO</td>
<td>BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meda Gran 2 sup</td>
<td>BO</td>
<td>BO</td>
<td>BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meda Gran 2 prof</td>
<td>BO</td>
<td>MODERAT</td>
<td>MODERAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meda Petita sup</td>
<td>MODERAT</td>
<td>BO</td>
<td>BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meda Petita prof</td>
<td>MODERAT</td>
<td>BO</td>
<td>BO</td>
<td></td>
</tr>
</tbody>
</table>
La valoració general de les praderies és, majoritàriament, bona (58% de les estacions), però un nombre elevat està en estat només moderat (42% de les estacions). Aquest nombre pot sorprendre o preocupar, però es relavitza si es tenen en compte dos fets. El primer d'ells és que, si considerem només les dades quantitatives, les valoracions serien molt bo (27%), bo (55%) i moderat (18%); és per tant la valoració qualitativa la que fa baixar les qualitats. En aquest context, hem de tenir en compte que les apreciacions qualitatives són essencialment estructurals, i la gran inèrcia d'aquests sistemes fan que es recuperin molt a poc a poc de qualsevol pertorbació, acumulant per tant els indicadors negatius al llarg de la seva història. El segon fet a tenir en compte és que les estacions en estat moderat no semblen tenir res en comú. Així, tenim estacions tant de cap de Creus com de Montgrí-Medes, i estacions tant on es fondeja (Montgó, Pelosa i Guillola) com on no (Meda Petita i Portlligat), encara que el cas de Pelosa és una mica especial (vegeu a continuació). En general, no trobem cap situació greu en les praderies de cap de Creus ni de Medes-Montgrí, encara que caldrà continuar seguint l’evolució futura dels punts amb valoració “moderat” amb atenció.

En els següents paràgrafs femalgunes observacions sobre les estacions en estat global “moderat”.

Pel que fa a cala Jugadora, i encara que la seva qualitat global sigui bona, la seva part superficial presenta valors de densitat baixos i decreixents. En anys anteriors, la subestació superficial se situava a la zona de bany, més enllà de les boies a partir de les quals el fondeig està prohibit, i la freqüentació és bastant limitada. Ara bé, des del 2017 es van enretirar més cap a terra les boies de la zona de bany, i ara es pot fondejar a la zona somà de la praderia. Seria temptador atribuir a aquest canvi d’úsos la caiguda en densitat, si bé aquesta caiguda ja va ser ressaltada a l’informe de 2016, quan el punt de mostreig estava encara lliure de fondeig. La baixa densitat podria per tant atribuir-se a un problema de confinament de l’aigua, com a Portlligat, a un increment de la densitat d’algues filamentoses amb anoxificació del sediment o a altres causes naturals no identificades.

L’estació de Guillola (en el seu conjunt) pateix una forta pressió de fondeig, i alguns dels seus indicadors estan per sota del que considerem normal o bé tenen evolució negativa. També hem observat clarines de mata importants a fondàries intermèdies i algun límit profund regressiu. Ara bé, aquests símptomes no són generals a totes les seves praderies (per exemple, el límit profund és força estable a la zona fitada) i, de fet, la densitat a zones on no es fondeja (zones de bany) assoleix els mateixos valors d’on si es fa, tot el qual fa difícil establir les causes d’aquesta valoració moderada, que, en qualsevol cas, podrien ser multiples.

L’estació de Portlligat (només existeix subestació superficial) no es troba en bona situació d’ençà que es va començar el seguiment. Curiosament, a Portlligat, si bé és cert que hi ha una important freqüentació per embarcacions, l’ancoratge està prohibit des de fa més de 15 anys, i el fondeig permanent és de baix impacte. Proposem tres explicacions no excloents per entendre la situació d’aquesta praderia, les mateixes que en anys anteriors:

a) Que la causa de la baixa densitat sigui històrica, és a dir, que després de la gran quantitat d’ ancoratges i morts incontrolats patida durant molt d’anys (probablement des de mitjans
dels 70, i fins a principis dels 2000), la praderia no hagi tingut encara temps de recuperarse.

b) Que la causa de la baixa densitat sigui natural, relacionada amb el confinament de les aigües de Portlligat, que afavoreix la deposició de matèria orgànica (inclosa la produïda per la mateixa praderia) i l’anoxificació del sediment.

c) Que la causa de la baixa densitat estigui associada a l’elevada freqüentació d’embarcacions en un ambient relativament confinat, per causes diferents de l’ancoratge (restes orgàniques, hidrocarburs, altres contaminants, brutícia, etc.).

En l’estat actual dels coneixements, no podem descartar cap d’aquestes tres hipòtesis, ni donar més probabilitats de certesa a l’una que a l’altra. El que potser cal recordar és que la qualitat de l’aigua a Portlligat no pot ser massa dolenta, ja que ha sostingut magnífiques poblacions de nacres (actualment desaparegudes per l’afectació del paràsit *Haplosporidium pinnae* descrit anteriorment), espècie més o menys sensible a la contaminació (Lozano et al., 2013). L’augment detectat l’any 2016 en la densitat de feixos sembla que es manté actualment mentre que la cobertura s’ha estabilitzat. Cal seguir atents a l’evolució temporal d’aquesta praderia.

El cas de *cala Pelosa* és una mica singular. En general, els descriptors d’aquesta praderia donen valors bons o molt bons, i l’únic símptoma negatiu és la gran clariana que sembla haver substituït una bona part de la superfície de la praderia. Aquesta clariana prové, amb gairebé total seguretat, de l’explosió d’una mina l’any 2013. La praderia, per tant, està lluny del seu estat óptim, però les causes són accidentals. Caldrà fer un bon seguiment de la recuperació, que podrà ser bastant llarga.

La praderia de *cala Montgó* presenta uns bons indicadors quantitatius, encara que sigui una zona molt freqüentada i amb importants pressions de fondeig, i la qualificació del seu estat com “moderat” obeeix a la presència d’una regressió important en la seva part superficial, així com a l’existència d’un camp de boies que no sempre s’ha gestionat amb prou cura.

Finalment, cal esmentar que els valors de densitat de la *Meda Petita* estan per sota en totes dues subestacions dels valors de referència, i que el límit inferior va patir una regressió important fins a 2016, regressió estabilitzada el 2018. No podem atribuir aquests fets a causes que no siguin naturals.

Conclusions

S’han obtingut dades d’una sèrie de descriptors, tant qualitatius com quantitatius, dels herbeis de *P. oceanica* del Parc Natural de Cap de Creus i c, així com de les seves poblacions de nacres. Un cop tractades, i posades en el context de l’estat actual dels coneixements, aquestes dades permeten extreure una sèrie de conclusions.
Les praderies del Parc Natural de Cap de Creus

a) Combinant diversos criteris, conclouem que la major part de les praderies visitades a cap de Creus estan en bon estat, fins i tot molt bo en alguns casos si només ens fixem en els descriptors quantitatius.

b) Considerem com només moderat l’estat de les praderies de Guillola, Portlligat i Pelosa. No tenim una explicació prou sòlida per la situació d’aquestes tres praderies, però és evident que ha de respondre a causes locals, donat que les tres pateixen pressions molt diferents (freqüentació molt alta a totes tres, però fondeig amb àncora freqüent a Guillola, camp de boies amb cadenes i morts de ciment a Pelosa i camp de boies amb fondeig ecològic a Portlligat).

c) Dos problemes puntuals que remarcàvem en l’informe de 2016 (la gran clapa oberta en 2013 a la praderia de la Pelosa i una certa regressió històrica, de 1998 ençà, al límit profund de cala Culip) es mantenen estabilitzats. Convé seguir-ne l’evolució.

d) Si bé els valors de densitat de les praderies de cap de Creus estan en general per sota dels nivells òptims, no sembla que estiguin patint un procés de degradació i regressió generalitzades, i els valors dels descriptors es mantenen, en el seu conjunt, raonablement constants, tant si els comparem amb les dades de 2014 i 2016 com si els comparem amb dades més antigues. Les subestacions superficials de Guillola i Jugadora i la profunda de Montjoi són les úniques amb una davallada significativa de densitat en el període analitzat (2014 a 2018), davallada a què no li trobem explicació i que caldrà controlar en el futur.

e) La mortalitat de nacres per l’epidèmia del protozou paràsit ha estat molt elevada, i l’estimem en un 92% dels individus, en el moment de fer les campanyes (octubre 2018). Les poblacions de nacres han quedat severament delmades, i a partir d’ara i, dissortadament, caldrà dir que la seva presència a les aigües del Parc és testimonial. Malgrat això, i fent extrapolacions molt grolleres, podríem afirmar que encara quedaven, en el moment de fer les campanyes, de l’ordre d’un centenar d’individus de *Pinna nobilis* a les praderies de cap de Creus.

f) Cal destacar la presència d’altres espècies de fanerògames marines, a més de *Posidonia oceanica* (*Cymodocea nodosa* i *Zostera noltii*). Encara que amb molt poca abundància, la seva presència a, almenys, cala Jugadora, cala Bona, cala Guillola (part del Jonquet) i Portlligat és prou interessant, especialment perquè en molts casos van associades a estructures tipus escull de la mateixa posidònia.

Les praderies del Parc Natural del Montgrí, les Illes Medes i el Baix Ter

a) Basant-nos en els mateixos criteris que els emprats per valorar les praderies de cap de Creus, conclouem que totes les praderies visitades dins de l’àmbit Montgrí-Medes estan en estat bo (molt bo en alguns casos, si només ens fixem en els descriptors quantitatius) o moderat.

b) Hem valorat l’estat de la praderia de Montgò com a moderat, malgrat que els seus indicadors són bons en general. Ara bé, hi ha una important regressió en la seva part superficial, així com una pressió elevada de fondejos, sobretot de temporada. Anàlogament hem valorat l’estat de la praderia de la Meda Petita com a moderat, pels
baixos valors de densitat i per la regressió important que ha patit en el seu límit profund. Aquesta regressió sembla, a hores d’ara, estabilitzada. No som capaços d’atribuir aquestes dues situacions a cap causa concreta, i caldrà seguir-ne l’evolució en els pròxims anys.

c) No sembla pas que les praderies de l’àmbit de Montgrí-Medes estiguin patint un procés de degradació generalitzada, i els valors dels descriptors semblen bastant constants al llarg del temps, fins i tot en algun cas semblen millorar, com la cobertura a la subestació profunda de la Meda Petita. Aquesta afirmació es veu reforçada per les dades de l’estació Meda Gran 1, per la que existeix una bona sèrie temporal (35 anys) que confirma la diagnosi d’estabilitat. La davallada de densitat produïda aquest any a la subestació fonda no sembla preocupant, ja que davallades semblants, posteriorment recuperades, no són rares en els últims 25 anys.

d) La mortalitat de nacres per l’epidèmia del protozou paràsit ha estat, igual que a cap de Creus, molt elevada, estimada al voltant del 97% (només praderia de les illes Medes; a la costa el Montgrí no s’ha trobat cap nacra). Les poblacions de nacres han quedat severament delmades, i a partir d’ara i, dissortadament, caldrà dir que la seva presència a les aigües del Parc és testimonial. Malgrat això, i fent extrapolacions molt grolleres, podríem afirmar que encara quedaven, en el moment de fer les campanyes, un màxim d’un centenar d’individus de Pinna nobilis a les praderies de les illes Medes.

