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We derive for generally covariant theories the generic dependency of observables on the original fields,

corresponding to coordinate-dependent gauge fixings. This gauge choice is equivalent to a choice of

intrinsically defined coordinates accomplished with the aid of spacetime scalar fields. With our approach

we make full contact with, and give a new perspective to, the ‘‘evolving constants of motion’’ program.

We are able to directly derive generic properties of observables, especially their dynamics and their

Poisson algebra in terms of Dirac brackets, extending earlier results in the literature. We also give a new

interpretation of the observables as limits of canonical maps.
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I. INTRODUCTION

Theories with gauge symmetries exhibit a mathemati-
cally redundant description of the same physical setting.
Gauge transformations, defined in the space of field con-
figurations, map solutions of the equations of motion to
other solutions that have the same physical contents.
Generally covariant theories—like general relativity—
and Yang-Mills theories are the most relevant examples
of this type of theory. The concept of observables for these
theories has long been a topic of discussion. We refer for
instance to Bergmann’s particularly insightful treatment in
general relativity [1].

Although there exist different conceptions of observ-
ables in theories with gauge symmetries, everyone in the
community agrees that these are quantities that are invari-
ant under the respective gauge transformations. Therefore
they are sometimes also called ‘‘gauge invariants,’’ or
simply ‘‘invariants.’’ Together with that of ‘‘observables,’’
this is the terminology that will be employed here without
making any distinction among them. Other language like
‘‘complete observables,’’ or ‘‘Dirac observables’’ can be
found in the literature.1 For generally covariant theories
observables are identified with those objects of the theory
that are invariant under coordinate transformations. They
may be the classical versions of quantum observables,
although there is no a priori relation to quantities that

can be measured. In canonical versions of generally cova-
riant theories—understood as the first step of canonical
quantizations—it is more or less known from the work of
Rosenfeld, Dirac, and Bergmann that (1) the Hamiltonian
is nothing but a sum of constraints (relations between fields
and their canonically conjugate momenta) defining a sur-
face in the phase space, (2) the local symmetries are
generated by gauge generators which can be expressed
by the constraints, and (3) the observables are those objects
which have vanishing Poisson brackets on the constraint
surface with the gauge generators.
In the preceding sentences we were simply referring to

‘‘the constraints.’’ However, as known from the Rosenfeld-
Dirac-Bergmann algorithm,2 one must distinguish first and
second class constraints as well as various generations of
constraints (primary, secondary,. . .). Whereas the notion of
‘‘first/second’’ class is tied to the Poisson bracket relations
among the constraints, the ‘‘generation classification’’ de-
pends on the stage at which a given constraint appears
when imposing consistency requirements on the equations
of motion (EOM).
It is known from the (1þ 3) ADM split that in generally

covariant theories the Hamiltonian H 0 constraint and the
momentum constraints H a are secondary first-class con-
straints. The Hamiltonian of the theory is built out of these
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1One may even distinguish Dirac from Bergmann observables;

see [2].

2Although every respectable review of ‘‘Constrained
Dynamics’’ mentions the work of L. Rosenfeld it is not well
known in the community which results he actually established in
1930, and which later were reestablished especially by Dirac.
This will be elaborated from a history-of-science point of view
by one of the authors (D. C. Salisbury) in a forthcoming pub-
lication in Archive for History of Exact Science. See also [3,4].
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constraints, with the possible addition of boundary terms,
which may be necessary in order for the Hamiltonian to be
a differentiable functional [5]; these terms have no effect
on the dynamics, but they can be relevant as regards
conserved quantities. There are also primary first-class
constraints, namely, the vanishing momenta canonically
conjugate to the lapse and shift functions. We define as
observables those quantities that have weakly vanishing3

Poisson brackets with all first-class constraints. (This defi-
nition is not entirely in agreement with the definition of
many others who only require weakly vanishing Poisson
brackets with the secondary first-class constraints. Both
definitions agree if one drops the lapse and shift functions
as canonical fields.)

Ultimately the interest in observables is due to the
necessity of identifying those quantities that can be pre-
dicted from a theory and are subject to measurement.
However, in the presence of phase-space constraints this
identification is not trivial.

In the case of Yang-Mills theories, with internal—i.e.,
non spacetime—gauge symmetries, observables are well
known, and either local like the trace of the curvature 2-
form, or nonlocal like the Wilson loop. But, to this date, for
generic general relativity no observables are known. Only
for some spacetimes with special asymptotic behavior or
additional Killing symmetries have observables been con-
structed; this includes cosmologies and cylindrical waves.
In these cases one has been able to construct observables
with the help of explicit solutions of the respective field
equations. Since the work of Torre [6] one knows that the
observables in general are nonlocal, that is, functionals of
the original fields and their derivatives. Only recently did
Dittrich [7] and Thiemann [8] find a formal expression for
these functional invariants in the generic case, and for
canonical variables other than lapse and shift. We give an
interpretation of Dittrich’s and Thiemann’s expressions in
terms of gauge choices and intrinsic coordinates, where
everything is based on the original diffeomorphism sym-
metry of general relativity. This geometric and physical
route toward the observables furthermore permits us to
display some interesting properties of the functional invar-
iants. In addition to the authors referred to above, we must
mention the work by Lusanna and Pauri [2]. They analyze
the notion of the observable, among other issues, from a
somewhat different perspective.

This article is written in the spirit of previous work [9–
11] essentially dealing with a deeper understanding of the
fate of the diffeomorphism group in the phase-space for-
mulation of generally covariant theories.

In these articles [9–11] it was stressed that:
(i) There is a maximal subgroup of the field-dependent

diffeomorphism group that can be realized as ca-

nonical transformations in phase space. This sub-
group of ‘‘diffeomorphism-induced’’ transfor-
mations can be characterized by asking for
Legendre projectability between the configuration-
velocity and the phase space of the theory.

(ii) The lapse and the shift functions are not arbitrary
Lagrange multipliers in the Dirac Hamiltonian, but
are canonical field variables. Otherwise one is not
able to realize the full group of four-dimensional
diffeomorphisms in phase space. It is true, though,
that the dynamics will relate the lapse and the shift
variables with the time derivatives of the Lagrange
multipliers associated with the primary constraints.

(iii) A specific combination of all first-class constraints
constitutes the generator of the diffeomorphism-
induced transformations on the original phase space.
The Hamiltonian and momentum constraints only
generate transformations in a reduced phase
space—where the lapse and shift are turned into
Lagrange multipliers whereas their canonical mo-
menta (the primary constraints) are eliminated—
and they are no longer related to the original four-
dimensional diffeomorphism group that included
transformations of the coordinate time.

(iv) Time evolution in the phase space of generally co-
variant theories is distinguished from gauge trans-
formations. On the other hand, projectability issues
prevent the gauge group from containing time trans-
lations as a subgroup, in the sense that an element of
the former group effects the same time translation on
all solution trajectories.

(v) The observables may depend on the coordinate time
of any observer, which may be quite arbitrary. Thus
they are not necessarily constants of motion,
although constants of motion can be extracted form
them.

(vi) From the perspective of gauge-fixing methods, ob-
servables are nothing other than the full set of dy-
namical variables evaluated in an appropriately
chosen intrinsic coordinate system. Equivalently,
they may be obtained through a symmetry gauge
transformation to the intrinsic coordinate system.

Notice that many of these findings are correlated by
simply requiring Legendre projectability. We also point
out that some of them undermine folklore in the canonical
gravity community. In this paper we will elucidate further
the final point, (f), and we will compare with other proce-
dures for the construction of observables that can be found
in the literature.
Most of our results are proven to be valid locally. We do

not address global issues in this article. Although we could
assume for the sake of simplicity that the spacetime is
spatially compact without the boundary, this is not really
relevant; we do not expect that the local construction of
observables is changed by the topology of spacetime or by

3In Dirac’s notation, ‘‘weakly vanishing’’ means vanishing on
the constraint surface.

J.M. PONS, D. C. SALISBURY, AND K.A. SUNDERMEYER PHYSICAL REVIEW D 80, 084015 (2009)

084015-2



possible extra terms in the Hamiltonian that appear, e.g.,
due to spatial noncompactness. Of course, as is always the
case in canonical gravity we consider only globally hyper-
bolic spacetimes that admit a (3þ 1) split.

This article largely expands and gives complete proofs
of some results that have been advanced in [12]. In Sec. II
we describe two alternative but related procedures for
constructing observables. These procedures start from
gauge-fixing conditions that explicitly depend on the co-
ordinates in such a way that the gauge choice is equivalent
to a choice of intrinsic coordinates. Both procedures
amount to sending a point p in the space of field configu-
rations, representing a solution of the field equations, to a
point pG where the gauge conditions are fulfilled. An
extended Sec. II B describes the first procedure in which
observables are constructed through active gauge trans-
formations. This procedure delivers an expression for the
transformed field that can be solved explicitly for a set of
functions that determine the finite transformation. These
so-called ‘‘descriptor’’ functions depend on phase-space
variables. Thus we are able to characterize all observables
as functional invariants in a generic manner that, to the best
of our knowledge, was not previously known. We find that
every field—including the lapse and the shift—has an
associated observable, as well as any functional combina-
tion of fields. Furthermore we are able to state the equa-
tions of motion of the invariants—negating claims in the
literature that invariants are constants of motion. The sec-
ond procedure, described in II C, amounts to considering a
passive coordinate transformation from p to pG. We estab-
lish the general relation between the active canonical
gauge transformations and the corresponding passive co-
ordinate transformation. This latter transformation is none
other than the transformation to intrinsic coordinates tak-
ing into account the geometric character of each field.

We should mention here that our usage of ‘‘passive’’ and
‘‘active’’ transformations conforms with that in the com-
munity, described in e.g. [13], [14]. That is, passive diffeo-
morphisms are always understood as coordinate
transformations, whereas an active diffeomorphism is a
mapping of a manifold to itself that induces pullbacks of
the tensor fields of the manifold. Although mathematically
distinct—and we will make this distinction also in
Appendix A—in many cases they can be made to be two
sides of the same coin. The relation of passive and active
transformations to each other, to dynamical symmetries of
the Einstein field equations, and to gauge transformations
is treated in [2].

In Sec. III we examine some properties of the observ-
ables that can be derived from their definition, regardless of
their specific construction in a given theory. We show that
they exhibit a natural dependence on the time coordinate—
the time coordinate of the corresponding observer, which,
in the case that the observer sits at pG, is the intrinsic time
and that their Hamiltonian dynamics is in agreement with

the dynamics of the gauge-fixed fields at pG. We also show
that one can extract constants of motion—and Noether
generators—with no explicit time dependence out of the
invariants. We connect our findings with the notion of
‘‘evolving constants of motion’’ [15–17].
In III B we give a simple geometric proof that the

Poisson bracket of the invariants associated with two given
fields turns out to be the invariant associated with the Dirac
bracket of these fields. This can be understood as giving a
symmetry-based interpretation of a proof by Thiemann [8]
based on a formal series expansion. Furthermore our proof
also includes the lapse and the shift functions.
In III C it is shown that the functional invariants can

also—rather intriguingly—be understood as limits of ca-
nonical maps. This provides an alternative route to the
results in Sec. III B.
Our main results are summarized in the concluding

section, where we interpret our findings in the light of
related work on observables in generally covariant
theories.
We devote Appendix A to a more detailed consideration

of those points where, as a consequence of our belief in the
central role of diffeomorphisms in phase space, our ideas
deviate from the opinions of others in the canonical gravity
community. In the form of a dialogue, we treat amongst
others the issues of gauge transformations and gauge gen-
erators, and the different roles of gauge generators and the
Hamiltonian. In Appendix B we prove a lemma about
appropriately redefined constraints. This proof is a reel-
aboration of an earlier proof by Thiemann [8], in which he
investigated specific linear combinations of the secondary
first-class constraints with the property that the new con-
straints have strongly vanishing Poisson brackets. This
technical trick significantly facilitated the explicit con-
struction of observables as well as clarifying relations
between Poisson and Dirac brackets of observables.

