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Abstract 26 

This paper proposes an interpolation model for monthly rainfall in large areas of 27 

complex orography. It has been implemented in the Iberian Peninsula (continental 28 

territories of Spain and Portugal), Balearic, and Canary Islands covering a territory 29 

of almost 600.000 km2. To do this a dataset that comprises a total number of 11,822 30 

monthly precipitation series has been created (11,042 provided by the Spanish 31 

Meteorological Agency and 780 provided by the National Water Resources 32 

Information System of the Portuguese Water Institute). The dataset covers the 33 

period from October 1940 until September 2005. The interpolation model has been 34 

based on the assumption of two different components on monthly precipitation. The 35 

first component reflects local and seasonal characteristics and 24 different mean 36 

monthly precipitation maps (12) and standard deviations maps (12) compose it. It 37 

considers the varying influence of physiographic variables such as altitude and 38 

orientation. The second precipitation component reflects the synoptic pattern that 39 

dominated each month of the series and it is composed by series of anomalies of 40 

monthly precipitation (780). Anomalies have been interpolated by means of ordinary 41 

kriging once local spatial continuity was assumed. Gridded maps of each variable 42 

have been developed at 200 m resolution following a hybrid methodology that 43 

implements two different interpolation techniques. The first technique applies a 44 

regression analysis to derive maps depending on altitude and orientation; the second 45 

one is a weighting technique to consider the non-linearity of the precipitation/altitude 46 

dependence. Cross validation has been applied to estimate the goodness of both 47 

techniques. Results show an average annual precipitation of 655 mm/year. Although 48 

this figure is only 4% less than the estimate of MAGRAMA (2004), regional and local 49 



4 

differences are highlighted when the spatial distribution is considered. The model 50 

constitutes a comprehensive implementation considering the availability of historical 51 

records and the need of avoiding slow calculations in large territories. 52 

1 Introduction and objectives 53 

The analysis and validation of interpolation procedures of precipitation is a topic 54 

widely discussed in the fields of meteorology and hydrology (Daly et al., 2017; Singh 55 

et al., 1995; World Climate Programme, 1985; Linsley et al., 1949). Basic data are 56 

precipitation records of rain gauges, particularly when the studies are focused on 57 

historical periods prior to the development of remote observation techniques (radar 58 

and satellite). Due to the scarcity of records in areas where the variability of 59 

precipitation is greater (Lloyd, 2005), precipitation estimation is carried out 60 

considering the influence of physiographic factors and the spatial continuity of 61 

precipitation, combining statistical and experimental methodologies (Hanson, 1982), 62 

as well as physically based models (Barstad et al., 2007; Rotunno and Ferretti, 63 

2001). Linear or multivariate regression models are used to construct statistical 64 

relationships between precipitation and some physiographic variables such as 65 

altitude, orientation, slope of the terrain, distance to water masses or altitude of 66 

nearby mountainous areas. These factors are directly related to the triggering effect 67 

and a forced uplift when wind direction and terrain’s slope interact. Besides, the 68 

influence of orography is also reflected in the shield effect and in the driving effect of 69 

humid air masses through a complex topography (Bookhagen and Burbank, 2006; 70 

Barros et al., 2004; Dhar and Nandargui, 2004; Marquínez et al., 2003; Hay et al., 71 

1998).  72 
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The methods of interpolation have been classified between deterministic or 73 

stochastic, although the analysis of some reveals conceptual similarities. The 74 

stochastic approach shows a formal definition to deal properly with uncertainties of 75 

record measurement or those derived from the complexity of the physical processes 76 

involved in precipitation generation mechanisms. However, variables such as 77 

precipitation are not stationary and depend on a high number of local non-stationary 78 

factors. The elementary predictive variable in the interpolation schemes is distance 79 

to available records. Interpolation methods use it not only explicitly, but also through 80 

the selection of records and the formulation of measures of spatial continuity. 81 

Location allows the definition of altitude, orientation, slope, etc. to be used as 82 

predictive variables. 83 

In addition to the study of physiographic variables influencing precipitation, 84 

interpolation models explicitly incorporate the evaluation of the spatial continuity by 85 

means of covariances, polynomial structures, splines, variational approach, 86 

quadratic function and adjustment criteria such as error and variance minimization 87 

(Tobin et al. 2011; Naoum and Tsanis, 2004a and 2004b; Goovaerts, 2000; 88 

Martínez-Cob, 1996; Weber and Englund, 1994 and 1992; Tabios III and Salas, 89 

1985; Creutin and Obled, 1982; Gambolati and Volpi, 1979). Although there are a 90 

large number of interpolation models, the question of the optimal or the best model 91 

cannot be answered straightforwardly. Gómez-Hernández et. al. (2001) concluded 92 

that complex models formally capable of integrating different types of relationships 93 

and models of continuity in a rigorous manner such as kriging or the variational 94 

approach (Mitas and Mitasova, 1988), do not guarantee obtaining better results than 95 

those derived from simpler models. A typical example is the Thiessen methodology 96 
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(Thiessen, 1911), that filters out redundancies based exclusively on the 97 

extrapolation of each record to the closest area (Falivene et al., 2010; Isaaks and 98 