Els efectes del fondeig

a) Comparant les dades corresponents a estacions amb una pressió de fondeig elevada amb altres on aquesta pressió és baixa (incloent-hi estacions tant de cap de Creus com de Montgrí-Medes), tant en els descriptors quantitatius com en els qualitatius, conclouem que l’ancoratge no sembla tenir efecte significatiu sobre l’estat de les praderies. Si bé és cert que alguns indicadors, tant qualitatius com quantitatius, estan una mica allunyats de l’òptim en praderies on es fondeja molt (Guillola i Montgó, per exemple), també és cert que a altres praderies on no es fondeja (per exemple, illes Medes o Portlligat), també trobem indicadors fora de l’òptim. En qualsevol cas, amb les dades disponibles no sembla que la pressió de fondeig estigui causant un deteriorament de les praderies afectades.

Recomanacions per a la gestió

Aspectes generals

1) Cal mantenir el seguiment de les praderies dels àmbits protegits de Montgrí-Medes i de cap de Creus com a part essencial del seguiment en el temps del patrimoni natural d’aquests parcs.
2) El disseny aplicat enguany sembla, en funció dels recursos disponibles, molt a prop de l’òptim, un cop incorporades les observacions qualitatives sistemàtiques. Potser caldria estudiar un seguiment específic a alguns punts més preocupants, i potser es podria pensar en un seguiment més extensiu encara de les zones per sobre dels 10 metres, per exemple mitjançant drons o ROVs; evidentment, això voldria dir una major inversió econòmica. També caldrà una certa flexibilitat per adaptar, quan s’escaigui, aquest seguiment a les disposicions que figurin al PRUG actualment en redacció, especialment en l’àmbit de Cap de Creus.

3) És molt important que la metodologia del seguiment quedí definitivament fixada, i que, independentment de qui executi la feina, se segueixin escrupulosament els protocols per tal que les dades siguin comparables d’un exercici a l’altre, i per tant serveixin realment com a eina de vigilància en el temps d’aquest important patrimoni submergit. La dimensió temporal és imprescindible per identificar i implementar possibles mesures de gestió als espais protegits, i per avaluar la seva eficàcia, així com per detectar canvis amb la promptitud més gran possible. Pels mateixos motius, cal que les mesures s’executin sempre en els mateixos punts.

Prades de Cap de Creus

1) Cal parar atenció a les prades de Guillola, Portlligat i Pelosa, així com a la part superficial de Jugadora. En cas de detectar-se un deteriorament sostingut, seria molt recomanable fer una investigació específica sobre les seves causes.

2) Es recomana substituir, en un termini de temps raónable, els morts de ciment dels fondejos permanents que estan sobre prades de Guillola (cals Montjoi, cals Pelosa, d’entre les visitades, però probablement també d’altres, com cals Jòncols) per altres tipus de fondeig de més baix impacte, i vetllar per tal que no s’instal·lin cadenes als fondejos de Portlligat.

Prades de les Illes Medes i el Baix Ter

1) Cal parar especial atenció a la pradera de la Meda Petita, i a la seva evolució futura. Igualment, caldria parar atenció a l’evolució de la pradera de cala Montgò, especialment en el seu límit superficial. En cas de detectar-se un deteriorament sostingut, seria molt recomanable fer una investigació sobre les seves causes.

2) És urgent retirar els morts de ciment, i altres elements de fondeig que encara resten a la pradera de les illes Medes o a les zones de mata morta adjacents (a prop de l’embarcador o a la Meda Petita, per exemple), i substituir-los per fondejos ecològics de ser necessari. El seu impacte a la pradera és limitat, però l’impacte visual és molt gran.
3) És recomanable substituir, en un termini de temps raonable, els morts de ciment dels fondejos permanents que estan sobre la praderia de cala Montgó per fondejos ecològics. També és important insistir a l’empresa concessionària que cal mantenir en el seu lloc els morts, i retirar les cadenes a l’hivern, com a precaucions mínimes.

Gestió del fondeig

1) A la vista dels resultats obtinguts, no es considera necessària una prohibició generalitzada de l’ancoratge a tot l’àmbit del Parc Natural de Cap de Creus. Ara bé, per tal de reduir una mica la pressió sobre les praderies, es podria endegar una limitació de fondeig a algunes cales (dues o tres), i fer un seguiment acurat dels seus efectes per tal de determinar la necessitat, o no, d’estendre l’actuació a altres cales. Aquesta proposta queda pendent d’una discussió més aprofundida amb les administracions i els sectors afectats

Les nacres

1) Malauradament, poc es pot fer des dels òrgans gestors dels espais naturals per evitar la desaparició de les nacres. Els individus trobats vius tant a cap de Creus com a Medes poden ser individus resistent a l’epidèmia, però també supervivents temporals. Això es podria esbrinar amb alguna visita específica de cara a la primavera pròxima. Si es tractés d’indivídues resistentes, es podria pensar extreure’ls amb molta cura i implantar-los en àmbits on el fondeig estigui prohibit.

Bibliografia

Roca, G., Alcoverro, T., de Torres, M., Manzanera, M., Martínez-Crego, B., Bennett, S., Farina, S., Pérez, M., Romero, J., 2015. Detecting water quality improvement along the Catalan Coast

Prospeccions del fons marí de la costa nord-est del Cap de Creus

Graciela Rovira, Eneko Aspillaga, Pol Capdevila i Bernat Hereu

- S'han dut a terme prospeccions del fons marí a la costa del nord-est del Cap de Creus.
- Les prospeccions s'han realitzat mitjançant observacions amb escafandre autònom i des d'embarcació.
- S'han realitzat immersions fins a 40 m a 9 punts de la costa.
- A totes les prospeccions s'han identificat espècies i comunitats de gran interès pel que fa el patrimoni natural marí, incloent poblacions de corall vermell, gorgònies vermelles i llagostes.
- A pràcticament totes les prospeccions s'han detectat arts de pesca abandonats i mortalitat d'algues coral·lines incrustants, així com també de gorgònies.

Aquest capítol ha de ser citat com:

Conèixer l'estructura i funcionalitat dels ecosistemes és imprescindible per a la gestió i conservació del medi natural. Les espècies i els hàbitats responen de forma diferent a les pertorbacions, així que tot impacte o ús que l'home exerceix sobre el medi ha de ser analitzat tenint en compte les particularitats de cada sistema natural. En aquest sentit, l'estudi de la distribució d'habitats i espècies singulars o d'interès i la detecció d'impactes són una eina essencial per a obtenir informació sobre la qual definir les mesures de gestió i conservació del patrimoni natural.

No obstant això, no n'hi ha prou amb conèixer el patrimoni natural i la seva distribució a l'espai; també cal dur a terme mesures de control i monitorització regulars amb l'objectiu de detectar possibles canvis o per avaluar l'efecte de les mesures de gestió aplicades. Aquests estudis serveixen per a establir característiques ecològiques de referència per a espècies i hàbitats, a partir de les quals poder detectar canvis en l'estructura dels ecosistemes i en la dinàmica de les poblacions, ja siguin derivats de pertorbacions naturals o degudes als diferents usos o accions de gestió i restauració del medi.

Tot i ser molt àmplia en comparació amb altres mars del món, la major part dels coneixements sobre els fons marins mediterranis és fragmentaria i, tot sovint, poc rigorosa. Aquest no és el cas del Parc Natural del Montgrí, les Illes Medes i el Baix Ter, on durant les darreres quatre dècades s'ha concentrat un gran esforç d'investigació i monitoratge que ha proporcionat descripcions molt acurades sobre els sistemes biològics que hi trobem i el seu funcionament ecològic (Ros et al. 1984; Hereu i Quintana 2012). Per exemple, la distribució de les comunitats i hàbitats bentònics dins del Parc Natural ha estat cartografiada i és ben coneguda (Hereu et al. 2012). A més, la gran freqüentació per part de submarinistes fa que aquesta zona, especialment al voltant de les Illes Medes, estigui força controlada, fet que permet una detecció primerenca dels impactes més conspícus, no només a través del programa de seguiment sinó també per part dels bussejadors i altres usuaris de l'espai. En el cas del Cap de Creus no tenim tanta informació com a la costa del Montgrí i, per tant, dur a terme un seguit de prospeccions en aquesta zona és vital per tal d’ampliar en nostre coneixement sobre els seus hàbitats. Això ens ajudarà en un futur per tal de poder dur a terme una millor gestió d’aquest espai. A més a més, això també és una eina per poder detectar possibles impactes, com poden ser els efectes del canvi climàtic sobre les comunitats, l'arribada d'espècies invasores, o els arts de pesca abandonats per la seva posterior extracció.

L'objectiu principal de les prospeccions al fons mari del nord-est del Parc Natural de Cap de Creus és descriure en detall les comunitats bentòniques en diversos punts d’aquesta zona i obtenir una diagnosi de l’estat de conservació en que es troba actualment, fent especial èmfasi en la detecció d’espècies o hàbitats d’interès, i caracteritzar els principals impactes que els afecten.
Les prospeccions del fons marí es van realitzar al nord-est del Cap de Creus a finals del mes de juliol i principis d’agost de 2018. Es van seleccionar 9 estacions: 1 a la Reserva Natural Integral (RNI), 5 a la Reserva Natural Parcial (RNP) i 3 a la zona de Parc Natural (PN) (Figura 1, Taula 1). Les estacions estaven situades en trams característics de la costa, com puntes, caps i illes. A més a més, enguany es van fer 5 prospeccions des de la costa amb embarcació; 1 a la Reserva Natural Integral (RNI), 2 a la Reserva Natural Parcial (RNP) i 2 al Parc Natural (PN) (Figura 1, Taula 2).

Figura 1. Mapa d’estacions de les prospeccions del fons marí al Parc Natural de Cap de Creus. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).

<table>
<thead>
<tr>
<th>Parc</th>
<th>Prot</th>
<th>Estació</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNI</td>
<td>Encalladora</td>
<td>2018-07-27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Culip</td>
<td>2018-07-31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freu Encalladora</td>
<td>2018-07-31</td>
<td></td>
</tr>
<tr>
<td>RNP</td>
<td>Massa d’Or</td>
<td>2018-07-27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infern</td>
<td>2018-07-30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forcats</td>
<td>2018-07-30</td>
<td></td>
</tr>
<tr>
<td>Cap de Creus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cudera</td>
<td>2018-07-31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Messina</td>
<td>2018-08-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caials</td>
<td>2018-08-02</td>
<td></td>
</tr>
</tbody>
</table>

A cada estació, un equip de dos bussejadors va dur a terme una immersió, d’uns 50 minuts de durada, cobrint tot el rang de fondàries, des de la superfície fins a les comunitats del circalitoral (30-40 m de fondària). Durant les immersions, es va anotar en cada fondària els tipus de substrat i la distribució de les comunitats principals i les espècies més característiques, així com els possibles signes d’impactes o pertorbacions, com acumulacions de deixalles, restes d’arts de pesca, impactes físics, senyals de furtivisme, mortalitats d’algues i invertebrats bentònics o la presència d’espècies introduïdes. A més, també es va obtenir un registre fotogràfic com a referència o per possibles anàlisis futurs (Figura 2).

