1	Chromosomal Thermal Index: a comprehensive way to integrate the
2	thermal adaptation of <i>Drosophila subobscura</i> whole karyotype
3	Concepció Arenas ^a , Goran Zivanovic ^b and Francesc Mestres ^{c*}
4	
5	^a Departament de Genètica, Microbiologia i Estadística, Secció d'Estadística,
6	Universitat de Barcelona, Av. Diagonal, 643, 08028-Barcelona, Spain. (<u>carenas@ub.edu</u>)
7	
8	^b Department of Genetics, Institute for Biological Research "Sinisa Stankovic",
9	University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia.
10	(goranziv@ibiss.bg.ac.rs)
11	
12	^c Departament de Genètica, Microbiologia i Estadística, Secció de Genètica Biomèdica,
13	Evolutiva i del Desenvolupament, Av. Diagonal, 643, 08028-Barcelona, Spain IRBio
14	(Institut de Recerca per la Biodiversitat), Universitat de Barcelona, Av. Diagonal, 643,
15	08028-Barcelona, Spain. (<u>fmestres@ub.edu</u>)

16 Corresponding author: F. Mestres (fmestres@ub.edu)

17	Abstract: Drosophila has demonstrated to be an excellent model to study the
18	adaptation of organisms to global warming, with inversion chromosomal polymorphism
19	having a key role in this adaptation. Here, we introduce a new index (Chromosomal
20	Thermal Index or CTI) to quantify the thermal adaptation of a population according to
21	its composition of 'warm' and 'cold' adapted inversions. This index is intuitive, has
22	good statistical properties and can be used to hypothesis on the effect of global warming
23	on natural populations. We show the usefulness of CTI using data from European
24	populations of <i>D. subobscura</i> , sampled in different years. Out of 15 comparisons over
25	time, 9 showed significant increase of CTI, in accordance with global warming
26	expectations. Although large regions of the genome outside inversions contain thermal
27	adaptation genes, our results show that the total amount of 'warm' or 'cold' inversions
28	in populations seems to be directly involved in thermal adaptation, whereas the
29	interactions between the inversions content of homologous and non-homologous
30	chromosomes are not relevant.
31	Key words: Drosophila; thermal adaptation; chromosomes; inversions; global warming

32

34 Introduction

Almost a century ago, Sturtevant (1917, 1921) described chromosomal 35 36 inversions for the first time in Drosophila melanogaster. He observed that their main genetic effect was recombination reduction. According to this author, inversions would 37 38 be inherited as single Mendelian units, but we now know that this interpretation is not exact. Inversions have been studied in different organisms (Hoffmann and Rieseberg 39 2008), but *Drosophila* remains to be the most widely studied genus (Dobzhansky 1970; 40 41 Powell 1997; Krimbas and Powell 1992, 2000; Hoffmann et al. 2004). In this genus, the adaptive value of inversions has been repeatedly reported. One exciting result has been 42 the observation that inversions respond to global warming (Orengo and Prevosti 1996; 43 Rodriguez-Trelles and Rodriguez 1998; Solé et al. 2002; Levitan 2003; Balanyà et al. 44 2004, 2006, 2009; Levitan and Etges 2005; Umina et al. 2005; Zivanovic and Mestres 45 2010, 2011; Rezende et al. 2010; Zivanovic et al. 2012, 2014a; Rodriguez-Trelles et al. 46 47 2013). Balanyà et al. (2006), using principal component analyses, developed one index 48 for temperature and another for chromosomal polymorphism (for the whole karyotype) 49 to study the relationships between both. Although this is a useful approach, we 50 introduce here a new measure of the whole karyotype response to temperature that allows comparisons between populations by means of a robust test with good statistical 51 52 properties. The integration provided by the whole karyotype is extremely valuable, because we have previously detected an additive effect of inversions located in different 53 chromosomes in Balkan populations (Zivanovic et al. 2014b, 2016). 54 Thus, our main aim is to define a new index, called Chromosomal Thermal 55 56 Index (*CTI*) and to use confidence intervals for hypothesis testing. We apply and test the usefulness of CTI by analyzing chromosomal inversion polymorphism data from natural 57

- 58 populations of *D. subobscura*. We also discuss the results obtained with this index in
- 59 the context of chromosomal adaptation to global warming.
- 60

61 Materials and methods

62 The CTI index

To define the *CT1* index, it is essential to properly identify which chromosomal inversions (or arrangements, that is combinations of inversions) are considered as 'warm' or 'cold', that is, thermally adapted. Usually, there are many experimental criteria that allow the precise classification of chromosomes in these categories. Let *W*, *C* and *TA* represent the total number of warm, cold and thermally adapted chromosomes (TA = W + C). Thus, the *CT1* index is defined by:

$$CTI = \frac{W - C}{W + C} = \frac{W - C}{TA}$$

which takes values in [-1, 1] and measures an excess of 'warm' chromosomes (positive
sign) or cold chromosomes (negative sign) relative to the total number of thermally
adapted chromosomes. It is easy to see that *CTI* can be written as:

$$CTI = \frac{2W - TA}{TA} = 2\frac{W}{TA} - 1 = 2p - 1$$

where, $p = \frac{W}{TA}$ is the probability, for an adapted chromosome, of being a warm chromosome. It may be of interest to check, for a population whether *CTI* index matches a certain value or to compare *CTI* index between populations. For this reason, exact and asymptotic confidence intervals and hypothesis tests were constructed. Assume a sample of size *n* of thermally adapted chromosomes in which w_0 and c_0 are 'warm' and 'cold', respectively ($n = w_0 + c_0$) and that we are interested in testing whether the *CTI* index matches a certain value I_0 (null hypothesis $H_0: CTI = I_0$). The Score test statistics

$$Z = \frac{\frac{w_0}{n} - \frac{I_0 + 1}{2}}{\sqrt{\left(\frac{I_0 + 1}{2} \times \frac{1 - I_0}{2}\right)/n}}$$

80 Under the null hypothesis, Z follows approximately a standard normal N(0,1)

distribution. Thus, for a fixed significance level α the critical region for a two sided or

- one sided test will be $|Z| > Z_{1-\alpha/2}$; $Z > Z_{1-\alpha}$ or $Z < Z_{1-\alpha}$, respectively. Furthermore,
- confidence intervals based on Z can be approximately constructed,

$$\begin{split} & \frac{2w_0}{n} \left(\frac{n}{n+Z_{1-\alpha/2}^2} \right) + \left(\frac{Z_{1-\alpha/2}^2}{n+Z_{1-\alpha/2}^2} \right) - 1 \\ & \pm 2 * Z_{1-\alpha/2} \sqrt{\frac{1}{n+Z_{1-\alpha/2}^2} \left[\frac{w_0}{n} * \left(1 - \frac{w_0}{n} \right) * \frac{n}{n+Z_{1-\alpha/2}^2} + \frac{1}{4} * \frac{Z_{1-\alpha/2}^2}{n+Z_{1-\alpha/2}^2} \right]}. \end{split}$$