Srivastava, 1989). However, the goodness of an interpolation model depends largely 99 

on the spatial variability of the precipitation event considered and on the density and 100 

representativeness of the ground stations network. It is to say, it depends both on 101 

the absence of records in places where the variability of precipitation is greater, as 102 

occurs in the mountains and the coast, but also on the redundancy of data recorded 103 

at close locations. Furthermore, it depends on the temporal step of the study, 104 

considering that the complexity of the precipitation variability increases the shorter 105 

the time interval is, and the random component becomes predominant. Particularly, 106 

the lack of data in mountainous areas does not make it advisable to use techniques 107 

whose parameterization is sensitive to the lack of information. 108 

In spite of this, most studies recommend the use of altitude as the basic variable for 109 

interpolation at regional and seasonal scales. This is the case for procedures 110 

implemented in the Precipitation-elevation Regressions on Independent Slopes 111 

Model (PRISM) to estimate fields of precipitation across conterminous North 112 

America (Daly et al., 2017, 2008 and 1994).  113 

Precipitation-elevation regressions were also used in Spain in combination with an 114 

Inverse Distance Weighting (IDW) algorithm to create the monthly precipitation maps 115 

that were used as input to the distributed hydrological model SIMPA with the 116 

objective of analyzing water resources distribution in Spain (MAGRAMA, 2004). To 117 

reflect orographic influence and the underestimation of precipitation given, a 118 

collation of pseudo precipitation records was then added to original records. Pseudo 119 

precipitation records were estimated by linear regression analyzed in certain 120 
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Spanish regions (Estrela et al., 1999, Álvarez-Rodríguez et al., 2017). Regions of 121 

approximately 5,000 km2 were delimitated considering windward and leeward 122 

location. A criterion to control the accuracy of interpolated precipitation was obtained 123 

from the comparison of recorded runoff volume and the precipitation excess. But 124 

uncertainties were revealed when considering the quality of flow data and the 125 

calculus of base flow, abstractions and direct runoff. Moreover, the procedure 126 

followed in MAGRAMA (2004) was considered inadequate and tedious to update the 127 

water resources assessment and therefore, the updating of the pseudo precipitation 128 

data. 129 

Rainfall-runoff models have been used to estimate natural water resources 130 

(unaltered) across the Spanish territory (Álvarez-Rodríguez et al., 2016; MAGRAMA, 131 

2004). On the Iberian Peninsula, moist air masses from the Atlantic Ocean constitute 132 

the most important source of precipitation, while the spatial distribution of 133 

precipitation is a function of orography and direction of air flow. The influence of the 134 

Mediterranean Sea in precipitation occurrence is also important as reflected in the 135 

regional change of the seasonal precipitation pattern to maxima occurring in autumn 136 

and spring.  137 

Álvarez-Rodríguez et al. (2017) described some basis to improve spatial estimates 138 

of rainfall for the Iberian Peninsula and Spanish Islands. They concluded that 139 

precipitation over this territory depends on its complex orographic structure and 140 

predominant weather types. Altitude and orientation are the main physiographic 141 

factors that would help to estimate precipitation. In Spain, precipitation tends to be 142 

positively correlated with altitude although this relationship varies depending on 143 

seasonality and location. Annual precipitation lapse rates (PLR) were found to range 144 



8 

from 0.3 to 1.2 mm/m, reaching 1.5 mm/m in the Northern Iberian Peninsula and 145 

diminish at higher altitudes (Álvarez-Rodríguez et al., 2017). This would justify the 146 

use of non-linear functions in precipitation-altitude regression analysis as it will be 147 

shown in this paper. In coastal areas, large precipitation increments or decrements 148 

are found where small differences in altitude are given. Additionally, a source of 149 

uncertainty is identified considering that precipitation is mostly recorded at low 150 

elevations. 151 

This paper proposes a hybrid model of interpolation at a regional scale that can be 152 

used to derive high resolution fields of precipitation over territories with complex 153 

orography. The interpolation model assumes two different components on monthly 154 

precipitation. The first component reflects local and seasonal characteristics. It is 155 

composed by 24 different monthly precipitation maps of means (12) and standard 156 

deviations (12). It considers the varying influence of physiographic variables such as 157 

altitude and orientation. The second precipitation component reflects the synoptic 158 

pattern and it is composed by normalized anomalies derived from monthly 159 

precipitation records and monthly means and standard deviations. The model 160 

constitutes a comprehensive implementation considering the availability of historical 161 

records and the need of avoiding slow calculations in large territories. This model 162 

has been applied to estimate monthly precipitation maps of 200 m resolution for the 163 

Iberian Peninsula, Balearic and Canary Islands, from October 1940 to September 164 

2005. After the description of the database and data sources, the paper firstly 165 

describes the procedure used for the estimation of the monthly precipitation patterns 166 

and secondly, the interpolation of the anomalies of the precipitation records. The 167 
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analysis carried out to validate these procedures is also shown. To conclude, the 168 

achievements of the hybrid interpolation model are remarked. 169 

2 Data Sources 170 

2.1 Recorded ground series of rainfall 171 

The databases of ground recorded precipitation were provided by the Spanish 172 

Meteorological Office (AEMET) and the National Water Resources Information 173 

System of the Portuguese Water Institute (SNIRH-INAG). Spanish data are supplied 174 

by AEMET though its Virtual Office at https://sede.aemet.gob.es/. Portuguese data 175 

are available at https://snirh.apambiente.pt/. The whole database of monthly 176 

precipitation comprised 11,042 ground series from AEMET and 780 ground series 177 

from SNIRH-INAG. Although some series comprise records from the 19th century 178 

until the hydrological year 2004/05, the selected period is 1940/41-2004/05.  179 