Taula 2. Estacions de mostreig de prospeccions per la costa de l’any 2018. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN). Les coordenades geogràfiques estan referides al fus 31N del datum ETRS89.

<table>
<thead>
<tr>
<th>Parc</th>
<th>Prot</th>
<th>Localitat</th>
<th>Llargada (m)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap de Creus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNI</td>
<td>Encalladora</td>
<td>1343</td>
<td>2018-08-02</td>
<td></td>
</tr>
<tr>
<td>RNP</td>
<td>Culleró - Culip</td>
<td>2130</td>
<td>2018-08-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cala Jugadora</td>
<td>1162</td>
<td>2018-08-02</td>
<td></td>
</tr>
<tr>
<td>PN</td>
<td>Messina</td>
<td>868</td>
<td>2018-08-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Illa de Portlligat - Caials</td>
<td>1474</td>
<td>2018-08-02</td>
<td></td>
</tr>
</tbody>
</table>
PROSPECCIONS DEL FONS MARÍ

Figura 2. Mètode de mostreig de les prospeccions. a) Realització d’un esquema de la zona prospectada anotant la presència d’espècies rellevants, tipus comunitat a cada fondària, impactes produïts pel canvi climàtic i restes d’objectes abandonats per l’home tals com arts de pesca. b) Fotografia de comunitats, espècies i altres aspectes rellevants al llarg de la immersió.

A més, per poder analitzar de forma més precisa la comunitat que es troba en els primera metres de fondària, enguany es va decidir incorporar prospeccions dutes a terme des d’una embarcació. Es van dur a terme diferents recorreguts (Figura 2, Taula 2), fent observacions aproximadament cada 50 metres, anotant el percentatge aproximat de substrat ocupat per blancall, turf i algues erectes que es trobaven a cada punt, i obtenint un registre fotogràfic com a referència. Després es va dur a terme un posterior anàlisi de les mitjanes d’aquests percentatges.

Resultats

Prospeccions mitjançant immersió

Cala Culip

La immersió va realitzar-se resseguint el perfil de la Punta de Culip, al nord del Cap de Creus. El recorregut comença a una zona dominada per turf fotòfil, combinat amb zones de blancall, dominades sobretot per la garota *Arbacia lixula*, i en menys quantitat, *Paracentrotus lividus* (Figura 3a). A continuació, a aproximadament uns 10 metres de profunditat, comença una població densa d’*Eunicella singularis*, amb força mortalitat, combinada amb alguns individus de l’esponja *Aplysina aerophoba* (Figura 3b). Als 19 metres de fondària, comença un fons de sorra gruixuda, on hi ha restes de fondejos. A partir d’aquesta fondària apareix una roca que remunta fins a uns 12 metres aproximadament. A la banda sud d’aquesta roca, més exposada a la llum, hi ha una població d’*E. singularis* (Figura 3c), i a la part nord, més fosca, apareix una població de *Paramuricea clavata* (Figura 3d). Passada aquesta roca, comença un fons de grans blocs amb gorgònies blanca. Als 26 metres aproximadament, comença una roca extrapolomada formada per coral·ligen, amb presència de *P. clavata*, algues calcàries amb mortalitat (Figura 3g) i algues esciòfiles del gènere *Flabellia*. Acabem la prospecció arribant als 30 metres de fondària, on comença un fons extens de sorra gruixuda.
Al llarg de la prospecció es van trobar diferents arts de pesca abandonats. Als 18 i als 23,5 metres de fondària es van trobar fils de pesca, i un petit palangre als 29 metres. A més, també es va detectar una nansa a 28 metres (Figura 3f).

Figura 3. Esquema i fotografies corresponents a la prospecció de cala Culip. a) Perfil general del recorregut, mostrant les principals comunitats i tipus de fons observats; b) fons fotòfil amb parts de blancall i garotes de l’espècie *Arbacia lixula*; c) esponja de l’espècie *Aplysina aerophoba* en un fons de turf fotòfil; d) paret amb *Eunicella singularis*; e) paret amb *Paramuricea clavata*; f) nansa abandonada; g) coral·ligen amb mortalitat d’algues calcàries.
Encalladora

Aquesta prospecció es va dur a terme a la zona de Reserva Natural Integral del Cap de Creus, que es troba situada al nord de la illa de l’Encalladora. La immersió comença en un fons de turf fotòfil, amb presència de diferents espècies d’algues arbustives, com *Laurencia*, *Wrangelia*, *Acetabularia* i *Padina*, combinades amb glans de mar (*Perforatus perforatus*). A aproximadament uns 7 metres de fondària trobem trobem blancalls, formats per l’herbivoria de les garotes *Paracentrotus lividus* i *Arbacia lixula* (Figura 4a). A uns 10 metres comença un fons hemiesciòfil amb grans blocs i una població de gorgònies blanca (*E. singularis*). Als 20 metres de fondària comença un fons de blocs poblat per l’algà *Cystoseira zosteroides*, que és substituït per un fons de coral·ligen a uns 30 metres de fondària. En aquest hi podem trobar gorgònies vermella (*P. clavata*) (Figura 4d i f) i colònies de corall vermell (*Corallium rubrum*) (Figura 4e) de mida gran en comparació amb les poblacions de la resta del Cap de Creus. La immersió acaba als 40 metres de fondària, en un extens fons de coral·ligen.

Al llarg del recorregut s’ha anotat el percentatge de mortalitat (nombre de colònies afectades) d’*E. Singularis*, i s’ha observat que les poblacions més somes tenien una major proporció de colònies afectades. Als 12 metres de fondària la mortalitat era d’un 70%, als 20 metres d’un 20% i als 26 metres entre un 0 i un 10%.

En aquesta zona no s’han trobat gaires arts de pesca abandonats, únicament un cap als 30 metres de profunditat (Figura 4f).

Freu de s’Encalladora

La prospecció del Freu de s’Encalladora es va dur a terme amb la finalitat d’explorar la zona d’aquesta illa que no està protegida de forma integral. El recorregut es va fer resseguint el perfil de la part est. En els primers 10 metres trobem una zona fotòfila dominada per turf i amb presència d’algues *Dyctiotals*, que segueix amb un fons hemiesciòfil, amb presència de *Cystoseira zosteroides* (que la trobarem fins els 31 metres de fondària) (Figura 5c) i *E. singularis*. Als 31 metres trobem una zona de grans blocs amb una població de *P. clavata*, on comença la comunitat del coral·ligen (Figura 5g). En aquesta zona s’observa corall vermell poc abundant, però una densitat elevada de colònies de mida molt gran del briozou *Myriapora truncata* (Figura 5f), algunes de les quals presenten mortalitat a la part central. La comunitat del coral·ligen continua fins a uns 40 metres de fondària, on comença un fons de sorra amb petits blocs amb colònies d’*E. singularis* que no presenten cap signe de mortalitat.

Al llarg del recorregut s’han trobat diferents impactes sobre el fons, com fils de pesca i caps sobre el coral·ligen ja coberts per organismes (fet que indica que porten molt temps al fons) (Figura 5e), i un tresmall abandonat a 25 metres de fondària (Figura 5d). D’altra banda, hem pogut observar una mortalitat d’entre el 30 i el 40% d’algues calcàries.

A uns 12 metres de fondària hem observat alguns exemplars de *Dasyatis pastinaca* (Figura 5b); enguany hi ha hagut forces avisos de la presència d’aquesta espècie de condèict al llarg de tota la Costa Brava (veure capítol de peixos).
Figura 4. Esquema i fotografies corresponents a la prospecció de s’Encalladora. a) Perfil general del recorregut, mostrant les principals comunitats i tipus de fons observats; b) fons fotòfil amb presència de blancalls provocats per l’hervivoria de les garotes; c) paret fotòfila amb E. singularis; d) fons de coral·ligen amb P. clavata epífitada per Pentapora fascialis; e) colònia de corall vermell (Corallium rubrum); f) cap enredat a un individu de P. clavata; g) fons de coral·ligen amb una població de P. clavata i E. singularis.
Figura 5. Esquema i fotografies corresponents a la prospecció del Freu de s’Encalladora. a) Perfil general del recorregut, mostrant les principals comunitats i tipus de fons observats; b) *Dasyatis pastinaca*; c) fons hemiesciòfil dominat per *Cystoseira zosteroides*; d) tresmall abandonat sobre el fons; e) cap abandonat i colonitzat per diversos organismes; f) colònies grans de *Myriapora truncata*; g) fons de coral·ligen amb sorra.
Massa d’Or

La immersió es du a terme resseguint el perfil nord de l’illa de la Massa d’Or, per la part de Reserva Natural Parcial (RNP). Els primers 10 metres hi trobem una zona fotòfila dominada per turf, amb presència d’A. lixula i P. lividus, que no arriben a formar blancalls. El fons està compost per roca homogènia amb alguns blocs de mida mitjana. A continuació, passem a trobar un fons hemiesciòfil amb l’esponja Aplysina aerophooba (Figura 6a) i gorgònies blanques E. singularis (Figura 6c). Als 20 metres comença la comunitat del coral·ligen, composta sobretot per un fons de grans blocs amb extraploms, on hi trobem una població de P. calvata i E. singularis (Figura 6). Sota els extraploms s’observen cnidaris colonials del gènere Parazoanthus. A mesura que baixem anem observant altres espècies com ara M. truncata i la comunàtat anomenada mà de mort (Alcyonium acaule), i a uns 30 metres de fondària, una altra població de gorgònies vermell (Figura 6e).

Tant en el cas de la gorgònia blanca com en la vermella, hem observat un elevat grau de mortalitat, que disminueix amb la profunditat. En el cas de P. clavata, a 25 metres presenta entre un 10 i un 30% de colònies amb signes de mortalitat, mentre que la població de 30 metres en té entre un 0 i un 10%. Pel que fa a E. singularis, les poblacions que es troben a una profunditat de 10 metres presenten entre un 70 i un 80% de colònies amb mortalitat, les de 15 metres entre un 40 i un 50%, i les de 20 metres entre un 0 i un 10%.

En aquesta immersió també s’han anat observant diferents impactes de d’origen antròpic, com fils de pesca i un tresmall abandonat a 32 metres de fondària (Figura 6e) i un cap (Figura 6g). A més, s’ha vist un individu de morena amb un ham a la boca amb el fil de pesca enganxat (Figura 6f).