84 If the sample is small, it is better to use exact test statistics and confidence intervals.

85 The corresponding *p*-values are:

86
$$P = \sum_{j=w_0}^{n} {n \choose j} \left(\frac{I+1}{2}\right)^{j} \left(\frac{1-I_0}{2}\right)^{n-j}$$
 for the alternative $H_1: CTI > I_0;$

87
$$P = \sum_{j=0}^{w_0} {n \choose j} \left(\frac{I_0+1}{2}\right)^j \left(\frac{1-I_0}{2}\right)^{n-j}$$
 for the alternative $H_1: CTI < I_0$

88
$$P = \sum_{j=0}^{n} \pi_j I(\pi_j \le \pi)$$
 for the alternative $H_1: CTI \ne I_0$, where $I(\pi_j \le \pi) = 1$ if $\pi_j \le \pi$

89
$$\pi$$
 and $I(\pi_j \le \pi) = 0$ if $\pi_j > \pi$ being $\pi = \binom{n}{w_0} \left(\frac{I_0 + 1}{2}\right)^{w_0} \left(\frac{1 - I_0}{2}\right)^{n - w_0}$ and $\pi_j =$

90
$$\binom{n}{j} \left(\frac{l_0+1}{2}\right)^j \left(\frac{1-l_0}{2}\right)^{n-j}$$
 for $j = 0, \dots, n$.

91 An exact confidence interval for *CTI* has as inferior (*IL*) and superior (*SL*) limits:

92
$$IL = 2 \frac{w_0}{w_0 + (n - w_0 + 1) \cdot F_{2(n - w_0 + 1), 2w_0, 1 - \alpha/2}} - 1,$$

93 and
$$SL = 2 \frac{(w_0+1) \cdot F_{2(w_0+1),2(n-w_0),1-\alpha/2}}{(n-w_0)+(w_0+1) \cdot F_{2(w_0+1),2(n-w_0),1-\alpha/2}} - 1$$
, where *F* is the Fisher-Snedecore

94 distribution.

To test the hypothesis of equality in CTI indexes, let w_1 and w_2 be the number of

⁹⁶ 'warm' thermally adapted chromosomes for samples with sizes n_1 and n_2 , respectively.

$$Z = \frac{\frac{w_1}{n_1} - \frac{w_2}{n_2}}{\sqrt{\left(\frac{w_1 + w_2}{n_1 + n_2}\right) * \left(1 - \frac{w_1 + w_2}{n_1 + n_2}\right) * \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

- is normally distributed for large n_1 and n_2 . As before, for a fixed significance level
- 99 α the critical region for a two sided ($CTI_1 \neq CTI_2$) or one sided ($CTI_1 > CTI_2$ or

100
$$CTI_1 < CTI_2$$
) test will be $|Z| > Z_{1-\alpha/2}$; $Z > Z_{1-\alpha}$ or $Z < Z_{1-\alpha}$, respectively.

The Score interval is obtained by inverting the Score test statistic. For small samples
size, it is better to use exact test statistics, however the corresponding expressions are
not included for simplicity.

To facilitate the computations, functions in R code were written and are available fromthe authors upon request.

106

Genome

107	Statistical analyses
108	The confidence intervals and hypothesis tests developed in the above Section were used
109	to compare CTI values from natural populations of D. subobscura and $P < 0.05$ was
110	used for significance. We compute the CTI index for the whole karyotype and also for
111	only one chromosome. As multiple testing was carried out, results were corrected using
112	false discovery rates (FDR) method (Benjamini and Hochberg 1995).
113	Latitudinal variation of CTI index was studied from European populations which
114	were collected twice in an interval of many years (Solé et al. 2002; Balanyà et al. 2004;
115	Zivanovic et al. 2012, 2015). Regression lines of CTI values on latitude were obtained
116	for both, 'old' and 'new' samples and statistical differences in slope and elevation were
117	computed.

118

119 **Results**

120 To demonstrate the usefulness of the index, we computed it in populations of 121 Drosophila subobscura, a species considered to be particularly sensitive to global warming (Balanyà et al. 2009). This species has a karyotype with five acrocentric and 122 123 one dot chromosomes. These chromosomes, except for the dot, are polymorphic for inversions (or arrangements). Many of them are adapted to thermal variation (Orengo 124 125 and Prevosti 1996; Rodríguez-Trelles and Rodríguez 1998; Solé et al. 2002; Balanyà et 126 al. 2004; Rezende et al. 2010; Zivanovic and Mestres 2011; Zivanovic et al. 2012, 127 2015). To classify the inversions (or arrangements) as thermally adaptated to 'warm' or 'cold', we followed the well-established criterion of Menozzi and Krimbas (1992), 128 ratified by Rego et al. (2010). This criterion is based on the presence of significant 129

130	correlation coefficients between variables related to temperature and chromosomal
131	inversions. The following inversions (or arrangements) are considered 'warm': A_2 , J_1 ,
132	$U_{1+2}, U_{1+8+2}, E_{1+2+9}, E_{1+2+9+12}, O_{3+4}, O_{3+4+1} and O_{3+4+8}$, whereas $A_{st}, A_1, J_{st}, U_{st}, E_{st}$ and
133	O_{st} are classified as 'cold'. The remaining chromosomal inversions (or arrangements) of
134	the species (more than 70), which didn't fit the thermal adaptation criterion, were not
135	considered for the analyses. The CTI and confidence interval values obtained from
136	different natural populations of D. subobscura are compiled in Table 1. Some
137	interesting patterns can be noticed in terms of latitude and year of collection. For
138	example CTI, for the collections trapped in similar years, increases with decreasing
139	latitude (Table 1). One population (Zürich) was sampled for more than 2 years (Gosteli,
140	1990). The CTI values increased over years and were significantly different for most (8
141	out of 10) pairwise comparisons (Table $S1^1$). It is also interesting to analyze the
142	European populations which were collected twice in an interval of many years (Solé et
143	al. 2002; Balanyà et al. 2004; Zivanovic and Mestres 2011; Zivanovic et al. 2012,
144	2015). For the same population, when comparing 'old' with 'new' samples, the CTI
145	index always increases. Out of 15 comparisons the differences were significant in 9
146	cases: Groningen (test = -7.914 , $P = 0.0$), Louvain-la-Neuve (test = -4.328 , $P = 0.0$),
147	Tübingen (test = -4.034 , $P = 0.0$), Vienna (test = -2.841 , $P = 0.0135$), Leuk (test = $-$
148	1.36, $P = 0.1876$), Apatin (test = -3.199, $P = 0.0052$), Villars (test = -2.567, $P =$
149	0.0191), Avala (test = -0.666 , $P = 0.5060$), Petnica (test = -2.673 , $P = 0.0187$),
150	Montpellier (test = -2.060 , $P = 0.0591$), Lagrasse (test = -1.356 , $P = 0.1876$), Queralbs
151	(test = -1.400 , $P = 0.1876$), Riba-roja (test = -2.014 , $P = 0.0600$), Punta Umbría (test =
152	-2.410, $P = 0.0265$), Málaga (test -2.611 , $P = 0.0191$). Another valuable observation is

¹ Supplementary data are available with the article through the journal Web site at <u>http://nresearchpress.com/doi/suppl/gen-2017-0124</u>.

