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We consider the dynamics of a particle of mass M and spin J in AdS3. The study reveals the presence
of different dynamical sectors depending on the relative values of M, J and the AdS3 radius R. For the
subcritical M2R2 − J2 > 0 and supercritical M2R2 − J2 < 0 cases, it is seen that the equations of motion
give the geodesics of AdS3. For the critical caseM2R2 ¼ J2 there exist extra gauge transformations which
further reduce the physical degrees of freedom, and the motion corresponds to the geodesics of AdS2. This
result should be useful in the holographic interpretation of the entanglement entropy for two-dimensional
conformal field theories with gravitational anomalies.
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I. MOTIVATION AND RESULTS

Point particles in spacetime offer a simplified setting to
study the interplay between the geometry of spacetime and
quantum mechanics. As noted long ago by Deser, Jackiw
and ’t Hooft, point particles in 2þ 1 gravity are naked
conical singularities in which the mass is related to the
angular deficit. The energy-momentum tensor has Dirac
deltas with support at the position of the particles, which
induces delta singularities in the curvature at those points.
Infinite curvature concentrated at an isolated point corre-
sponds to a conical singularity produced by the removal of
a wedge. These conical defects do not affect the local
geometry on open sets that do not include the singularities,
but they change the global topology [1].
Point particles in AdS3 are also related to black holes

(BH). Since point particles are conical singularities, they
are obtained by identification in AdS3 by a global spacelike
Killing vector with a fixed point in a similar way as the
2þ 1 black hole is obtained by identifications in the
universal covering of AdS3 [2]. The spacetime geometry
of a conical singularity in AdS3 is identical to the Bañados,
Teitelboim, Zanelli (BTZ) geometry, where the mass of
the black hole is minus the mass of the point particle, and
therefore a point particle of massM in 2þ 1 can be viewed
as a black hole of mass −M [3].
The 2þ 1 black hole can have angular momentum J and,

by the same token, a point particle can be endowed with
spin. An important quantity that characterizes both black

holes and point particle states is κ ≡ J2 −M2R2, where
R is the anti–de Sitter radius. Nonextremal black holes and
spinning point particles correspond to κ < 0 (subcritical
case). The extreme (critical) geometries, κ ¼ 0, have
additional special features, like admitting globally defined
Killing spinors [supersymmetric Bogomolnyi-Prasad-
Sommerfield (BPS) states]. Figure 1 displays the different
sectors of 2þ 1 black hole (BH)-particle states in the M-J
plane. The AdS3 geometry, without identifications, is the
point J ¼ 0;MR ¼ −1; black holes cover region I (κ ≤ 0;
M > 0); point particles are described by III (κ ≤ 0;
M < 0). The supercritical regions II (κ > 0) are unphysical

FIG. 1. J-M plot for locally AdS3 geometries: Physical black
holes (MR ≥ jJj), point particles (MR ≤ −jJj) and unphysical
states (jMjR ≤ jJj). The critical cases jMjR ¼ �jJj correspond to
extremal configurations.
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states. States below the hyperbola κ ¼ −1;M < 0 corre-
spond to angular excesses rather than defects, and also
display deltalike curvature singularities at r ¼ 0. On the
other hand, it is also possible to think of a particle as a
probe that does not significantly affect the spacetime
geometry around it, a localized perturbation with negligible
backreaction. The appropriate setting to describe this would
be an action for a relativistic point particle whose trajecto-
ries, in the absence of other interactions, are geodesics of
the spacetime background. In that case M and J are
parameters in the action and κ is an intrinsic feature, while
for the black hole they are constants of motion that depend
on the initial conditions.
The geodesic equation is a local statement and is there-

fore the same for a particle on a patch of AdS3 or around a
2þ 1 black hole. The only difference would be in the
orbits, since they depend on the global properties of the
manifold. Hence, the conserved quantities for the different
orbits could be the same, e.g. energy and angular momen-
tum, but their specific values would determine the class of
geodesics that the particle traces.
Motion of particles in AdS3 can also be related to the