II. CONSTRUCTING OBSERVABLES THROUGH
COORDINATE-DEPENDENT GAUGE FIXINGS

We recall [9] that the Legendre-projectable infinitesimal
passive coordinate transformations are of the form

~x � ¼ x� � ½n�ðxÞ�0ðx; gabÞ � ��
a �aðx;gabÞ��s; (1)

(�s is the infinitesimal parameter associated with the trans-
formation). This decomposition was employed by
Bergmann and Komar in [18] in their endeavor to connect
the diffeomorphism group of general relativity with the
algebra of constraints obtained in its canonical formula-
tion, though they did not recognize that it followed from
the requirement of projectability. The generator of the
corresponding active canonical phase-space transforma-
tion is

G�ðtÞ ¼ P�
_�� þ ðH � þ N�C�

��P�Þ��: (2)

(Repeated indices signify both a sum over the discrete
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index and a 3-dimensional integration over the spatial
coordinates, unless otherwise noted. Different indices cor-
respond to different coordinates.) In this expression N0 :¼
N is the lapse, and the Na are the shift. The P0 and Pa are
their conjugate momenta. They vanish as primary first-
class constraints. The normal to the fixed coordinate time
t ¼ constant hypersurface is n� ¼ fN�1;�N�1Nag. The
H � are the secondary constraints that result from the

preservation under time evolution of the primary con-
straints P� � 0. The C�

�� are the structure coefficients in

the algebra of the H � under the Poisson bracket. The

descriptors �� are arbitrary functions of the spacetime
coordinates as well as the fields other than the lapse and

shift. _�� is the time derivative of the descriptors, which
includes, in the case when �� depend on fields, the implicit
time dependence for these fields as given by the dynamics.
G�ðtÞ acts at a single time t. In order to produce the full

infinitesimal action of an element of the gauge group we
need to specify the descriptors �� for all values of the
coordinate t.

A. Spacetime scalars as intrinsic coordinates

The coordinate-dependent gauge-fixing program that we
will implement consists in using an appropriate set of four
independent scalar field functions X� in a given spacetime
and then taking them as an ‘‘intrinsic’’ system of coordi-
nates. This implies that the program is only feasible for
backgrounds admitting a scalar coordinatization.4 One
possibility is to employ functions of Weyl scalars that are
obtained from the Weyl conformal tensor [20]. This option
is also in principle available in nonvaccum spacetimes with
material field sources [10]. However, one must be aware
that in spacetimes with some Killing symmetries, it is
likely that these scalars will not be independent and func-
tions of them could not then play the role of an intrinsic
coordinatization. Let us review here a variation of the proof
given in [10] that the intrinsic coordinate fields must be
spacetime scalars. We interpret a choice of intrinsic coor-
dinates X�ðxÞ as a coordinate transformation from the
coordinates x� to X�. Suppose that instead of starting
with coordinates x� we start instead with coordinates
f�ðxÞ before transforming to the intrinsic coordinate sys-
tem XfðfðxÞÞ. Then the demand of invariance under the

passage from x� to f�ðxÞ is the demand that the coordinate
transformation from X� to X�

f must be the identity trans-

formation, i.e., invariance is precisely the demand that
X�ðxÞ ¼ X

�
f ðfðxÞÞ. This is the condition that X�ðxÞ is a

spacetime scalar.
The idea of using a set of four scalars can be traced back

to Einstein’s hole argument that spacetime points can only
be defined and distinguished by values of physical fields or

positions of physical objects, [21], and has been stressed in
[1,22–25]. One either needs external reference objects like
dust [26] or GPS satellites [19], or one identifies internal
scalars, like in the Weyl-scalar program initiated by Komar
and Bergmann, [1,20].

B. Constructing observables through active gauge
transformations

The gauge-fixing conditions have the form

��ðxÞ :¼ x� � X�ðxÞ ¼ 0: (3)

Notice that this gauge-fixing condition is explicitly coor-
dinate dependent. This coordinate dependence is manda-
tory and indeed, (cf. [9,27,28]) one can formally prove that
this is the manner in which one guarantees that the result-
ing dynamical evolution is never ‘‘frozen’’.
For most of our considerations, the arena will be the

space S of on-shell field configurations, i.e., fields obeying
the equations of motion. This space is a subset of the much
bigger space of general field configurations. An infinitesi-
mal gauge transfomation acts on this bigger space with the
ordinary Poisson bracket, and its action can be restricted to
S because the generators of gauge-transformations define
an action which is tangent to S. This means that we do not
need to know the off-shell extension of the on-shell field
configurations for the action of the gauge generators to be
well defined on S. A point p in S is in fact an entire
spacetime with the fields—solution of the EOM—de-
scribed in a particular coordinatization. For practical pur-
poses, though, it will be enough to work in a coordinate
patch of a given chart. To every point p there is associated
an ‘‘observer,’’ or ‘‘user,’’ who is using such a coordinati-
zation to describe the fields in spacetime. In particular the
time coordinate is a label for a foliation of the spacetime
into spacelike hypersurfaces—at least in a region of it. The
gauge generators, acting through the Poisson brackets, are
used to construct finite gauge transformations, realizing
active diffeomorphism-induced transformations at a fixed
value of the spacetime coordinates. These gauge trans-
formations define equivalence classes within S, which
we call orbits of gauge equivalent spacetimes, or gauge
orbits for short. A whole gauge orbit represents a unique
physical state,5 and its different points correspond to differ-
ent coordinatizations. One can pass from one coordinatiza-
tion to another by a passive diffeomorphism. This gauge
transformation is however not a dynamical evolution
(cf. Appendix A6) because whereas a gauge transforma-
tion—different from the identity—maps a point p into a
different point p0, the dynamical evolution takes place

4That our real world admits such coordinatization, at least in a
spacetime region, is shown, in particular, in [19].

5Possible different understandings—and misunderstandings—
of what a physical state is are dealt with in Appendix A

6In Appendix A we review the differences between
Bergmann’s and Dirac’s approaches to gauge transformations,
and the consequences thereof. The incompleteness of Dirac’s
view in [29] is analyzed in [30]
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entirely within every point p in S—because every point
represents a solution of the EOM.

Consider the point p in S and let the fields at p be X�ðxÞ,
�AðxÞ, where X�ðxÞ are the set of selected scalars and
�AðxÞ denote all the remaining fields or field components.
There should7 exist a finite gauge transformation that
moves this point p in the gauge orbit to the unique point,
pG, that satisfies the gauge-fixing constraints (3). We will
also assume a trivial topology for the orbit space—or at
least in the region in which we will work—so that a
diffeomorphism-induced transformation connected with
the identity will suffice. Therefore a finite gauge trans-
formation accomplishing our purpose has the form [10]

V�ðs; tÞ ¼ expðsf�; G�ðtÞgÞ;
with a given set of finite descriptors ��. The parameter s
labels a trajectory within the gauge orbit. By convention
we will assume that at s ¼ 1 we reach the point pG in the
orbit where the gauge-fixing constraints are satisfied. In
particular, if we consider the scalars X�ðxÞ, we will have

X�ðxÞ ! X̂�ðx; sÞ ¼ expðsf�; G�ðtÞgÞX�ðxÞ

¼ X�ðxÞ þ sfX�ðxÞ; G�ðtÞg þ s2

2

�ffX�ðxÞ; G�ðtÞg; G�ðtÞg þ . . . ; (4)

and the gauge-fixing requirement is X̂�ðx; 1Þ ¼: X̂�ðxÞ ¼
x�. (Henceforth ‘‘hatted’’ variables denote variables sat-
isfying the gauge-fixing conditions.) This is an equation
that determines the descriptors �ðxÞ, and we will obtain a
unique solution for them in Sec. II B 1. Thus, to any point p
in some gauge orbit in S we associate a system of descrip-
tors. Once the descriptors are determined we can proceed
to apply the gauge transformation to all the remaining
fields,

�̂ A ¼ expðf�; G�gÞ�A ¼: F�A½X;�;��: (5)

1. Solving for the descriptors

Let us now solve for the descriptors �� required in (5).
For this purpose it will be convenient to work with the
linear combination of secondary first-class constraints that
has been introduced by Henneaux and Teitelboim [31] and
further exploited by Dittrich [7] and Thiemann [8]. We set,
at the fixed coordinate time t,

A �
�0 :¼ fX�;H �0 g; (6)

with inverse B�
�0 , i.e., B�

�0A�0
�00 ¼ ��

�00 . [Here we in-

troduce the convention that primed indices represent evalu-
ation at primed spatial coordinates, and
�
�
�0 :¼ �

�
� �3ðx� x0Þ.] We define

�H � :¼ B�0
�H �0 ; (7)

and then rewrite ��H � ¼ ��� �H �, where ��� ¼
A�

�0��0
. Notice that therefore

fX�; �H �0 g � B�00
�0A�

�00 ¼ �
�
�0 ; (8)

where the weak equality signifies that terms proportional to
H � have been dropped, or in other words, we evaluate on

the original first-class constrained hypersurface.8 Of
course the change from the original H � to their linear

combination �H � according to (7) is only possible locally.
We will assume that the lapse and shift are not involved

in the construction of the scalar fields X�ðxÞ. In this case
only the H contribution to the generator G� in (2) is

relevant. Thus the gauge transformed scalar fields, trans-
formed to pG, are

X̂ �ðxÞ ¼ x� ¼ expðf�; ���0 �H �0 gÞX�ðxÞ � X�ðxÞ þ ���;

(9)

and we can therefore solve on shell for

���½XðxÞ; x� ¼ x� � X�ðxÞ ¼: ��ðxÞ; (10)

where �� are the gauge-fixing constraints introduced in
(3).
Although we have obtained a simple closed form for

functionals associated with the descriptors in the basis �H �

for the Hamiltonian constraints, the construction of �H �

can of course be difficult in practice due to the need to
invert the matrixA�

�0 . But we will nevertheless be able to

prove some interesting formal results in Sec. III.

2. The observables associated with fields other than the
lapse and shift

We are now in the position to derive an expression for
the observables in terms of the gauge-fixing conditions. It
is methodologically convenient to first consider the ob-
servables associated with fields other than the lapse and
shift. This means that the on-shell action of the gauge
generator (2) is given just by H ��

�. Thus throughout

this section, the fields�A do not include the lapse and shift.
In Sec. II B 3 this restriction is lifted. We keep working

with the basis �H � for the Hamiltonian constraints, and to
make the following considerations easier to follow we
temporarily attach a subscript p to the arguments of the

7If the chosen set of scalars allows for a good coordinatization
of the spacetime, no Gribov ambiguities can appear. Let us
notice, though, that our considerations are local, and that we
can restrict ourselves to a region of the spacetime where the
scalar coordinatization works well.

8An outcome of the construction is that f �H �;
�H �g is strongly

vanishing, instead of weakly vanishing. This result is derived in
[8]. We give an alternative symmetry-based proof in
Appendix B.
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functionals in (5), signifying that they refer to the point p
in the gauge orbit,

�̂ A ¼ expðf�; G ��p
gÞ�A

p ¼: F�A½Xp;�p; ��p�; (11)

where ��p are taken as functions of the spacetime coordi-

nates only, whose determination at p is given by ��
p ¼

x� � X
�
p ðxÞ. Of course, had we started with another point

p0 in the gauge orbit, we would have written

�̂ A ¼ F�A½Xp0 ;�p0 ; ��p0 �;
with the same functional form because it is the same gauge
transformation, see (5), with another set of descriptors. So
we have

F �A½Xp;�p; ��p� ¼ F�A½Xp0 ;�p0 ; ��p0 �: (12)

Notice that, since they are determined by the field configu-
rations Xp, the descriptors used to send these field configu-

rations at p to their expressions X̂ ¼: XpG
, �̂ ¼: �pG

, at

pG are functionals of Xp. One can then write,9 generally,
��
�
p ðxÞ ¼ �

�
p ðxÞ ¼ x� � X

�
p ðxÞ, and define the new func-

tionals

I �A½Xp;�p; x� :¼ F�A½Xp;�p; ��
�
p �j ��p¼�p

: (13)

It is important to understand that the same functionals
�� work for any point p, because p is a generic point in the
gauge orbit. That is, for another point p0, we will have
��
�
p0 ðxÞ ¼ �

�
p0 ðxÞ ¼ x� � X

�
p0 ðxÞ. Thus, using (12),

I �A½Xp;�p; x� ¼ F�A½Xp;�p; ��
�
p �j ��p¼�p

¼ F�A½Xp0 ;�p0 ; ��
�
p0 �j ��

p0 ¼�
p0

¼ I�A½Xp0 ;�p0 ; x�: (14)

Equation (14) expresses the invariance of the functionals
I�A . These functionals are observables. In terms of infini-
tesimal transformations the invariance (14) reads

fI�A ; G	g � 0; (15)

for arbitrary descriptors 	 in G. Because of this arbitrari-
ness and the generic form, (2) and (15) is equivalent to

fI�A ;H �g � 0; fI�A ;P�g � 0;

and these are the defining conditions for observables.
Observe that since f�; G	g is tangent to the gauge orbit,

the variations of the fields in the functional I�A in (15) are
always along the gauge orbit, and thus we need only

information of the functionals on shell to be able to com-
pute (15).
A subtlety not to be overlooked in the definition (13) is

the following: the substitution of the descriptors ��p by the

gauge-fixing constraints (which do not vanish in p � pG)
is made after the functionalF�A has been computed with a
descriptor that has no dependence on the fields; or to say it
in another way, the descriptors used in (11) have vanishing
Poisson brackets with all the fields. More on this will be
said in Sec. III C.
At this point, some further comments are in order. First,

it is worth noticing that the invariants I�A will in general
be nonlocal as regards the spatial coordinates, due to the
nesting of commutators in the expansion of the functionals
in terms of the fields and their space derivatives; we
encounter here a result first obtained by Torre in [6].
Second, citing in advance a result from the following
section, there is an invariant associated with any field,
including lapse and shift. Third, the method above can
also be used to define invariants associated with any func-
tional of the fields. And fourth, the observables I�A can be
interpreted in two equivalent ways. On the one hand, an
observer with an on-shell field configuration at p has a
prescription �A ! I�A for associating an invariant with
any field, and she knows that the description of her solution
provided by the invariants will coincide with that of any
other observer that uses the same recipe to obtain the
invariants, but she always remains at p. On the other
hand, if such an observer decides to use these functionals

in order to work with the new fields �̂A :¼ I�A½Xp;�p; x�,
then this means that she has been able to obtain, with the

redefiniton of the fields �A ! �̂A the description of the
observer at pG, just reflecting the active view of diffeo-
morphism transformations. Notice that as long as she

decides to work with the new fields �̂A—the observ-
ables—as the fields of her spacetime, everything in her
new description is as if her original coordinates played the
role of the intrinsic coordinates. We comment on the
complementary passive view in Sec. II C.
With the explicit solution (10) for the descriptors, the

expansion of the invariant I�A in (13) becomes

I�A � expðf�; ��� �H �gÞ�A
j ��¼�

¼ �A þ ��f�A; �H �g þ 1

2!
����ff�A; �H �g; �H �g

þ 1

3!
������fff�A; �H �g; �H �g; �H �g þ . . .