153	the behavior of CTI in the twelve populations aligned from Holland to Spain
154	(Groningen, Louvain-la-Neuve, Tübingen, Vienna, Leuk, Villars, Montpellier,
155	Lagrasse, Queralbs, Riba-roja, Punta Umbría and Málaga) following a latitudinal cline
156	(Solé et al. 2002; Balanyà et al. 2004). In the 'old' samples and following latitude,
157	negative values of the index were observed for the first seven populations, from
158	Groningen to Montpellier. The five remaining 'old' collections, from Lagrasse to
159	Málaga, showed positive values. However, in an equivalent study but using the 'new'
160	samples, CTI values were negative only for the first six populations, from Groningen to
161	Villars. Thus, the geographical location where the CTI changes from negative to
162	positive values was displaced northward as expected by global warming. The
163	corresponding confidence intervals associated with the index values of these neighbor
164	populations were also in agreement with this northward movement (Table1).
165	Finally, we computed the regressions of CTI on latitude for 'old' and 'new'
166	samples (Fig. 1). In both cases, the elevation and slope were significant (in all cases $P <$
167	0.001), indicating that latitude explains changes in CTI. When comparing both line
168	regressions, the slopes were not significant different (F = 1.12 ; $P = 0.3034$), but the
169	elevations were significant different (F = 6.99 ; $P = 0.0156$). This result indicates that the
170	line for the 'new' populations is located above than that of 'old' populations, in
171	accordance with global warming expectations.
172	It is also possible to apply the CTI index for individual chromosomes. We
173	selected the O chromosome because this is the largest and most polymorphic for
174	inversions in D. subobscura (Kunze-Mühl and Müller 1958; Krimbas 1992, 1993). We
175	have computed CTI for the O chromosome using the same collection of 15 populations
176	distributed in a latitudinal cline which were collected twice in an interval of many years

177 (Solé et al. 2002; Balanyà et al. 2004; Zivanovic and Mestres 2011; Zivanovic et al.

178	2012, 2015) (Table S2). Almost all populations show an increase in <i>CTI</i> over years but
179	out of 15 comparisons the differences were significant in only 6 cases (Table S3). For
180	example, the Avala population shows no differences in CTI between the older (2004)
181	and the newer collection (2011). Interestingly, four populations (Apatin, Villars, Petnica
182	and Punta Umbria) showed to have an increase in CTI values based on whole karyotype
183	were missed by the index calculation based on the O chromosome. Another interesting
184	observation is that there is not a continuous series of populations with negative CTI
185	values followed by another group showing positive values. For instance, Montpellier in
186	1972 had a negative value, and Lovaine-la-Neuve in 1999 showed a positive value
187	(Tables S2 and S3). We also analyzed the CTI behavior in a pair of latitudinal studies
188	for the O chromosome of <i>D. subobscura</i> (Pinsker and Sperlich 1981; Mestres et al.
189	1994). The results obtained showed that with only one chromosome the index is as
190	informative as the CTI based on the entire karyotype (Table 2). However, the three
191	Swedish populations cannot be differentiated and although the values tend to increase
192	with lower latitudes, there are several exceptions (Fort Augustus or Tübingen). Similar
193	results were obtained by analyzing the E chromosome individually (Tables S4 and S5).
194	It seems that the new index is very valuable when integrating the information provided
195	by the whole chromosomal set, but loses power if applied only to individual
196	chromosomes.

197

198 Discussion

Global warming is a current and serious problem and more observations in
nature and experimental research are needed. However, novel quantification approaches
of biological events related with this topic are also of interest. Thus, this new introduced
index is very valuable because it allows integrating the information of the whole

203	karyotype in a single value and has good statistical properties. However, the CTI can be
204	useful only if chromosomes with 'warm' and 'cold' inversions are properly defined.
205	This is not an inherent problem with the index, but a wrong classification of inversions
206	could yield anomalous results. In our examples, the inversions of European D.
207	subobscura populations were sorted out in 'warm' or 'cold' according to the well-
208	established criterion of presenting a significant correlation with environmental variables
209	and also with latitude, as described for the first time in Menozzi and Krimbas (1992).
210	Although the adaptive value of inversions to climatic conditions has been
211	established in many species (Feder et al. 2003; Ayala et al. 2011; Cassone et al. 2011),
212	Drosophila in general (for instance see Overgaard et al. 2014 or Tobler et al. 2015) and
213	D. subobscura in particular (Balanyà et al. 2009 or Dolgova et al. 2010) are considered
214	excellent organisms to study thermal adaptations. We have demonstrated the CTI
215	usefulness in a series of examples from <i>D. subobscura</i> populations, and their analyses
216	have yielded a series of conclusions. When comparing population samples over years,
217	<i>CTI</i> can quantify the changes over time of chromosomal inversions according to global
218	warming expectations. Also, the index (and the confident interval associated) changes
219	the sign northward according to latitude as expected. Finally, the index can be applied
220	to particular chromosomes, but loses power to detect global warming effects on some
221	populations. Thus CTI effectively integrates information from the whole karyotype.
222	This index can be also used in other Drosophila species where adaptive inversions are
223	or could be related to temperature as in the case of <i>D. robusta</i> (Levitan 1992, 2003;
224	Levitan and Etges 2005), D. melanogaster (Lemeunier and Aulard 1992), D. guarani
225	group (Brncic 1953) D. repleta group (Wasserman 1992), Hawaiian Drosophila species
226	(Carson 1992), D. ananassae and other Indian species (Singh 2015). Even in the future,

227	thermal	adaptive	e invers	ions coul	ld be	detected	due to	the	intensiv	ve research o	n
-----	---------	----------	----------	-----------	-------	----------	--------	-----	----------	---------------	---

chromosomal inversions in different organisms (Pennisi 2017).

229	From the CTI results obtained in our examples, information can be also inferred
230	on the nature of the karyotypic thermal adaptation. As defined, the index is computed as
231	a balance between 'warm' and 'cold' inversions (or arrangements). It is the total amount
232	of chromosomes with 'warm' and 'cold' inversions present in the population which
233	defines its thermal adaptation. It seems that interactions between inversions located in
234	different chromosomes are not especially relevant. This is in agreement with recent
235	studies that did not detect any interaction between the inversion composition of
236	homologous and non-homologous chromosomes (Zivanovic et al. 2014b, 2016). Thus,
237	at the cytological level, the total amount of individual inversions rather than their
238	specific combinations seemed to be the main targets of selection.
239	When studying CTI index in European populations of D. subobscura, thermally
240	adapted inversions show, for the most part, additive effects. This is seen in the
241	enrichment of Southern populations with 'warm' inversions and thermal adaptation
242	being dependent on the total number of 'warm' or 'cold' adapted inversions (or
243	arrangements) rather than particular inversions. While for the most part, D. subobscura
244	seems to have no major (and minor) inversions in thermal adaptation, caution should be
245	exercised in that some population might deviate from the pattern. In our analysis,
246	Montpellier was the only population to deviate, with no whole karyotype CTI effect, but
247	significant roles of chromosomes O and E. Despite this one population, for most
248	thermal adaptation seems more broadly distributed throughout the whole karyotype and
249	not concentrated in particular chromosomes. This is in agreement with the location of
250	thermal adaptation QTL mapped in D. melanogaster (Norry et al. 2004, 2008; Morgan
251	and Mackay 2006; Takahashi et al. 2011).