holographic entanglement entropy. As shown in [4], the
entanglement entropy in AdSD is related to minimal
ðD − 2Þ-surfaces in AdSD. For the case of AdS3, the
minimal surface is the length of the geodesics, and these
are the trajectories of particles in AdS3. The holographic
description of the entanglement entropy for conformal field
theories in two dimensions with gravitational anomalies [5]
has been studied in [6].
Motivated by these observations, we consider the

dynamics of a particle of mass M and spin J in AdS3.
The Lagrangian equations of motion reveal the presence of
different dynamical sectors depending on M; J and R. For
the subcritical (κ < 0) and supercritical (κ > 0) cases it is
seen that the equations of motion give the corresponding
geodesics of AdS3. For the critical case ðκ ¼ 0Þ there exists
an extra gauge transformation which further reduces the
physical degrees of freedom.1 The orbits correspond to
geodesics of AdS2.
The presence of dynamical sectors appears also in a

(2þ 1)-dimensional harmonic oscillator system with exotic
Newton-Hooke symmetry. The system displays three differ-
ent phases depending on the values of the parameters [11].
The reduced phase space description reveals a symplectic
structure similar to that of Landau problem in the non-
commutative plane [12,13]. There is a close relation between
the (2þ 1)-dimensional exotic Newton-Hooke symmetry
and the noncommutative Landau problem [14].2

The nonrelativistic limit of a spinning particle in AdS3
shows the Newton-Hooke symmetry and gives the (2þ 1)-
dimensional exotic harmonic oscillator system.
Since the AdS3 algebra can be written as a sum of

two chiral soð2; 1Þ factors, we construct a Lagrangian for
spinning particles in terms of chiral coordinates. The relation
between the chiral and nonchiral variables is given in terms
of a differential equation that can be solved perturbatively.
The equations of motion for the critical case in the chiral
formulation describe orbits that are geodesics of AdS2.
The subcritical case ðκ < 0Þ includes a special repre-

sentative, J ¼ 0, while M ¼ 0 is a representative for the
supercritical case ðκ > 0Þ. In each case we explicitly give
the coordinate transformation that takes the Lagrangian into
one described by the corresponding representative. We
expect the points J ¼ 0 or M ¼ 0 to be described in terms
of noncommutative coordinates, in a similar way as for the
flat case (see e.g. [16]).
Some of the particle states have a lowest energy (BPS)

bound. In particular, the critical sector with κ ¼ 0, with
M > 0 saturates a BPS bound and therefore is a candidate
to be a supersymmetric configuration, with 1=4 supersym-
metry, if the system is embedded in a supersymmetric
model. These particles belong to the BH sector of the J-M
plane. The subcritical configurations with M < 0 do not
have a lowest energy bound but an upper one, and therefore
do not seem to correspond to stable BPS states. As shown
in [3], the critical states with M < 0 also admit globally
defined Killing spinors. Nevertheless, a complete corre-
spondence with the BH spectrum should not be expected
since we assume the particle as a probe that does not
modify the spacetime background.
Summing up, we prove the existence of sectors in the

dynamics of a spinning particle in AdS3. The critical sector
has half the physical degrees of freedom due to existence of
an extra, kappalike bosonic gauge symmetry. The presence
of sectors is in correspondencewith the spectrum of BH. Our
results shed light on the holographic interpretation of the
entanglement entropy for CFT2 with gravitational anomalies
[6], for which the left cL and right cR central charges are
different, and one will have sectors for this class of theories.
The critical sector corresponds to chiral CFTs with only left
or right moving sectors, while the sign of cLcR determines
the subcritical (þ) and supercritical (−) sectors. Any particle
with spinJ in a locallyAdS3metricwill exhibit the samekind
of dynamical sectors, but theywill be absent, for instance, for
local dS3 geometries. The analysis should also be useful in
the study of the motion of anyons around a BTZ black hole.
The paper is organized as follows. Section II presents the

Lagrangian, and discusses the dynamical sectors and the
equations of motion. Section III introduces the chiral
variables and analyzes the dynamical sectors in this descrip-
tion. The relation between chiral and nonchiral variables is
established in Sec. IV by means of a set of nonlinear
differential equations that can be solved perturbatively.

1This gauge transformation is the bosonic analog of kappa
symmetry [7,8] for superparticles [9,10] that kills half of the
degrees of freedom.