¼:
X1
n¼0

1

n!
�nf�; �H gðnÞ: (16)

[In the last line we have adopted a simplifying notation

where indices in � saturate with indices of �H and

f�; �H gðnÞ is interpreted as the repeated nesting of n

Poisson brackets with �H in the right-hand side]. With

9We assume—and it will prove crucial for the procedure to
succeed—that the functionals �� may carry explicit dependen-
cies on the spacetime coordinates x�. Remember that when we
move from point to point, p ! p0 in the gauge orbit through an
active diffeomorphism-induced transformation, the spacetime
coordinates do not change.
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different notation, this expression appeared in the literature
in [8] as his equation (2.8) and in [7] as her equation (5.23).
Here we have arrived at (16) by a symmetry-inspired
procedure, as the effect of the finite gauge transformation
that sends p to pG. This specific gauge transformation is
determined once the set of scalar fields associated with the
gauge fixing has been selected. An advantage of the present
formulation is that one can send all the fields from p to pG,
and this includes the lapse and shift. In this general case
one must use the full gauge generator (2) and it is worked
out in Sec. II B 3.

The gauge invariance of (16) is guaranteed by the con-
struction procedure, as long as the series expansion is
convergent, which is expected at least in a neighborhood
of pG. Note, that one can directly verify the gauge invari-
ance of I�A by checking the vanishing on shell of

fI�A ; �H �g with use of the on-shell expansion (16). It is

crucial in this respect, as noticed already in [8], that the

Poisson brackets of the constraints �H � among themselves

are quadratic in the constraints (see Appendix B). One can
proceed as follows.

Let us define

BðnÞ
�

:¼ �nf�; �H gðnÞ;
with Bð0Þ

� ¼ �. Then

fBðnÞ
� ; �H g � �nBðn�1Þ

f�; �H g þ BðnÞ
f�; �H g; (17)

from which,

fI�;
�H �g ¼

�X1
n¼0

1

n!
BðnÞ
� ; �H �

�

� �X1
n¼0

1

ðn� 1Þ!B
ðn�1Þ
f�; �H g þ

X1
n¼0

1

n!

¼ BðnÞ
f�; �H g � 0: (18)

It is worth noticing that the proof of invariance given above
does not depend of the fact that the gauge-fixing con-
straints �� are made up with scalar fields X�. If, instead
of using the scalar fields X� in the process to define the

basis �H � for the Hamiltonian constraints, one uses an-

other set of fields—or field components—the proof of
invariance remains intact.

On the other hand, if nonscalars were used for the gauge
fixing, it is very likely that Gribov ambiguities will appear.
Suppose for instance that the gauge fixing was imple-
mented with a vector J�ðxÞ, so one should make a change

of coordinates x ! x̂ such that x̂� � Ĵ�ðx̂Þ ¼ 0.
Considering the rules to transform a vector under diffeo-

morphisms: J�ðxÞ ! Ĵ�ðx̂Þ ¼ J�ðxÞ @x̂�@x� , one should look

for a transformation realizing Ĵ�ðx̂Þ ¼ x̂�.

Since the intrinsic vector field is ~J ¼ J�ðxÞ @
@x� , the

equation to obtain the intrinsic coordinates is nothing but

~Jx̂�ðxÞ ¼ x̂�ðxÞ. Thus we look for four eigenfunctions of ~J
with unit eigenvalue.

If we have four such eigenfunctions f�ðxÞ, ~Jf� ¼ f�,
any linear numerical matrix A will introduce an ambiguity

f� ! ~f� ¼ A�
� f�.

As argued at the beginning of Sec. II A, a proper gauge
fixing needs to be performed with spacetime scalars, and
we will maintain this requirement throughout.

3. Observables associated with fields including lapse
and shift

Here we extend the results of the previous section to
include the observables associated with the lapse and shift
fields.
Recall that the gauge generator (2) is

G�ðtÞ ¼ P�
_�� þ ðH � þ N�C�

��P�Þ��;

where the descriptors �� are arbitrary functions which may
depend, of course, on the coordinates but also on the fields

other than lapse and shift. _�� is read as

_�� ¼ d

dt
�� ¼ @

@t
�� þ N�f��;H �g;

so that the explicit dependence on the time parameter is
accounted for in the first term whereas in the second term
the implicit time dependence through the fields is reflected
through their own dynamics.
When all fields are considered, one must observe that the

gauge-fixing constraints �� ¼ x� � X� ¼: �ð1Þ� have
secondary descendants:

d

dt
�� ¼ ��

0 � N�fX�;H �g;

and thus the lapse and shift become determined by the
secondary gauge-fixing constraints

�ð2Þ� :¼ �
�
0 �A�

�N
� � 0: (19)

Preservation of these constraints in time leads to the deter-
mination of the arbitrary functions in the Dirac
Hamiltonian and the gauge is completely fixed. Note
that, by definition, it is only at pG that these gauge-fixing
constraints are satisfied.
Now we follow the same steps taken in II B 1, but with

the number of constraints doubled. Our 8 gauge-fixing

constraints �ðiÞ� ¼ ð��; _��Þ can be used to change the
basis of the 8 first-class constraints, 
ðjÞ� ¼ ðH �; P�Þ to
another basis �
 ðjÞ� ¼ ð ��H �; �P�Þ so that f�ðiÞ�; �
 ðjÞ�g �
��i

j�
�
� . These new �
 ðiÞ� will have strongly (instead of

weakly) vanishing Poisson brackets among themselves at
any point p in the gauge orbit. This setting is convenient
because it makes possible an easy determination of the
descriptors associated with the specific gauge transforma-
tion that sends the field configurations at p to their corre-
sponding fields at pG.
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The matrix of the gauge-fixing constraints with the first-
class constraints,

f�ðiÞ�; 
ðjÞ�g ¼ �A�
� 0

�fA�
�;H �gN� �A�

�

� �
;

has the inverse

M i�
j�

:¼ ðf�ðiÞ�; 
j�gÞ�1

¼ �B�
� 0

B�
�B

�
�N

�fA�
�;H �g �B�

�

� �
;

(where B�
� was defined before, see II B 1, as the inverse

matrix ofA�
� :¼ fX�;H �g) and defines the new basis of

first-class constraints as �
 ðjÞ� ¼ �Mi�
j�
i�. We obtain

�P� ¼ B�
�P�;

and

��H � ¼ B�
�ðH � �B�

�N
�fA�

�;H �gP�Þ:
As a consequence, to express the gauge generator in the
new basis we need to implement

P� ¼ A�
�
�P�;

H � ¼ A�
�
��H � þB�

�N
�fA�

�;H �gP�:

With these substitutions, the gauge generator (2) becomes

G�ðtÞ ¼ A�
�
�P�

_�� þ ðA�
�

��H �

þB�
�N

�fA�
�;H �gP� þ N�C�

��P�Þ��: (20)

Now wemay consider the special case when �� is such that
��� :¼ A�

��
� is field independent. We have

_�� ¼ d

dt
ðB�

�
���Þ ¼ fB�

�; N
�H �g ��� þB�

�
_��
�
;

and the gauge generator becomes

G ��ðtÞ ¼ �P�
_��
� þ ��H �

��� þ P�N
�S�

��
���; (21)

where S�
�� is defined as

S �
�� ¼ fB�

�;H �g þB�
�B�

fA
�;H �g þB�

�C
�
��:

(22)

But S�
�� is just a constraint, in fact a linear combination of

the Hamiltonian constraints. To see this let us use the fact
that the matrices A, B, (with discrete and continuous
indices as well) are inverses to each other. We obtain

A �
�A�

�S
�
�� ¼ �fA�

�;H �g þ fA�
�;H �g

þ C�
��A�

�;

which, using the definition (6) of A�
�, becomes

A�
�A�

�S
�
�� ¼ �fX�; fH �;H �gg þ C

�
��fX�;H �g

¼ �fX�; C
�
��gH �; (23)

which proves our assertion. The gauge generator in the new

basis is therefore G ��ðtÞ ¼ �P�
_��
� þ ��H �

��� þOð2Þ; where
by Oð2Þ we mean terms that are quadratic in the con-
straints. Since we always work on shell, this last term is
irrelevant and we discard it, obtaining a very simple ex-
pression for the gauge generator in the new basis,

G ��ðtÞ ¼ �P�
_��
� þ ��H �

���: (24)

Finally, imposing the usual condition:

expðf�; G ��gÞX� ¼ X̂� ¼ x�, we can determine the de-

scriptors that must be employed to transform from p to
pG. Their functional form on shell is

�� � ! �� ¼ x� � X�; _��
� ! _�� ¼ ��

0 � N�A�
�:

Thus for any field, including lapse and shift, the invar-
iants are defined as in Sec. II B 2 but with the full gauge
generator G �� given in (24) and with the substitutions for

the descriptors implemented after the action of the gauge
generator, as prescribed above.

C. Passive coordinate transformation from p to pG

There must exist passive coordinate transformations that
correspond to the active transformation to the gauge-fixed
point pG on the gauge orbit, and we can easily find them.
Let us suppose that this passive transformation takes the
functional form x̂� ¼ f�ðxÞ. Since by assumption X�ðxÞ
transforms as a spacetime scalar under this transformation,

we have X̂�ðx̂Þ ¼ X�ðxÞ, so that the transformed fields at

the original coordinate location x� are X̂�ðxÞ ¼ x� ¼
X�ðf�1ðxÞÞ. Equivalently

f�ðxÞ ¼ X�ðxÞ: (25)

In other words, and this is one of our key observations, the
performance of the gauge transformation—active view—
to the solutions satisfying the gauge conditions is equiva-
lent to the performance of a coordinate transformation—
passive view—from the original coordinate system to in-
trinsic coordinates. Every dynamical field evaluated in this
intrinsic coordinate system will therefore be an invariant
under diffeomorphism-induced gauge transformations, and
this includes the lapse and shift.
Considering, in particular, the case of a scalar field�, as

described by the user sitting at p, the prescription dictated

by the passive coordinate transformation is �̂ðxÞ ¼
�ðX�1ðxÞÞ or, equivalently, �pG

ðxÞ ¼ �pðX�1ðxÞÞ. In the

case of other, nonscalar, fields, they transform according to
their geometric properties. These observables may be dis-
played as power series in the coordinates x� in the follow-
ing manner. Repeated derivatives of the identities
X�1�ðXðxÞÞ ¼ x� followed by substitution of the
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Hamiltonian equations of motion will yield a Taylor ex-

pansion in x� with coefficients @k0þ���þk3X�1

@ðx0Þk0 ���@ðx3Þk3 evaluated at

x� ¼ X�. The resulting expansions can be obtained in a
more efficient manner through active transformations, as
we now show.