252	In summary, CTI is able to gather together the adaptive information of the whole
253	karyotype in a useful way that allows easy and reliable statistic comparisons between
254	different populations. For these reasons, it is a valuable tool to quantify the thermal
255	adaptation in many species. Furthermore, from the analysis of D. subobscura
256	populations, CTI values suggest that thermal inversions act in an additive way, without
257	particular inversions being major contributors to global warming adaptations.
258	
259	Acknowledgements
260	This study was supported by the Ministerio de Economía y Competitividad,
261	Spain (grants with numbers CTM2013-48163 and IN2015-64395-R); by the Generalitat
262	de Catalunya, Spain (grants with numbers 2014 SGR 336 and 2014 SGR 464); and by
263	the Ministry of Education, Science and Technological Development of the Republic of
264	Serbia (grant number 173025).
265	We want to dedicate this work to the memory of Prof. Dr. Diether Sperlich (1929-
266	2017).
267	References
268	Ayala, D., Fontaine, M.C., Cohuet, A., Fontenille, D., Vitalis, R., and Simard. F. 2011.
269	Chromosomal inversions, natural selection and adaptation in the malaria vector
270	Anopheles funestus. Mol. Biol. Evol. 28: 745–758. doi:10.1093/molbev/msq248.
271	Balanyà, J., Huey, R.B., Gilchrist, G.W., and Serra, L. 2009. The chromosomal
272	polymorphism of Drosophila subobscura: a microevolutionary weapon to monitor
273	global change. Heredity, 103: 364-367. doi:10.1038/hdy.2009.86.

- 274 Balanyà, J., Oller, J.M., Huey, R.B., Gilchrist, G.W., and Serra, L. 2006. Global genetic
- change tracks global climate warming in *Drosophila subobscura*. Science, 313:
- 276 1773–1775. doi:10.1126/science.1131002.
- 277 Balanyà, J., Solé, E., Oller, J.M., Sperlich, D., and Serra, L. 2004. Long-term changes in
- the chromosomal inversion polymorphism of *Drosophila subobscura*. II. European
- 279 populations. J. Zool. Syst. Evol. Res. **42**: 191–201.
- 280 Benjamini, Y., and Hochberg, Y. 1995. Controlling the false discovery rate: a practical
- and powerful approach to multiple testing. J. R. Stat. Soc. Series B Methodol. 57:
- **282 289–300**.
- 283 Brncic, D. 1953. Chromosomal variation in natural populations of *Drosophila*
- 284 guaramunu. Z. Vererbungsl. 85: S1-S11.
- 285 Carson, H.L. 1992. Inversions in Hawaiian Drosophila. In Drosophila inversion
- 286 polymorphism. *Edited by* C.B. Krimbas and J.R. Powell. CRC Press Inc., Boca
- 287 Raton, FL. pp. 407–439.
- 288 Cassone, B.J., Molloy, M.J., Cheng, C., Tan, J.C., Hahn, M.W., and Besansky, N.J.,
- 289 2011. Divergent transcriptional response to thermal stress by *Anopheles gambiae*
- larvae carrying alternative arrangements of inversion 2La. Mol. Ecol. 20: 2567–
- 291 2580. doi:10.1111/j.1365-294X.2011.05114.x.
- Dobzhansky, Th., 1970. Genetics of the Evolutionary process. Columbia Univ. Press,
 New York.
- 294 Dolgova, O., Rego, C., Calabria, G., Balanyà, J., Pascual, M., Rezende, E.L., et al.
- 295 2010. Genetic constraints for thermal coadaptation in *Drosophila subobscura*. BMC
- Evol. Biol. **10**: 363. doi:10.1186/1471-2148-10-363.

- 297 Feder, J.L., Berlocher, S.H., Roethele, J.B., Dambroski, H., Smith, J.J., Perry, W.L., et
- al. 2003. Allopatric genetic origins for sympatric host-plant shifts and race formation
- in *Rhagoletis*. Proc. Natl. Acad. Sci. USA, **100**: 10314–10319.
- doi:10.1073/pnas.1730757100.
- 301 Gosteli, M. 1990. Chromosomal polymorphism in natural populations of *Drosophila*
- *subobscura* near Zürich, Switzerland: a contribution to long-term comparisons.
- 303 Genetica, **81**: 199–204.
- Hoffmann, A.A., and Rieseberg, L.H. 2008. Revisiting the impact of inversions in
- 305 Evolution: from population genetic markers to drivers of adaptive shifts and
- 306 speciation? Annu. Rev. Ecol. Evol. Syst. 39: 21–42.
- doi:10.1146/annurev.ecolsys.39.110707.173532
- 308 Hoffmann, A.A., Sgrò, C.M., and Weeks, A.R. 2004. Chromosomal inversion
- 309 polymorphism and adaptation. Trends Ecol. Evol. 19: 482–488.
- doi:10.1016/j.tree.2004.06.013
- 311 Krimbas, C.B., and Powell, J.R. 1992. *Drosophila* inversion polymorphism. CRC Press
- 312 Inc., Boca Raton, FL.
- 313 Krimbas, C.B. 1992. The inversion polymorphism of *Drosophila subobscura*. In
- 314 *Drosophila* inversion polymorphism. *Edited by* C.B. Krimbas and J.R. Powell. CRC
- 315 Press Inc., Boca Raton, FL. pp. 127–220.
- 316 Krimbas, C.B. 1993. Drosophila subobscura: Biology, Genetics and Inversion
- 317 polymorphism. Verlag Dr. Kovac, Hamburg, Germany.

