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In this paper we consider conformal dynamics for a system of N interacting relativistic massless
particles. A detailed study is done for the case of two particles, with a particular attention to the symmetries
of the problem. In fact, we show that this analysis could be extended to the case of higher spin symmetries.
Always in the two-particle case a formulation in terms of bilocal fields is proposed. For a system of
N particles we consider two possible scenarios: (i) the action is invariant under any permutation of the N
particles. This case corresponds to completely democratic interactions with each particle interacting with
all the others. The action depends on N − 1 dimensionless coupling constants. (ii) By putting the particles
along a one-dimensional lattice (open or closed) with nearest neighbor interactions, one obtains a model
with only two-body interactions depending on a single dimensionless coupling. This model can be easily
extended to the continuum case, obtaining a conformal stringlike (closed or open) system.
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I. INTRODUCTION

The idea of conformal invariance in physics is more than
one hundred years old (a very nice history of the conformal
group can be found in H. A. Kastrup [1]). It started with
H. Bateman who in 1908 proved the invariance of the wave
equation under inversion xμ → xμ=x2. This is a discrete
transformation that, as we shall see, will play a crucial role
in the present paper. A few months later, Biggs himself with
two papers followed by one by E. Cunningham proved that
the Maxwell equations are invariant under the conformal
group. The next step was by H. Weyl in 1918, who tried to
unify the gravitational and the electromagnetic interactions
making use of conformal invariance. This approach was
strongly criticized by Einstein. As it is well known this idea
led eventually to the phase invariance of the Schrödinger
equation and to the gauge invariance of the Maxwell theory.
The conformal invariance had a revival during the sixties

and the seventies in two different areas, particle physics
and critical phenomena. The interest in scale invariance
in critical phenomena was raised from the works of L. P.
Kadanoff [2] and Wilson and Kogut [3]. In particle physics
the famous SLAC experiment on deep inelastic scattering
aroused wide interest in scale symmetry and its extensions.
The relevance of conformal symmetry in field theory was
outlined by Polyakov [4] and used in the operator product
expansion (OPE) by K. G. Wilson [5]. In the context
of the OPE there was a revival of the idea of bootstrap
(for a review see [6]).

Since then, the attention to conformal symmetry has
always been very high. In field theory we recall the already
mentioned invariance of the Maxwell equations and of
the massless Dirac equation. At the classical level the scalar
theory with a ϕ4 self-interaction and the non-Abelian Yang-
Mills theories are conformal invariant. In these cases
the conformal invariance is broken by anomalies, but still
it plays an important role. In condensed matter and in
statistical field theory scale invariance at the critical points
is a fundamental phenomenon. We also mention the impor-
tance of two-dimensional conformal symmetry in string
theory and in general in two-dimensional field theories,
where the conformal group, contrarily to the case of space
dimensions different from two, is infinite dimensional.
As a last point we mention the AdS/CFT correspondence
[7–9] which allows us to define in a nonperturbative way
M/string theory in terms of a (superconformal) quantum
field theory in flat space-time. This idea has opened the
possibility to study strongly coupled field theories in terms
of gravitational theories.
It should be underlined that one of the main reasons that

makes conformal theories so attractive is that they do not
depend on any dimensionfull coupling constant.
More recently, conformal symmetry has become an

important tool in the analysis of higher spin theories
[10,11]; for a recent review see [12,13]. About this point it
is interesting to notice that the higher spin symmetries of
Vasiliev theory appear in the free massless Klein-Gordon
equation [14]. At particle level these symmetries are all
the symmetries of the action of a relativistic massless
particle and they generalize the well-known conformal
symmetries of this action.
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In this paper we present an application of conformal
invariance to classical interacting relativistic particles.
First of all, this problem, to the best of our knowledge, has
been considered only in the nonrelativistic one-dimensional
case. An example is the Calogero-Moser rational model
[15–17], describing N interacting particles via two-body
interactions. This model is very important in the context of
integrable models. For an extension to the supersymmetric
case see, for example, [18]. The other example, always in
one dimension, is in reference [19] where only one degree
of freedom is considered but it contains a deep analysis of
the role of the conformal group. For the superconformal
case see [20].
The second point is that, after quantization, this theory is