Existing gaps in recorded rainfall series were filled with regression-based data. Basis 180 

of the completion model as well as a description of available data may be found in 181 

Álvarez-Rodríguez et al. (2017).  182 

2.2 Location, elevation data and derived models 183 

Most of Spanish and Portuguese territories are a part of the Iberian Peninsula 184 

(almost 582,000 km2), which is in southwestern Europe and surrounded by the 185 

Atlantic Ocean and the Mediterranean Sea. This research encompasses the Iberian 186 

Peninsula and the Balearic Islands in the Mediterranean Sea (5,000 km2) and the 187 

Canary Islands (7,500 km2) in the Atlantic Ocean, which are influenced by a tropical 188 

climate. 189 

https://snirh.apambiente.pt/
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A Digital Elevation Model (DEM) has been composed joining Spanish and a 190 

Portuguese DEM to derive its main physiographic features as described in Álvarez 191 

Rodríguez et al. (2017). Figure 1 shows the Digital Aspect Model (DAM, cell angle 192 

at which terrain slope faces, counterclockwise from East) obtained considering 193 

relative elevation surrounding each cell of a DEM. This is done by means of the 194 

algorithm r.slope.aspect implemented in the GRASS-GIS (GRASS Development 195 

Team, 2012; Neteler and Mitasova, 2004). 196 

 197 

Figure 1. Main Spanish mountain systems and hydrographic catchments are shown over a 198 

composition of Spanish and Portugal 200 m resolution DAM. Based on the UTM zone 30 199 

Geographical coordinates the Canary Islands are displaced 500,000 m East and 750,000 m 200 

North to encompass the whole geographical territory in a workable layout.  201 
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3 The Hybrid Model for Interpolation 202 

3.1 Rationale  203 

The following 5 points are some preliminary requirements adopted for the 204 

development of an interpolation model to estimate monthly precipitation maps for the 205 

territory with a 200 m resolution: 206 

1. The number of records to be interpolated varies from month to month; 207 

2. The selection of records to be interpolated should consider both the scarcity of 208 

records in mountainous areas and the redundancies of records in lower altitudes; 209 

3. Elevation and orientation are the predictive variables and their influences in 210 

precipitation vary throughout the territory; 211 

4. The interpolation model should be capable of working with different humid air 212 

masses entering the territory and their different interactions with orography; 213 

5. Finally, the time for calculation should be reduced enough considering the need 214 

of deriving a whole set of 780 monthly interpolated maps of precipitation from 215 

October 1940 to September 2005. 216 

In accordance with these requirements, a hybrid interpolation model based on the 217 

decomposition of temporal components used in synthetic series completion and 218 

generation procedures has been proposed (Álvarez-Rodríguez et al., 2017; Salas et 219 

al., 1980; Fiering and Jackson, 1971). It has been named “hybrid model” because 220 

two different interpolation models were implemented for two precipitation 221 

components. 222 

 223 

 224 



12 

 225 

Figure 2. Flow chart of methodology 226 

Figure 2 shows a flowchart of the methodology applied. After the compilation of 227 

records and completion of gaps in series of precipitation (Álvarez-Rodríguez et al., 228 

2017), monthly statistics of precipitation are estimated. The first component of 229 

precipitation is composed by the monthly means and the monthly standard 230 

deviations. Being the statistics that represent monthly centrality and variability, it is 231 

considered that they represent the local influence on precipitation. The monthly step 232 

accounts for seasonality. 233 
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The second component of monthly precipitation is represented by the anomalies 234 

resulting from normalizing each monthly record of precipitation once monthly means 235 

and standard deviations are known. The anomalies vary in time and would be 236 

associated with the dominant synoptic circulation pattern each month. The following 237 

sections describe in detail the algebra of each component. Regression analysis is 238 

applied to derive monthly maps of means and standard deviations, while ordinary 239 

kriging after an automated parameterization is applied on anomalies.  240 

3.2 Monthly Components of Centrality and Variability 241 

3.2.1 Estimation of Local Patterns of Precipitation 242 

Local patterns of precipitation were represented by monthly mean and standard 243 

deviation maps. Considering seasonal variability reflected in a monthly step, 24 244 

different maps have been obtained by interpolation of monthly means (12 maps) and 245 

monthly standard deviations (12 maps) derived from recorded series of precipitation 246 

completed previously. Since orographic influence is variable, monthly means and 247 

standard deviations were interpolated by means of regression analysis. Altitude was 248 

used as a predictor in regression analysis. A regression equation was implemented 249 

in each cell of the model. Samples were selected considering the orientation of the 250 

place where each rain gauge station is located and distance from the center of a cell 251 

to nearby rain gauge stations. Then, given the scarcity of records at higher altitudes, 252 

a weighted regression equation was implemented to estimate precipitation to 253 

prioritize nearby records close to a cell.  254 

Statistics of recorded monthly rainfall series were calculated for the period ranging 255 

