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We study the dynamics of Saffman-Taylor fingering in terms of topological defects of the flow field.
The defects are created and/or annihilated at the interface. The route towards the single-finger steady
state is characterized by a detailed mechanism for defect annihilation. For small viscosity contrast this
mechanism is impeded, and creation of new defects leads the system away from the single-finger solu-
tion. Strong evidence for a drastic reduction of the basin of attraction of the Saffman-Taylor finger is

presented.
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The Saffman-Taylor problem [1] has played a central
role in the study of interfacial pattern formation in non-
equilibrium dissipative systems. Because of its relative
simplicity, it has become a prototype system for the study
of diffusion-controlled growth, with relevance for a wide
variety of systems of current interest such as dendritic
growth, directional solidification, chemical electrodeposi-
tion, and flame propagation [2]. More specifically, it
deals with the dynamics of the interface separating two
immiscible viscous fluids in a rectangular Hele-Shaw cell,
and, in particular, with the emergence of a steady single-
finger propagating solution.

Previous studies of finger competition have analyzed
the global instability of parallel arrays of fingers in the
limit of high viscosity contrast, in terms of a linear insta-
bility of the envelope of the finger front [3]. Consistent
with experiments [4], the current qualitative understand-
ing of the competition regime is that this global instabili-
ty leads to coarsening, as longer fingers grow at the ex-
pense of smaller ones, giving rise to a cascade into large
length scales ending up with a single finger. Here we will
show that this scenario needs to be modified depending, in
general, on the viscosity contrast.

The idea of topological defects has proved fruitful in
different areas of nonequilibrium physics. Particularly in
the context of pattern formation, it has been useful in the
context of amplitude equations [5]. Our aim here is to
introduce a defect-dynamics approach to the study of
viscous fingering and related problems, and to illustrate
the usefulness of this viewpoint. The Letter is organized
in three parts. First, we introduce the basics of the topo-
logical approach, and the general rules governing the de-
fect dynamics. Second, we obtain the explicit sequence of
topology changes induced by the defect dynamics and
characterizing the competition mechanism. Finally, we
investigate the lack of competition in the low-viscosity-
contrast limit of the problem.

In a Hele-Shaw cell with a gap b between plates, the
two-dimensional velocity obeys Darcy’s law, v=Vg,
where the velocity potential in phases i =1,2 is related to
the pressure p as ¢; = — (p+pigy cosa)b?/12u;, where u;
are the viscosities, p; the densities, and a the angle of the
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propagation direction y to the vertical. Incompressibility
implies then V2p=0 in the bulk. The problem is then
specified by two boundary conditions at the interface: the
continuity condition v, =n-V¢; =n-V¢, and the pressure
drop, usually taken as p, —p,=ok, where o is surface
tension and « is curvature. The two dimensionless pa-
rameters of the problem [6] are the viscosity contrast
c=(u,—u3)/(u+u;) and a dimensionless surface ten-
sion do=12b%c/UW*(u,+ ), where W is the width in
the x direction. U =Vg;+cV is assumed positive, with
Ve =12b2gcosalp; —p2)/(u;+uz), and Ve the velocity
at y— T oo. Without loss of generality we will take
V=0 (so hereafter we will formally be considering the
frame-independent velocity field v — V., with no sources
or sinks at infinity).

The study of the Saffman-Taylor problem has recently
concentrated on the role of surface tension in the selec-
tion of the steady-state single-finger solution [7]. Al-
though the microscopic solvability scenario [7] for selec-
tion has not been explicitly applied for arbitrary viscosity
contrast, numerical evidence indicates that the sensitivity
of the steady state to ¢ is very weak [6]. However, both
simulations [6] and experiments [4,8] have shown that in
the transient nonlinear regime, far from the two well-
understood limits of the problem (i.e., the linear instabili-
ty of the planar interface and the linear relaxation in a
neighborhood of the single-finger solution), the viscosity
contrast can play a major role.

To illustrate the situation, we show in Fig. 1 two
representative simulations which capture the essence of
two different scenarios of finger competition for the limit-
ing cases ¢ =1 and 0. More details will be presented else-
where [9]. Periodic boundary conditions are assumed in
the x direction, so that these configurations simultaneous-
ly account for the alternating mode of the global instabil-
ity. For ¢ =1 [Fig. 1(a)], one sees that the small finger is
already out of the competition, since it is receding. In
contrast, having started with the same intitial condition
for ¢ =0 [Fig. 1(b)], the small finger is not only advanc-
ing but somehow growing at the expense of the long one,
since the latter, though faster, is narrowing as the smaller
finger widens.
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FIG. 1. Two-finger competition for (a) c=1 and (b) ¢ =0
with do= 5. Periodicity with W =120 is assumed. Corre-

sponding times in dimensionless units are (a) t =2,6,10, and (b)
t=5,15,25. Arrows indicate direction of tip velocities.