III. PROPERTIES OF THE OBSERVABLES

A. Dynamics of the observables

1. The equations of motion for the invariants I�

The explicit dependence on time—through the determi-
nation of the descriptors (10)—makes the observables (16)
time dependent; the implicit dependence is canceled due to
the invariance fI�;H g � 0. Considering fields � other
than lapse and shift (for which the following considerations
can be extended appropriately),

d

dt
I� ¼ @

@t
I� þ fI�; N

�H �g � @

@t
I�

� f�; �H 0g þ 1

2
ð�0��ff�; �H 0g; �H �g

þ ���0ff�; �H �g; �H 0gÞ þ � � �

� X1
n¼0

1

n!
�nff�; �H 0g; �H gðnÞ ¼ I f�; �H 0g; (26)

where in the second line we have used the strong vanishing

of the Poisson brackets of the �H , cf. Appendix B. Thus the
equations of motion for the invariants are

d

dt
I� � I f�; �H 0g: (27)

The appearance of �H 0 in (27) might come as a surprise,
but it is exactly what is needed in order for the fields at pG

to satisfy the equations of motion. In fact, starting at any
point p in S, the invariants produce the corresponding
fields at pG: I�½Xp;�p; x� ¼ �pG

, and

I f�; �H 0g½Xp;�p; x� ¼ f�; �H 0gpG
. On the other hand, from

(7) we know that �H 0 ¼ B�
0H �. Also, at pG, the dy-

namical stabilization of the gauge-fixing constraints intro-
duces the new constraints (19), which may be written as

N� �B�
0 � 0; (28)

thus fixing the values of lapse and shift in terms of other

fields. Note then that, when computed at pG,
�H 0 �

N�H �, where we use Dirac’s strong equality symbol,

defined in Appendix B. Thus, the content of (27) is just

d

dt
�pG

� f�; N�H �gpG
; (29)

which is nothing but the equations of motion for the
fields—other than lapse and shift—at pG. This result can
be extended for the lapse and shift fields by using tech-
niques described in Sec. II B 3.

This fact that observables are time dependent, already
stressed in [10], contradicts claims of standard lore assert-
ing that observables are compelled to be constants of
motion because they have vanishing Poisson brackets
with the generator of time evolution. The simple mistake
in this claim is that it does not take into account the
compulsory explicit time dependence10 that is needed for
a correct gauge fixing in generally covariant theories,
which has been proven in [27,28]. Deeply connected
with this mistake is the confusion between gauge symme-
try and dynamical evolution, also common in the literature
and to which we devote the Appendix A.

2. From observables to ‘‘evolving constants of motion’’

We continue to work for simplicity with fields other than
the lapse and shift. We shall show now how constants of
motion—and Noether generators—without explicit time
dependence can be easily recovered form our program.
Let us stress again the fact that the time dependence in

the invariants I�, (16), has two sources. One is the explicit
time dependence in �0 ¼ t� X0, and the other is the
implicit time dependence in the on-shell field configuration
(including the scalars X�). But we have already seen at the
beginning of the previous section that this implicit time
dependence is nonexistent because of the gauge invariance.
In fact, it is easy to separate these two dependencies and
witness the difference. For instance one could write I�

with an ‘‘explicit’’ time t1 and an ‘‘implicit’’—i.e., the time
argument in the field configuration—time t2 and eventually
realize11 that the only true dependence is in t1. This result
suggests that we can consider the invariants as a one-
parameter family of functionals in phase space, which
can be evaluated on on-shell field configurations at an
arbitrary time t2. Notice that as long as we keep t1 fixed,
the invariants do indeed yield constants of motion.
Up to now our arena regarding the distinction between

explicit and implicit time dependence has been the space S
of on-shell field configurations. Now, continuing with our
previous construction we move to phase space, where the
variables are the fields exhibiting only spatial dependence
on the coordinates. Let us examine the invariants I� in
phase-space and its remaining dependence on the explicit
time. In fact, using (27) and differentiating repeatedly with
respect to the explicit time, we obtain

@n

@tn
I� � I f�; �H 0gðnÞ : (30)

where f�; �H 0gðnÞ has the usual sense of nested Poisson

10One can recall here the case of Galilean mechanics, were the
boost generators are constants of motion with explicit time
dependence, and therefore their Poisson bracket with the
Hamiltonian is nonvanishing.
11Note that for each point p in S, and given t1, t2, there is a
point p0 where �pðt2; ~xÞ ¼ �p0 ðt1; ~xÞ, for any field or field
component �.
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brackets. From (30) we can build the Taylor expansion in
the t parameter

I � � X1
n¼0

tn

n!
I f�; �H 0gðnÞjt¼0

: (31)

(Recall that we think of these quantities in phase space, i.e.,
the invariants are now dependent on the phase-space var-
iables, these phase-space variables being fields depending
on the spatial coordinates.) Notice that the coefficients of
this expansion in the time parameter are constants of
motion, because they are invariants; since they have van-
ishing Poisson brackets with the Hamiltonians they have
no explicit time dependence. In fact, as pointed out before,
fixing the explicit time parameter at any arbitrary value, the
invariants I� become constants of motion.

One may wonder what is then the role of this explicit
time dependence in the invariants? The answer has been
given in Eq. (29), which is a consequence of (27). It is
remarkable that the explicit time dependence in (31) allows
us to fully recover the dynamics for the configuration of the
fields that satisfy the gauge fixing. Thus, two observers
using the same recipe to construct the invariants will be
able to describe with the help of these invariants the same
physics at any time—which is their own original time
coordinate—because the dynamical evolution is already
built into the invariants thanks to the explicit time depen-
dence. With their invariants, they will describe physical
evolution in an invariant way, through the explicit time
dependence. Notice that from the point of view of a typical
observer, sitting at some point p in S, the explicit time
parameter appearing in his/her observables I� is just his/
her original time parameter, that is, a labeling for the
spacelike hypersurfaces foliating the spacetime—or at
least a region of it—satisfying the rather mild requirement
of being an increasing function from past to future. In
addition, for the observer sitting at pG, this explicit time
parameter is the value of the scalar field X0, that is, the
intrinsic time.

One may regard expression (31) for the invariants as an
expression for ‘‘evolving constants of motion’’ since it can
be read as a combination of constants of motion with
coefficients—the monomials tn—changing in time. As a
matter of fact, expression (31) is an explicit realization of
the approach [15–17], which is often referred to as the
program of ‘‘evolving constants of motion.’’ We believe
that the clarifications made above, although restricted to
classical considerations, put in a new and satisfying per-
spective the concept of ‘‘evolving constants of motion.’’
This terminology was adopted in order to circumvent a
problem which, from our perspective, never existed in the
first place—at least in the classical setting. The problem—
the notion that ‘‘nothing happens’’ in generally covariant
theories—arises from a failure to adequately distinguish
between time evolution and gauge symmetry. We devote
Appendix A to this analysis. We think that our contribution

makes superfluous this terminology, although the idea
behind it remains fully vindicated. The resolution by
Rovelli of the supposedly apparent paradox amounts to
[32] ‘‘the recognition that observables are members of
families of constants of motion parametrized by a label
related to time.’’ In other words, as the time coordinate for
a particular observer evolves and takes different values, so
do the observables. The observables consist of a sum—
perhaps even of an infinite number of terms—of constants
of the motion multiplying increasing powers of the time
coordinate. These constant coefficients are expressed as
invariant functionals of the phase-space variables. The
coordinate time itself is of course not a canonical variable,
and is therefore invariant under the action of the canonical
gauge group. There has been a subsequent effort by a list of
authors, particularly [8,33], to obtain a consistent quantum
picture for the observables. In generic spacetimes it will be
necessary to employ a locally defined intrinsic time. One
must also address the question of equivalence of quantum
theories based on different choices.

3. From observables to generators of rigid Noether
symmetries

Consider the observables associated with fields other
than lapse and shift. The constants of motion obtained
from these observables are Noether generators of symme-
tries for the reduced phase space where lapse, shift, and
their canonical momenta have been eliminated. If we want
to construct Noether generators for the entire phase space,
one can proceed as follows. Let C be one of such constants
of motion. It is a functional of the fields �ð ~xÞ—other than
lapse and shift—and it exhibits explicit dependence on the
spatial coordinates ~x as well, through �i ¼ xi � Xi. Its
weakly vanishing Poisson bracket with the Hamiltonian
constraints can be expressed as

fC;H �g ¼ U�
�H �;

for some functional matrix U�
�. Then the following con-

struction

Q :¼ CþU�
�N

�P�;

satisfies (Hc stands for Dirac’s canonical Hamiltonian,
Hc ¼ N�H �)

@Q
@t

þ fQ; Hcg ¼ 0þ fQ; N�H �g ¼ OðPÞ;

and

fQ; P�g ¼ OðPÞ;
[where OðPÞ means terms linear in the momentum con-
straints] which are the two conditions spelled out in [34]
for Q to qualify as a Noether conserved quantity associ-
ated with a symmetry which is projectable from tangent
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space to phase space. In fact this symmetry is generated by
Q through the Poisson bracket.12

Notice that these Noether generators Q are gauge in-
variant quantities because their Possion bracket with the
full set of primary and secondary constraints weakly van-
ishes. In practice, to smooth out the dependence of Q on
the spatial coordinates, one can use arbitrary smearing
functions �ð ~xÞ and define generators

Q � :¼
Z

d3x�ð ~xÞQð ~xÞ:

Let us stress that Q� are generators of rigid Noether
symmetries. To be gauge symmetries one should allow
the functions � to have arbitrary dependence on the time
coordinate, but if we allow that then Q� ceases to be a
constant of motion and a Noether generator.

As regards the constants of motion extracted from the
observables associated with the lapse and shift, one should
consider IN� ¼ expðf�; G ��gÞN�, with G �� as in (24). This

gives an expansion

I N� ¼ N� þ ðfN�; �P�
_��
�g þ . . .Þ ���!��; _��

�! _��

¼ B�
0 þ . . . ;

where we have used _�� ¼ ��
0 � N�A�

�. In fact there is a

quick shortcut to sum this expansion, becausewe know that
in pG the—secondary—gauge-fixing constraints are satis-

fied, i.e., ��
0 � N̂�Â�

� ¼ 0, and therefore N̂� ¼ IN� ¼
IB�

0
. SinceB�

0 depends on fields other than lapse and shift,

we can conclude that using the mechanism explained
above in this subsection, the constants of motion extracted
from all our invariants can be made Noether symmetry
generators.

Finally, let us discuss one more basic aspect of the rigid
symmetries generated by Q�: they move an on-shell field
configuration out of its gauge orbit. In fact, since they
commute with the gauge generators, they will map an
entire gauge orbit into another. To prove that indeed Q�

moves a field configuration out of the gauge orbit we only
need to verify that the variations generated byQ� through
the Poisson bracket do not leave invariant the set of gauge
invariant functionals I�. This is proven in Sec. III B,
where we compute the Poisson-bracket algebra of the
invariants and obtain a nontrivial result.

4. Interpreting the constants of motion

What has been done for the time coordinate may be done
for any other coordinate. Recall that the invariant associ-
ated with the field � is

I � � X1
n¼0

1

n!
�nf�;H gðnÞ;

with � ¼ x� X. When the explicit time coordinate is fixed
at an arbitrary value, I� becomes a constant of motion.

Applying arguments similar to those leading up to (27)
we find that

d

dxa
I� � I f�; �H ag: (32)

Recall that the invariant I� is the field � evaluated at the

gauge-fixed point pG, I� ¼ �̂. To find �H a at pG we need
to make use of the fact that the X� are scalars under spatial
coordinate transformations, i.e., under �x� ¼ x� � �a��

a ,

�X� ¼
�
X�;

Z
d3x�aH a

�
¼ X�

;a�a;

and thereforeA�
a ¼ X

�
;a. As a consequenceA

�
a jpG

¼ �
�
a .

Taking into account that according to (28)B�
0 jpG

¼ N� we

find that

B �
a jpG

¼ �
�
a :

It follows finally that

I f�; �H ag ¼
@�

@xa

��������pG

: (33)

We know that due to gauge invariance, there is no
implicit dependence on time (when the invariant is eval-
uated on an on-shell configuration, a solution of the equa-
tions of motion). For the same reason, there is no implicit
dependence on the spatial coordinates either since spatially
constant translations are gauge transformations. Let us
write I� in powers of all explicit coordinates,

I � � X1
n�¼0

1

n0!n1!n2!n3!
ðx0Þn0ðx1Þn1ðx2Þn2ðx3Þn3Cn0;n1;n2;n3 ;

(34)

with

C n0;n1;n2;n3
:¼ I ffff�;; �H 0gðn0Þ; �H 1gðn1Þ; �H 2gðn2Þ; �H 3gðn3Þjx�¼0

: (35)

(The order of the Hamiltonians is irrelevant owing to the
strongly vanishing Poisson-bracket property.) Notice that
setting x� ¼ 0 in (35) refers only to the explicit coordinate
dependencies. Indeed, the coefficients Cn0;n1;n2;n3 may be

evaluated in any arbitrary system of coordinates; they are
invariants. Consider, for example, that we are in a point p
in S. To evaluate the value of the functional Cn0n1n2n3 we

just substitute in the field configurations �A
pðxÞ and an

indefinite number of their spatial derivatives—which ap-
pear due to the nesting of Poisson brackets—in (35). The
result does not depend on the time coordinate x0 nor on the
spatial coordinates ~x where all the fields and their spatial
derivatives are computed. If instead of inserting �A

pðxÞ,
12Note, in particular, that Q generates variations for the lapse
and shift according to �N� ¼ fN�;Qg ¼ U�

�N
�:
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@i�
A
pðxÞ, @i@j�A

pðxÞ . . .8A, we were to substitute in the on-

shell field configuration at another point q in S and with
other values y of the coordinates, �A

q ðyÞ, @i�
A
q ðyÞ, the

numerical result would be the same.
Generalizing (33), we deduce that these constants of

motion Cn0;n1;n2;n3 are the values of the corresponding n�
partial derivatives of �̂ at the zero value of the intrinsic
coordinates. (In fact one could have expanded around any
other values.) Thus the formalism manages to pick data at
any time, t, at some point p in S, and to convert these data
into the coefficients of the Taylor expansion for the fields at
pG, which are obviously invariants. By the same token, the
information in I� itself is that of the field configuration at

pG at the given time that appears in the invariant as the
explicit time. In the particular case of a scalar field and for
an observer sitting at p, Ic ðt; ~xÞ it is the value of the field at
the very moment and place where the gauge-fixed scalars
X� take the values t, ~x.