between the hydrological years 1970/71 and 1999/00, which is the 30-year period of 256 
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maximum data availability (Álvarez-Rodríguez et al., 2017). The selection of a 257 

unique period would assure homogeneity.  258 

Monthly means and standard deviations were interpolated by a moving regression 259 

equation based on altitude but using the orientation of the terrain as a criterion to 260 

select the values of the sample to estimate each cell value. 261 

The statistics obtained are georeferenced by means of the coordinates of each rain 262 

gauge station. Then a selection of statistics is made for each cell based on distance 263 

and orientation. Particularly, those rain gauge stations located over cells whose 264 

orientation (DAM of 200 m resolution) is included in the 180º semicircular sector 265 

formed by the orientation angle of the estimation cell and a semi-amplitude of 90º 266 

are selected. It has been verified that semi-amplitude of less than 45° reduces 267 

excessively the number of records to formulate each regression equation; and larger 268 

semi-amplitudes, that is to say, between 45º and 90º, do not cause significant 269 

differences to the 90º finally chosen. If a cell’s slope is less than 1%, it is considered 270 

that the orientation is not meaningful and rain gauge stations were selected 271 

depending only on the distance. The maximum search distance from the center of 272 

each cell is 100 km, or even larger till a minimum of 12 stations is found. The 273 

maximum number of stations for each sample is 18. 274 

Then, a cell precipitation-altitude regression equation is fitted according to a moving 275 

weighted regression interpolation model (Lloyd, 2005; Naoum and Tsanis, 2004b; 276 

Daly et al., 1994). Each cell-regression equation is fitted by the minimum least 277 

squares criteria, independently of the equation fitted in nearby cells.  278 

A simple linear regression equation between altitude and precipitation would involve 279 

the extrapolation of PLR estimated at medium and low altitudes where precipitation 280 
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is mostly recorded. To improve estimations, logarithmic transformations have been 281 

used to reduce or extend the scale of the transformed variable. 282 

Four laws have been formulated to be applied considering the more suitable variable 283 

to transform (precipitation or altitude) and the positive or negative correlation of 284 

precipitation and altitude.  285 

1. Logarithmic transformation of altitude (Eq. 1). It has the property of extending 286 

the scale of the variable altitude in its lower levels and of reducing it in medium 287 

to high elevations. Therefore, when the altitude-precipitation correlation is 288 

positive, this transformation imposes a convex curvature, which is in 289 

accordance with simplified theoretical approaches that describe a decrease 290 

in PLRs with altitude due to depletion of available humidity. This 291 

transformation is also applied in coastal areas where a negative correlation 292 

and a high variability of precipitation with respect to altitude happens. The 293 

relationship between altitude and precipitation is then given by Eq. (1): 294 

𝑃(𝑋, 𝑌) = 𝑎 ⋅ 𝑙𝑜𝑔[𝑍(𝑋, 𝑌)] + 𝑏 Eq. (1) 295 

where Z(X,Y) is the predictive variable in a cell of geographic coordinates X 296 

and Y, P(X,Y) is the recorded precipitation in that particular cell, a and b the 297 

parameters of the simple regression equation fitted by minimum least 298 

squares.  299 

Then, the criterion to choose this case is that the altitude-precipitation 300 

correlation is positive and the average altitude of the sample is lower than the 301 

altitude of the cell. That is because it is considered that there are more records 302 

at low levels to estimate rain at higher levels. Moreover, this transformation is 303 

also applied when the correlation is negative and the average altitude of the 304 
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sample is higher than that of the cell to be estimated because it is considered 305 

that there are more records at higher levels.  306 

2. Logarithmic transformation of precipitation (Eq. 2). This transformation 307 

weakens the decrease in precipitation when the altitude-precipitation 308 

correlation is negative avoiding the extrapolation of negative PLRs from the 309 

coast to the inner territories. This typically occurs in coastal areas. It is also 310 

applied with positive PLRs where it is necessary to soften the reduction of 311 

rainfall. The relationship between altitude and precipitation is then given by 312 

Eq. 2: 313 

𝑙𝑜𝑔[𝑃(𝑋, 𝑌)] = 𝑎 ⋅ 𝑍(𝑋, 𝑌) + 𝑏            Eq. (2) 314 

Then, the criterion to choose this case is that the altitude-precipitation 315 

correlation is negative and the altitude of the cell is higher than the averaged 316 

elevations of the sample. Likewise, this transformation is applied if positive 317 

correlation and cell’s altitude is lower than the averaged altitudes of the 318 

sample. It should be emphasized that the effect of the logarithmic 319 

transformation on precipitation is less significant, not only because the 320 

sensitivity of the results is lower with reduced precipitation, but also because 321 

in areas of low altitude, the density of the precipitation network is generally 322 

higher. 323 

Being z the predictive variable altitude (Z (X,Y)) or its transformed (log (Z (X,Y))) in 324 

a cell of coordinates X and Y, p the variable precipitation (P (X, Y)) or its transformed 325 

(log (P (X, Y))), i the indicative sub-index of each statistic of a sample of size N (i = 326 

1..N) and wi the weight given to each statistic, the parameters a and b of the 327 

regression equation are obtained according to Eq. (3). 328 
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𝑝 = 𝑎 · 𝑧 + 𝑏  𝑎 =
∑ 𝑤𝑖 ·𝑧𝑖 ·𝑝𝑖
𝑁
𝑖=1 −∑ 𝑤𝑖 ·𝑧𝑖