The general idea of our approach is to focus on global
properties of the flow structure in the bulk. The competi-
tion can then be pictured by realizing that neighboring
fingers generate flows with opposite sense of circulation.
(Streamlines, y=const, are closed and cross the inter-
face.) Periodic arrays of fingers define stripes with alter-
nate circulation [see Fig. 2(a)l. The single-finger steady
state has only two such stripes. Defects in the flow struc-
ture, occurring as vertices of streamlines separating
domains of circulation, must therefore play a central role
in the approach to the steady state. The separatrices of
the flow defined by the streamlines connected to defects
provide a useful diagrammatic characterization of the
flow structure (see examples in Fig. 2).

The central object in the present discussion will be the
stream function y, defined as the harmonic conjugate of ¢
so that the complex potential ®(z) =¢(x,y) +iy(x,y) is
analytic in z=x+iy in the bulk. Unlike ¢, the stream
function y is continuous at the interface, though non-
differentiable. Our approach relies on two observations.
First, we exploit the continuity properties of the flow field
under the compactification of the infinite strip with
periodic boundary conditions in the x direction [10] into a
sphere [11]. This leads to the existence of topological in-
variants of the flow field. More specifically, in the refer-
ence frame with no sinks or sources at infinity, y remains
a continuous function after this compactification, with M
local maxima and m local minima. Under these condi-
tions, the quantity M +m — .S, where S is the total weight
of saddle points (see below) of y, is a topological invari-
ant which equals the Euler characteristic y of the surface,
in our case M+m—S=y=2 [12]. The second crucial
fact is that y, being harmonic in the bulk of both phases,
can have local extrema only on the interface (where all
the vorticity is confined). The saddle points, however,
can occur in the bulk of both phases as zeros of the com-
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FIG. 2. Schematic flow diagrams during finger competition
for c=1. Dotted line, interface; solid lines, streamlines y =0;
black dots, extrema of y; open circles, defects. [With parame-
ters of Fig. 1(a), for (b)-(i) At =3.]

plex velocity field @(z) =d®/dz =v,—iv,. The saddle
points are precisely the point defects anticipated above as
vertices of streamlines. The order of the zeros of Q
defines point defects of corresponding order. The local
structure of @ around a defect of order of n at z;(¢) in
the bulk is thus given by

D (z,t)=A;@)+B; (W) z—z ()" + - .. (1)

defining a generalized saddle-point flow with 2(n+1) hy-
perbolic sectors of angle z/(n+1), and which contributes
an amount n to S. [See, for example, a configuration
with S =4 in Fig. 2(d).] These point defects correspond
to phase singularities of the complex velocity field Q,
since the phase of @ changes by an amount = 2nx along
any path enclosing the defect [13]. Physically, defects in
the bulk correspond to (nonstationary) stagnation points
of the flow, i.e., v(x;(¢),y; (t)) =0 [5].

The general idea is to characterize the dynamics in
terms of the motion of these point defects. We can attri-
bute a *“charge” (the winding number [5,14]) Q=++1 to
each extremum and Q = —n to each defect of order n.
The conservation of the total Q by the dynamics and the
localization of the extrema of y at the interface assure us
that S cannot decrease as long as the defects stay away
from the interface; however, single defects (i.e., n=1)
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can be annihilated by merging with extrema at the inter-
face. Extremum-single-defect pairs can also be created
at the interface, with only the defect being able to move
into the bulk. On the other hand, for a single-finger flow,
we have M =m=1 and S =0, whereas multifinger
configurations will have in general S > 0. Therefore, the
positive integer S, which gives the weight of defects, can
be seen as a topological characterization of the “complex-
ity” of the flow structure, and as a measure of the “dis-
tance” from the single-finger flow structure. The time
dependence of the integer S gives a global characteriza-
tion of the dynamics. A systematic decrease of S signals
the progression toward the steady state.

As a direct application of these ideas, we have first in-
vestigated the competition of two fingers in the limit of
high viscosity contrast, c =1. In Figs. 2(b)-2(i) we have,
for clarity, schematically depicted the sequence of flow
diagrams describing the topological evolution during the
dynamical elimination of a smaller finger by a bigger one.
(Note only the topological properties of the process are
displayed in Fig. 2 and not the precise location of defects,
streamlines, and interface.) The diagrams can be in-
ferred, for instance, from global features of the stream
function y(s) as a function of arclength s along the inter-
face [such as number of zeros of y(s) and y'(s) =v,(s)
[91], which we have obtained using standard boundary
integral methods [2,15]. (In the actual sequence, for ini-
tial fingers differing by about 10% in height, the interface
shape does not change significantly, so we have indicated
the same qualitative shape for a better visualization.)