- 318 Krimbas, C.B., and Powell, J.R. 2000. Inversion polymorphisms in *Drosophila*. In
- Evolutionary Genetics. From molecules to morphology. *Edited by* R.S. Singh and
- 320 C.B. Krimbas. Cambridge Univ. Press, New York, pp. 284–299.
- 321 Kunze-Mühl, E., and Müller, E. 1958. Weitere Untersuchungen über die chromosomale
- 322 Struktur und die natürlichen Strukturtypen von *Drosophila subobscura*.
- 323 Chromosoma, **9**: 559–570.
- 324 Lemeunier, F., and Aulard, S. 1992. Inversion polymorphism in Drosophila
- 325 *melanogaster*. In Drosophila inversion polymorphism. Edited by C.B. Krimbas and
- J.R. Powell. CRC Press Inc., Boca Raton, FL. pp. 339–405.
- 327 Levitan, M. 1992. Chromosomal variation in Drosophila robusta Sturtevant. In
- 328 Drosophila inversion polymorphism. Edited by C.B. Krimbas and J.R. Powell. CRC
- 329 Press Inc., Boca Raton, FL. pp. 221–338.
- 330 Levitan, M. 2003. Climatic factors and increased frequencies of 'southern' chromosome
- forms in natural populations of *Drosophila robusta*. Evol. Ecol. Res. **5**: 597–604.
- Levitan, M., and Etges, W.J. 2005. Climate change and recent genetic flux in
- populations of *Drosophila robusta*. BMC Evol. Biol. **5**: 4. doi:10.1186/1471-2148-5-
- 334

- 335 Menozzi, P., and Krimbas, C.B. 1992. The inversion polymorphism of *D. subobscura*
- revisited: Synthetic maps of gene arrangement frequencies and their interpretation. J.
- 337 Evol. Biol. **5**: 625–641.
- 338 Mestres, F., Balañà, J., Segarra, C., Prevosti, A., and Serra, L. 1994. O chromosome
- inversion polymorphism in Northern and Atlantic Europe and its implications in the

340	American colonization by <i>Drosophila subobscura</i> . Z. zool. Syst. Evolutforsch. 32:
341	108–116.
342	Morgan, T.J., and Mackay, T.F.C. 2006. Quantitative trait loci for thermotolerance
343	phenotypes in Drosophila melanogaster. Heredity, 96: 232-242.
344	doi:10.1038/sj.hdy.6800786
345	Norry, F.M., Dahlgaard, J., and Loeschcke, V. 2004. Quantitative trait loci affecting
346	knockdown resistance to high temperature in Drosophila melanogaster. Mol. Ecol.
347	13: 3585–3594. doi:10.1111/j.1365-294X.2004.02323.x
348	Norry, F.M., Scannapieco, A.C., Sambucetti, P., Bertoli, C.I., and Loeschcke, V. 2008.
349	QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat
350	and chill-coma recovery in an intercontinental set of recombinant inbred lines of
351	Drosophila melanogaster. Mol. Ecol. 17: 4570–4581. doi:10.1111/j.1365-
352	294X.2008.03945.x.
353	Orengo, D.J., and Prevosti, A. 1996. Temporal changes in chromosomal polymorphism
354	of <i>Drosophila subobscura</i> related to climatic changes. Evolution, 50 : 1346–1350.
355	Overgaard, J., Kearney, M.R., and Hoffmann, A.A. 2014. Sensitivity to thermal
356	extremes in Australian Drosophila implies similar impacts of climate change on the
357	distribution of widespread and tropical species. Glob. Change Biol. 20: 1738–1750.
358	doi:10.1111/gcb.12521.
359	Pennisi, E. 2017. 'Supergenes' drive Evolution. Science, 357: 1083.
360	doi:10.1126/science.357.6356.1083.

361	Pinsker, W., and Sperlich, D. 1981. Geographic pattern of allozyme and inversion
362	polymorphism on chromosome O of Drosophila subobscura and its evolutionary
363	origin. Genetica, 57: 51–64.
364	Powell, J.R. 1997. Progress and prospects in Evolutionary Biology. The Drosophila
365	model. Oxford Univ. Press, New York.
366	Prevosti, A., Frutos, R. de, Alonso, G., Latorre, A., Monclus, M., and Martinez, M.J.
367	1984. Genetic differentiation between natural populations of Drosophila subobscura
368	in the Western Mediterranean area with respect to chromosomal variation. Génet.
369	Sél. Evol. 16 : 143–156.
370	Rego, C., Balanyà, J., Fragata, I., Matos, M., Rezende, E.L., and Santos, M. 2010.
371	Clinal patterns of chromosomal inversion polymorphism in Drosophila subobscura

are partly associated with thermal preferences and heat stress resistance. Evolution,

64: 385–397. doi:10.1111/j.1558-5646.2009.00835.x.

- 374 Rezende, E.L., Balanyà, J., Rodríguez-Trelles, F., Rego, C., Fragata, I., Matos, M., et al.
- 2010. Climate change and chromosomal inversions in *Drosophila subobscura*. Clim.
- 376 Res. **43**: 103-114. doi:10.3354/cr00869.
- 377 Rodriguez-Trelles, F., Rodríguez, M.A. 1998. Rapid micro-evolution and loss of
- 378 chromosomal diversity in *Drosophila* in response to climate warming. Evol. Ecol.
- **12**: 829–838.
- 380 Rodriguez-Trelles, F., Tarrío, R., Santos, M. 2013. Genome-wide evolutionary response
- to a heat wave in *Drosophila*. Biol. Lett. **9**: 20130228. doi:10.1098/rsbl.2013.0228.
- Singh, B.N. 2015. Species and genetic diversity in the genus *Drosophila* inhabiting the
- Indian subcontinent. J. Genet. 94: 351–361.

- 384 Solé, E., Balanyà, J., Sperlich, D., Serra, L. 2002. Long-term changes in the
- 385 chromosomal inversion polymorphism of *Drosophila subobscura*. I. Mediterranean
- populations from Southwestern Europe. Evolution, **56**: 830–835.
- 387 Sperlich, D. 1964. Chromosomale strukturanalyse und fertilitätsprüfung einer
- marginalpopulation von *Drosophila subobscura*. Z. Vererbungsl. **95**: 73–81.
- 389 Sturtevant, A.H. 1917. Genetic factors affecting the strength of linkage in *Drosophila*.
- 390 Proc. Natl. Acad. Sci. USA, **3**: 555–558.
- 391 Sturtevant, A.H. 1921. A case of rearrangement of genes in *Drosophila*. Proc. Natl.
- 392 Acad. Sci. USA, 7: 235–237.
- 393 Takahashi, K.H., Okada, Y., and Teramura, K. 2011. Genome-wide deficiency screen
- for the genomic regions responsible for heat resistance in *Drosophila melanogaster*.
- BMC Genetics, **12**: 57. doi:10.1186/1471-2156-12-57.
- 396 Tobler, R., Hermisson, J., and Schlötterer, C. 2015. Parallel trait adaptation across
- 397 opposing thermal environments in experimental *Drosophila melanogaster*
- 398 populations. Evolution, **69**: 1745–1759. doi:10.1111/evo.12705.
- Umina, P.A., Weeks, A.R., Kearney, M.R., McKechnie, S.W., and Hoffmann, A.A.
- 400 2005. A rapid shift in a classic clinal pattern in *Drosophila* reflecting climate change.
- 401 Science, 308: 691–693. doi:10.1126/science.1109523.
- 402 Wasserman, M. 1992. Cytological evolution of the *Drosophila repleta* species group. *In*
- 403 *Drosophila* inversion polymorphism. *Edited by* C.B. Krimbas and J.R. Powell. CRC
- 404 Press Inc., Boca Raton, FL. pp. 455–552.