naturally connected with nonlocal field theories appearing
in the context of higher spin theories; see for example [21].
As we mentioned previously, the underlying physics of
the latter theories is connected with massless free particles.
Since we are considering interacting massless particles,
it would be worth trying to understand the possible
connections.
This paper is organized as follows: after the introduction,

in Sec. II we make use of the dilatation and translation
invariance to show that a free massless particle cannot be
described in configuration space proving that the Lagrangian
vanishes identically. Therefore, in Sec. III we introduce
Lagrange multipliers (or einbeins) in order to impose the
mass zero condition. This is the description that we will use
throughout this paper. Furthermore, using conformal invari-
ance we write down an action for two relativistic massless
particles in a D-dimensional space-time, with D ≠ 2.
In the case of two particles we further show that it is
indeed possible to write down a Lagrangian using only the
coordinate space. It turns out that this Lagrangian vanishes
identically when turning off the coupling constant describing
the interaction, as expected from the previous considerations.
In this section we show also that there is a constraint in phase
space involving the product of the momenta squared of the
two particles.
Section IV is dedicated to the Hamiltonian analysis of the

model. It turns out that there are two primary constraints
and two secondary ones. We show that out of these four
constraints two are first class and two second class.
Eliminating the second class constraints through the use
of the Dirac brackets we recover, in the reduced phase space,
the constraint found previously in the Lagrangian analysis.
By construction, our model is explicitly invariant under

the conformal group acting upon the coordinates of the two
particles, but it is interesting to study in an explicit way the
Killing vectors of the model. This is done in Sec. V, where
we show that both the Killing vectors associated to the
two particles satisfy the conformal Killing equations with
independent infinitesimal parameters. However, due to the
interaction, the two vectors must satisfy a further condition
requiring that the infinitesimal parameters of the two

Killing vectors coincide. This implies an explicit breaking
of the symmetry group of the free case SOðD; 2Þ1 ⊗
SOðD; 2Þ2 to the diagonal subgroup SOðD; 2Þ .
The previous study is preliminary to what we do in

Sec. VI, where we consider higher order Killing tensors.
This means to take powers of the generator defined in the
previous section. Obviously these powers are constant of
motion, but there is some interest from the point of view of
higher spin symmetries to study conformal Killing tensors
[22]; see also the more recent papers [23,24]. In the case
of free massless relativistic particles these symmetries are
the enveloping algebra of the relativistic conformal group
[14,25]. We study in particular the case of a Killing tensor
of rank 2, deriving the conditions that must be satisfied to
provide the required invariance. The equations we get are
obviously satisfied when the Killing tensor is realized as the
product of two Killing vectors, so the interest is to look for
nonfactorized solutions. Is should also be noticed that in
the case of higher spin the interest is in Killing vectors
corresponding to a single space-time variable, whereas
in our case they depend on two space-time variables
(corresponding to the fact that we are studying a two-
particle system).
In Sec. VII we construct a bilocal field theory, involving

two bilocal fields, such to incorporate the constraint found
in Sec. II. This is also an interesting point since bilocal
fields are naturally connected with higher spin symmetries.
In Sec. VIII we extend the two-particle model to N

massless particles interacting in a conformal invariant way.
Here various possibilities open up according to the kind of
symmetry we require under the exchange of theN particles.
In particular we will examine two models; in the first one
we assume invariance with respect to any permutation
among the N particles. This entails a completely demo-
cratic model in which each particle interacts with all the
others. The model depends on N − 1 dimensionless cou-
pling constants. We show that this model has the remark-
able property of asymptotic separability. This should
be understood in the following way: if we divide the N
particles in two clusters, one made up with n and the other
with m particles, and we send to infinity all the distances
among the particles of the first cluster and the particles of
the second cluster, the original Lagrangian goes into the
sum of two Lagrangians of the same kind as the original
one. In the second model considered here, we associate
the particle labels to the sites of a one-dimensional lattice,
assuming nearest neighbor interactions. Therefore only
two-body interactions are involved and the model is
defined by a single dimensionless coupling. The asymp-
totic separability holds also in this case. There are not
symmetries related to the exchange of particles. However,
for a closed lattice there is a symmetry under discrete
translations.
In Sec. IX we draw some conclusions and give an

outlook for further problems to be studied.
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II. CONFORMAL INVARIANCE IN
PARTICLE COORDINATES