𝑁
𝑖=1 · ∑ 𝑤𝑖 ·𝑝𝑖

𝑁
𝑖=1

∑ 𝑤𝑖 ·𝑧𝑖
2𝑁

𝑖=1 −(∑ 𝑤𝑖 ·𝑧𝑖
𝑁
𝑖=1 )

2  329 

𝑏 = ∑ 𝑤𝑖 · 𝑝𝑖
𝑁
𝑖=1 −

∑ 𝑤𝑖 ·𝑧𝑖 ·𝑝𝑖
𝑁
𝑖=1 −∑ 𝑤𝑖 ·𝑧𝑖

𝑁
𝑖=1 · ∑ 𝑤𝑖 ·𝑝𝑖

𝑁
𝑖=1

∑ 𝑤𝑖 ·𝑧𝑖
2𝑁

𝑖=1 −(∑ 𝑤𝑖 ·𝑝𝑖
𝑁
𝑖=1 )

2  Eq. (3) 330 

The weight wi assigned to station i is calculated with an inverse distance function of 331 

exponent h (Eq. 4). h takes the value of 2 after verifying that no significant differences 332 

are obtained between the results obtained with the frequent values, 1, 2 or 3. The 333 

distance dj from i to j rain gauge station is calculated from the center of the coordinate 334 

cell (X,Y,Z) to each one of the N data selected (Xj, Yj, Zj). 335 

𝑤𝑖(𝑋, 𝑌) =

1

𝑑𝑖
ℎ(𝑋,𝑌,𝑍)

∑
1

𝑑𝑗
ℎ(𝑋,𝑌,𝑍)

𝑁
𝑗

  𝑑𝑗 = √(𝑋𝑗 − 𝑋)
2
+ (𝑌𝑗 − 𝑌)

2
+ (𝑍𝑗 − 𝑍)

2
   Eq. (4) 336 

Considering the interpolation in the Iberian Peninsula, Balearic and Canary Islands, 337 

a number of about 15,000,000 cells and, consequently, regression equations were 338 

fitted per month. Figure 3 shows 4 mean monthly precipitation maps representative 339 

of the 4 seasons of a year. They were obtained from the monthly means of 30 years 340 

of precipitation records between the hydrological years 1970/71 and 1999/00. 341 
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 342 

Figure 3. Monthly mean precipitation maps of November (a), February (b), May (c) and 343 

August (d) considering the 30 years period from 1970/71 until 1999/00 344 

Monthly mean and standard deviation maps may be interpolated following the 345 

methodology shown previously. But once interpolated means are calculated, maps 346 

of standard deviations may benefit both from the high correlation coefficients 347 

achieved between the monthly means and monthly standard deviations and from the 348 

softened spatial variability across the territory shown by their ratio, the monthly 349 

coefficient of variation, CV (Álvarez-Rodríguez et al., 2017). The softened spatial 350 

variability is a useful property to interpolate the 12 monthly CVs if assuming a local 351 

stationarity and implementing an ordinary kriging model (OK) based on an 352 

omnidirectional semivariogram (Isaaks and Srivastava, 1989). Figure 4 shows the 353 
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monthly standard deviation maps obtained as a product of mean monthly 354 

precipitation maps by the monthly coefficient of variation estimated by OK. 355 

 356 

Figure 4. Monthly Coefficient of Variation (CV) (a) and Standard Deviation (SD) (b) Maps of 357 

November  358 

3.2.2 Validation of Mean Monthly Maps 359 

A topic for discussion is the validation procedure followed to determine the goodness 360 

of the precipitation maps obtained. A basic criterion is the comparison with previous 361 

estimations. However, precedent estimations are also influenced by several sources 362 

of errors. The present methodology improves the method based solely on distances 363 

to nearest records that was applied in the MAGRAMA report (2004) as interpolation 364 

procedure. MAGRAMA (2004) was the starting point of this present work, aimed to 365 

develop a new model not only dependent on distances. Likewise, the Digital Climatic 366 

Atlas of the Iberian Peninsula published by Ninyerola et al. (2007 and 2005) and the 367 

Iberian Climatic Atlas published by AEMET (2011) were not available in a digital 368 

format. However, the visual comparison with the AEMET (2011) most recent 369 

estimation allowed concluding the agreement between the distributions of the 370 

monthly means of precipitation obtained. 371 



20 

Cross validation is a technique used to estimate the error of interpolation. A 372 

measurement of error is calculated from the comparison of each record against the 373 

value resulting from the interpolation using the rest of the records (Falivene et al., 374 

2010; Isaaks and Srivastava, 1989). Figure 5 shows two scatterplots of mean 375 

monthly precipitation recorded in December and that estimated by the moving 376 

weighted regression interpolation procedure described in this paper, once the 377 

logarithmic transformations and the weighting technique have been applied. The 378 

scatterplots of the rest of the 11 months are similar, although quantities of 379 

precipitation vary. The first scatterplot (left) represents the dispersion of the complete 380 

sample of records in the Iberian Peninsula. The second one (right) shows the 381 

dispersion of a sample corresponding to stations located at an altitude of more than 382 