405	Zivanovic, G., and Mestres, F. 2010. Viabilities of Drosophila subobscura homo- and
406	heterokaryotypes at optimal and stress temperatures. I. Analysis over several years.
407	Hereditas, 147: 70-81. doi:10.1111/j.1601-5223.2009.02163.x.
408	Zivanovic, G., and Mestres, F. 2011. Changes in chromosomal polymorphism and
409	global warming: the case of Drosophila subobscura from Apatin (Serbia). Genet.
410	Mol. Biol. 34 : 489–495. doi:10.1590/S1415-47572011000300020.
411	Zivanovic, G., Arenas, C., and Mestres, F. 2012. Short- and long-term changes in
412	chromosomal inversion polymorphism and global warming: Drosophila subobscura
413	from the Balkans. Isr. J. Ecol. Evol. 58: 289-311. doi:10.1560/IJEE.58.4.289.
414	Zivanovic, G., Arenas, C., and Mestres, F. 2014a. Inbreeding and thermal adaptation in
415	Drosophila subobscura. Genome, 57: 481–488. doi:10.1139/gen-2014-0149.
416	Zivanovic, G., Arenas, C., and Mestres, F. 2014b. Inversion polymorphism in two
417	Serbian natural populations of Drosophila subobscura: analysis of long-term
418	changes. Genetika, 50 : 638–644. doi:10.7868/S0016675814060150.
419	Zivanovic, G., Arenas, C., and Mestres, F. 2015. Medium-term changes in Drosophila
420	subobscura chromosomal inversion polymorphism: a possible relation with global
421	warming? J. Genet. 94: 343-346.
422	Zivanovic, G., Arenas, C., and Mestres, F. 2016. Individual inversions or their
423	combinations: which is the main selective target in a natural population of

424 *Drosophila subobscura*? J. Evol. Biol. **29**: 657–664. doi:10.1111/jeb.12800.

https://mc06.manuscriptcentral.com/genome-pubs

- **Fig. 1.** Regression lines of *CTI* on latitude. Open squares and dashed line correspond to
- 426 'old' samples, whereas solid squares and solid line indicate 'new' samples.
- 427
- 428

Table 1. *CTI* values (with their confidence interval) for the whole karyotype in European populations of *D. subobscura*. Populations have been sorted according to their latitude.

Population	Country	Year	Latitude	Longitude	CTI	Confidence interval	Reference
Drobak	Norway	1962	59°40'N	10°40'E	-0.915	[-0.950, -0.858]	Sperlich (1964)
Groningen	Netherlands	1964	53°13'N	6°34'E	-0.731	[-0.781, -0.673]	Balanyà et al. (2004)
Groningen	Netherlands	1999	53°13'N	6°34'E	-0.335	[-0.420, -0.246]	Balanyà et al. (2004)
Louvain-la-Neuve	Belgium	1976	50°40'N	4°36'E	-0.509	[-0.593, -0.416]	Balanyà et al. (2004)
Louvain-la-Neuve	Belgium	1999	50°40'N	4°36'E	-0.235	[-0.319, -0.148]	Balanyà et al. (2004)
Tübingen	Germany	1975	48°31'N	9°3'E	-0.614	[-0.668, -0.556]	Balanyà et al. (2004)
Tübingen	Germany	2000	48°31'N	9°3'E	-0.415	[-0.497, -0.327]	Balanyà et al. (2004)
Vienna	Austria	1955	48°13'N	16°22'E	-0.600	[-0.664, -0.529]	Balanyà et al. (2004)
Vienna	Austria	2001	48°13'N	16°22'E	-0.469	[-0.527, -0.407]	Balanyà et al. (2004)
Zürich	Switzerland	1963	47°23'N	8°33'E	-0.622	[-0.647, -0.596]	Gosteli (1990)
Zürich	Switzerland	1964	47°23'N	8°33'E	-0.575	[-0.601, -0.546]	Gosteli (1990)

Zürich	Switzerland	1984	47°23'N	8°33'E	-0.527	[-0.573, -0.478]	Gosteli (1990)
Zürich	Switzerland	1986	47°23'N	8°33'E	-0.522	[-0.546, -0.497]	Gosteli (1990)
Zürich	Switzerland	1987	47°23'N	8°33'E	-0.468	[-0.487, -0.448]	Gosteli (1990)
Leuk	Switzerland	1977	46°19'N	7°38'E	-0.294	[-0.349, -0.237]	Balanyà et al. (2004)
Leuk	Switzerland	2000	46°19'N	7°38'E	-0.228	[-0.306, -0.147]	Balanyà et al. (2004)
Apatin	Serbia	1994	45°40'N	19°0'E	-0.347	[-0.439, -0.250]	Zivanovic and Mestres (2011)
Apatin	Serbia	2009	45°40'N	19°0'E	-0.025	[-0.211, 0.161]	Zivanovic and Mestres (2011)
Villars	France	1976	45°23'N	0°42'E	-0.241	[-0.306, -0.173]	Balanyà et al. (2004)
Villars	France	2001	45°23'N	0°42'E	-0.113	[-0.186, -0.040]	Balanyà et al. (2004)
Avala	Serbia	2004	44°48'N	20°30'E	0.374	[0.245, 0.494]	Zivanovic et al. (2015)
Avala	Serbia	2011	44°48'N	20°30'E	0.426	[0.328, 0.516]	Zivanovic et al. (2015)
Carasco	Italy	<1975	44°21'N	9°21'E	-0.023	[-0.129, 0.084]	Prevosti et al. (1984)
Petnica	Serbia	1995	44°14′N	9°55′Е	0.122	[0.021, 0.222]	Zivanovic et al. (2012)
Petnica	Serbia	2010	44°14′N	9°55′E	0.354	[0.211, 0.487]	Zivanovic et al. (2012)
Montpellier	France	1972	43°36'N	3°52'E	-0.058	[-0.127, 0.011]	Solé et al. (2002)

Montpellier	France	1998	43°36'N	3°52'Е	0.030	[-0.019, 0.080]	Solé et al. (2002)
Lagrasse	France	1962	43°5'N	2°37'E	0.010	[-0.104, 0.123]	Solé et al. (2002)
Lagrasse	France	1997	43°5'N	2°37'E	0.101	[0.028, 0.173]	Solé et al. (2002)
Queralbs	Spain	1966	42°21'N	2°91E	0.233	[0.113, 0.348]	Solé et al. (2002)
Queralbs	Spain	1997	42°21'N	2°91E	0.328	[0.253, 0.400]	Solé et al. (2002)
Alfano	Italy	<1975	40°11'N	1 5°25' Е	0.525	[0.406, 0.631]	Prevosti et al. (1984)
Riba-roja	Spain	1963	39°34'N	0°34'W	0.450	[0.358, 0.535]	Solé et al. (2002)
Riba-roja	Spain	1998	39°34'N	0°34'W	0.550	[0.497, 0.600]	Solé et al. (2002)
Etna	Italy	<1975	37°45'N	14°59'E	0.958	[[] [0.910, 0.985]	Prevosti et al. (1984)
Punta Umbría	Spain	1970	37°10'N	6°57'W	0.469	[0.390, 0.540]	Solé et al. (2002)
Punta Umbría	Spain	1998	37°10'N	6°57'W	0.600	[0.520, 0.676]	Solé et al. (2002)
Málaga	Spain	1963	36°43'N	4°25'W	0.540	[0.457, 0.613]	Solé et al. (2002)
Málaga	Spain	1998	36°43'N	4°25'W	0.670	[0.604, 0.728]	Solé et al. (2002)