A simple example

Now we demonstrate with the simplest of the examples,
that of the massive free particle in Minkowski spacetime,
our findings above.13 Consider the Lagrangian

L ¼ 1

2N
	�� _q� _q� � 1

2
m2N;

where N is an auxiliary variable—in fact it is the lapse—
and 	�� ¼ ð�;þ;þ;þÞ. The Dirac Hamiltonian is

HD ¼ 1
2Nð	��p�p� þm2Þ þ ��;

where �, the momentum canonically conjugate to N, is the
primary constraint and � an arbitrary function of time.
There is a secondary constraint, namely, H ¼ 1

2 �
ð	��p�p� þm2Þ. The gauge generator has the form G ¼
�H þ _��. We choose as a gauge-fixing constraint � ¼
t� q0. Next, following the instructions in Sec. II B 1, we
define A :¼ fq0;H g ¼ p0, and

�H ¼ 1

A
H ¼ 1

2p0
ð	��p�p� þm2Þ:

Now we are ready to compute the invariants. Note that we
do not write the implicit time dependence in the variables,
which is the same as if we were working just in phase space
instead of working in the space of trajectories, i.e., field
configurations. The series expansions are trivial and we get

I qi ¼ qi þ �fqi; �H g ¼ qi þ ðt� q0Þ p
i

p0

¼
�
qi � pi

p0
q0
�
þ pi

p0
t;

Ip�
¼ p�:

Thus we identify from the expansion in the t parameter for

Iqi the constants of motion qi � pi

p0 q
0 and pi

p0 , and from Ip�

the constants of motion p�. We have seven independent

constants of motion that can be written p� and ci :¼
p0qi � q0pi. These are the Poincarè translation and boost
generators. Note that the combinations 1

p0 ðpicj � pjciÞ of
these constants of motion are piqj � pjqi, that is, the
generators of rotations. The full Poincaré algebra of gen-
erators of rigid symmetries of the free particle is obtained.
Finally, using the methods introduced in Sec. II B 3, one

can compute the invariant associated with the lapse N. The
result is IN ¼ 1

p0 , that is, one of the constants of motion

obtained above.

B. Observables and dirac brackets

1. Preliminary remarks

It is a remarkable fact that for some purposes the explicit
construction of invariants for which the general theory has
been given above can be avoided. In this subsection wewill
show that the Poisson bracket fI�A ; I�Bg of the invariants
associated with the fields �A, �B, is the invariant associ-
ated with the Dirac bracket of the fields themselves.
As a preliminary observation, one might wonder how we

can compute Poisson brackets of the functional invariants
I�A , given that their arguments are only defined for fields
satisfying the equations of motion; Poisson brackets in-
volve arbitrary variations, including ‘‘off shell’’, i.e., vio-
lating the equations of motion. The resolution is the
following. Since the Poisson brackets are an equal-time
computation, let us simply examine the functionals at
a given time t. An arbitrary extension off shell of a func-
tional I�A will produce I�A ! I�A þOðP�;H �Þ. But
notice that this off shell extension does not change the
Poisson brackets as long as we evaluate the result on
shell since fOðP�;H �Þ;F�g � 0 and also of course

fOðP�;H �Þ;OðP�;H �Þg � 0. So indeed the functionals

need only be defined on shell for their Poisson bracket to be
well defined on shell.
We will show that

fI�A ; I�Bg � I f�A;�Bg� ;

where the Dirac bracket is

f�A;�Bg� :¼ f�A;�Bg � f�A; CigM�1
ij fCj;�Bg:

In this expression we define the eight member set Ci :¼
H �, �

�, and Mij :¼ fCi; Cjg.
13The example of a dimensionally reduced spatially homoge-
neous isotropic cosmological model is worked out in [12].
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Notice that if the map �A ! I�A were a canonical
transformation, the result would have been simply
fI�A ; I�Bg ¼ I f�A;�Bg; because the Poisson-bracket struc-
ture is preserved by a canonical transformation. The crucial
fact that complicates this computation is that the descrip-
tors, which are determined by the gauge-fixing conditions,
are substituted by functionals of the field configurations at
p after the action of the finite element of the gauge group
expðf�; GgÞ is taken, as it is clear in (16). We further
discuss in III C this issue of noncanonicity of the map
�A ! I�A .

The following proof is restricted, just for simplicity, to
canonical fields other than the lapse and shift and their
conjugates. Thus for the generator (2) we only need the

reduced expression G ¼ ��� �H �, with
�H � defined in (7).

This restriction is easily eliminated by taking into account
the results in Sec. II B 3 and using the generator (24). The
proof will be undertaken in two steps. In the first step we
show that this relation holds at pG, and in the second step
the proof is extended to an arbitrary point in the gauge
orbit.

2. Step 1: Neighborhood of pG

Let us consider a neighborhood of pG in the gauge orbit,
and take an arbitrary point p in the same orbit, such that the
set of descriptors used to bring configurations in p to
configurations in pG are infinitesimal. Let us write, recall-
ing (16) and keeping terms to first order in the infinitesimal
descriptors,

I �A ¼ �A þ ��f�A; �H �g þOð�Þ2:
Then, computing at p,

fI�A ;I�Ag ¼ f�A þ��f�A; �H �g;�B þ��f�B; �H �gg
¼ f�A;�Bg � f�A; �H �gf��;��gf �H �;�

Bg
� f�A;��gf �H �;�

Bg þ f�A; �H �gf��;�Bg
þOð�Þ

¼ f�A;�Bg� þOð�Þ: (36)

In the last equality we have used the fact that

M ¼ f �H ; �H g f �H ; �g
f�; �H g f�; �g

 !
� 0 þ�

�� f�; �g
� �

;

(our fields satisfy the equations of motion, so

f �H ; �H g � 014) has as its inverse

M�1 ¼ f�; �g ��
þ� 0

� �
;

thus producing the Dirac brackets above. This computation

has been made at p, in the close neighborhood of pG. Now
we can take the limit p ! pG on both sides, thus obtaining

fI�A ; I�BgjpG ¼ f�A;�Bg�jpG ¼ I f�A;�Bg�jpG ; (37)

where in the last step we have used the fact that the func-
tionals I�A become the identity functionals when their
arguments are taken at pG. This concludes the first step
of our proof.
An alternative proof, using the connection between the

observables and specific canonical transformations of the
fields is given in Sec. III C 2.

3. Step 2: Arbitrary point on gauge orbit

Let us now extend this result to the entire gauge orbit.
We can make an arbitrary gauge transformation sending
the equality (37) holding at pG to a corresponding equality
at any other point p. Let us call Uðp; pGÞ this gauge
transformation from pG to p. Its specific descriptors can
be determined in a manner similar to the procedure for
building the invariants. Uðp; pGÞ is a canonical transfor-
mation and, as such, preserves the Poisson-bracket struc-
ture. This means that Uðp; pGÞ ‘‘enters’’ on both sides of
the Poisson bracket. On the other hand, the action of
Uðp; pGÞ on the functionals is

I �A½X�
pG
;�A

pG
; x� ! I�A½X�

p ;�A
p; x�:

[In fact the action ofUðp; pGÞ on these functionals is trivial
because they are invariant under the gauge transformations
and can be written in terms of the fields at any point in the
gauge orbit.] These considerations show that the left hand
side of (37) undergoes, under the action of Uðp; pGÞ, the
transformation fI�A ; I�BgjpG ! fI�A ; I�Bgjp .
Let us now address the transformation of the right-hand

side of (37) under Uðp; pGÞ. If the canonical gauge trans-
formation Uðp; pGÞ could ‘‘enter’’ within the Dirac brack-
ets, then the result for the transformation of the right-hand
side would be simply f�A;�Bg�jpG ! f�A;�Bg�jp . But the
Dirac bracket structure is not preserved by canonical trans-
formations generated by the Poisson bracket since
fU�A;U�Bg� � Uf�A;�Bg�. Indeed, we can now take
advantage of writing f�A;�Bg�jpG as I f�A;�Bg�jpG because

then f�A;�Bg� becomes just the label that identifies the
functional we are considering, in the sense that I f�A;�Bg� is
the functional that sends the specific combination of field
configurations given by f�A;�Bg� to its value at pG. Thus
it is obvious that the action of Uðp; pGÞ on this functional
just maps

I f�A;�Bg�jpG ! I f�A;�Bg�jp :

The equality between the transformed objects in the left-
hand side and the right-hand side of (37) tells us that we
have obtained

14In Appendix B we derive the stronger result f �H ; �H g ¼
OðH 2Þ.
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fI�A ; I�Bg � I f�A;�Bg� ; (38)

for any arbitrary point p in the gauge orbit.

4. Additional remarks

The results in Sec. II B 3 permit the extension of (38) to
the lapse and shift fields. Indeed the situation is the same as
in Sec. III B when working with fields other than lapse and
shift, but instead of having 4 first-class constraints and 4
gauge-fixing constraints, there are now 8 constraints of
each type. Proceeding exactly through the same steps as
in Sec. III B, the result (38) can be extended to all the fields,
lapse and shift included.

The result (38) has been previously obtained by
Thiemann [8] in a remarkable proof based on formal series
expansion or—in his own words—by ‘‘brutally working
out the Poisson brackets.’’ We have provided a natural
geometric interpretation of this series expansion.

So far our considerations hold for S, the space of on-
shell field configurations. But once the results have been
obtained, and recalling that all the canonical gauge trans-
formations are active transformations at fixed spacetime
coordinates, we can examine all our actions along the
gauge orbit at a fixed value of the time coordinate, t0. At
this fixed time, which can be considered the time for the
setting of the initial conditions, the field configurations
only need to satisfy the constraints P� � 0, H � � 0.

Thus our results are valid in a phase-space formulation
on the entire original first-class constraint surface (but not
including the gauge-fixing constraints, which are only
satisfied at the particular point pG in the gauge orbit).

We notice also that the results obtained above are differ-
ent from the results in [31] showing that the Dirac bracket
of the invariant functionals coincides on-shell with its
Poisson-bracket; see especially Exercise 1.18 and
Sec. 13.2.2 in this book. This is obviously true by the
very nature of the invariant functionals; they are required
to satisfy fI�A ; Gg � 0,15 which is the ingredient needed to
show, in the light of the Dirac bracket (36), or its general-
ization to all 8þ 8 constraints, that indeed

fI�A ; I�Bg� � fI�A ; I�Bg:

Taking (38) into account, and including the result above,
we can write in phase-space,

fI�A ; I�Bg� � I f�A;�Bg� ; (39)

where we have expressed the fact, using the weak equal-
ities ‘‘�’’ that these relations are satisfied on the constraint
hypersurface surface in phase space—again, not including
the gauge-fixing constraints.

C. The invariants constructed as limits of canonical
maps

1. On the noncanonicity of the map � ! I�

To further study some aspects of the observables, wewill
elaborate on the noncanonicity of the map� ! I� and its
proximity to canonical maps. In order not to overload the
subsequent considerations we exclude the lapse and the
shift fields, but remark that by the techniques described in
II B 3 the results of this subsection can be extended to lapse
and shift.
Let us recall the expression (16) for the invariant func-

tional I�, having chosen the usual basis for the

Hamiltonian constraints such that, f��; �H �g ¼
���

� þOð �H Þ and f �H �;
�H �g ¼ Oð �H 2Þ. Let us write

again the expression for our observables, after Eq. (16),

I � :¼ expðf�; ��� �H �gÞ�j�¼�
� X1

n¼0

1

n!
�nf�; �H gðnÞ:

(40)

The map � ! I� sends all the points p in the gauge
orbit to a single point pG. Hence it can not be a canonical
transformation because one such transformation should be
invertible. An alternative, indirect but sufficient proof of
this noncanonicity is that the Poisson bracket of the invar-
iants associated with two given fields is not the invariant
associated with the Poisson bracket of these fields, but with
the Dirac bracket. The reason for this noncanonicity may
be traced to the fact that the descriptors �� are replaced by
the gauge-fixing constraints �� after the action of the finite
gauge transformation that sends p to pG.
We will explore how close this map� ! I� can be to a

canonical transformation. We will show that it is in fact the
limit of a family of canonical transformations. To construct
this family, an obvious candidate is the object that results
from making the replacement of the descriptors before the
action of the finite gauge transformation. A one-parameter
family of canonical transformations is found by allowing a
global rescaling for the descriptors.