Punta de l’Infern

El recorregut comença a la Punta de l’Infern on hi ha una cova semisubmergida (coneguda com a Cova de l’Infern). El fons de la cova està format per blocs i té una profunditat mitjana de uns 8 metres. Les parets d’aquesta estan poblades principalment per esponges i pel corall solitari groc Leptosamia pruvoti. A més, s’hi van observar 5 llagostes de mida mitjana entre 3 i 4 metres de profunditat, caminant sobre el substrat sense estar encauades. L’exterior de la cova continua amb una paret dominada majoritàriament per turf fotòfil i l’alg L. viscida, Laurencia spp., Wrangelia penicillata i Codium bursa, i també algunes algues erectes arborescents del gènere Cystoseira (compressa i mediterranea). Als 11 metres de profunditat trobem algunes colònies d’E. singularis (Figura 7b), i als 12 metres, la paret acaba i comença un fons de grans blocs coberts majoritàriament d’algues de les espècies Cystoseira zosteroides i Halopteris scoparia, però també amb presència de Sphaerococcus coronopifolius. Entre els blocs hi podem trobar també anemones. Als 24 metres el fons continua amb blocs de mida mitjana, colonitzats majoritàriament per algues del gènere Dyctiota i amb presència d’algun individu de gorgònies taronja (Leptogorgia sarmentosa) (Figura 7d). Un cop arribats als 28 metres de profunditat, comença un fons de sorra amb còdols dominats pel coral·ligen, que arriba fins als 34 metres que és on
donem per finalitzada la prospecció. En aquest fons hi podem trobar algues de l’espècie *Cystoseira zosteroides* i *Halimeda tuna*; també hi ha presència d’algues calcàries amb cert grau de mortalitat. Als 30 metres trobem una nacra (*Pinna nobilis*) viva (Figura 7e), espècie de bivalve que recentment ha patit un episodi molt fort de mortalitat (veieu capítol de *Posidonia oceanica*). També hi ha certa presència d’*E. singularis*, amb un 50% de mortalitat, i als 34 metres aproximadament trobem presència de corall vermell (*Corallium rubrum*) d’uns 4-8 cm (Figura 7f).

Al llarg del recorregut s’han trobat evidències d’impactes provinents de l’home, com per exemple, el mort d’una boia de busseig, un cubell amb menjar per a peixos al seu interior o diferents caps abandonats al fons (Figura 7g).

Forcats

Aquesta immersió es va dur a terme a la punta de la illa des Forcat, que es troba entre Cala Jugadora i Cala Fredosa, a l’est del Cap de Creus (Figura 1). La part més somera d’aquesta zona, entre 0 i 1 metres de fondària, està dominada per una població de l’alga *Cystoseira mediterranea*. Seguint en fondària, als primers 10 metres, ens trobem en una zona caracteritzada per un substrat de roca homogènia amb un fons fotòfil amb una comunitat algal poc desenvolupada, amb presència del briozou *Myriapora truncata*. Sorprenentment, a la profunditat de 6 metres trobem un recluta de *P. clavata* (Figura 8b). Als 10 metres trobem una població d’*E. singularis* amb una mortalitat aproximada del 80% (Figura 8c). En aquesta mateixa fondària, i fins als 20 metres, hi ha una comunitat algal força desenvolupada, amb una població de *Cystoseira zosteroides*, que forma boscos ben desenvolupats, però també amb presència d’altres algues de característiques semblants, com *C. compressa* o *Sargassum* sp. (Figura 8d). Entre aquesta comunitat, als 14 metres de fondària tornem a trobar colònies d’*E. singularis*, aquest cop amb una mortalitat del 60%. A 20 metres de fondària apareix una zona amb taques de blancall, i també una altra població de gorgònies blanques, amb tan sols entre un 0 i un 10% d’individus amb mortalitat. És a partir d’aquesta fondària que s’inicia la comunitat del coral·ligen, que comença en una paret força vertical, que arriba als 26 metres, amb extraploms on s’hi pot observar una població de corall vermell (*Corallium rubrum*) força desenvolupada. A continuació ens trobem amb un tram planer de sorra, que prossegueix amb un pendent de roca dominada també per la comunitat del coral·ligen, fins arribar als 42 metres, on hi ha una plataforma de coral·ligen amb una combinació d’extraploms amb sorra, on hi podem trobar diferents espècies pròpies d’aquesta comunitat, com ara corall vermell, esponges de l’espècie *Axinella polypoides*, o exemplars de llagostes adultes. A més, també s’observen algues calcàries amb una mortalitat d’entre el 60 i el 80% (Figura 8g).

Un cop més, al llarg d’aquest recorregut s’ha pogut observar com la mortalitat de gorgònies blanques disminueix amb la fondària. A més, es va trobar un tresmall de dimensions considerables a la fondària de 35 metres (Figura 8f).
Figura 6. Esquema i fotografies corresponents a la prospecció de la Massa d’Or. a) Perfil general del recorregut, mostrant les principals comunitats i tipus de fons observats; b) fons fotòfil amb Aplysina aerophoba; c) fons fotòfil amb presència d’E. singularis; d) colònia d’E. singularis; e) fil de pescar enredat en colònies de P. clavata; f) Muraena helena amb un ham a la boca; g) cap abandonat sobre el fons de coral·ligen.
Figura 7. Esquema i fotografies corresponents a la prospecció de la Punta de l’Infern. a) Perfil general del recorregut, mostrant les principals comunitats i tipus de fons observats; b) colònia d’E. singularis amb mortalitat antiga (epibiosi); c) bloc amb blancall provocat per A. lixula; colònia de Leptogorgia sargentosa; e) Pinna nobilis viva; f) colònia de corall vermell (C. rubrum); g) fil de pesca abandonat sobre el fons de coral·ligen.
Figura 8. Esquema i fotografies corresponents a la prospecció de Forcats. a) Perfil general del recorregut, mostrant les principals comunitats i tipus de fons observats; b) juvenil de *P. clavata*; c) colònia d’*E. singularis* amb el 100% de mortalitat antiga (epibiosi); d) *Sargassum*; e) juvenil de llagosta (*Palinurus elephas*); f) tresmall vell abandonat; g) mortalitat d’algues calcàries del coral·ligen.
Punta d’en Cudera

La prospecció es va iniciar a la Punta d’en Cudera, i es va resseguir el perfil d’aquesta en direcció est. Als primer 5 metres de fondària hi ha una àrea amb blancalls dominats per Arbacia lixula, alternats amb comunitats de Cystoseira compressa molt densa. A partir de 5 metres de fondària comença un fons fotòfil dominat sobretot per algues brunes, com Padina pavonica, C. compressa o Sargassum sp., però també amb presència d’altres com Laurencia spp., Dyciotals o Codium bursa (Figura 9b). Als 10 metres de fondària observem una zona amb abundant M. truncata, i hi trobem una colònia de Cladocora caespitosa. A més, apareix una població de gorgònia blanca (E. singularis) molt abundant (Figura 9c). Als 16 metres arribem a una paret extrapolomada amb presència de corall vermell (Corallium rubrum) i Parazoanthus axinellae (Figura 9d). A partir dels 21 metres de fondària comença un tram de sorra, que continua amb la comunitat de precoral·ligen amb presència d’Halimeda tuna i algues Dyciotals, juntament amb algues brunes com C. zosteroides o Phyllariopsis brevipes, tot i que no són molt abundants (Figura 9e).

Entre els 23 i 30 metres de fondària hi ha una comunitat de coral·ligen, on trobem colònies de corall vermell i dos individus de llagosta adults (Figura 9f). A partir dels 30 metres comença una gran extensió formada per còdols recoberts d’algues coral·linàcies i brunes (Figura 9g).

Igual que en les altres estacions mostrejades, en aquesta també hem pogut observar com la mortalitat d’E. singularis és més elevada a les zones somes que en les zones més profundes; als 15 metres de fondària hi ha una població amb un 30% de colònies afectades, mentre que en la població de 10 metres aquest percentatge augmenta al 50%. En aquesta prospecció també hem pogut trobar evidències d’impactes humans: un fil de pesca als 29 metres de fondària i un palangre abandonat als 30 metres.

Messina

Aquesta prospecció es du a terme a la illa de la Messina, que queda a l’est de Port-Lligat (Figura 1), i la immersió es realitza seguint el perfil nord de la illa. El recorregut comença en una zona de fons fotòfil amb presència d’algues brunes com Sargassum i Halopteris, i verdes com Codium vermilare i Dyciotals, combinat amb esponges de l’espècie Aplysina aerophoba. En tota aquesta àrea, entre 0 i uns 7 metres de fondària, hi ha un bosc molt abundant d’algues de l’espècie Cystoseira elegans (Figura 10b). A partir dels 7 metres hi ha una població d'E. singularis, amb aproximadament un 80% de colònies afectades per mortalitat. Entre aproximadament els 17 i 20 metres trobem boscos extensos de Cystoseira zosteroides. Als 20 metres comença la comunitat del coral·ligen; a aquesta fondària observem la presència de gorgònies vermella (P. clavata) sobre un fons de roca, que baixa fins als 25 metres de fondària fins a arribar a uns fons planer de sorra combinada amb còdols. En aquest tram hi trobem algues brunes (Dictyopteris, C. compressa) amb dominància de l’espècie C. zosteroides. A partir dels 25 metres de fondària la comunitat de coral·ligen es troba en forma de plataforma sobre un fons de sorra. En aquesta comunitat observem algues calcàries amb un cert grau de mortalitat (un 10%), exemplars de llagosta i corall vermell (Figura 9d i e). Finalitzem la immersió als 31 metres de fondària, on comença una extensió de sorra gruixuda.
Figura 9. Esquema i fotografies corresponents a la prospecció de la Punta d’en Cudera. a) Perfil general del recorregut, mostrant les principals comunitats i tipus de fons observats; b) fons fotòfil dominat per turf; c) colònia d’E. singularis; d) colònies petites de corall vermell (C. rubrum); e) fons de coral·ligen amb Flabellia petiolata; f) adult de llagosta (P. elephas); g) fons de sorra amb petits còdols.
Figura 10. Esquema i fotografies corresponents a la prospecció de la Messina. a) Perfil general del recorregut, mostrant les principals comunitats i tipus de fons observats; b) bosc de Cystoseira elegants; c) Pinna novilis; d) llagosta (P. elephas); e) colònies de C. rubrum; f) àncora abandonada al fons; g) xarxa abandonada enredada al coral·ligen.
En aquesta prospecció també hem trobat residus, com una ànora abandonada (Figura 10f), o restes d’arts de pesca abandonats, com fils de pesca als 12 i 19 metres de fondària, i una xarxa abandonada enredada en el coral·ligen (Figura 10g).