1,600 masl (Figure 5). 383 

 384 

 385 

Figure 5. Scatterplots of recorded and interpolated monthly precipitation (December) 386 

considering a linear regression and a weighted linear regression on transformed 387 

precipitation. The whole dataset in the Iberian Peninsula (a); records over a 1,600 m high (b) 388 
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Figure 5 shows that both the linear regression method and the transformed-weighted 389 

method underestimate monthly precipitation at higher locations, particularly over 300 390 

mm of precipitation. However, this bias is lower at higher elevations when the 391 

transformed-weighted method is applied. Table 1 shows the mean relative errors 392 

(MRE) obtained for the Iberian Peninsula when the linear regression (LR) and the 393 

regression with logarithmic transformation and weighting (WR) are applied. The 394 

MRE is calculated based on the relative error (RE) of the series i, where i = 1..N 395 

where N is the total number of series (observatories) in the sample (Eq. 5). 396 

𝑅𝐸𝑖 =
𝑃𝑖
𝑖𝑛𝑡 𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑

−𝑃𝑖
𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑

𝑃𝑖
𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 %  𝑀𝑅𝐸 = ∑

𝑅𝐸𝑖

𝑁

𝑁
𝑖=1  Eq. (5) 397 

 398 

399 

Table 1. Monthly MRE (%) obtained for the Iberian dataset considering Linear Regression 400 

(LR) estimation and the Logarithmic Transformation and Weighted Regression (WR) 401 

Based on the above, the logarithmic transformation and data weighting reduces the 402 

bias at high levels, in spite of the uncertainties due ultimately to the scarcity of 403 

information at the highest levels, whatever the chosen procedure is. The 404 

improvement obtained in areas of higher altitudes is considered to be related with 405 

the management of the PLR variability depending on altitude. The weighting 406 

technique applied gives more weight to nearest data and correct the higher PLR 407 

estimated at lower altitudes. So, this conclusion validates the use of the 408 

transformation and weighting techniques. 409 
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3.3 Monthly Anomalies of Recorded Rainfall 410 

3.3.1 Definition and Estimation 411 

The moving weighted regression interpolation procedure could also be applied in a 412 

monthly step from October 1940 to September 2005. Then, a total number of 780 413 

monthly precipitation maps would have been obtained. But the computation time was 414 

considered too long. The hybrid model proposed in this paper only uses the moving 415 

weighted regression interpolation model to estimate 12 maps of monthly mean 416 

patterns and another 12 of standard deviations. Then it is proposed to implement a 417 

second model to interpolate the anomalies derived from each monthly precipitation 418 

record and the calculated statistics. Considering the applicability to large sets of 419 

maps, the reduction of the computational effort is a basic criterion when selecting an 420 

interpolation procedure. 421 

As previously defined, monthly anomalies would represent the variability given by 422 

synoptic circulation patterns in a particular month of a year with respect to local 423 

variability characterized by monthly means and standard deviations. Monthly 424 

anomalies are calculated using the standardization formula (Eq. 6). Given a recorded 425 

series of precipitation and being μi and σi the mean and standard deviation at month 426 

i, the anomaly, ri,j, of precipitation for the i month and j year, Pi,j, is given by Eq. 6. 427 

𝑟𝑖.𝑗 =
𝑃𝑖,𝑗−𝜇𝑖

𝜎𝑖
 Eq. (6) 428 

Then monthly anomalies from October 1940 to September 2005 were calculated for 429 

each rain gauge. Figure 6 shows the histogram of the complete set of anomalies of 430 

the Iberian Peninsula in November 1984. They are supposed to reflect a synoptic 431 

pattern being dominant in a particular month of a year. A similar histogram may be 432 
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obtained for each month of the period considered. Generally speaking, the 433 

histograms show a central body of values with normal appearance and symmetry 434 

around the central value, but there are also cases with a positive bias as a 435 

consequence of the autumnal precipitation maxima in the Eastern areas of the 436 

Peninsula (Figure 6). Some other histograms show negative extremes derived from 437 

the transformation of precipitation values close to zero and low monthly deviations. 438 

This is usually the case in the summer. 439 

 440 

 441 

Figure 6. Histograms of Precipitation Anomalies for November 1984 (a), February 1985 (b), 442 

May 1985 (c) and August 1985 (d) 443 
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Kriging and the analysis of the spatial continuity of data is used to interpolate maps 444 

of anomalies. They have a structural component of continuity that would be 445 

represented by means of an omnidirectional semivariogram. If monthly sample of 446 

anomalies show asymmetry and bias, then a Box-Cox transformation is applied to 447 

facilitate the interpolation and to reduce the sensitivity to the extremes. The well-448 

known Box-Cox transformation (Eq. 7) depends on a parameter λ fitted to minimize 449 

the coefficient of asymmetry of a sample. 450 

𝜆 ≠ 0 ⇒ 𝑦 =
𝑥𝜆−1

𝜆
𝜆 = 0 ⇒ 𝑦 = 𝑙𝑛(𝑥) Eq. (7) 451 

3.3.2 Interpolation of Anomalies 452 

The geostatistical analysis of monthly anomalies was carried out using the statistical 453 

software R and the gstat package (Gräler et al., 2016, R Development Core Team, 454 