So consider the functional, for G :¼ �� �H �,

K� :¼ expðf�; �GgÞ� ¼ expðf�; ��� �H �gÞ�
¼ expðf�; �� �H gÞ�; (41)

with � a real parameter. Thus the map � ! K� is ca-
nonical. We will show that I� can be reobtained as the
� ! 1 limit of K�.
We start with the expansion for K�,

K� ¼ expðf�; �GgÞ� ¼ X1
n¼0

�n

n!
f�; GgðnÞ: (42)

To continue, let us define Bn :¼ �nf�; �H gðnÞ, n > 0, with
B0 :¼ �. Our aim is to rewrite the expansion (42) in terms
of these objects Bn. Notice that, due to the fact that15At a fixed time t0 this reads fI�A ; P�g � 0, fI�A ;H �g � 0.
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f�; �H g � ��, we get the simple relation

fBn;Gg � �nBn þ Bnþ1: (43)

Our result will take the form

K� � X1
n¼0

cnBn; (44)

and the task is to compute the coefficients cn.
One can see immediately that c0 ¼ 1. To compute c1 we

need to add all the appearances of B1 in the different terms
in (42). We find, keeping only the B1 terms,

K� � �þ �B1 þ �2

2!
ð�B1 þ . . .Þ þ �3

3!
ðB1 þ . . .Þ

þ . . .

and thus

c1 ¼ �� �2

2!
þ �3

3!
þ . . . ¼ 1� e��:

It turns out that

cn ¼ 1

n!
ð1� e��Þn: (45)

This result will be obtained below employing a different
technique.

With the coefficients (45) we obtain, for (44),

K� � X1
n¼0

1

n!
ð1� e��Þn�nf�; �H gðnÞ: (46)

It is illuminating to notice the substantial difference
between the two series expansions, (42) and (46), for the
same functionalK�. Both are power series expansions but
whereas the first is in terms of the parameter �, the second
is in terms of ð1� e��Þ and is only valid on shell. One
reasonably expects convergence at least in the case where
the point p in the space of field configurations S is in the
neighborhood of pG.

Notice that, as expected, there is no finite � that can
makeK� ¼ I�. Curiously enough, though, and as long as
it is legitimate to enter the limit � ! 1 within the series
expansion (46), one finds, recalling (40),

lim
�!1

K� � I�;

thus the invariants can be interpreted as limits of one-
parameter families of canonical transformations. But
such a limit is no longer a canonical transformation.16

Our previous analysis makes the reason more transparent
because whereas the limit � ! 1 can be easily taken for
the expansion (46), for which it simply says ð1� e��Þ !

1, it makes no sense at all for (42). And here is the point: it
would have been just by obtaining a finite result for the
computation of the limit in the exponent f�; �Gg in (42),
which is clearly divergent, that we would have been as-
sured that the end result was a canonical transformation.
A complementary result is obtained by considering the

computation of fK�;
�H g. It is crucial in this regard that

the Poisson bracket of the constraints �H among them-
selves is quadratic in the constraints (see Appendix B).

Owing to this fact, fG; �H g ¼ � �H þOð �H 2Þ, and the
quadratic terms can be dropped in the internal Poisson
brackets as long the final result is expressed on shell.
Taking into account (42) and that

ff�; GgðnÞ;H g � Xn
k¼0

ð�1Þðn�kÞ n!

k!ðn� kÞ! ff�;H g; GgðkÞ;

one easily obtains17

fK�;
�H g � e��Kf�; �H g; (47)

which, in the limit � ! 1, tells us again that I� is an

invariant, that is, fI�;
�H g � 0.

Notice that we can use (47) to obtain the coefficients
(45). Consider the generic expansion (44) for K� and
require that it complies with (47). One easily finds a
recurrent equation for the coefficients cn,

cn � ðnþ 1Þcnþ1 ¼ e��cn;

which, with the obvious input c0 ¼ 1, yields the result (45)
.

2. Revisiting the Dirac bracket

The considerations in this subsection provide an alter-
native computation of the Poisson bracket of the invariants
as compared to III B. From the definition (41) it is clear
that, since � ! K� is a canonical transformation,

fK�A ;K�Bg ¼ Kf�A;�Bg:

The fact that (47) implies in general that fK�;
�H g � 0,

means that to compute the Poisson bracket fK�A ;K�Bg
off-shell information of K� must be used. The minimal

off-shell information we need is Oð �H Þ. Let us introduce
for our purposes the notation Oð2Þ to describe terms that

are quadratic in ��, �H �. Noticing that for G :¼ � �H and
arbitrary functionals �� and ��, one has

f� �H þ ��;Gg ¼ ð�þ �f�; �gÞ �H � ��þOð2Þ;
(where �f�; �g �H must be interpreted here and in similar

16Compare with the homothetic map R2 ! R2 defined by
~v ! 1

� ~v, which is invertible for any real value of �. It becomes
singular for � ! 1: ~v ! ~0.

17This result can also be obtained by differentiating with
respect to the parameter � the on-shell equivalent expressions
(42) and (46), but here we choose another method, based
exclusively on (42), in order to provide a proof of (46).
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expressions in the following as ��f��; ��g �H �) and one

easily obtains

f�; Ggð2nþ1Þ ¼ f�; �g �H þ f�; �H g�þOð2Þ;
for n ¼ 0; 1; 2; 3; . . . , and

f�; Ggð2nÞ ¼ ðf�; �g þ f�; �H gf�; �gÞ �H � f�; �H g�
þOð2Þ;

for n ¼ 1; 2; 3; . . . . With these results, using the expansion
(41) we find

K� ¼ �þ ð1� e��Þf�; �H g�þ e�ðð1� e��Þf�; �g

þ ð1� e��Þ2
2

f�; �H gf�; �gÞ �H þOð2Þ: (48)

Note in expression (48) that the off-shell terms diverge for
� ! 1; this means, in particular, that the limitK� ! I�

for � ! 1 can only be taken on shell. Let us define, with
(46) in mind,

~K� :¼ X1
n¼0

1

n!
ð1� e��Þn�nf�; �H gðnÞ

¼ �þ ð1� e��Þf�; �H g�þOð2Þ; (49)

so finally we have

~K� ¼ K� � e��
�H þOð2Þ; (50)

with

� :¼ ð1� e��Þf�; �g þ ð1� e��Þ2
2

f�; �H gf�; �g:
The functionals � carry the information of the lowest
order off-shell terms for K�. Now we can compute

f ~K�A ; ~K�Bg ¼ fK�A ;K�Bg � e�fK�A ; �H g�B

� e��Af �H ;K�Bg þOð �H ; �Þ
¼ Kf�A;�Bg � e�fK�A ; �H g�B

� e��Af �H ;K�Bg þOð �H ; �Þ;
and when we go on shell ( �H � 0), using (47),

f ~K�A ; ~K�Bg � Kf�A;�Bg �Kf�A; �H g�B � �AKf �H ;�Bg
þOð�Þ:

Next we can take the limit � ! 1 and we obtain

fI�A ; I�Bg � I f�A;�Bg � I f�A; �H gð lim�!1
�BÞ

� ð lim
�!1

�AÞI f �H ;�Bg þOð�Þ;

which explicitly shows the role played by the off-shell
terms of K� in the computation of fI�A ; I�Bg. These
terms will gently conspire to bring the Dirac bracket on

stage. Indeed, taking the limit p ! pG, which is � ! 0,
we obtain

fI�A ;I�BgjpG ¼ f�A;�Bg � f�A; �H gðf�B; �g
þ 1

2f�;�gf �H ;�BgÞ � ðf�A�g
þ 1

2f�A �H gf�; �gÞf �H ;�Bg
¼ f�A;�Bg�jpG ¼ I f�A;�Bg�jpG ; (51)

which is (37).

3. Extension to all fields including lapse and shift

Up to this point we have restricted the generic field� on
which we operate to be other than the lapse and shift. When
� is any generic field, or functional of the fields, the
generator of gauge transformations must be taken in its
full form (2), or in its equivalent form (24) obtained by the

use of a special basis for the constraints, �
 ðiÞ� ¼ ð ��H �; �P�Þ.
This is the form that interests us.
By its construction, see Sec. II B 3, this new basis has the

property that f�ðiÞ�; �
 ðjÞ�g � ��i
j�

�
�, where �ðiÞ� ¼

ð��; _��Þ are the secondary and primary gauge-fixing con-
straints. A bonus of this construction is that the constraints
�
 ðiÞ� have strongly vanishing Poisson brackets among

themselves. Thus all the properties that have allowed us
to obtain results like (37) or (46) hold with the only change
being the doubling of the set of constraints involved:

Instead of �H � now we must take �P�,
��H �, and instead

of �� now we must take _��, ��. With this simple consid-
eration, all results are extended to any field. In particular
the connection between Poisson brackets for the invariants
and Dirac brackets—now defined with a set of 16 second
class constraints—for the associated fields, and also the
obtention of the invariants I� as limits of canonical maps
K�, for any field �, without restrictions.

IV. CONCLUSIONS

In 1955 P. G. Bergmann, in a plenary talk in Bern
celebrating ‘‘Fifty Years of Relativity Theory,’’ expressed
the belief that ‘‘genuine invariants would reveal themselves
as extremely complicated functionals of the presently
known field quantities’’ [35]. Nearly 40 years later Torre
confirmed Bergmann’s belief with a proof that in generic
general relativity no observables exist that can bewritten as
spatial integrals of Cauchy data and finite derivatives
thereof [6]. In this paper we have explicitly displayed
generic invariants as series involving derivatives of
Cauchy data in principle up to infinite order. Others, in
particular, Dittrich and Thiemann, have defined invariants
as formal power series. However, we are able to establish a
relation between functional invariants and specific gauge
choices. Equivalently, we have shown that invariants are
obtained through a choice of intrinsic coordinates. The
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construction of invariants and the demonstration of the
equivalence of the two points of view are achieved through
the use of the underlying canonical diffeomorphism-
symmetry group of generally covariant theories. We should
point out that the observables that are obtained through
these constructions are of course not functionally indepen-
dent. Given the 2 degrees of freedom of pure gravity, there
are in phase-space four, or rather 4ð�3�1Þ functionally
independent observables. The proofs of our results are
local in the sense that they can be applied to a region of
spacetime. Global issues are not addressed in the present
formulation.

We expect that our contribution will help to clarify some
controversial issues that are still debated in the literature
regarding the notion of gravitational observables. We cite,
in particular, the ‘‘frozen-time’’ issue. We identify as a
fundamental origin of many of these misunderstandings
the fact that different authors do not use the same definition
for common words like ‘‘gauge transformation.’’. In
Appendix A we have tried, in the guise of an informal
dialogue, to pinpoint the most common causes of misun-
derstanding. We do not, of course, by any means claim to
have pronounced the final words on any of them. The fact
that our proofs are local means also that we are still far
from a final and comprehensive description of the whole
picture.

We have established in this paper a broad geometrical
interpretation of the construction of observables in gener-
ally covariant theories. In particular, we have argued that
there exists two basic equivalent points of view as regards
the construction of observables once the solutions of the
equations of motion are given.

(i) The first point of view, and the one that enjoyed
particular emphasis, relies on the existence of a
genuine diffeomorphism-induced canonical gauge
symmetry group. This group realizes as active ca-
nonical transformations all changes of canonical
variables that result from general changes of space-
time coordinates. We identify the group as ‘‘-
diffeomorphism-induced’’ because the resulting
transformations depend on the functional form of
some or all of the components of the metric field.
Indeed, in order to be able to implement the trans-
formation group, the lapse and shift must be retained
as canonical phase-space variables, and permissible
diffeomorphisms depend on them in a compulsory
manner. We have shown that this group may be
employed to construct functions that are invariant
under its action. The strategy is to choose an explicit
spacetime coordinate-dependent gauge condition,
and then to find the finite gauge transformation that
transforms the fields to that location on the gauge
orbit where the gauge condition is satisfied. The
application of this finite transformation to all field
variables produces invariants associated with each

and every one of them. In order for this program to
succeed it is mandatory that the fields18 X�, those
that are set equal to the coordinates x� in the gauge-
fixing procedure, transform under general coordinate
transformations as spacetime scalars.