We will discuss the requirements coming from con-
formal invariance on the Lagrangian of classical relativistic
point particles. Let us start with one particle. We will prove
that a conformal invariant Lagrangian for a single relativ-
istic particle vanishes identically. Actually it will be enough
to assume that the action is parametrization invariant and
that it depends only on the coordinates of the particle. The
generator of dilatations for a single particle is given by

D ¼ xμpμ ¼ −xμ
∂L
∂ _xμ : ð1Þ

Notice the minus sign in the definition of the canonical
momentum. This follows from our choice of a mostly
minus metric gμν ¼ ðþ;−;−; � � � ;−Þ in a D-dimensional
space-time. We require D in the previous equation to be a
constant of motion and, furthermore, that the Lagrangian
is homogeneous of first degree in the time parameter. It
follows that

0 ¼ dD
dτ

¼ −_xμ
∂L
∂ _xμ − xμ

∂L
∂xμ ¼ −L; ð2Þ

where we have used the Lagrange equations of motion

d
dτ

∂L
∂ _xμ ¼

∂L
∂xμ ¼ 0 ð3Þ

and the invariance under translations. Therefore, the only
solution forD to be a constant in time is that the Lagrangian
vanishes. It is obvious that this result applies to the case of
N noninteracting particles (under the same assumptions).
This is an important point, since, if we want to consider a
conformal invariant theory for a given number of particles,
we cannot describe the free case using only space-time
variables. In fact, as it is well known, a massless particle is
described using an einbein variable defined on the world
line (in practice a Lagrange multiplier). Therefore, this is
the description that we will adopt, although for more than
one particle a conformal invariant Lagrangian depending
only on the coordinates can be constructed. On the other
hand this latter formulation is such that, turning off the
interaction, the Lagrangian vanishes identically, as it should
be clear from the previous discussion.

III. FORMULATION WITH THE EINBEINS

The Lagrangian for a single free massless particle can be
obtained through the use of an einbein e:

S ¼ −
Z

dτ
_x2

2e
; ð4Þ

from which varying with respect to the einbein we get the
equation _x2 ¼ 0 and evaluating the momentum pμ ¼ _xμ=e
we obtain p2 ¼ 0. The minus sign in front of the
action is a consequence of our choice of the space-time
metric. Requiring that the einbein transforms as a time
derivative, this action is invariant under reparametrization.
It is also invariant under Poincaré transformations. As for
dilatations, we require

xμ → λxμ; e → λ2e: ð5Þ

Furthermore, we recall that a special conformal trans-
formation can be obtained through the following series
of operations: ðinversionÞ ⊗ ðtranslationÞ ⊗ ðinversionÞ;
therefore, to impose the conformal symmetry it is enough
to require the invariance under inversion,

xμ →
xμ

x2
: ð6Þ

The transformation property of _x2 is

_x2 →
_x2

x4
; ð7Þ

from which it follows

e →
e
x4

: ð8Þ

Summarizing, the action (4) is invariant under conformal
and reparametrization transformations.
Now let us discuss the case of two particles. We start at

the free level with two massless particles

Sfree ¼ −
Z

dτ

�
_x21
2e1

þ _x22
2e2

�
: ð9Þ

In order to construct an interaction term depending on the
relative coordinate

rμ ¼ x1μ − x2μ; ð10Þ

we notice that under inversion

r2 →
r2

x21x
2
2

: ð11Þ

Therefore a conformal invariant action for two relativistic
particles is given by

S ¼ −
Z

dτ

�
_x21
2e1

þ _x22
2e2

þ α2

4

ffiffiffiffiffiffiffiffiffi
e1e2

p
r2

�
: ð12Þ

The variation with respect to the einbeins gives rise to the
following equations:
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∂L
∂e1 ¼

_x21
2e21

−
α2

8

ffiffiffiffiffi
e2
e1

r
1

r2
¼ 0;