2The motion of an anyon in an electromagnetic field also has
sectors; see e.g. [15].
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Section V presents an explicit biparametric transformation,
in terms of the chiral variables, that connects Lagrangians
with different M, J parameters in the super- and subcritical
sectors. Finally, Sec. VI uses the chiral form of the
Lagrangian to discuss the existence of BPS energy bounds
for several values of the parameters.

II. ADS3 ACTION AND EQUATIONS OF MOTION

The action of a massive spinning particle in AdS3 is
constructed from the coordinates of the world line xaðτÞ
and a generic Lorentz transformation Φa

bðτÞ.3 To lowest
order in derivatives, the action is [16,17]

I0½x;Φ� ¼ −M
Z

dτð_xmeamΦa
0Þ

−
J
2

Z
dτϵa0b0ηcdΦd

a0 ½ _Φc
b0 þ _xmωmc

eΦe
b0 �; ð1Þ

where eamðxÞ and ωab
m ðxÞ are the dreibein and spin

connection of AdS3. The Lagrangian is given by the
Maurer-Cartan (MC) form (nonlinear realization [18])
for the coset G=H ¼ SOð2; 2Þ=SOð2Þ. The AdS3 gener-
ators satisfy the so(2,2) algebra

½Pa; Pb� ¼ −iR−2Mab; ½Pa;Mcd� ¼ −iηa½cPd�;

½Mab;Mcd� ¼ −iηb½cMad� þ iηa½cMbd�; ð2Þ
and the stability group H is generated byM12. We consider
a local parametrization of the coset element

g ¼ g0U ∈ G=H; g0 ¼ eiP0x0eiP1x1eiP2x2 ;

h ¼ eiM12α ∈ H; U ¼ eiM02v1e−iM01v2 : ð3Þ
The Lorentz transformation U can be expressed as

Φa
b ¼

0
B@

coshv1 0 − sinhv1

0 1 0

− sinhv1 0 coshv1

1
CA
0
B@
coshv2 sinhv2 0

sinhv2 coshv2 0

0 0 1

1
CA:

The dreibein and spin connection in this parametrization
are obtained from the MC form Ω0 ¼ −ig−10 dg0 ¼
Paea þ 1

2
Mabω

ab,

e0 ¼ cosh x̂1 cosh x̂2dx0; e1 ¼ cosh x̂2dx1;

e2 ¼ dx2; ω02 ¼ cosh x̂1 sinh x̂2dx̂0;

ω12 ¼ sinh x̂2dx̂1; ω01 ¼ sinh x̂1dx̂0; ð4Þ
where x̂a ¼ xa=R. The MC form associated to g is
Ω ¼ −ig−1dg ¼ PaLa þ 1

2
MabLab, where

La ¼ ebΦb
a; Lab ¼ Φc

aðηcddþ ωcdÞΦd
b: ð5Þ

The Lagrangian (1) is constructed from the pullback of the
(pseudo) invariant forms L0 and L12 as

Lnon ¼ −ML0 − JL12: ð6Þ
The Euler-Lagrange equations of motion can be written as

ð−MR2L01 þ JL2Þ ¼ ð−MR2L02 − JL1Þ ¼ 0;

ðML2 − JL01Þ ¼ ðML1 þ JL02Þ ¼ 0: ð7Þ
If J2 ≠ M2R2 these equations become La0 ¼ 0 and
L0a0 ¼ 0. They relate the spin variables va

0
to the coor-

dinates of the world line by

Φa
0 ¼ _xmembηbaffiffiffiffiffiffi−gp ; g≡ _xm _xngmn; ð8Þ

and yield also the geodesic equation,

d
dτ

_xmffiffiffiffiffiffi−gp þ Γm
rn

_xr _xnffiffiffiffiffiffi−gp ¼ 0 ð9Þ

for the metric gmn ¼ embηbaena. Note that (9) has no
contribution from the spin variables va

0
because the

physical states in configuration space are given by xa
0
only

and the va
0
are not independent local degrees of freedom,

as can be seen from (8) as well as from the Hamiltonian
analysis. In the reduced phase space, the velocity _xm is
proportional to the momentum, and therefore the coordi-
nates do not exhibit Zitterbewegung.
In the critical case J2 ¼ M2R2, only two of the equations

in (7) are independent and there are new gauge symmetries,
besides diffeomorphisms, that reduce the number of
degrees of freedom from 4 to 2. The sectors are also
present in local AdS3 or warped AdS3, but not for dS3.