(ii) This brings us to the second equivalent view. The
gauge choice is nothing other than the selection of
that system of spacetime coordinates for which the
fields X� produce the results X�ðxÞ ¼ x�. This
means that we are choosing the values of these scalar
fields as the coordinatization of the spacetime. Users
sitting at different points p on the gauge orbits have
phase-space solutions �p with distinct functional

forms. Each is given explicit instructions on devel-
oping a potentially infinite series in powers of their
coordinates x�, namely,

I � � X1
n�¼0

1

n0!n1!n2!n3!
ðx0Þn0ðx1Þn1ðx2Þn2

�ðx3Þn3Cn0;n1;n2;n3 ;
with coefficients

C n0;n1;n2;n3
:¼I ffff�p;;

�H 0pgðn0Þ; �H 1pgðn1Þ; �H 2pgðn2Þ; �H 3pgðn3Þjx�¼0
:

(Where setting x� ¼ 0 refers only to the explicit
dependencies.) These coefficients are constant;
they are invariant under diffeomorphism-induced
canonical transformations, i.e., under displacement
from p to p0 along the gauge orbit. Furthermore, we
have shown that these constants are nothing other
than the derivatives in a Taylor expansion of solu-
tions at the gauge-fixed location pG on the gauge
orbit. Notice that if the user works with the new

fields �̂A ¼ I�A as the fields of her spacetime, her

new description is exactly as if her original coordi-
nates played the role of the intrinsic coordinates.

(iii) We have also proven that the Poisson brackets of the
invariants I� are identical with the invariant associ-

ated with Dirac brackets, i.e., fI�A ; I�Bg �
I f�A;�Bg� . This equality holds for all the canonical

variables, including the lapse and shift.
We are able to express all the invariants I� as limits

of canonical maps applied to the original fields. This
aspect throws new light on the emergence of the
Dirac bracket just mentioned. On the other hand,
out of our invariants, which satisfy the EOM, one
can obtain constants of motion with no explicit time
dependence. These constants of motion, which are
obviously observables, albeit of another kind, are
generators of rigid Noether symmetries.

18These fields may be independent fields or functionals of other
fields. An example of the second case is the use by Komar and
Bergmann [20] of Weyl scalars, also considered in [10].
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(iv) Our results on the Dirac bracket connect our findings
with Dirac’s procedure for establishing the strong
vanishing of Poisson brackets of constraints and
gauge conditions through the introduction of Dirac
brackets. Of course one must choose gauge condi-
tions of the form x� ¼ X�, where the X� are four
suitably chosen spacetime scalar functions of the
canonical variables. To our knowledge we are the
first to establish this detailed connection for the full
set of canonical variables. Dirac had originally in-
troduced this method as a way of eliminating incon-
sistencies in passing from the classical theory to the
quantum theory. But since he lacked a geometrical
interpretation of the resulting formalism, he and
others who followed his lead tended to focus almost
exclusively on attempting to identify a minimal
complete set of invariants. In particular, the lapse
and shift were simply eliminated from the formal-
ism. This was and remains a mistake when passing to
the quantum theory. The Dirac bracket of the lapse
and shift carries physical information. The quantum
noncommutativity of lapse and shift with the remain-
ing quantum observables is an outcome of the spe-
cific choice of intrinsic space and time coordinates.
As a consequence of this choice the full metric in the
quantum theory will be subject to fluctuation—
yielding a quantum ‘‘thickening’’ of the light cone
in an appropriate semiclassical limit.

(v) We think that our approach makes a deep connection
with the ‘‘evolving constants of motion’’ program. In
particular, the elucidation of the different roles of the
explicit and implicit—i.e., through the fields—time
dependences in the observables proves to be a key
ingredient in the full conceptual clarification of this
program.

We wish to stress one additional aspect of our construction
of invariants: They are obviously solutions of Einstein’s
equations, and they make use of a set of selected scalars
which define the intrinsic coordinates. It is in this respect
that we detect a potential disagreement with the program of
partial and complete observables that has been advanced
by Rovelli [33], and further elaborated in the canonical
framework by Dittrich [7] and Thiemann [8]. Only if the
partial variable is a spacetime scalar will their construction
of complete observables correspond to an acceptable gauge
fixing. In other words, some choices of partial observable
as coordinate time might not be legitimate gauge choices.

Many of our findings were conceptually anticipated in
Peter Bergmann’s short review paper [1]. There we find the
idea that, when considered as symmetry generators, the
constants of motion obtained from the observables take the
configurations out of the gauge orbit. He also anticipated
the distinction between the explicit time dependence of the
invariants, necessary to enforce the satisfaction of the
equations of motion, and the implicit one, which we dis-

cuss in Sec. III A 3. Again with the advantage of hindsight
one can anticipate from his considerations the ‘‘evolving
constants of motion’’ program. He even outlined what
should be the role of the Dirac bracket in the algebra of
invariants, although without the symmetry group theoreti-
cal foundations that we have established in this paper.
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APPENDIX A: A DIALOG ON CANONICAL
GRAVITY, GAUGE SYMMETRYAND DYNAMICS

In this appendix we attempt to communicate, in the form
of dialogue, our views on some subjects that are still
controversial or have been a source of misunderstandings
in the canonical formulation of gravity. The interchange is
between two subjects, A. and B., the latter representing our
point of view. We will essentially touch upon three issues:
the gauge group of canonical gravity, the meaning(s) of
gauge transformations, and finally the infamous ‘‘time is
frozen, nothing happens’’ problem in canonical gravity. We
progress from very naı̈ve misunderstandings, which have
by now been largely clarified, to some confusions which
still persist in the literature. What is said concerning ca-
nonical gravity can be extended in obvious ways to other
generally covariant theories.

1. The gauge group of canonical gravity

A.: Sometimes I ask myself why Einstein’s theory,
which has such an aesthetic appearance in the Lagrange
formulation becomes so ugly looking in its Hamiltonian
form. Beyond that, being based upon a 3þ 1 decomposi-
tion, it is quite clear that canonical gravity is not able to
describe the full 4-diffeomorphism invariance of the
Lagrangian formulation of general relativity. Having com-
mitted to a given 3þ 1 decomposition means that a partial
gauge fixing is in effect since the diffeomorphisms that do
not preserve the foliation must be excluded.
B.: Let us skip matters aesthetic, and cut to the chase. I

profoundly disagree with the last thing you said. Nothing
prevents diffeomorphisms from acting because the gauge
group must be understood as a group of active diffeomor-
phisms and, as such, it never change the foliation.
A.: But it is clear that a diffeomorphism generated by a

vector field v� will change the foliation as long as v0

depends on the spatial coordinates.
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B.: This is true in the passive view of diffeomorphism
invariance, but we are interested in a canonical realization
of the gauge group, that is, with generators acting through
the Poisson brackets. This is an active action in the sense
that it modifies the field configurations but leaves un-
changed the coordinates. Active and passive views must
be neatly distinguished.

A.: I am happy to concede, but then let me mention what
I see as a problem with the canonical realization of the
gauge group. Assume that it is possible to treat everything
infinitesimally, i.e. near the group identity. We know for
instance that in case of an infinitesimal coordinate trans-
formation �x� ¼ x̂� � x� ¼ ���ðxÞ the infinitesimal
variation of a tensorial object T is given by the Lie deriva-
tive L�T. (We should leave out further complications due
to the presence of spinorial fields in this discussion.) But
here things already get hard, since the diffeomorphism
group is more complicated than a finite dimensional Lie
group. This is, for instance, reflected in the Poisson-bracket
structure of the Hamiltonian and momentum constraints in
canonical gravity. You do not have structure constants but
structure functions. The diffeomorphism group is not real-
ized in phase space.

B.: Not so fast! One must be very careful when moving
into phase space. Let me first address some aspects of
diffeomorphisms in configuration-velocity space.
Bergmann and Komar observed in the early seventies
that Einstein’s field equations (respectively, the Hilbert-
Einstein action) are not only invariant under point/contact
transformations ðx̂� ¼ f�ðx�ÞÞ, but also under transforma-
tions which additionally may depend on the metric fields
and their derivatives; i.e. ðx̂� ¼ f�ðx�;g��ðxÞ; . . .Þ. This is
more than a spacetime diffeomorphism in the usual sense
of (passive) coordinate transformations. Whereas the dif-
feomorphism group is acting on the Riemannian manifold
(locally describable in the passive view as general coordi-
nate transformations), the larger group, which is certainly a
diffeomorphims-induced gauge group, acts on the space of
metrics of the Riemannian manifold—and on every other
field that is around.

A.: Why make things even more complicated by inves-
tigating this far larger group?

B.: The gauge group is what it is, not what you would
like it to be. There are many answers to your question, that
is, many ‘‘becauses’’: Because an important subgroup of
this larger group can be realized in phase space, because
this subgroup reveals the explicit form of the gauge gen-
erators, because this subgroup gives a clue as to how to
interpret even a gravitational Hamiltonian as being respon-
sible for unfolding dynamics, and because this subgroup
leads you to a better understanding of observables.

A.: Wow, seems that the ‘‘subgroup of the generalized
symmetry group’’ cures my headache—and not only mine.
By the way, is this the Bergmann-Komar group?

B.: Well, it depends on who you ask. Some authors
mistakenly denote the full metric dependent group as the

Bergmann-Komar group. We reserve this name for the
projectable subgroup. Okay, now you can follow me as
we explore the fate of symmetries in going from the
configuration-velocity space to phase space.
A.: I think we can skip this, since this Dirac procedure is

already standard and described in textbooks. At the very
end we arrive at a extended Hamiltonian, being the sum of
the canonical Hamiltonian and arbitrary linear combina-
tions of the first-class constraints.
B.: Again you are going too fast. Since I know some

German: ‘‘Soviel Zeit muß sein’’—to not forget the con-
tribution of Peter Bergmann and his collaborators (and also
that of L. Rosenfeld—but this is another story). But what is
more essential for our discussion: We know that because of
the singular character of the Lagrangian of general relativ-
ity the Legendre transformation from the configuration-
velocity space to the phase space is not invertible.
A.: Sorry to interrupt you again, but to arrive at a

Hamiltonian even in this singular situation is exactly the
task of the Dirac-Bergmann algorithm.
B.: The algorithm is one thing, but understanding the

input and the output of the procedure is another story.
A.: The input is the Lagrangian . . .
B.: . . . with its symmetries. Just wondering—according

to you, which generalized diffeomorphism symmetry sur-
vives the Legendre transformation?
A.: Is it the Bergmann-Komar group?
B.: You are very clever! Neither the diffeomorphism

group nor the larger general field-dependent group allow
for a transition from the tangent space to the cotangent
space. In order to be Legendre projectable the field-
dependent group must be restricted in a specific way, al-
ready specified in the 1972 article by Bergmann and
Komar.
A.: Could you make this more precise?
B.: Legendre projectability restricts the functional form

of the ��ðx�; g%�; . . .Þ to
��ðx�; g%�; . . .Þ ¼ n��0 þ �

�
a �a;

where the �� are descriptors depending only on the three-
geometry (three-metric components and their spatial de-
rivatives) and n� is the normal to the t ¼ const hypersur-
face, expressed by the lapseN0 ¼ N and the shift functions
Na as

n� ¼ fN�1;�N�1Nag:
A.: To make things easier let us take the by now standard

gauge choice N ¼ 1 and Na ¼ 0. We know, and this is
already textbook knowledge that ‘‘lapse and shift should
not be viewed as dynamical variables.’’
B.: Careful! Through an untimely ‘‘so-called’’ gauge

choice you are losing insights in the structure of the
phase-space version of gravity: If you fix the lapse and
the shift, you are no longer able to identify the ‘‘so-called’’
gauge generators, nor are you able to recognize the differ-
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ence between the so-called gauge generators and the
Hamiltonian. And yet you are also worried about the fate
of general covariance in going from the Lagrangian to the
Hamiltonian in gravitational theories. It turns out, and this
is important, that in order to see the diffeomorphism-
induced symmetry in phase space one is forced to treat
the lapse and the shift functions in the theory as genuine
fields.

A.: Okay, I accept that—however with a grain of salt,
since I learned that the lapse and the shift functions are
devoid of any physical meaning. By the way, why are you
so insistent in talking about ‘‘so-called’’ gauge-blah-blah?

B.: I am doing this, because it seems that when consid-
ering canonical gravity there seem to be at least two differ-
ent understandings of what ‘‘gauge’’ means.

A.: Why so? One has the diffeomorhisms. . .
B.: Which diffeomorphisms do you have in mind here?

Automorphic mappings of manifolds, generalized symme-
tries in the sense of Bergmann and Komar,
diffeomorphism-induced transformations in phase space,
or perhaps, following Dirac, gauge transformations at a
fixed time?

2. The meaning(s) of gauge transformations

A.: Okay, you got me. Seems it is time to get deeper into
the meaning of gauge symmetries. When Dirac wrote his
book, what he had in mind briefly as follows . . . wait . . .
there is a nice description in Rovelli’s book [14]:
‘‘Consider a system of evolution equations in an evolution
parameter t. The system is said to be gauge invariant if
evolution is under-determined, that is, if there are two
solutions that are equal for t less than a certain t0.’’