Caials
Aquesta immersió es va dur a terme des de la cala des Caials, resseguint el seu perfil en direcció est. Els primers metres de fondària estan dominats per un fons rocós amb dominància d’algues de l’espècie Cystoseira mediterranea, que continua amb una zona amb taques Posidonia oceanica discontínues (Figura 11b), combinada amb blocs recoberts de Cladostephus sp. i Liagora viscida. A partir de 4,5 metres de fondària comença una paret amb un pendent més pronunciat, on hi ha una combinació de blancall amb garotes i clapes d’algues fotòfiles. Entre els 9 i els 12 metres de fondària hi ha una zona amb abundància d’Halimeta tuna. En aquesta fondària el fons es divideix en una zona força plana que consta de turf amb Padina pavonica, combinada amb gorgònia blanca i C. compressa fins més o menys els 21 metres, i una zona amb un pendent més pronunciat, on el fons consta de petits blocs amb moltes escóropes entre aquests. Entre els 21 i els 27,5 metres de fondària, comença una paret amb molts extraploms on a la part interior hi trobem corall vermell, i a la part superior hi trobem algues com Flabellia, C. zostoroides, C. compressa i Dyctiotals (Figura 11c). A partir dels 25 metres de fondària, comença el coral·ligen. Als 27 metres trobem un exemplar de llagosta. A partir d’aquesta fondària comença un fons de sorra combinat amb grans blocs de roca amb comunitat de coral·ligen (Figura 11d). En aquestes zones hi podem trobar algunes colònies de Cladocora caespitosa, corall vermell i llagostes, entre altres espècies. La immersió finalitza als 32 metres de profunditat, on comença un fons de sorra.

Prospeccions de les comunitats fotòfiles realitzades mitjançant embarcació
En general, aquests resultats mostren que les comunitats algals poc desenvolupades (turf) dominen les zones més superficials de la costa del Cap de Creus, sobretot en les zones de RNI i PN, mentre que les zones de RNP són les que tenen més cobertura d’algues erectes (Figura 11). A cala Jugadora aquestes son més abundants que la comunitat de turf, mentre que a Culleró-Culip dominen els turf. Pel que fa als blancalls, es pot observar que no son molt abundants en cap de les estacions prospectades, especialment a la zona de PN (Figura 11).
Figura 11. Esquema i fotografies corresponents a la prospecció de Caials. a) Perfil general del recorregut, mostrant les principals comunitats i tipus de fons observats; b) Posidonia oceanica; c) extraplom de coral·ligen; d) formació de coral·ligen; e) Axinella polypoides; f) fons de coral·ligen amb algues calcàries amb mortalitat; g) objectes abandonats de procedència humana.
Les prospeccions del fons marí del nord-est del Parc Natural de Cap de Creus ens proporcionen un millor coneixement dels seus hàbitats i comunitats dins la franja batimètrica compresa entre la superfície i els fons circalitorals d’aquesta zona, així com una visió general del seu estat de conservació i els possibles impactes que pugui rebre.

El Cap de Creus presenta una gran diversitat d’hàbitats, ja que hi hem trobat representades un gran nombre de comunitats bentòniques mediterrànies. Totes les estacions mostrejades van mostrar una tipologia d’hàbitats diversa i força semblant. Els primers metres de fondària generalment estan formats per roca base recoberta de turf fotòfil, una comunitat algal molt poc desenvolupada. Les prospeccions dutes a terme des de l’embarcació ens corroboren aquest fet, donat que aquest és el tipus de comunitat que presenta uns percentatges més alts respecte la comunitat d’algues erectes i els blancalls (Figura 11). A més fondària trobem una comunitat d’algues esciòfiles més desenvolupada que la fotòfila. En aquesta zona hi podem observar, en algunes estacions, fons dominats per algues del gènere *Cystoseira*, generalment de l’espècie *zosterosoides*, així com també *Sargassum* sp. i *C. compressa*. A les zones més profundes, a partir d’uns 20-25 metres de profunditat, comença la comunitat del coral·ligen, força ben desenvolupada al llarg de tot el Cap de Creus. Aquesta comunitat alberga gran quantitat d’espècies, algunes de gran importància econòmica, com el corall vermell (*Corallium rubrum*). Aquesta espècie es troba molt afectada per l’impacte de la pesca i, per tant, les colònies són generalment de mida petita, amb excepció de les de l’Encalladora, donat que és una zona que gaudeix del grau de protecció...
integral. A més, hi podem trobar altres espècies de gran interès com és la gorgònia vermella (*Paramuricea clavata*).

Les prospeccions, a més d’obtenir una idea general de la distribució d’hàbitats al llarg de la costa del Cap de Creus, també ens proporcionen una gran informació sobre els diferents impactes que aquesta pot rebre, com la mortalitat de diferents organismes deguda a l’augment de la temperatura de l’aigua, o els impactes causats pels arts de pesca abandonats que queden al fons.

En totes les immersions dutes a terme enguany s’ha pogut observar com la mortalitat de les gorgònies, especialment la blanca (*Eunicella singularis*), era molt superior en les zones superficiales (i, per tant, les zones on la temperatura de l’aigua és més elevada) que en les zones més profundes. En les parts més somes els percentatges de colònies afectades podien arribar fins a un 70% aproximadament, mentre que en les zones de més fondària aquest percentatge es reduïa entre el 0 i el 10%. A més a més, també s’ha pogut observar mortalitat de les algues calcàries que es trobaven en els fons de coral·ligen de totes les estacions. Els resultats d’aquests impactes es discuteixen a l’apartat corresponent a “canvi climàtic”. Malauradament, aquest impacte és difícil de gestionar a nivell local degut a que és una causa global. Tot i així, el coneixement d’aquestes esdeveniments i les seves conseqüències ens podem donar informació de com pot afectar a altres espècies o a la comunitat, i així poder intentar prendre mesures de gestió per reduir aquests impactes, de manera que es puguin evitar efectes sinèrgics.

D’altra banda, s’han trobat altres tipus d’impactes causats per la gran quantitat d’arts de pesca abandonats en els fons marins del Cap de Creus, com caps, fils, tresmall, palangres, nanses, a més d’altres objectes com ara àncores i plàstics. Aquests estris generen un gran impacte sobre el fons marí degut a l’efecte erosiu que poden exercir sobre organismes sèssils que són especialment sensibles a pertorbacions mecàniques, com ara algunes espècies d’algues, briozous i coralls. A més a més, les xarxes abandonades poden seguir causant mortalitat directa de peixos per enganxament, per tant, és necessària la retirada d’aquests arts el més aviat possible. Aquesta tasca la du a terme el projecte “Evitem la pesca fantasma”.

Les prospeccions realitzades han millorat el nostre coneixement dels fons marins del nord-est del Cap de Creus. Moltes de les espècies trobades en aquests recorreguts, com ara el corall vermell (*C. rubrum*), la gorgònia vermella (*P. clavata*), la llagosta (*P. elephas*) o el briozous *P. fascialis*, formen part dels indicadors del projecte de seguiment i, per tant, el coneixement de la seva distribució i el seu estat de conservació actual és molt enriquidor de cara a dissenyar nous plantejaments o decidir noves estacions de mostreig. A més, tota la informació també podrá ser utilitzada en un futur per establir nous objectius de gestió. Sumat a tot això, les prospeccions també són una eina molt útil per a la detecció d’impactes, tant dels deguts al canvi climàtic com als causats per objectes abandonats al fons marí, com ara els arts de pesca, i d’aquesta manera poder dur a terme una millor gestió envers aquest problema.
Bibliografia

Seguiment de comunitats i espècies sensibles al canvi climàtic

Bernat Hereu, Eneko Aspillaga, Julia Ortega, Graciellà Rovira i Cristina Linares

- S'han detecta importants efectes del canvi climàtic: alta mortalitat amb efectes acumulatius dels diferents anys en espècies amb limitada capacitat de recuperació.
- Els efectes de la mortalitat s'han produït a tots els parcs i totes les estacions.
- Major afectació de corall vermell a les Illes medes i al Montgrí.
- Les gorgònies, espècies estructurals, han sofert una important mortalitat durant les darreres dècades.
- L'afectació ha sigut major en les fondàries més somes per sobre la termoclina.
- Hem constatat també la mortalitat d'altres espècies, com *Cladocora caespitosa*, o altres gorgònies, tot i que no han estat comptabilitzades.
- S'han detectat altres impactes que poden actuar de forma sinèrgica.
- Es urgent aplicar un criteri de prudència i minimized els impactes que si es poden gestionar des de la direcció dels parcs.

Aquest capítol ha de ser citat com:

Introducció

El canvi climàtic és una de les majors amenacès actuals per a la conservació dels ecosistemes marins a nivell mundial (Poloczanska et al. 2013; Wemberg et al. 2016, Hughes et al. 2018). Tot i que els efectes del canvi climàtic són diversos, com l’increment en la freqüència i intensitat de les tempestes, l’augment del nivell del mar i l’acidificació, els factors que a dia d’avui està tenint majors conseqüències arreu són l’esclafament global i l’augment en la freqüència i intensitat de les onades de calor (Olivier et al. 2018; Batte et al. 2018). Aquestes anomàlies tèrmiques provoquen alteracions en els patrons de distribució de les espècies i les comunitats que formen (Hampe i Petit 2004; Helmuth et al. 2006; Brierley i Kingsford 2009; Pinsky et al. 2013; Wemberg et al. 2016), canvis en la fenologia de les espècies (Puce et al. 2009), l’augment de infeccions i epidèmies (Vargas-Angel, 2010; Williams et al., 2014), i mortalitats en massa de les espècies que no poden atenuar els seus efectes (Harvell et al. 1999; Ward i Lafferty 2004; Walther et al. 2002; Garrabou et al. 2009; Hughes et al. 2018).

La mar Mediterrània és especialment vulnerable als efectes del canvi climàtic, ja que és un mar relativament petit i confinat, amb una profunditat mitjana moderada i una ràpida renovació de les aigües, i amb una particular geografia entre biomes temperats i tropicals, que inclou una barreja d’espècies d’afinitats temperades i subtropicals. L’efecte dels escalfaments de l’aigua a la Mediterrània està sent de dos a tres vegades més ràpid que en la resta d’oceans (Vargas-Yañez et al. 2008), mostrant augments de temperatura d’entre 0,3°C i 0,19°C per decenni en els primers 50 m i a 80 m de profunditat, respectivament, augment del nivell del mar de 3,9 cm de mitjana per decenni, i un increment molt notable de la freqüència d’esdeveniments extrems de temperatura (Pascual et al., 2012; Rivetti et al., 2014).

Aquestes mortalitats massives afecten principalment a espècies d’invertebrats suspensívors, com esponges, bríozous, mol·luscs, i especialment gorgònies i altres cnidaris, que són espècies longeves, amb una limitada capacitat de recuperació i que sovint tenen una funció estructural dins l’ecosistema. La perdua d’aquests organismes pot tenir efectes molt dràstics en l’estructura i dinàmica de les comunitats, amb canvis des de comunitats dominades per espècies estructurals i longeves a altres dominades per espècies de creixement ràpid amb menys complexitat estructural i menys diversitat (Ponti et al. 2015; Linares et al. 2017). A més, a partir de les observacions realitzades dins d’aquest seguiment, recentment s’ha documentat la mortalitat d’espècies d’algues
calcàries (Hereu i Kersting 2016; Matamalas i Hereu 2016), que afecta també a diverses regions de la Mediterrània. Aquest fenomen, desconegut fins recentment en mars temperats, pot tenir també importants conseqüències en tot l’ecosistema degut a l’important paper estructural de les algues calcàries incrustants en les diverses comunitats que forma, des de les comunitats mediolitorals, com tenasses de *Lithophyllum byssoides*, fins al coral·ligen.