III. CHIRAL FORMULATION

The chiral form of (1) is obtained by making use of the
isomorphism SOð2; 2Þ ¼ SOð2; 1Þ × SOð2; 1Þ, namely

Lch ¼ μþL0þ þ μ−L0
−; ð10Þ

with

μ� ¼ −
1

2
ðJ �MRÞ; ð11Þ

and where

La
� ¼ 1

2
ϵabcLbc � La=R; ð12Þ

j�a ¼ 1

2

�
−
1

2
ϵabcMbc � RPa

�
ð13Þ

3The tangent space metric is ηab ¼ diagð−;þþÞ. Indices
m; n;… refer to the spacetime manifold where the particle
moves. a; b;… ¼ 0; 1; 2 are tangent space indices, and
a0; b0;… ¼ 1; 2.
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are the chiral MC forms and generators, related to those
of AdS3.
The sub- and supercritical sectors are defined by the sign

of 4μþμ− ¼ ðJ2 −M2R2Þ ¼ κ, and in the critical sector
either μþ ¼ 0 or μ− ¼ 0, which corresponds to an AdS2
Lagrangian in each case. The Lagrangian (6) was obtained
from the coset SOð2; 2Þ=SOð2Þ. In order to construct a
Lagrangian in terms of chiral variables we would like
to know in which form an element of SOð2; 2Þ=SOð2Þ
can be written as a product of chiral coset elements
SOð2; 1Þ=SOð2Þ. To answer this, let us introduce

gþ ¼ ðeijþ0 x0eijþ1 x1eijþ2 x2eijþ1 v1eijþ2 v2Þ
¼ eij

þ
0
X0

eij
þ
1
X1
þeij

þ
2
X2
þeij

þ
0
α

≡ ~gþeij
þ
0
α;

g− ¼ ðe−ij−0 x0e−ij−1 x1e−ij−2 x2eij−1 v1eij−2 v2Þ
¼ e−ij

−
0
X0

e−ij
−
1
X1
−e−ij

−
2
X2
−eij

−
0
α

≡ ~g−eij
−
0
α; ð14Þ

where the terms containing α are compensating elements of
the chiralH ¼ SOð2Þ factors. The elements of SOð2; 2Þ are
then given by

gþg− ¼ ~gþ ~g−h; ð15Þ

where

h ¼ eij
þ
0
αeij

−
0
α ¼ eiðj

þ
0
þj−

0
Þα ∈ H; ð16Þ

and ð~gþ ~g−Þ ∈ G=H is parametrized by five coordinates
ðX0; X�1; X�2Þ. Using the expressions for ~g�, the
Lagrangian (10) can be written as

Lch ¼ μþðcoshX2þ coshX1þ _X0 þ sinhX2þ _X1
þÞ

þ μ−ð− coshX2
− coshX1

− _X
0 þ sinhX2

− _X
1
−Þ; ð17Þ

and the chiral equations of motion La0
� ¼ 0 are

_X1
�ðτÞ ¼ ∓ tanhX2

�ðτÞ coshX1
�ðτÞ _X0ðτÞ;

_X2
�ðτÞ ¼ � sinhX1

�ðτÞ _X0ðτÞ: ð18Þ

In the critical case ðμ− ¼ 0Þ, the equations of motion are
La0þ ¼ 0 and give the geodesics in AdS2, while the Xa0

− s are
gauge degrees of freedom since they are absent from the
Lagrangian.
In the nonrelativistic limit Xa0

� → Xa0
�=ω; μ

� → ω2μ�,
the Lagrangian takes the Newton-Hooke form [11] up to a
divergent total derivative, and the equations of motion (18)
become those of two harmonic oscillators.