Population	Country	Year	Latitude	Longitude	CTI	Confidence interval	Reference
Gävle	Sweden	1987	60°40'N	17°8'E	-1	[-1, -0.610]	Mestres et al. (1994)
Sunne	Sweden	1977	59°50'N	13°8'E	-1	[-1, -0.899]	Pinsker and Sperlich (1981)
Lilla-Edet	Sweden	1988	58°8'N	12°08'E	-1	[-1, -0.846]	Mestres et al. (1994)
Fort Augustus	Scotland	1979	57°8'N	4°40'W	-0.420	[-0.572, -0.248]	Pinsker and Sperlich (1981)
Gesten	Denmark	1988	55°31'N	9°12'E	-0.871	[-0.903, -0.591]	Mestres et al. (1994)
Ter-Apel	Netherlands	1988	52°52'N	7°3'E	-0.469	[-0.617, -0.298]	Mestres et al. (1994)
Crécy	France	1988	50°06'N	1°53'E	-0.122	[-0.341, 0.106]	Mestres et al. (1994)
Taulé	France	1988	48°36'N	3°53'W	0.014	[-0.232, 0.260]	Mestres et al. (1994)
Tübingen	Germany	1978	48°31'N	9°3'E	-0.693	[-0.793, -0.572]	Pinsker and Sperlich (1981)
Aizenay	France	1988	46°44'N	1°36'W	0.189	[-0.052, 0.415]	Mestres et al. (1994)
Formia	Italy	1980	41°15'N	13°26'E	0.743	[0.588, 0.856]	Pinsker and Sperlich (1981)
Ponza	Italy	1977	40°45'N	12°57'E	0.899	[0.772, 0.967]	Pinsker and Sperlich (1981)

Table 2. CTI values for O chromosome in European populations of D. subobscura. Populations have been sorted according to their latitude.

Cinisi	Italy	1978	38°10'N	13°6'E	0.982	[0.900, 1]	Pinsker and Sperlich (1981)

D'ar

Supplementary Table S1. Results of the *CTI* index comparisons in samples of different years from Zürich (Switzerland). The value of the test is presented above with the corresponding value of *P* below. Significant values (P < 0.05) are in bold.

_	Zürich 1964	Zürich 1984	Zürich 1986	Zürich 1987
Zürich 1963	-2.473	-3.647	-5.417	-8.920
	0.0191	0.0008	0.0000	0.0000
Zürich 1964	-	-1.769	-2.768	-6.032
		0.0854	0.0093	0.0000
Zürich 1984	-	-	-0.169	-2.220
			0.8660	0.0330
Zürich 1986	-	-	S.	-3.348
				0.0016

Supplementary Table S2. *CTI* values (with their confidence interval) for the O chromosome in fifteen European populations of *D. subobscura* collected in different years. Populations have been sorted according to their latitude.

Population	Country	Year	Latitude	Longitude	CTI	Confidence interval	Reference
Groningen	Netherlands	1964	53°13'N	6°34'E	-0.910	[-0.967, -0.810]	Balanyà et al. (2004)
Groningen	Netherlands	1999	53°13'N	6°34'E	-0.093	[-0.296, 0.116]	Balanyà et al. (2004)
Louvain-la-Neuve	Belgium	1976	50°40'N	4°36'E	-0.462	[-0.650, -0.237]	Balanyà et al. (2004)
Louvain-la-Neuve	Belgium	1999	50°40'N	4°36'E	0.162	[-0.039, 0.353]	Balanyà et al. (2004)
Tübingen	Germany	1975	48°31'N	9°3'E	-0.795	[-0.878, -0.682]	Balanyà et al. (2004)
Tübingen	Germany	2000	48°31'N	9°3'E	-0.415	[-0.497, -0.327]	Balanyà et al. (2004)
Vienna	Austria	1955	48°13'N	16°22'E	-0.760	[-0.863, -0.620]	Balanyà et al. (2004)
Vienna	Austria	2001	48°13'N	16°22'E	-0.372	[-0.509, -0.222]	Balanyà et al. (2004)
Leuk	Switzerland	1977	46°19'N	7°38'E	-0.341	[-0.458 -0.216]	Balanyà et al. (2004)
Leuk	Switzerland	2000	46°19'N	7°38'E	-0.230	[-0.430, -0.045]	Balanyà et al. (2004)
Apatin	Serbia	1994	45°40'N	19°0'E	-0.326	[-0.517, -0.114]	Zivanovic and Mestres (2011)

Apatin	Serbia	2009	45°40'N	19°0'E	-0.025	[-0.211, 0.161]	Zivanovic and Mestres (2011)
Villars	France	1976	45°23'N	0°42'E	0.033	[-0.117, 0.181]	Balanyà et al. (2004)
Villars	France	2001	45°23'N	0°42'E	0.202	[0.043, 0.354]	Balanyà et al. (2004)
Avala	Serbia	2004	44°48'N	20°30'E	0.564	[0.300, 0.764]	Zivanovic et al. (2015)
Avala	Serbia	2011	44°48'N	20°30'E	0.550	[0.336, 0.722]	Zivanovic et al. (2015)
Petnica	Serbia	1995	44°14′N	9°55′Е	0.200	[-0.011, 0.398]	Zivanovic et al. (2012)
Petnica	Serbia	2010	44°14′N	9°55′E	0.467	[0.161, 0.708]	Zivanovic et al. (2012)
Montpellier	France	1972	43°36'N	3°52' Е	-0.257	[-0.404, -0.101]	Solé et al. (2002)
Montpellier	France	1998	43°36'N	3°52' Е	0.229	[0.117, 0.336]	Solé et al. (2002)
Lagrasse	France	1962	43°5'N	2°37'E	0.151	[-0.092, 0.381]	Solé et al. (2002)
Lagrasse	France	1997	43°5'N	2°37'E	0.307	[0.145, 0.457]	Solé et al. (2002)
Queralbs	Spain	1966	42°21'N	2°91E	0.069	[-0.203, 0.333]	Solé et al. (2002)
Queralbs	Spain	1997	42°21'N	2°91E	0.317	[0.132, 0.485]	Solé et al. (2002)
Riba-roja	Spain	1963	39°34'N	0°34'W	0.396	[0.113, 0.633]	Solé et al. (2002)
Riba-roja	Spain	1998	39°34'N	0°34'W	0.452	[0.285, 0.598]	Solé et al. (2002)

Punta Umbría	Spain	1970	37°10'N	6°57'W	0.588	[0.242, 0.826]	Solé et al. (2002)
Punta Umbría	Spain	1998	37°10'N	6°57'W	0.750	[0.537, 0.889]	Solé et al. (2002)
Málaga	Spain	1963	36°43'N	4°25'W	0.182	[-0.273, 0.586]	Solé et al. (2002)
Málaga	Spain	1998	36°43'N	4°25'W	0.667	[0.454, 0.822]	Solé et al. (2002)

Supplementary Table S3. For the O chromosome of *D. subobscura*, values of *CTI*, statistical test between 'old' and 'new' samples and corresponding values of *P* in the comparison of 15 natural populations collected in a large interval of years. Significant values (P < 0.05) are in bold.