S’ha de tenir en compte, a més, que la majoria de pertorbacions sobre els ecosistemes no actuen de forma independent, sinó que poden interaccionar de forma sinèrgica, com és el cas de les interaccions amb algues invasores (Kersting et al. 2015) o amb presions més locals com el busseig (Linares and Doak 2010). En el cas de la Mediterrània, i concretament de la costa catalana, altres impactes com la contaminació, l’eutrofització, la sobrepesca, l’entrada d’espècies invasores, o la degradació de l’hàbitat, ja sigui per la pesca o per l’impacte de la sobrefrequentació turística, poden actuar sinèrgicament amb els efectes del canvi climàtic, ja que poden augmentar els seus efectes, o poden ser molt més greus quan es produeixen en comunitats ja afectades per aquest (Coll et al. 2010; Marbà et al. 2015).

És per tots aquests motius que enguany s’ha incorporat aquest nou descriptor en el seguiment de la biodiversitat marina als espais marins protegits del Parc Natural de Cap de Creus i del Parc Natural del Montgrí, les Illes Medes i el Baix Ter. Tot i que indicadors com les gorgònies ja ens mostren l’impacte del canvi climàtic als nostres parcs, és necessària una visió més amplia de les espècies i hàbitats que està afectant. És per això que en aquest descriptor es proposen metodologies molt senzilles i ràpides que ens permetin explorar el major nombre d’espècies, hàbitats i localitats afectades o no pel canvi climàtic. Malgrat que aquest impacte no es pot gestionar localment, sí que és important conèixer els seus efectes i les possibles sinèrgies amb altres impactes que sí es poden minimitzar des de una gestió local.

Material i mètodes

Disseny de mostreig

Per al seguiment de les comunitats i espècies sensibles al canvi climàtic, es varen monitoritzar un total de 6 estacions al Parc Natural de Cap de Creus: 2 estacions al Parc Natural (PN), 3 estacions a les Reserves Naturals Parcials (RNP) i 1 estació a la Reserva Natural Integral (RNI), i un total de 7 estacions al Parc Natural del Montgrí, les Illes Medes i el Baix Ter, distribuïdes en 3 estacions al Parc Natural (PN), 2 estacions a la Reserva Natural Parcial (RNP) i una estació a la zona de Zona de Control (ZC) (Taula 1, Figures 1 i 2). Aquestes estacions es varen distribuir en zones amb les mateixes característiques ambientals i amb un rang batimètric suficient per a poder mostrejar tots els rangs de fondària estudiats. A més, degut a la possible variabilitat en les condicions oceanogràfiques de les zones d’estudi, es va procurar cobrir tot el rang d’orientacions i exposició en ambdós parcs. El mostreig d’aquest indicador es va realitzar durant el mes de novembre de 2018, un cop passat el període estival de temperatura màxima de l’aigua de mar, i en el que els efectes de l’escalfament de l’aigua sobre els organismes ja són reconegscibles.
Figura 1. Mapa de les estacions de mostreig de comunitats i espècies sensibles al canvi climàtic al Parc Natural de Cap de Creus de l'any 2018. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP) i Parc Natural (PN).
Figura 2. Mapa de les estacions de mostreig de comunitats i espècies sensibles al canvi climàtic al Parc Natural del Montgrí, Illes Medes i Baix Ter de l’any 2018. Grau de protecció: Zona de control (ZC), Reserva Natural Parcial (RNP), Zona Perifèrica a la Protecció (ZPP) i Parc Natural (PN).
Taula 1. Estacions de mostreig de comunitats i espècies sensibles al canvi climàtic de l’any 2018. Grau de protecció: Reserva Natural Integral (RNI), Reserva Natural Parcial (RNP), Parc Natural (PN) i Zona de Control (ZC). Les coordenades geogràfiques estan referides al fus 31N del datum ETRS89.

<table>
<thead>
<tr>
<th>Parc</th>
<th>Protecció</th>
<th>Estació</th>
<th>Data mostreig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap de Creus</td>
<td>RNI</td>
<td>Illa de s’Encalladora</td>
<td>2018-11-14</td>
</tr>
<tr>
<td></td>
<td>RNP</td>
<td>Punta des Farallons</td>
<td>2018-11-14</td>
</tr>
<tr>
<td></td>
<td>RNP</td>
<td>Illa Massa d’Or</td>
<td>2018-11-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>El Gat</td>
<td>2018-11-15</td>
</tr>
<tr>
<td></td>
<td>PN</td>
<td>Illa de Portaló</td>
<td>2018-11-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Punta des Caials</td>
<td>2018-11-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Punta Falconera</td>
<td>2018-11-15</td>
</tr>
<tr>
<td>Medes i Montgrí</td>
<td>ZC</td>
<td>Medallot</td>
<td>2018-11-08</td>
</tr>
<tr>
<td></td>
<td>RNP</td>
<td>Tascó Gros</td>
<td>2018-11-08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La Vaca</td>
<td>2018-11-08</td>
</tr>
<tr>
<td></td>
<td>PN</td>
<td>Punta Salines</td>
<td>2018-11-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cap d’Utrera</td>
<td>2018-11-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cap Castell</td>
<td>2018-11-16</td>
</tr>
</tbody>
</table>

Metodologia

Per aquest descriptor es va utilitzar un mètode semiquantitatiu a partir d’observacions directes i fotografies realitzades in situ mitjançant escafandre autònom. En cada estació, dos observadors varen fer un recorregut durant 10 minuts en tres rangs de fonèrícia, 30-35, 15-20 i 0-5 metres, en els que s’anotava la presència d’una sèrie d’espècies i grups sensibles a l’augment de la temperatura (Taula 2). Per a aquestes espècies s’anotava la seva abundància relativa (en un rang de 1 a 5), així com el nombre d’individus o colònies sanes, amb mortalitat recent (en que es pot observar el teixit necrosat o restes de l’esquelet sense epifitar), amb mortalitat antiga (sense restes de teixit i amb els esquelets coberts d’algues i animals epífits), o ambdues mortalitats simultàniament. Aquesta metodologia que ha estat proposada pel nostre grup de recerca a escala mediterrània, ens permetrà comparar en un futur els efectes del canvi climàtic als nostres parcs amb altres parcs i localitats mediterrànies. A més, es varen fer fotografies de les comunitats, cobrint una superfície i un nombre d’organismes suficientment gran com per a poder fer un recompte posterior en el cas d’espècies molt abundants o no anotades in situ.

Pel que fa a les algues calcàries incrustants, en cada una de les fonèrícies es va fer un mínim de 10 fotografies del fons, que cobrien una superfície d’almenys 0,25 m². Un cop al laboratori, a partir de l’anàlisi d’aquestes fotografies es va determinar el percentatge de cobertura d’algues calcàries, la composició específica en %, i el percentatge de mortalitat, ja sigui recent (on es pot observar el
tal·lus calcificat mort de color blanc), o antiga (quan el tal·lus calcificat estava ja cobert d’epífits o estava després del fons deixant el substrat rocós nu).

Aquest mètode ens va permetre cobrir una extensió suficientment gran en cada estació de control com per a integrar la variabilitat de les mortalitats, així com poder observar un número suficientment representatiu individus de les espècies afectades, que sovint son poc abundants. A més, es va inspectuar la possible presència d’espècies invasores.

Per l’anàlisi de les dades obtingudes, s’ha calculat la mitjana de mortalitat de cada organisme o grup d’organismes per a cada estació. A més, s’ha calculat la mitjana general per a cada un dels parcs naturals, i també per a quatre àrees amb unes característiques oceanogràfiques ben diferenciades: la mar d’Amunt (la costa Nord) i la mar d’Avall (la costa Est i Sud, des de Cap de Creus fina a Punta Figuera), la costa del Montgrí, i les Illes Medes.

Taula 2. Espècies i grups d’espècies monitoritzats en el mostreig de comunitats i espècies sensibles al canvi climàtic de l’any 2018.

<table>
<thead>
<tr>
<th>Grup</th>
<th>Espècies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algues</td>
<td>Algues calcàries incrustants</td>
</tr>
<tr>
<td>Briozous</td>
<td>Pentapora fascialis</td>
</tr>
<tr>
<td></td>
<td>Myriapora truncata</td>
</tr>
<tr>
<td>Esponges</td>
<td>Esponges grises</td>
</tr>
<tr>
<td></td>
<td>Esponges violetes</td>
</tr>
<tr>
<td>Mol·luscs</td>
<td>Spondylus gaederopus</td>
</tr>
<tr>
<td></td>
<td>Altres bivalves</td>
</tr>
<tr>
<td>Cnidaris</td>
<td>Corallium rubrum</td>
</tr>
<tr>
<td></td>
<td>Eunicella singularis</td>
</tr>
<tr>
<td></td>
<td>Paramuricea clavata</td>
</tr>
<tr>
<td></td>
<td>Leptogorgia sarmentosa</td>
</tr>
<tr>
<td></td>
<td>Balanophyllia europaea</td>
</tr>
<tr>
<td>Altres</td>
<td>Altres espècies</td>
</tr>
</tbody>
</table>

Resultats

El patró general de mortalitat dels organismes sensibles al canvi climàtic monitoritzats mostra una important variabilitat en les diferents espècies i comunitats, així com una variació en les diferents estacions monitoritzades.

A continuació es mostra l’anàlisi per a cada una de les espècies o conjunt d’espècies en les diferents estacions.
Algues calcàries

S’ha pogut observar un any més el fenòmen d’enblanquiment d’algues calcàries incrustants en totes les estacions estudiades. Aquesta mortalitat ha afectat a totes les espècies d’algues calcàries incrustants observades, i a totes les fondàries (Figura 3).

Figura 3. Enblanquiment i mortalitat de diverses espècies d’algues calcàries incrustants observades als Parcs Naturals de Catalunya: A) Lithophyllum byssoides, B) Neogoniolithon brassica-florida, C) Lithophyllum incrustans, D) Mesophyllum alternans, E) Mesophyllum alternans detall, F) Lithophyllum stictaeforme, G) Neogoniolithon mamillosum, H) roca nua després de la mortalitat de M. alternans i l’efecte erosiu de garotes. Les barres representen 10 cm a totes les figures, excepte a B i E, que representen 100 i 1 cm, respectivament.
No s'ha pogut observar cap patró espacial clar en les diverses estacions estudiades. A la fondària més soma, amb dominància de *Lithophyllum incrustans* i també presència de *Mesophyllum alternans*, és on hi ha hagut una major variabilitat, amb mortalitats de entre el 5% i més del 50%, degut especialment a la diferent composició de la comunitat. En algunes estacions, com a la Vaca, a les Illes Medes, l'efecte erosiu de les garotes s'ha ajuntat amb la mortalitat d’algues calcàries i ha deixat superfícies de roca nua (Figura 3D i 4). La fondària mitjana, entre 15 i 20 metres de fondària, és la que té una menor cobertura, amb dominància de *Neogoniolithon mamillosum*, especialment a les estacions del Mar d’Amunt de Cap de Creus, i *Mesophyllum alternans*, ha estat la menys afectada, amb mortalitats de entre el 3% i el 22% (Figura 4).

