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We have investigated hysteresis and the return-point memory (RPM) property in deterministic cellu-
lar automata with avalanche dynamics. The RPM property reflects a partial ordering of metastable
states, preserved by the dynamics. Recently, Sethna et al. [Phys. Rev. Lett. 70, 3347 (1993)] proved
this behavior for a homogeneously driven system with static disorder. This Letter shows that the partial
ordering and the RPM can be displayed as well by systems driven heterogeneously, as a result of its own
evolution dynamics. In particular, we prove the RPM property for a deterministic 2D sandpile automa-

ton driven at a central site.

PACS numbers: 64.60.My, 05.40.+j, 75.60.E)

Hysteresis is a macroscopic evidence of energy dissipa-
tion in externally driven physical systems. We are famil-
iar, for example, with the hysteresis cycle displayed by
the magnetization of a ferromagnet when subjected to an
external magnetic field. In many systems the hysteresis
trajectories have been found experimentally to be highly
reproducible from cycle to cycle— though sometimes only
after a number of training cycles. This, in spite of the
fact that a detailed examination of the trajectories re-
veals, instead of a smooth evolution, a sequence of sharp
discontinuities separated by intervals of null activity, is
signature of an evolution by avalanches [1].

Moreover, the hysteretic behavior exhibits many times
the striking property of return point memory (RPM). It
has been observed in a variety of physical systems: fer-
romagnets [2], solids undergoing structural [3] and spin
[4] transitions, charge-density waves [5], adsorption of
gases by porous solids [6], etc. Very recently Sethna et
al. [71 have shown that a random-field Ising model
(RFIM) at zero temperature displays the RPM property,
as a consequence of the fact that (i) there is an ordered
sequence of metastable states available to the system, and
(ii) in the absence of thermal fluctuations, this sequence
is preserved by the dynamics.

In this Letter we will show that a dynamically pre-
served ordered sequence of metastable states (and hence
the RPM property) can arise as well quite naturally in
systems with homogeneous properties, as a result of its
own evolution dynamics.

As a paradigm of this new kind of system with RPM,
we have considered the fully deterministic cellular au-
tomaton introduced by Wiesenfeld, Theiler, and McNa-
mara (WTM) in the context of self-organized criticality
[8]; this cellular automaton evolves in a self-organized
way into a critical state, in which avalanches of all sizes
can occur (limited only by the size of the system itself)
and the amplitude distribution of avalanches follows a
power law [9].

The WTM sandpile automaton that we have studied to
investigate the RPM property consists of an N X N square
lattice with an integer-value function z(x,y) defined on

each lattice site. /N is odd to provide for a unique central
site. A configuration of the automaton is given by the en-
semble {z(x,y)} for all lattice sites. In order to study
hysteresis we must provide dynamic rules, in discrete
time, for the forward and for the reverse evolution of the
automaton. These are given by central seeding/removal,

2(0,0)—z(0,0) x1, 1)

and forward/reverse flow:

z(x,y)—z(x,y) ¥4,
zx,p+1)—zlx,y+1)*1,
Ifz(x,p)=xz*—={zG,y—D—z,y—Dx1, ()
z(x+1,y)—z(x+1,p)*1,
z(x—1,y)—z(x—1,y)*x1.

z* is a constant threshold, for which we have taken the

value z* =4 as in Ref. [8]. The evolution in the forward
direction is given by the upper signs and the upper in-
equality. Seeding of the central site provides the driving
force for the automaton to evolve. The rules are applied
in the following way: (1) is iterated until z(0,0) > z*;
then (2) is repeatedly applied synchronously (i.e., all sites
are updated simultaneously) until z(x,y) <z* in all lat-
tice sites. At this moment the system has reached a new
metastable configuration. Further forward evolution is
achieved by repeating the whole procedure again. In ad-
dition, we have chosen the following:

z(x,y) =0 for all x,y (initial conditions) , 3)

z(x,y) =0 on the boundary (boundary conditions) . (4)

Our choice of the initial conditions and the fact that the
evolution rules are the same in all sites make the proper-
ties of the system homogeneous.

To evolve in the reverse direction we have considered
the lower signs and the lower inequality. The rules are
applied in exactly the same way as before. That this is
the natural choice of rules for the reverse evolution fol-
lows from the observation that, if we were to choose (3)
and (4) as initial and boundary conditions for the reverse
evolution, this set of rules would give rise to the same se-
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FIG. 1. Automaton trajectories showing hysteresis and

return-point memory. We have plotted 4 (number of times
that some lattice site becomes critical) as a function of Z
(external driving force) for a 2D lattice of size 23%23. Notice
the RPM property: In the internal loop between b and e, the
reverse path starting at e rejoins the outer path exactly at b, the
state previously left. The inset shows the neighborhood of the
turning point b in detail. The broken lines represent the trajec-
tories followed when Z is not reversed at e and d, respectively,
and provide new examples of RPM.

quence of configurations than in the forward evolution,
except for the sign of the integer variable z(x,y). In oth-
er words, the reverse sandpile appears now as the mirror
image across the plane z(x,y) =0 of the forward sand-
pile. In addition, the mirror symmetry guarantees that
the backward evolution of the cellular automaton leads
also to a SOC state [9].