Population	CTI 'Old' sample	CTI 'New' Sample	Test value	Р
Groningen	-0.910	-0.093	-7.447	0.0000
Louvain-la-Neuve	-0.462	0.162	-4.193	0.0000
Tübingen	-0.795	-0.415	-4.901	0.0000
Vienna	-0.760	-0.372	-3.908	0.0003
Leuk	-0.341	-0.230	-1.061	0.3343
Apatin	-0.326	-0.025	-2.194	0.0604
Villars	0.033	0.202	-1.589	0.1861
Avala	0.564	0.550	0.094	0.9254
Petnica	0.200	0.467	-1.538	0.1861
Montpellier	-0.257	0.229	-5.101	0.0000

Lagrasse	0.151	0.307	-1.138	0.3344
Queralbs	0.069	0.317	-1.594	0.1862
Riba-roja	0.396	0.452	-0.381	0.7531
Punta Umbría	0.588	0.750	-1.059	0.3344
Málaga	0.182	0.667	-2.389	0.0422

Supplementary Table S4. *CTI* values (with their confidence interval) for the E chromosome in fifteen European populations of *D. subobscura* collected in different years. Populations have been sorted according to their latitude.

Population	Country	Year	Latitude	Longitude	CTI	Confidence interval	Reference
Groningen	Netherlands	1964	53°13'N	6°34'E	-0.972	[-0.992, -0.902]	Balanyà et al. (2004)
Groningen	Netherlands	1999	53°13'N	6°34'E	-0.933	[0.977, -0.813]	Balanyà et al. (2004)
Louvain-la-Neuve	Belgium	1976	50°40'N	4°36'E	-0.912	[-0.970, -0.756]	Balanyà et al. (2004)
Louvain-la-Neuve	Belgium	1999	50°40'N	4°36'E	-0.750	[-0.857, -0.580]	Balanyà et al. (2004)
Tübingen	Germany	1975	48°31'N	9°3'E	-0.919	[-0.960, -0.837]	Balanyà et al. (2004)
Tübingen	Germany	2000	48°31'N	9°3'E	-0.888	[-0.952, -0.750]	Balanyà et al. (2004)
Vienna	Austria	1955	48°13'N	16°22'E	-0.840	[-0.912, -0.718]	Balanyà et al. (2004)
Vienna	Austria	2001	48°13'N	16°22'E	-0.838	[-0.904, -0.732]	Balanyà et al. (2004)
Leuk	Switzerland	1977	46°19'N	7°38'E	-0.848	[-0.906, -0.761]	Balanyà et al. (2004)
Leuk	Switzerland	2000	46°19'N	7°38'E	-0.838	[-0.914, -0.706]	Balanyà et al. (2004)
Apatin	Serbia	1994	45°40'N	19°0'E	-0.728	[-0.845, -0,546]	Zivanovic & Mestres (2011)

Apatin	Serbia	2009	45°40'N	19°0'E	-0.385	[-0.670, -0.0]	Zivanovic & Mestres (2011)
Villars	France	1976	45°23'N	0°42'E	-0.831	[-0.902, -0.716]	Balanyà et al. (2004)
Villars	France	2001	45°23'N	0°42'E	-0.694	[-0.799, -0.546]	Balanyà et al. (2004)
Avala	Serbia	2004	44°48'N	20°30'E	0.384	[0.059, 0,583]	Zivanovic et al. (2015)
Avala	Serbia	2011	44°48'N	20°30'E	0.380	[0.150, 0.571]	Zivanovic et al. (2015)
Petnica	Serbia	1995	44°14′N	9°55′ Е	-0.024	[-0.232, 0.186]	Zivanovic et al. (2012)
Petnica	Serbia	2010	44°14′N	9°55′ Е	0.143	[-0.183, 0.440]	Zivanovic et al. (2012)
Montpellier	France	1972	43°36'N	3°52' Е	-0.064	[-0.193, 0.068]	Solé et al. (2002)
Montpellier	France	1998	43°36'N	3°52' Е	-0.585	[-0.674, -0.478]	Solé et al. (2002)
Lagrasse	France	1962	43°5'N	2°37'E	-0.630	[-0.792, -0.383]	Solé et al. (2002)
Lagrasse	France	1997	43°5'N	2°37'E	-0.496	[-0.637, -0.323]	Solé et al. (2002)
Queralbs	Spain	1966	42°21'N	2°91E	-0.447	[-0.661, -0.165]	Solé et al. (2002)
Queralbs	Spain	1997	42°21'N	2°91E	-0.186	[-0.358, -0.001]	Solé et al. (2002)
Riba-roja	Spain	1963	39°34'N	0°34'W	0.050	[-0.166, 0.262]	Solé et al. (2002)
Riba-roja	Spain	1998	39°34'N	0°34'W	0.271	[0.126, 0,404]	Solé et al. (2002)

Punta Umbría	Spain	1970	37°10'N	6°57'W	0.440	[0.250, 0.597]	Solé <i>et al.</i> (2002)
Punta Umbría	Spain	1998	37°10'N	6°57'W	0.172	[-0.038, 0.368]	Solé et al. (2002)
Málaga	Spain	1963	36°43'N	4°25'W	0.013	[-0.208, 0.233]	Solé et al. (2002)
Málaga	Spain	1998	36°43'N	4°25'W	0.608	[0.433, 0,739]	Solé et al. (2002)

Supplementary Table S5. For the E chromosome of *D. subobscura*, values of *CTI*, statistical test between 'old' and 'new' samples and corresponding values of *P* in the comparison of 15 natural populations collected in a large interval of years. Significant values (P < 0.05) are in bold.

Population	CTI 'Old' sample	CTI 'New' Sample	Test value	Р
Groningen	-0.972	-0.933	-1.001	0.5026
Louvain-la-Neuve	-0.912	-0.750	-1.753	0.1997
Tübingen	-0.919	-0.888	-0.566	0.7141
Vienna	-0.840	-0.838	-0.038	0.9699
Leuk	-0.848	-0.838	-1.167	0.9290
Apatin	-0.728	-0.385	-1.996	0.1997
Villars	-0.831	-0.694	-1.742	0.1997
Avala	0.384	0.380	-0.184	0.9290
Petnica	-0.024	0.143	-0.829	0.5554
Montpellier	-0.064	-0.585	6.061	0.0000

Lagrasse	-0.630	-0.496	-0.964	0.5026
Queralbs	-0.447	-0.186	-1.558	0.2235
Riba-roja	0.050	0.271	-1.679	0.0932
Punta Umbría	0.440	0.172	1.923	0.0544
Málaga	0.013	0.608	-4.182	0.0000