The general result is that the dynamical elimination of
a finger is characterized by a diagram of two connected
defects, one in each phase, and located on the central
separatrix of the finger to be eliminated [Fig. 2(b)].
These defects have to be annihilated, at the end of the
process, merging with the maximum and minimum of y
located at both sides of the finger [Figs. 2(h) and 2()].
To do so, the defects have to meet first in the less viscous
(lower) phase [Fig. 2(g)], in order to disconnect from
each other. Figures 2(c)-2(e) describe the intermediate
steps defining the effective crossing of a defect through a
finger tip. This happens in a delocalized way in both time
and space, via the momentary creation [Figs. 2(b) and
2(c)] and annihilation [Figs. 2(e) and 2(f)] of two auxili-
ary extremum-defect pairs, in the neighborhood of the
finger tip. The final diagram Fig. 2(i) corresponds to the
trivial topology of a single-finger flow, with § =0. At this
point, the smaller finger still exists from a morphological
point of view, but the signature of it has been completely
eliminated from the flow structure. On the other hand,
the global instability [3] of N+ 1 equal fingers can now
be reinterpreted as the unstable nature of an N defect at
infinity. A perturbation in the periodic array breaks the
defect at infinity, bringing single defects to finite dis-
tances [see Figs. 2(a) and 2(b)].

As a second application we now address the question of

the low-contrast behavior. The flow diagram correspond-
ing to the configurations of Fig. 1(b), for ¢ =0, is also
Fig. 2(b). Computing numerically [9] the corresponding
positions of defects, we find that the defect velocities now
have the signs reversed with respect to the case ¢ =1, i.e.,
the connected defects are moving apart from each other.
More interestingly, the increase in the number of zeros of
v'(s) =0v,(s) [9] produced by the narrowing of the longer
finger indicates the creation of extremum-defect pairs.
Therefore, not only is the mechanism of Fig. 2 not work-
ing, but the quantity S is increasing with time. Further
evidence will be discussed elsewhere [9].

The observation that competition results in creation of
new defects and the absence of a mechanism for the
dynamical elimination of fingers suggests that, in the case
¢ =0, the basin of attraction of the Saffman-Taylor
steady state is drastically reduced essentially to single-
finger initial conditions (i.e., S=0 or, more generally,
configurations for which a decrease of S is not due to
competition, but is due, for example, to the decay of
short-wavelength perturbations because of surface ten-
sion). Notice that, since the single-finger stationary solu-
tion appears to be well behaved and linearly stable for ar-
bitrary ¢ including ¢ =0 [6,9], the present analysis does
not signal any failure of the current theory of steady-state
selection [7], but suggests a richer nonlinear structure of
the problem, in particular, opening the possibility of the
existence of other attractors.

Finally, the inhibition of the competition mechanism of
Fig. 2 for ¢ =0 may be interpreted as a consequence of
the symmetry of the dynamics under up-down reflection
(y— —y), given the intrinsic asymmetry of the competi-
tion mechanism under ¢— —c¢ (defects hit finger tips
from the more viscous phase [9]). (Notice that this
reflection symmetry is by itself not incompatible with
coarsening [15].) For ¢#0 the up-down symmetry is bro-
ken, so, as far as the competition mechanism of Fig. 2 is
concerned, one might expect that any ¢=0 would eventu-
ally cross over to the high-contrast behavior. To our
knowledge, there is no direct experimental or numerical
evidence of such a crossover. This fact sets rough bounds
on possible crossover times which lie beyond reach for
any practical purposes for a wide range of ¢. An alterna-
tive scenario that is consistent with numerical [6] and ex-
perimental [4,8] evidence arises from the observation
that, for a wide range of ¢, the pinchinglike mechanism
for the creation of defects seems to be clearly dominant in
the accessible time regimes [16]. This suggests that the
basin of attraction of the single-finger steady state could
be gradually eroded as one proceeds away from ¢ =1, and
its ““measure” would be close to the full phase space only
in a small neighborhood of ¢ =1 [17]. Further investiga-
tion is required to explore this open question.

In summary, we have shown that a reduced characteri-
zation of nonlocal interface dynamics in terms of topolog-
ical defects can capture essential dynamical information
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in a few degrees of freedom. Furthermore, this charac-
terization provides a useful tool in addressing new non-
linear dynamical aspects which may appear in a variety
of similar problems. Although the exact dynamics of the
defects involves, in principle, the solution of the whole
nonlocal problem, new approximation schemes can now
be explored, based for instance on effective defect interac-
tions or asymptotic local equations of motion for defects,
in the spirit of Refs. [18]. To this point, the flow struc-
ture in the bulk has not been the focus of experiments,
but defects can be found (and S obtained) by direct mea-
sure or visualization of the velocity field or indirectly, for
example, from measurements of v,(s). The approach is
also potentially generalizable to a variety of related prob-
lems, such as the study of fingering in radial Hele-Shaw
flow.
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