La mortalitat d’algues calcàries en el rang de fondària entre 30 i 35 metres, dominat per *Mesophyllum alternans* i amb presència de *Lithophyllum stictaeforme* i *Neogoniolithon mamillosum* també ha estat important, amb uns valors més homogenis d’e entre 9% i el 28% (Figura 4).

Figura 4. Percentatge d’affectació (superfície afectada) de les algues calcàries incrustants en els diferents rangs de fondària i estacions estudiades.
Mol·luscs bivalves

La mortalitat de bivalves, principalment *Spondylus gaederopus* i *Arca noae*, ha estat evident, ja que s’han trobat individus morts (la balba enganxada al substrat nua, sense la balba superior) en totes les estacions (Figura 5). No obstant, degut a la baixa densitat d’aquests organismes i a la dificultat de identificar-los quan són vius, ja que estan coberts d’esponges i altres organismes epífits, no hem pogut quantificar l’abast d’aquesta mortalitat.

S’han observat també una gran quantitat d’exemplars de *Pinna nobilis* morts, tant en les zones prospectades per aquest descriptor, com a les praderies de *Posidonia oceanica* estudiades en el descriptor d’aquesta espècie.

Figura 5. Mortalitat de mol·luscs bivalves. A) *Pinna nobilis* a Caials; B) balba fixada al substrat de *Spondylus gaederopus* a Punta Salines; C) balba de *Arca noae* mort sobre *Pentapora fascialis*, també amb signes de mortalitat, a Punta Salines; D) els exemplars de *S. gaederopus* recent morts com aquest de Punta Falconera son fàcilment identificables pel color blanc de l’interior de la balba que queda fixada al substrat.

Pentapora fascialis

Es va poder observar colònies del briozou *Pentapora fascialis* en la majoria d’estacions, excepte a l’estació de Massa d’Or, als rangs de fondària de 15-20 m i 30-35 m, excepte les estacions de la Vaca i Tascó Gros, que només es va observar a 30-35 metres.

Es va poder observar una important variabilitat en el percentatge de colònies afectades per mortalitat entre les diferents estacions mostradores, sense que s’observi un patró geogràfic clar.
El percentatge de colònies afectades varia entre 0%, com és el cas de Portaló en ambdós rangs de fondària, o Punta Falconera, Medallot, Vaca i Tascons en la fondària de 30-35 metres, fins a mortalitats molt important de fins al 100% com és el cas del Gat.

La major proporció de tipus de mortalitat ha estat mortalitat antiga, en la que les colònies ja estaven epifitades d’altres organismes, mentre que només es va detectar un cert grau de mortalitat recent, és a dir, mortalitat esdevinguda durant l’estiu de 2018, en tres estacions (Figura 6).

![Figura 6. Percentatge d’afectació (colònies afectades) de *Pentapora fascialis* en els diferents rangs de fondària i estacions estudiades. Les creus marquen la manca d’observacions. La part més fosca de les barres representa la mortalitat antiga, i la part més clara la mortalitat recent.](image)

![Figura 7. *Pentapora fascialis*, A) Colònia amb mortalitat recent coberta de hidraris a Cap Castell i B) colònia viva i amb mortalitat antiga a Punta Salines.](image)

Myriapora truncata

El briozou *Myriapora truncata*, al rang de 0-5 metres només s’ha pogut observar a tres estacions, mentre que a la resta de fondàries ha estat present en la majoria d’estacions (Figura 8). El percentatge de colònies afectades per mortalitat ha estat elevat en algunes estacions, arribant fins
al 60%, mentre que en altres no hem detectat mortalitat. El tipus de mortalitat més abundant ha estat mortalitat antiga en totes les estacions (Figura 8).

Figura 8. Percentatge d’afectació (colònies afectades) de *Myriapora truncata* en els diferents rangs de fondària i estacions estudiades. Les creus marquen la manca d’observacions. La part més fosca de les barres representa la mortalitat antiga, i la part més clara la mortalitat recent.

Esponges

Hem pogut observar una important mortalitat d’esponges únicament en algunes localitats, especialment de les espècies *Ircinia oros*, *I. variabilis*, *Petrosia ficiformis* i *Sarcotragus sp.*, però també d’algun exemplar d’altres espècies com *Aplysina aerophoba* (Figura 10).

Hem observat que la mortalitat més elevada s’ha produït en algunes estacions de cap de Creus, en totes les fondàries, mentre que a la zona del Montgrí i les Illes Medes no se n’ha observat (Figura 11).

Figura 10. Exemplars d’esponja observades amb diversos grau de mortalitat A) *Sargotragus* sp. a Farallons, totalment morta i epífita, B) *Ircinia oros* (?) a la Massa d’Or, totalment morta i epífita C) *Ircinia variabilis* amb mortalitat recent a Portaló i D) *Aplysina aerophoba* amb mortalitat recent molt afectada a Farallons.
Corallium rubrum

Pel que fa al corall vermell, Corallium rubrum, hem pogut observar un cert grau de mortalitat en les estacions en que aquesta espècies era present. El grau d’afectació, és a dir, el percentatge de colònies amb mortalitat, mostra un clar patró de fondària, en que les estacions més somes són les més afectades. A la fondària de 0-5 metres, només s’ha pogut observar a la cova del Mal Pas de la Vaca, amb una mortalitat de casi el 20%. Aquest elevat grau de mortalitat també ha estat observat a la cova dels Misidacis dins del descriptor de coves d’aquest seguiment, on també s’ha pogut quantificar una mortalitat de més del 10% (veure capítol de coves). A la fondària de 15-20 metres també s’ha pogut observar un cert grau de mortalitat en quatre de les set estacions en que aquesta espècie estava present, majoritàriament a les estacions de Montgrí i Medes, arribant en algun cas, com a Cap Castell, fins al 20% de les colònies afectades. La mortalitat a 30-35 metres de fondària ha estat molt menor, ja que només s’ha enregistrat en tres estacions, amb menys del 4% de les colònies afectades (Figura 12).

Figura 13. Colònies de corall vermell, *Corallium rubrum*, amb mortalitat total i parcial a A) Cap Castell i B) cova del Mal Pas, a la Vaca. Les fletxes indiquen les colònies mortes total o parcialment.

Eunicella singularis

La gorgònia blanca *Eunicella singularis* és una espècie molt afectada pels efectes de l’escalfament de l’aigua de mar. Ja en els anys anteriors es varen poder observar mortalitats importants d’aquesta espècie, tot i que no es varen poder quantificar. L’espectre d’afectació d’aquesta espècie, molt comuna a tots dos Parcs Naturals, especialment als rangs de fondària a partir de...
15m, és força elevat, ja que s’ajunten la mortalitat dels anys anteriors i la més recent ocorreguda durant l’estiu de 2018. Un altre cop es pot observar un patró en el que el percentatge de colònies afectades és de major a menor fondària, ja que al rang de 0-5 metres, en les tres estacions en que aquesta espècie és present, mostra un percentatge d’afectació de més del 80% al Gat i Punta Falconera, i del 50% a Caials. A la fondària de 15-20 metres, on aquesta espècie és més abundant, el percentatge d’afectació canvia considerablement entre estacions, sent les de les Medes i Montgrí les més afectades, amb mortalitats superiors al 50% en totes les estacions, mentre que a cap de Creus, tot i que la mortalitat també és elevada, en algunes estacions com Farallons, Encalladora i Massa d’Or, és més limitada. Tot i que a 30-35 metres el percentatge d’afectació és menor, en algunes estacions continua sent important, com a Massa d’Or, Cap d’Utrera i Punta Salines, amb percentatges superiors al 40% (Figura 14).

Es pot observar també que hi ha una part molt important d’aquesta mortalitat que és d’anys anteriors. Aquesta mortalitat es pot determinar mitjançant el percentatge de colònies o de teixit de cada colònia que presenta una mortalitat vella, és a dir, amb l’esquelet ja cobert d’organismes epífits com algues filamentoses i calcàries o invertebrats com hidraris o altres. La mortalitat recent ocorreguda durant l’any 2018 en algunes estacions és molt important, i s’afegeix a la mortalitat antiga, en canvi en altres estacions, com Massa d’Or, el Gat, Punta salines o Medallot no sembla que hagi estat molt important.

Figura 14. Percentatge d’afectació (colònies afectades) de *Eunicella singularis* en els diferents rangs de fondària i estacions estudinades. Les creus marquen la manca d’observacions. La part més fosca de les barres representa la mortalitat antiga, i la part més clara la mortalitat recent.
Figura 15. *Eunicella singularis*, A) població de l’Encalladora, amb un elevat nombre de colònies no afectades, B) colònia de *E. singularis* amb mortalitat antiga, amb l’esquelet recobert per *Alcyonium coralloides* a cap Castell, C) població de Punta Falconera amb un elevat nombre de colònies afectades per mortalitat antiga i recent, i D) població de Tascó Gros també amb un elevat nombre de colònies mortes.

Paramuricea clavata

Paramuricea clavata estava present a les fondàries de 15-20 i 30-35 en la majoria d’estacions, excepte a Caials, Cap d’Utrera i Cap Castell a 30-35 metres. Aquesta espècie, presenta una elevada mortalitat en la majoria d’estacions, sense presentar un patró massa clar (Figura 16). Es pot observar que també hi ha una mortalitat acumulada d’anys anteriors, una mortalitat antiga on l’esquelet es mostra epifit, i una mortalitat recent, amb l’esquelet nu sense teixit viu i sense epifitar (Figura 17 i 18). S’observa que la mortalitat recent és més important a les estacions del Montgrí i les Illes Medes, i a la fondària més soma. En l’apartat de gorgònies per a la gestió adaptativa de Medes també es mostra percentatge de colònies afectades per mortalitat a les Medes.
Figura 17. Percentatge d’afectació (colònies afectades) de *Paramuricea clavata* en els diferents rangs de fondària i estacions estudiades. Les creus marquen la manca d’observacions. La part més fosca de les barres representa la mortalitat antiga, i la part més clara la mortalitat recent.