∂L
∂e2 ¼

_x22
2e22

−
α2

8

ffiffiffiffiffi
e1
e2

r
1

r2
¼ 0: ð13Þ

Resolving these two equations in the einbeins one finds

1

e1
¼ α

2_x21

�
_x21 _x

2
2

r4

�
1=4

;
1

e2
¼ α

2_x22

�
_x21 _x

2
2

r4

�
1=4

; ð14Þ

with α ≥ 0. In extracting the square root we have chosen
the minus sign, in order to have the time component of
the canonical momenta with the same sign of the time
derivative of the coordinate times, x0i . Substituting inside
the action (12) we find

S ¼ −α
Z

dτ

�
_x21 _x

2
2

r4

�
1=4

: ð15Þ

As we have discussed previously the conformal invariant
action for two particles in configuration space vanishes
when the interaction is turned off.
Evaluating the momenta from (12) we get

pμ
i ¼ −

∂L
∂ _xiμ ¼

_xμi
ei
: ð16Þ

The equations (13) can be expressed in terms of the
momenta obtaining

p2
1 −

α2

4

ffiffiffiffiffi
e2
e1

r
1

r2
¼ 0; p2

2 −
α2

4

ffiffiffiffiffi
e1
e2

r
1

r2
¼ 0: ð17Þ

Finally, eliminating the ratio e1=e2 from these two equa-
tions we get a constraint among momenta and coordinates

p2
1p

2
2 −

α4

16r4
¼ 0: ð18Þ

This relation can also be obtained as a primary constraint
from the action (15).
Notice that we have started with a flat metrics, gμν, but

we could have started with a conformal metrics as well,
gμν → expð2γðxÞÞgμν. In fact, in the formulation (12), the
conformal factor can be absorbed into the definition of
the einbeins, whereas the formulation (15) is explicitly
scale invariant.

IV. HAMILTONIAN ANALYSIS

In our notations the Poisson brackets among coordinates
and momenta are

fxμ; pνg ¼ −gμν; fei; πjg ¼ δij: ð19Þ

Once again, the sign in the first Poisson bracket is fixed by
our choice of the mostly minus metric. Notice also that
there are two primary constraints

πi ¼
∂L
∂ _ei ¼ 0; ð20Þ

therefore the canonical Hamiltonian results to be

HC ¼ −p1 _x1 − p2 _x2 − L ¼ −
e1
2
p2
1 −

e2
2
p2
2 þ

α2

4

ffiffiffiffiffiffiffiffiffi
e1e2

p
r2

:

ð21Þ

Following Dirac we define the Dirac Hamiltonian, HD,
adding an arbitrary combination of the primary constraints
πi ¼ 0, in terms of two arbitrary functions λi,

HD ¼ HC þ λ1π1 þ λ2π2: ð22Þ

Requiring the stability of the primary constraints we get
two secondary constraints

fπ1; HDg ¼ 1

2

�
p2
1 −

α2

4

ffiffiffiffiffi
e2
e1

r
1

r2

�
≡ ϕ1;

fπ2; HDg ¼ 1

2

�
p2
2 −

α2

4

ffiffiffiffiffi
e1
e2

r
1

r2

�
≡ ϕ2: ð23Þ

Notice that these two constraints are the same as the
ones in (17). Then we have to consider the stability of
the secondary constraints ϕi, obtaining

fϕ1; HDg ¼ −
α2

4r4

 ffiffiffiffiffiffiffiffiffi
e1e2

p
p1 · rþ

ffiffiffiffiffi
e32
e1

s
p2 · r

!

þ α2

16r2

�
λ1

ffiffiffiffiffi
e2
e31

r
− λ2

1ffiffiffiffiffiffiffiffiffi
e1e2

p
�
;

fϕ2; HDg ¼ þ α2

4r4

 ffiffiffiffiffi
e31
e2

s
p1 · rþ

ffiffiffiffiffiffiffiffiffi
e1e2

p
p2 · r

!