IV. NONCHIRAL TO CHIRAL VARIABLES

The relation between chiral and nonchiral coordinates is
established by comparing the corresponding expressions
for the coset element in the two parametrizations. Intro-
ducing an auxiliary parameter t to rescale vi in the coset
expressions (3) and (14), one finds

e�ij0x0e�ij�
1
x1e�ij�

2
x2eitj

�
1
v1eitj

�
2
v2

¼ e�ij�
0
X0ðtÞe�ij�

1
X�1ðtÞe�ij�

2
X�2ðtÞeij�0 αðtÞ: ð19Þ

Expanding in powers of t corresponds to expansions in
vi, and differentiating with respect to t yields a set of
nonlinear differential equations relating the nonchiral
variables (t ¼ 0) and chiral variables (t ¼ 1),

� coshX�2 coshX�1∂tX0 þ sinhX�2∂tX�1 þ ∂tα

¼ sinhðtv2Þv1;
cos αðsinhX�2 coshX�1∂tX0 � coshX�2∂tX�1Þ

− sin αð− sinhX�1∂tX0 � ∂tX�2Þ ¼ coshðtv2Þv1;
sin αðsinhX�2 coshX�1∂tX0 � coshX�2∂tX�1Þ

þ cos αð− sinhX�1∂tX0 � ∂tX�2Þ ¼ v2: ð20Þ
These equations can be solved as a series in t with initial
conditions X0ð0Þ¼x0=R, X�1ð0Þ ¼ x1=R, X�2ð0Þ ¼ x2=R
and αð0Þ ¼ 0. To lowest order, the solution is given by

X0ðtÞ ¼ x̂0 − tv1sechhx̂1 sinh x̂2 þOðt3Þ; ð21Þ
X�1ðtÞ ¼ x̂1 � tv1 cosh x̂2 þOðt2Þ;
X�2ðtÞ ¼ x̂2 � tðv2 − v1 tanh x̂1 sinh x̂2Þ þOðt2Þ;

αðtÞ ¼ Oðt2Þ: ð22Þ

V. TRANSFORMATION OF LAGRANGIANS

Lagrangians with different values of ðM; JÞ can be
related by a biparametric family of point transformations,
ðX�1; X�2Þ → ðX�1ðs�Þ; X�2ðs�ÞÞ, given by

X�1ðs�Þ ¼ cosh−1
 
es

� coshX�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðe2s� − 1ÞαðX�Þ

q !

X�2ðs�Þ ¼ cosh−1
�
coshX�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðe2s� − 1ÞαðX�Þ

q �
;

ð23Þ
where

αðX�Þ ¼ sinh2X�2

cosh2X�2 − sech2X�1
:

The left and right chiral Lagrangians transform as
L0
� → es

�
L0
�, up to total derivatives. From the relation
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between the chiral and nonchiral forms of the Lagragian
given by (10) and (11) one can change the coefficients of
the LP and LJ terms of the nonchiral form as

M → M0 ¼ es1ðM cosh s2 þ J=R sinh s2Þ;
J → J0 ¼ es1ðJ cosh s2 þMR sinh s2Þ; ð24Þ

with s� ¼ s1 � s2, so that κ → κ0 ¼ e2s1κ. In particular, for
the subcritical sector, taking tanh s2 ¼ −J=ðMRÞ makes
J0 ¼ 0, while in the supercritical case tanh s2 ¼ −MR=J
yields M0 ¼ 0. The M ¼ 0 and J ¼ 0 nonchiral
Lagrangians are thus canonical representatives of the
super- and subcritical sectors, for which a noncommu-
tative description analogous to the flat case might be
expected [16].

VI. BPS ENERGY BOUNDS

The BH spectrum (Fig. 1) shows that the critical regions
jMjR ¼ jJj are 1/4 BPS supersymmetric configurations,

except for M ¼ 0 ¼ J which is 1/2 BPS. This hints to the
existence of BPS energy bounds for the particle moving in
AdS3. Indeed, let us consider the energy associated to the
chiral Lagrangian (17) in the static gauge (τ ¼ X0). When
MR ¼ J, the energy bound E ≥ −μþ ¼ MR ≥ 0 is satu-
rated by the BPS configuration X1þ ¼ X2þ ¼ 0, but this is
not the case when jJj ¼ −MR (M ≤ 0). Hence, the critical
configurations are in correspondence with the 1

4
BPS

supersymmetric states for M > 0, but not for M < 0.
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