2008, Pebesma, 2004). This software implements an automatically fitted 455 

semivariogram model using ordinary least squares criteria. Then, a set of monthly 456 

semivariograms is obtained for the period 1940/41-2004/05 in each of the 3 regions 457 

considered, Iberian Peninsula, Balearic and Canary Islands. The chosen 458 

semivariogram function is the exponential one. Parameters representing the spatial 459 

continuity are the nugget effect, the sill and the range (Figure 7). 460 
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 461 

Figure 7. Semivariogram of Iberian Peninsula anomalies of November 1984 fitted to an 462 

exponential one 463 

Most semivariograms behave in the same way as the one shown in Figure 7. 464 

Nevertheless, some others show greater variability and oscillations. Table 2 shows 465 

the median of each of the 3 parameters (nugget, sill and range) of the exponential 466 

semivariograms fitted from October 1970 to September 2000. Sill and range values 467 

seem to fit higher values during the rainy season that, in the Mediterranean area 468 

correspond to spring and autumn, while in the Atlantic it extends from autumn to 469 

spring.  470 
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 472 

Table 2. Median of semivariogram parameter values found for the collation of anomalies 473 

obtained from October 1970 to September 2000 474 

Ordinary kriging (OK) was used to interpolate anomalies taking into account that this 475 

model may operate with local stationarity. It also weights data to diminish the 476 

influence of redundancies (Isaaks and Srivastava, 1989). Finally, OK shows a 477 

conceptual equivalence with other deterministic models such as the variational 478 

approach by means of regularized spline with tension (RST) (Mitas and Mitasova, 479 

1988). The next section evaluates the OK benefits in respect of the simpler but much 480 

faster IDW as well as the similarities given by a RST approach. 481 

3.3.3 Interpolation Efficiency 482 

The goodness of the interpolation methods applied on anomalies has been 483 

evaluated through the loss of efficiency obtained when the available data is reduced. 484 

Thus, a percentage of rain gauge stations (i.e., their series of anomalies) was 485 

randomly selected and removed from the original sample. Then, the available set of 486 

monthly maps is interpolated and an efficiency coefficient map is obtained. The 487 

efficiency coefficient is then associated to the interpolation model used. Eq. 8 488 

describes the formula used to obtain the efficiency coefficient in each cell.  489 

𝐶𝐸 =
∑ (𝑟𝑖−𝑚𝑟)

2𝑛
𝑖=1 −∑ (𝑠 −𝑖 𝑟𝑖)

2
𝑛
𝑖=1

∑ (𝑟𝑖−𝑚𝑟)2
𝑛
𝑖=1

 Eq. (8) 490 

where si are the mean monthly maps of anomalies for each i year (from 1 to n) 491 

derived from the use of an interpolation model. Taking into account that 3 different 492 

interpolation models are used (IDW, RST and OK), 3 different sets of maps are 493 

estimated. The percentages of reduction from the complete set of rain gauge stations 494 
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are 60%, 40% and 20%. That is to say that the 3 interpolation models are applied to 495 

3 different sets that are equivalent to the use of 40%, 60% and 80% in respect of the 496 

complete set of series. ri is the mean monthly map of anomalies for each year i 497 

interpolated by means of IDW, RST and OK, but for the whole set of series (i.e., a 498 

100% of availability); mr is the mean map of ri.  499 

 500 

 501 

Figure 8. Efficiency considering the interpolation method and a reduction in available 502 

records 503 

Figure 8 shows the averaged efficiency coefficient dependent on the interpolation 504 

model (OK, RST and IDW) and on the availability from the complete sample of 505 



29 

series. The faster loss of efficiency of the IDW is highlighted in respect of OK and 506 

RST models. Thus, improvements in efficiency are linked to modeling the spatial 507 

continuity as done in OK and RST models.  508 

3.4 Hybrid Interpolated Monthly Precipitation Maps 509 

Figure 9 shows a sequence of monthly rainfall maps interpolated during the 510 

hydrological year 1984/85. These maps have been obtained by combining the 511 

monthly maps of means and standard deviations, which would represent the local 512 

anomalies, and the precipitation anomalies related to synoptic atmospheric 513 

circulation. The "hybrid" model is finally composed by the use of the model of moving 514 

weighted regression on transformed precipitation (presented in 3.2.1) and by the OK 515 

to interpolate the precipitation anomalies (presented in 3.3.2).  516 

 517 

Figure 9. Monthly precipitation maps interpolated by means of the hybrid model combining a 518 

Moving Weighted Regression on transformed Precipitation for mean and standard deviation 519 
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and Ordinary Kriging for anomalies. Maps from the hydrological year 1984/85: November 520 

1984 (a), February 1985 (b), May 1985 (c) and August 1985 (d) 521 

4 Results and discussion 522 

A mean annual precipitation map is derived from the monthly set of estimates (Figure 523 

10). Thus, the average annual precipitation is 655 mm/year. Although this figure is 524 

only 4% less than the estimated precipitation map of MAGRAMA (2004), regional 525 

and local differences are highlighted when the spatial distribution is considered. 526 

 527 

 528 

Figure 10. Mean annual precipitation maps (1940/41-1995/96) obtained by MAGRAMA (2004) 529 