Let us define macroscopic variables to describe the dy-
namic evolution of the system. Since the automaton is
externally driven by central seeding and central removal
[rule (1)] we define a variable Z that is initially 0, and
Z— Z £ 1 every time that rule (1) is applied. This vari-
able measures the external driving force applied to the
automaton. The outcome of driving the automaton is the
occurrence of avalanches of varying sizes. We define a
variable A, conjugate to Z, to measure the number of
times that any lattice site becomes critical; i.e., 4 is ini-
tially 0, and 4 — A %+ 1 every time that rules (2) are ap-
plied.

The evolution of 4 as a function of Z is shown in Fig.
1. Initially the automaton is at Z=0, A=0; a monotonic
increase of Z leads to the evolution given by the ascend-
ing jerky line. When state a is reached we stop central
seeding and begin central removal: The reverse evolution
goes above the previous forward one, displaying hys-
teresis. The internal trajectories illustrate the RPM
property: If the driving force Z is increased from Z, to
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FIG. 2. Automaton microstructures. Displayed are two se-
quences of states at three different values of Z for the two des-
cending trajectories in the inset of Fig. 1. The upper sequence
corresponds to the outer trajectory and the lower one to the
inner trajectory. Representation of negative numbers: A for
—1, Bfor —2, C for —3, and D for —4. Because of the sym-
metry of the WTM dynamics it is not necessary to display the
whole lattice; the upper site of each state is the central site.

Z., when it comes back to Z, the automaton returns pre-
cisely to the same state b from which it left the outer tra-
jectory (i.e., the internal trajectory remembers state b).
The inset in Fig. 1 shows in detail the neighborhood of
state b: The trajectory of increasing Z leaves b with zero
slope, because there is a dead interval before Z exceeds
threshold in some lattice site; the trajectory of decreasing
Z in the partial loop rejoins the state b exactly, and at
this point there is a discontinuity in slope that reflects a
discontinuous increase in the number of lattice sites with
z(x,y) values falling below threshold. The same RPM
property is found for smaller loops within this loop (such
as the one formed between c and d), and so on: The state
of the automaton depends on an entire hierarchy of previ-
ous turning points. The broken lines, finally, represent
the trajectories obtained if Z was not reversed at point d
and at point e, which again display RPM. Figure 2
presents two examples of the evolution of the microstruc-
ture; they correspond to the two descending trajectories
shown in the inset of Fig. 1, leading exactly to the same
state b.

To understand the origin of RPM in the WTM au-
tomaton, we work out now an alternative description of
its dynamics based on new sets of local variables.

(i) Partial ordering of states.—Instead of using
{z(x,y)}, we characterize a state of the automaton by a
new ensemble {a(x,y)} such that the new state variables
a(x,y) evolve (increase or decrease) monotonously with
the external driving force Z. A good candidate for
a(x,y) is the number of times that the lattice site (x,y)
has become critical, as given by

a(x,y) =0 for all x,y (initial conditions) , (5)

a(x,y) =0 on the boundary (boundary conditions) ,

(6)
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if z(x,y)=xz*—=alx,y)—alx,y) £1 (dynamics).
@)

It is worth noting that a(x,y) can take any integer value
in the interval (— oo, 0),

There is now a natural partial ordering of the states: a
state s=1{a,(x,y)} =r={a, (x,p} if a;(x,y) =a,(x,y)
for each site (x,y) in the system. It should remain clear
that this ordering is only partial, and many pairs of states
that the automaton displays do not have a definite order-
ing relationship.

(ii) The partial ordering is preserved by the dy-
namics.— This property is actually a restatement of
Middleton’s no passing rule [10] in a different context.
Consider a state s(¢) that evolves under an external driv-
ing Z,(t), and another state r(¢z) that evolves under
Z,(t). Suppose that initially they are ordered, in such a
way that s(0) = r(0). Then, as long as Z,(t) = Z,(¢) at
all times ¢, the ordering s(¢) = r(¢) remains valid.

To prove this property we have to define on each lattice
site of the automaton a function that follows the evolution
of z(x,y) due only to external contributions:

F(x,y)=z(x,y)+qa(x,y). 8)

q is the number of units lost or gained by the variable
z(x,y) when flow takes place; in our case g=4. F(x,y)
measures the local driving on each lattice site. In gen-
eral, the interest of introducing F(x,y) is that the local
state variable a(x,y) follows a monotonic evolution under
the local field F(x,y), independent of the previous history
of F(x,y). For the particular system studied here, the in-
itial conditions and the evolution rules have been chosen
to be the same in all lattice sites and therefore, in addi-
tion, the relationship between a(x,y) and F(x,y) (Fig.
3) is independent of the site (x,y) considered.