B.: This is a possible presentation of the ‘‘gauge sym-
metry’’ phenomenology, but one must proceed with ex-
treme care as regards the definitions. The original
diffeomorphism-symmetry maps complete solutions of
the field equations to other solutions, but if you read care-
fully Dirac’s book on constrained systems, you will see that
when he discusses gauge transformations, he refers to a
fixed time, namely t0. What makes us believe that Dirac’s
notion of gauge invariance is the same as the gauge invari-
ance considered by Bergmann, which is the one that maps
solutions of the EOM into solutions? I observe that in the
community there is no clear distinction among these two
notions. And thus there is no clear distinction about what a
‘‘gauge generator’’ is meant to be. This disagreement
underlies the famous dispute over whether dynamics is
frozen in generally covariant theories like general
relativity.

A.: But we know from Dirac’s work that all first-class
constraints generate gauge transformations.

B. Regretfully Dirac’s approach to gauge transforma-
tions has caused a lot of misunderstandings. His concept of
a gauge transformation was not that of mapping solutions
of the EOM into new solutions. He worked at a fixed

time—the evolutionary parameter—and so his concept
was rather that of relating two sets of initial conditions—
at that given time—that, respectively, belong to two gauge
equivalent solutions.
A.: So, what is the difference in Dirac’s understanding of

‘‘gauge transformation’’ and Bergmann’s notion?
B.: That’s easy to state: Dirac’s ‘‘gauge-

transformations,’’ generated by all first-class constraints
(well, if certain mathematical regularity conditions hold),
are valid for a fixed time only—which can be taken as the
time at which initial conditions are formulated. But when
one considers all possible times, which is necessary if we
want to act on a whole solution of the EOM, then the gauge
generators, as Bergmann pointed out, are a specific combi-
nation of first-class constraints, with a certain number of
arbitrary functions and their time derivatives attached to
these constraints.
In fact you do not even need to consider general covari-

ance to grasp the distinction between Dirac’s and
Bergmann’s conceptions. Just take pure Maxwell theory
with gauge field A�. There is a primary first-class con-

straint, namely, the momentum conjugate to A0, and a
secondary first-class constraint, the Gauss constraint. To
generate the gauge transformation �A� ¼ @�� (� is an

arbitrary function) in phase space, you need to construct a
gauge generator made with a specific combination of the
two constraints, with coefficients � for the secondary one

and _� for the primary one. This is Bergmann’s conception.
Of course if you consider just a fixed time t0, since � is an

arbitrary function,� and _� become independent functions
of the spatial coordinates, and that is why in Dirac’s view,
both constraints generate gauge transformations, but we
must insist that this last picture is only valid at a fixed time!
You can see with your own eyes that neither of these
constraints alone generates transformations mapping solu-
tions into solutions.
In the case of GR, the gauge generators are explicitly

G�ðtÞ ¼ P�
_�� þ ðH � þ N�C�

��P�Þ��:

Here the H � are the well-known Hamiltonian and mo-

mentum constraints, and the C�
�� the structure coefficients

in their Poisson bracket algebra (called Dirac algebra by
some). The P� are the momenta canonically conjugate to

the lapse and shift functions N�, and a spatial integration
over repeated indices is to be understood. The �� are
arbitrary functions of the spacetime coordinates as well
of the field components except for the lapse and shift.
A.: Again I see the lapse and the shift function in this

expression. Things would become easier for the gauge
choice N ¼ 1, Na ¼ 0.
B.: Yes, things would become easier for some explicit

calculations, however not for the interpretation of the
gauge generators as generating exactly what they are sup-
posed to generate as symmetry operators, namely, for any
object � in the theory
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L �� ¼ f�;G�g:
Note that this Poisson bracket is an equal-time bracket. In
order to construct the full gauge transformation, mapping
solutions into solutions, one needs to consider all times (or
at least a finite interval for the time parameter).

3. Gauge transformations versus dynamical evolution

A.: Even though it has been hard to follow you with so
many different notions of gauge invariance, I think I have
finally got you: The Dirac-Hamiltonian for a generally
covariant theory is known to be

HD ¼ N�H � þ ��P�:

(�� are the arbitrary functions of the dynamics.) Thus the
choice �� ¼ N� leads to a gauge generator GN once you
take into account the equations of motion _N� ¼ ��. Thus I
make the strong claim that the Hamiltonian is a specific
gauge generator. And if the Hamiltonian is a gauge gen-
erator (even in the sense of Bergmann), how can you
escape from interpreting this as leading to ‘‘frozen-
time’’? There are no dynamics at all!

B.: Here is the quick and easy response. The generator
�tðN�H � þ _N�P�Þ does serve to replace solutions at

time t by the original solutions evaluated at t� �t. But it
performs this function only on one particular member of
each equivalence class of solutions, namely, those for
which the lapse and shift are the chosen explicit function
N�. On all other members of equivalence classes the effect
is to generate variations that are distinct from global trans-
lations in time.

But let me try to convince you by looking more closely
at the geometry and the transformations we are talking
about. For this purpose I will denote the space of fields
obeying the GR field equations—one can include matter
fields as well—by S; thus points in S are specific space-
times with the fields—solutions of the EOM—described in
a particular coordinatization. Consider the field content of
a point p in S. Let us focus on the data for the fields at time
t0 and let us call D these data. With a specific selection of
the arbitrary functions �, there exists a Dirac Hamiltonian,
HðtÞ ¼ N�H � þ ��P�, which dictates, through the

Poisson brackets, the time evolution in p. Particularly,
for an infinitesimal �t, this Hamiltonian tells what are to
be the field data at the hypersurface labeled by t0 þ �t. Let
us call these new field data D0. Now, if we do this for all
times t, the result is that of course we have remained
exactly at the same point p in S, because the dynamics
as described by a given observer, takes place within a given
spacetime in a given coordinatization.

A.: Is this long exposition meant to persuade me that the
Hamiltonian determines the dynamical evolution in phase
space?

B.:Well . . . yes. But in addition I would like to point out
to you the difference between a Hamiltonian and a gauge

generator. So let me go on. Consider the gauge generator
that, after an appropriate choice of the descriptors, happens
to coincide in its mathematical expression with the Dirac
Hamiltonian at time t0. Because of this coincidence, its
action will of course transform the field data D intoD0, but
these data D0 are now conceived at time t0, because the
gauge transformations are equal-time actions. What hap-
pens is that we have moved from p to another gauge
equivalent spacetime p0. If we undertake the same proce-
dure for any time t (continuing to assume that the descrip-
tors at time tmatch up with the lapse and shift at time t) we
will end up having mapped the whole spacetime p to p0.
Notice that the field configurations in p and p0 just differ in
the time label, and that a passive diffeomorphism t ! t�
�t will make both descriptions identical. Obviously this
fact should not be a surprise, but should be viewed as a
simple consequence of our fundamental understanding of
spacetime gauge symmetry. Thus the fact that the gauge
generator can mimic the Hamiltonian has nothing to do
with the fact that there is real physical19 evolution in a
given spacetime p, where we may consider events, coinci-
dences, causal structure, observables, and so on.
Dynamical evolution in p is not gauge action on p.
A.: Sorry, you almost manage to confuse me, so let me

use my own language. On one side we have D and D0 as
field configurations connected by a gauge transformation.
On the other we know that, in some spacetime, the con-
figuration D0 lies in the future of D. Since by definition a
gauge transformation does not change the physics, we
deduce that the physics in D and D0 are the same. So the
future is gauge equivalent to the past and therefore ‘‘noth-
ing happens.’’ How do you address that?
B.: Let me remind you of what we discussed earlier: that

in generally covariant theories we must distinguish two
notions of gauge transformation, namely, the ones we
previously called by the names of Dirac and Bergmann,
respectively. Since the symmetry-inspired (Bergmann) no-
tion is about mapping solutions of the equations of motion
to solutions, we need to have entire field configurations,
not just configurations at a given time t0, as occurs with D
and D0. In saying that D and D0 are connected by a gauge
transformation you inadvertently changed the concept of
gauge transformation—from Bergmann’s to Dirac’s—but
intended to keep intact its interpretation. That is a mistake.
A.: Just to get your point: Are you saying that the phrase

‘‘A gauge transformation does not change the physics’’ is
wrong?
B.: It depends on what you mean by ‘‘the physics’’ and

by a ‘‘gauge transformation.’’ Note that D and D0 can be
conceived as settings of initial conditions. The fact that
these two sets of initial conditions are related by a gauge
transformation effected at a given time t0 means that both
D and D0 are good data to build, using the dynamics, the

19See below for clarifications on the meaning of ‘‘physics.’’
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same physics. This is what we have seen before with the
spacetimes p and p0, which are gauge equivalent. With the
word ‘‘physics’’ here we mean the entire spacetime, with
the entire history, modulo gauge transformations. We may
call this physics the ‘‘entire physics’’. This is the physics
that enters in your sentence ‘‘a gauge transformation does
not change the physics,’’ because it refers to mapping
solutions into solutions. In this physics the statement is
true.

A.: This being said, I assume that there is another mean-
ing of physics in which the sentence, ‘‘A gauge trans-
formation does not change the physics,’’ is indeed wrong.

B.: Yes indeed. But you must take now Dirac’s gauge
transformations at a single time. As we have just seen, D
and D0 are related in this sense. It is obvious that if D0 is a
fixed-time field configuration in the future of D (we may
consider here finite time separations instead of infinitesi-
mal ones) in a given spacetime p, both are equally good
data from which one can reconstruct the entire spacetime
and so both belong to the same ‘‘entire-physics’’. But if we
prefer to stay in a more down-to-earth perspective, regard-
ing configurations at a given time (let us call it ‘‘timeslice-
physics’’) in a given spacetime, then of course the
timeslice-physics in D and in D0 can be very different,
although the entire physics is the same. Perhaps in D you
were not born yet and in D0 you were. That is a big
difference, and observable, is it not?

APPENDIX B: FROM WEAKLY TO STRONGLY
VANISHING POISSON BRACKETS OF FIRST-

CLASS CONSTRAINTS

In their monograph [31] Henneaux and Teitelboim con-
sidered in chapter 5.2 the idea of ‘‘Abelianization of con-
straints,’’ an idea already present in another language in
classical monographs on differential equations, like [36].
In this respect, a particularly efficient technique is that of
Dittrich [7] and Thiemann [8], which we adopt in II B 1.
We will prove that these ‘‘Abelianized’’ constraints lead to
strongly vanishing first-class constraints in the sense of
Dirac. In Dirac’s terminology, a function f strongly van-
ishes (denoted as f � 0) in phase space if it vanishes and in
addition its differential also vanishes on the constraint
surface.

For simplicity, we shall use the language of mechanics.
Consider a d-dimensional manifold with n (n � d

2 ) first-

class, independent, and effective constraints �i. (A con-
straint is said to be effective if it has a non vanishing
differential on the constraint’s surface.) They define the
surface M and so they satisfy f�i;�jg ¼ fkij�k.

Associated vector fields are

Vi ¼ f�; �ig;
so that

½Vi; Vj� � fkijVk;

where the symbol�means that the equality is valid onM.
Now consider n independent functions Fi such that

detViðFjÞ � 0. Next take the functions Fi, �j, and d�
2n extra functions to make a change of coordinates in the
phase space, at least in a neighborhood of M. If the
original coordinates—positions and momenta—where x,
we call the new coordinates y so that yi ¼ FiðxÞ, ya ¼
FaðxÞ, where a ¼ nþ 1 . . . d and Fa include the con-
straints �i.
Express the vector fields in the new coordinates

Vi ¼ ViðFjÞ@yj þ ViðFaÞ@ya :
Next define Bj

i ¼ ðViðFjÞÞ�1 and make independent linear

combinations of the vector fields by defining �Vi ¼ Bj
iVj. It

turns out that

�V i ¼ @yi þDa
i @ya ;

for some coefficients Da
i . Since we just made a linear

combination of the vector fields, they still satisfy a closure
property on M,

½ �Vi; �Vj� � �fkij �Vk;

but on the other hand, given the form of �Vi in the new
coordinates, it is clear that ½ �Vi; �Vj� can not have @yk terms

on the right-hand side and therefore we can not write �Vk on
the right-hand side. We conclude that ½ �Vi; �Vj� � 0 (or

equivalently, �fkij � 0).

Now consider a change of basis for the constraints, along

the same lines, that is, ��i ¼ Bj
i�j., then

f�; ��ig ¼ �Vi þOð�Þ;
where by Oð�Þ we mean vector fields that vanish on M.
We thus have

ff; f ��i; ��jgg � ½ �Vi þOð�Þ; �Vj þOð�Þ�f � ½ �Vi; �Vj�f
� 0;

for any function f, which means that

f ��i; ��jg ¼ Oð�2Þ � 0:
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