(a) and by the implementation of the hybrid method (b)  530 

The spatial distribution of precipitation maps in MAGRAMA (2004) is then attenuated 531 

when compared to results obtained by the hybrid model where the orographic 532 

structure is clearly remarked (Figure 10). Additionally, the isolation of certain data is 533 

reflected in the IDW methodology followed by MAGRAMA (2004) by means of 534 

rounded artifacts of interpolated precipitation while the help of orographic influence 535 

and the modeling of the spatial continuity clearly improve the results obtained with 536 

the hybrid model (Álvarez-Rodríguez, 2011). Furthermore, the spatial comparison of 537 

the precipitation map obtained in MAGRAMA (2004) and the one presented in this 538 
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paper highlights several regional/local differences in precipitation amounts. Mostly, 539 

in areas (see Figure 1) such as the upper Ebro River Basin and its left margin 540 

(Pyrenees) as well as in the Cantabrian region of the Iberian Peninsula (Álvarez-541 

Rodríguez, 2011). Finally, the hybrid model has the advantage of managing 542 

precipitation records in a systematic way avoiding the time and expertise needed in 543 

MAGRAMA (2004). 544 

A topic for discussion is constituted by the effect of resampling in estimated 545 

precipitation. Greater resolution was resampled to 200 m to derive DEM in most of 546 

the territory. The altitude of the rain gauge was used for the regression analysis, but 547 

each cell altitude was used to estimate the precipitation of every cell. But a lot of 548 

variability exists in mountainous areas that would influence the representation of cell 549 

altitude and subsequently on estimated precipitation in every cell. 550 

The set of monthly maps was implemented in a distributed hydrological model to 551 

estimate water resources in natural regime in Spain. This fact implied the need to 552 

reparametrize the hydrological model, opening the possibility of including 553 

physiographic factors such as soil textures or slopes in the calibration of the 554 

maximum soil storage capacity (Álvarez-Rodríguez et al., 2016). The need for a 555 

parameterization emphasizes the importance of the spatial distribution of 556 

precipitation and how the uncertainty is transferred to parameters of a hydrological 557 

model. 558 

5 Conclusions 559 

A hybrid model to improve the estimation of monthly precipitation distribution in great 560 

areas of complex orography has been proposed. It combines two interpolation 561 



32 

models applied to each one of the two main different components distinguished in 562 

the precipitation.  563 

Firstly, monthly means and standard deviations were interpolated by a moving 564 

regression equation based on altitude but using the orientation of the terrain as a 565 

criterion to select the values of the sample to estimate each cell value. The 566 

regression also incorporates the use of transformation functions (logarithms of 567 

precipitation or altitude) and weights as a function of the distance to prioritize nearby 568 

information avoiding the overestimation at higher altitudes using records of lower 569 

altitudes. Monthly maps of standard deviations can be either obtained by inferring 570 

regression equations based on altitude and orientation or by the product of maps of 571 

monthly variation coefficients by the already estimated maps of monthly means. Due 572 

to the high correlation between means and standard deviations, its ratio (coefficient 573 

of variation) does not show the spatial variability shown by the monthly means and 574 

can be assumed locally stationary, which facilitates its estimation in large territories 575 

through interpolation procedures such as ordinary kriging (OK). This first component 576 

provides information about the seasonal variability of precipitation at local scale. 577 

The second component of precipitation is constituted by the anomalies, that are 578 

mainly related with synoptic situations that affect at regional scale. Its bias is 579 

corrected to reduce the asymmetry of each sample and then interpolated in a 580 

monthly step using an OK. A comparison between averaged efficiency coefficients 581 

derived from OK, variational approach (RST) and inverse distance algorithm (IDW) 582 

revealed how the implementation of a continuity structure in an interpolation model 583 

benefits the results. It means that methods working with a spatial continuity structure 584 

(OK and RST) are adequate to represent the precipitation in a complex terrain, 585 
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obtaining accurate estimations even when the loss of observatories reached a 60%. 586 

Then, structures embedded in usual interpolation methodologies as OK and RST 587 

may replace a high percentage of redundancies existing in a meteorological network. 588 

In spite of this it is therefore necessary to insist on the need to improve the availability 589 

of precipitation records at higher altitudes in order to reduce the uncertainty of 590 

precipitation estimation.  591 

The hybrid model presented in this paper has the advantage of reducing the 592 

computational time. An advantage of the linear regression method is its conceptual 593 

simplicity, while accounting for the non-linear relationship between precipitation and 594 

altitude. However, when it must be repeatedly applied to large territories for a great 595 

number of precipitation maps needed to subsequently force a hydrological model, 596 

the long time for calculation make its use makes the method unsuitable. Therefore, 597 

the hybrid approach limited its use to the estimation of the 24 maps of the monthly 598 

means and standard deviations. Next, anomalies associated to regional components 599 

are interpolated by means of OK after parameterizing the monthly semivariograms. 600 

As seen, OK and RST account for spatial continuity, which is variable from month to 601 

month and can be applied to a variable number of records without a significant loss 602 

of information about precipitation performance.  603 

The main advantage of the proposed methodology relies on that it has been 604 

composed considering advantages of different procedures in order to represent 605 

precipitation both over large territories and complex terrain. Regression analysis 606 

considers precipitation/altitude relationships following usual procedures reviewed to 607 

implement the non-linearity in a straightforward way. Anomaly interpolation takes the 608 
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advantage of automatic parameterization and methodologies capable of 609 

implementing the spatial continuity. 610 
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