Next, recalling the definition of F(x,y), we note that F
can also be written in terms of @ and the external driving
force Z alone, in the form

F0,00=3 a(u,n)+2Z, 9)

(u,v)

F(x,y) =<Z)a(u,v) if (x,y)=(0,0) . (10)
u,v

Here (u,v) indicates summation over the g=4 nearest
neighbors of the site (x,y). These two equations are easi-
ly derived from the definition of F(x,y) and the observa-
tion that the external contributions to the change of
z(x,y) come from (i) its g nearest neighbors [every time
that one of them becomes critical, as measured by
a(u,v)] and (ii) the external driving force Z if the site
considered is the central site.

Equations (9) and (10) are in a sense analogous to the
expression of the internal field experienced by a magnetic
spin in a two-dimensional Ising model, with Z playing the
role of an external magnetic field applied to the central
site only. Hence we can follow the argument of Ref. [7]

FIG. 3. Local evolution. Shown is the evolution of the local
state variable a(x,y) under the local field F(x,y) for an arbi-
trary lattice site (x,y). The ordering of states is preserved by
the dynamics of the cellular automaton because there is a
unique F(x,y) —a(x,y) relationship for each one of the two
directions of evolution.

to prove that the ordering s(¢) = r(¢) is preserved: If it
is not preserved, there must be a first time ¢ such that
a,(t) > a,(¢t) on some lattice site (x,y); since the evolu-
tion of a with f is monotonic, at that time F,(x,y) must
be larger than F,(x,y); but, according to (9) and (10),
this is not possible since all the nearest neighbors in s
have a(u,v) larger than or equal to the corresponding
onesinr, and Z,(¢t) = Z,(1).

In addition, it is worth noting that the partial ordering
would not be preserved if the automaton was seeded in a
different lattice site, randomly chosen at each time step.
Random seeding would play here the same role as
thermal fluctuations in the RFIM.

(iii) The dynamics are adiabatic.— By this we mean
that, starting in some state r, any monotonic change of
the external driving from Z, to Z; will make the state
evolve in the same way and into the same final state s. In
other words, the evolution is not affected by the rate at
which Z changes. This behavior follows naturally from
the rules defining the dynamics of the cellular automaton.

Once established, these three properties (partial order-
ing, no passing, adiabaticity) are sufficient to prove the
RPM property (see Ref. [7]).

Return-point memory.— Suppose a state s(0) evolves
under an external driving Z(z), where Z(0) <Z(:)
<Z(T) for 0<t<T, with Z(¢) not necessarily mono-
tonic. Then the final state of the system depends only on
Z(T), and is independent of the time T or the history
Z(t). In particular, a system coming back to a previous
value of driving will return exactly to the same state, pro-
vided that the driving remains within these bounds.

To conclude our analysis, we use Egs. (8), (9), and
(10) to show that the variables z(x,y) and a(x,y) are re-
lated by

2(0,0) = X a(u,v) —qa(0,0)+2Z, an

(u,v)

z(x,y) = Z)a(u,v)—qa(x,y) if (x,y)=(0,0) . 12)

(u,v
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According to these expressions a(x,y) satisfies a discrete
Poisson equation, in which z(x,y) [and z(0,0) —Z in
the central site] play the role of sources. Hence a meta-
stable configuration {z(x,y)} is uniquely determined from
{a(x,y)}, and vice versa, if Z is known.

The formalism used here to analyze the RPM property
is actually of wider application. It suffices to identify
a(x,y), the local response, and F(x,y), the local driving.
Then, our analysis proves that any deterministic cellular
automata will present an ordered sequence of states
preserved by the dynamics (and hence will display
RPM), if there is a unique relationship between a(x,y)
and F(x,y) which can be different from site to site but
must be monotonic and independent of the previous histo-
ry of F(x,y) [11].

The requirements for RPM can be satisfied by deter-
ministic models in two different ways. (i) In models
driven homogeneously, a dynamically preserved ordered
sequence is only achieved if static disorder is introduced
—for instance, in the initial conditions. The RFIM at
T=0, driven by an external magnetic field [12], and the
WTM automaton driven homogeneously from a random
initial configuration, are examples of models in this
category. (ii) In models with heterogeneous driving the
ordered sequence of metastable states may arise naturally
as a consequence of their own evolution dynamics. There
is no need of static disorder: Both the initial conditions
and the system properties are homogeneous. In this pa-
per we have studied in detail the WTM automaton with
central driving, and have outlined the general procedure
to study other cellular automata in this second category.

The two different mechanisms might be simultaneously
operative in real physical systems: The initial effect of a
weak frozen disorder could be amplified by the intrinsic
dynamics of the system. This assumption would explain
why systems with relatively low concentrations of frozen-
in heterogeneities could nevertheless exhibit RPM.
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