<table>
<thead>
<tr>
<th>Cap de Creus</th>
<th>Montgrí</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farallons</td>
<td></td>
</tr>
<tr>
<td>Portoló</td>
<td></td>
</tr>
<tr>
<td>Encalladora</td>
<td></td>
</tr>
<tr>
<td>Morà d’Or</td>
<td></td>
</tr>
<tr>
<td>Caló</td>
<td></td>
</tr>
<tr>
<td>El Gat</td>
<td></td>
</tr>
<tr>
<td>Pta Salmó i</td>
<td></td>
</tr>
<tr>
<td>Cap Castell</td>
<td></td>
</tr>
<tr>
<td>Cap d’Ubarra</td>
<td></td>
</tr>
<tr>
<td>Pta Salines</td>
<td></td>
</tr>
<tr>
<td>Medellet</td>
<td></td>
</tr>
<tr>
<td>Vaca</td>
<td></td>
</tr>
<tr>
<td>Tascó Gros</td>
<td></td>
</tr>
</tbody>
</table>

Figura 18. *Paramuricea clavata*, A) Població relativament poc afectada de la Massa d’Or, amb un elevat nombre de colònies no afectades, B) colònia de *P. clavata* completament morta recentment, mostrant l’esquelet nu, al Tascó Gran, C) una altra colònia de *P. clavata* amb un elevat percentatge de mortalitat recent a Punta Salines, D) les colònies de *P. clavata* no només estan afectades per la mortalitat deguda al canvi climàtic, sinó que també tenen altres pertorbacions, com l’efecte erosiu dels escaphandristes o l’efecte de fils de pesca i arts de pesca perduts, que poden actuar sinèrgicament com aquestes colònies mortes i arrendades a l’Encalladora.
Altres espècies

Tot i que no hem pogut quantificar l’efecte de la mortalitat causada pel canvi climàtic en altres espècies degut a la poca representativitat mostral, sí que hem pogut fer observacions de mortalitat en espècies com *Cladocora caespitosa*, o *Leptogorgia sarmentosa*. En el cas de *Cladocora caespitosa*, és de destacar que en els darrers anys hem anat fent observacions puntuals amb mortalitats de colònies tant a cap de Creus com a Medes. Un altre efecte que hem detectat, i que es podrà seguir en el seguiment de l’any que ve, és l’augment de les poblacions de la garota *Arbacia lixula* (Figura 19).

Figura 19. A) colònia de *Cladocora caespitosa* parcialment morta a la Vaca, B) colònia de *Leptogorgia sarmentosa* a Portoló amb mostres de mortalitat recent a la punta de les branques, C) blancall format per una població molt densa de *Arbacia lixula* a Portoló, i D) també a Portoló, la presència d’arts de pesca abandonats com la xarxa abandonada que es mostra, pot tenir un efecte sinèrgic a la mortalitat degut al canvi climàtic dels organismes bentònics.

Discussió

En els darrers anys, els efectes del canvi climàtic sobre els ecosistemes marins estan sent més evidents a la Mediterrània. Des de les primeres mortalitats en massa d’organismes bentònics detectats l’any 1999 (Cerrano et al. 2000; Perez et al. 2000; Linares et al. 2005; Coma et al. 2006; Garrabou et al. 2009), s’han succeït una sèrie d’esdeveniments que també han afectat la costa catalana. Fins el 2015, la costa catalana no havia patit cap esdeveniment d’aquesta magnitud.

Davant d’aquesta nova amenaça, que de ben segur continuarà en el futur, enguany s’ha incorporat aquest nou descriptor que ens permetrà seguir des d’una perspectiva més amplia els efectes del canvi climàtic en els ecosistemes bentònics dels Parcs Naturals de Catalunya. La metodologia emprada ens ha permès obtenir informació dels efectes de l’augment de la temperatura en un ampli espectre d’organismes que, si bé no representen el total de la biodiversitat dels parcs, sí que ens donen una imatge més precisa d’aquest impacte a nivell de tot l’ecosistema. La selecció de les espècies sensibles i que alhora tenen un important paper estructural o funcional, ens indiquen l’abast d’aquest impacte a tota la comunitat. Els resultats d’enguany mostren uns importants efectes de l’escañament de l’aigua degut al canvi climàtic sobre els ecosistemes bentònics, ja que hem detectat una important mortalitat en la majoria d’espècies i grups monitoritzats.

Es de destacar que aquesta mortalitat s’ha produït en totes les estacions monitoritzades, des de la Mar d’Amunt de Cap de Creus fins a les Illes Medes. En principi, es podria esperar que les diferents zones dins l’àrea d’estudi, com la Mar d’Amunt i la Mar d’Avall al Cap de Creus, el Montgrí i les Illes Medes, hagin sofert de forma diferent els efectes de l’augment de la temperatura, ja que la seva posició geogràfica i orientació són ben diferents i, en principi, amb règims oceanogràfics diferenciacis. No obstant, els nostres resultats no indiquen un patró geogràfic clar, tot i que sí que s’ha pogut observar certes diferències pel que fa a algunes espècies.

Pel que fa a les esponges, només hem detectat mortalitat al Cap de Creus, mentre que a les Medes i Montgrí aquesta mortalitat ha estat insignificant. No obstant, hauríem de tenir en compte que probablement aquest ha estat un impacte recurrent i la mortalitat d’esponges al Montgrí pot haver estat molt important en els darrers anys, de forma que la mortalitat actual es relativament baixa per la menor densitat d’individus, i perquè els individus que queden poden ser més resistent, ja que ja han superat episodis d’escañament anteriors. També s’ha de tenir en compte que la mortalitat d’esponges és fàcilment distingible just en el moment de la mortalitat, però que després aquesta part morta es desprèn molt fàcilment i per tant de seguida veiem esponges totalment vives, però que en realitat poden haver patit una forta mortalitat durant els mesos anteriors (Cebrian et al. 2011).
Pel que fa al corall vermell, també hem vist una major afectació a les Illes medes i al Montgrí. No obstant, això es pot explicar primer per la distribució d'aquesta espècie, ja que al Montgrí i les Medes és molt abundant, i es pot trobar a fondàries molt somes, fins i tot a menys de 5 metres, com a les abundants coves i extraploms d’aquest parc. En aquesta espècie, no obstant, sí que hi ha un clar patró de fondària, ja que les poblacions més somes són les que més han patit aquesta mortalitat degut a que en aquests rangs de fondària l'estress per temperatura és major ja que es troben per sobre de la termoclina. Pel contrari, a cap de Creus, l'abundància d'aquesta espècie és molt menor, degut probablement a les condicions físiques del medi, però també degut a la sobrepesca d'aquesta espècie en aquesta àrea (Linares et al. 2017). Així, les poques poblacions de corall vermell observades han estat en fondàries per sota de la termoclina, que han sofert poca mortalitat.

Pel que fa a les gorgònies, també s'observa un patró clar de fondària, ja que les estacions més somes, únicament per Eunicella singularis a Cap de Creus, presenten un percentatge de mortalitat molt important. A la resta de fondàries, les poblacions d’entre 15 i 20 metres mostren també una elevada mortalitat, especialment a les zones de la Mar d’Avall i el Montgrí i les Medes, mentre que al Cap de Creus aquesta mortalitat és més variable, i en algunes estacions poc important. En aquestes estacions la termoclina és més persistent i fonda, i les poblacions que es troben per sobre pateixen una mortalitat més elevada. Per contra, a la zona da la Mar d’Amunt, on hi ha una major variació en la fondària de la termoclina, la mortalitat en general ha estat menor. És de destacar, però, que la mortalitat de gorgònies també ha estat important a fondàries per sota de la termoclina, sense que s'observi cap patró clar entre les diferents zones monitoritzades, evidenciant que els efectes del canvi climàtic estan afectant a totes les fondàries, més enllà de les poblacions més afectades que es troben per sobre la termoclina. Aquesta és una de les espècies que ha sofert una important mortalitat durant les darreres dècades i és molt vulnerable a l’augment de les temperatures (Coma et al. 2006, Garrabou et al. 2009).

Hem constatat també la mortalitat d’altres espècies, com Cladocora caespitosa, o altres gorgònies, que, tot i que no han estat comptabilitzades per la baixa densitat en les zones prospectades, poden haver patit una forta mortalitat. De fet, pel que fa a Cladocora caespitosa, en observacions d’anys anteriors ja havíem detectat una forta mortalitat d’aquesta espècie. Així, seria interessant poder determinar l’abast de la mortalitat d’aquesta espècie en les zones on és més abundant. De fet, aquesta espècie ha mostrat una elevada vulnerabilitat davant el canvi climàtic (Kersting et al. 2013), essent una de les principals amències per la seva conservació que ha estat recentment catalogada com amenaçada dins la llista vermella de la UICN (Otero et al. 2017)

Els efectes del canvi climàtic ja fa anys que han estat actuant als Parcs Naturals de Catalunya. És per això que hem d’intentar discernir els episodis anuals de mortalitat dels efectes que s’acumulen de mortalitats passades, que han deixat una senyal encara detectable. En el cas de les gorgònies o briozous, hem pogut diferenciar la mortalitat antiga i la mortalitat recent per a determinar l’abast de la mortalitat d’enguany. Considerant aquesta diferència, hem pogut constatar que enguany efectivament hi ha hagut una forta mortalitat per a algunes espècies i estacions, però que els
Efectes de les mortalitats anteriors són molt importants. Com que aquests efectes són cumulatius, és esperable que cada any l’estat de conservació d’aquestes espècies sigui pitjor.

En aquest sentit, es produeix un altre efecte que ja ha estat comentat en el cas de les esponges, i és que molts organismes poden haver mort en episodis anteriors, i el que estem censant actualment és una fracció dels que hi havia, corresponent als individus que van sobreviure a episodis de mortalitat anteriors. Així, les estimes de mortalitat que estem estudiant poden ser en realitat estimades a la baixa, ja que estem estudiant comunitats ja pertorbades. De fet, ja s’ha detectat una disminució del límit de distribució somer d’algunes espècies com la gorgònia *Paramuricea clavata* en zones protegides com el Parc Nacional de Cabrera (Linares *et al.* 2017) i es preveu que aquests canvis en la distribució en fondària siguin més freqüents en un futur proper (Montero-Serra *et al.* 2018)

Tenint en compte tots aquests elements, estem en una situació certament preocupant, ja que l’acumulació d’episodis de mortalitat està afectant any rere any unes espècies i comunitats que en general tenen una dinàmica poblacional lenta i, per tant, no poden recuperar-se d’aquest tipus de pertorbacions, de forma que a la llarga, moltes d’aquestes espècies poden patir importants regressions, especialment en les zones més someres.

A més, hem de tenir en compte que moltes d’aquestes espècies i poblacions no només pateixen aquest impacte, sinó que poden tenir altres pertorbacions, com els efectes erosius dels arts de pesca abandonats, especialment abundants al Cap de Creus (veure informe de prospeccions) o l’efecte erosiu dels submarinistes, especialment a les Illes Medes. La simultaneïtat de diferents impactes, pot fer que aquests actiuin de forma sinèrgica, de forma que causin un efecte molt més important que la suma d’aquests. Per exemple, l’acumulació d’organismes epífits sobre les parts necrosades de gorgònies, altera la seva estabilitat i resistència, de forma que corrents, cops o estirades degut a fils de pesca o bussejadors poden causar una mortalitat per arrabassament molt més elevada que en organismes sans.

Es per això que a nivell de gestió dels parcs naturals, i degut a que no es pot actuar contra l’escaflament global des d’una gestió local, és urgent aplicar un criteri de prudència i minimitzar els impactes sobre les comunitats i espècies afectades pel canvi climàtic que sí es poden gestionar des de la direcció dels parcs.

Referències