þ α2

16r2

�
λ2

ffiffiffiffiffi
e1
e32

r
− λ1

1ffiffiffiffiffiffiffiffiffi
e1e2

p
�
: ð24Þ

These two constraints are not independent. In fact, the
second equation can be obtained from the first one
multiplying by −e1=e2. It follows that the stability of
the secondary constraints can be attained by eliminating
one of the two parameters λi, for instance, evaluating λ1
from the first equation (24). We find

λ1 ¼
e1
e2

λ2 þ
4

r2
ðe21p1 · rþ e1e2p2 · rÞ: ð25Þ

Correspondingly the Dirac Hamiltonian becomes

ROBERTO CASALBUONI AND JOAQUIM GOMIS PHYSICAL REVIEW D 90, 026001 (2014)

026001-4



HD ¼ HC þ 4

r2
e1ðe1p1 · rþ e2p2 · rÞπ1

þ λ2

�
π2 þ

e1
e2

π1

�
: ð26Þ

It is convenient to redefine λ2 ¼ ~λ2e2, then

HD ¼ HC þ ~λ2ðe1π1 þ e2π2Þ þ Cπ1; ð27Þ
with

C ¼ 4

r2
e1ðe1p1 · rþ e2p2 · rÞ: ð28Þ

This expression suggests that the coefficient of λ2 is a
first class constraint. This can be verified by evaluating its
Poisson bracket with HD

fe1π1 þ e2π2; HDg ¼ e1ϕ1 þ e2ϕ2 − Cπ1: ð29Þ
This shows that the constraint e1π1 þ e2π2 is weakly stable.
Then it is a simple algebra to prove that the two constraints

e1π1 þ e2π2; e1ϕ1 þ e2π2 − Cπ1 ð30Þ
are weakly first class, that is their Poisson brackets with
the other constraints π1, π2, ϕ1 ϕ2 are proportional to one
of these constraints. In conclusion, the four constraints can
be divided as follows:

first class e1π1 þ e2π2; e1ϕ1 þ e2ϕ2 − Cπ1;

second class π1; ϕ1: ð31Þ
Then, introducing the Dirac parentheses one can put π1
and ϕ1 strongly to zero. In this way π2 and ϕ2 turn out to be
strongly first class.
The matrix of the second class constraints, χij, i; j ¼

1; 2, is quite simple;

χ ¼
�

0 D

−D 0

�
; χ−1 ¼

�
0 −1=D

1=D 0

�
; ð32Þ

where

D ¼ fϕ1; π1g ¼ α2

16

ffiffiffiffiffi
e2
e31

r
1

r2
: ð33Þ

The Dirac brackets among any two dynamical variables
are given by

fO1; O2g� ¼ fO1; O2g þ
1

D
½fO1;ϕ1gfπ1; O2g

− fO1; π1gfϕ1; O2g�: ð34Þ

In the reduced space using the second class constraints
and the Dirac brackets the first class constraints become

π2 ¼ 0; ϕ2jϕ1¼0 ¼ 0; implying

�
p2
1p

2
2 −

1

16

α4

r4

�
¼ 0;

ð35Þ
and we recover Eq. (18) that was obtained previously by
solving the equations for the einbeins.
Since among the two first class constraints we have one

that is primary, it is known that we should have one gauge
transformation. The generator of this gauge transformation
can be constructed from a well-known algorithm; see for
example [26–31]. The generator G, which is a constant of
motion, is given by

G ¼
X2
i¼1

�
d
dτ

ðϵeiÞπi − ðϵeiÞϕi

�
; ð36Þ

where ϵðτÞ is an arbitrary function of the global parameter
that parametrizes the two world lines.
The transformation generated by G is

δei ¼
d
dτ

ðϵeiÞ; δxμi ¼ ϵ_xμi ; ð37Þ

it is the global world line diffeomorphism (Diff). Note that
the interaction breaks the individual Diff invariance of the
two world lines.

V. ANALYSIS OF THE RIGID SYMMETRIES

We have constructed our Lagrangian requiring con-
formal invariance, that is invariance under the group
SOðD; 2Þ. Of course, when we consider two free massless
particles, the invariance group is larger, namely it is the
direct product of two conformal groups SOðD; 2Þ1 ⊗
SOðD; 2Þ2 acting on the variables of the particles 1 and
2 respectively. When the interaction is introduced, the
invariance is broken explicitly to the diagonal subgroup.
It is interesting to analyze these symmetries by looking at

the conditions the Killing vectors must satisfy in order that
our Lagrangian is invariant under the symmetries generated
by generic Killing vectors

G ¼
X2
i¼1

ξiμðx1; x2Þpμ
i : ð38Þ

In this section we will make use of the Lagrangian L,
given in (15), in terms of which we have

piμ ¼ −
∂L
∂ _xμi ¼ −

1

2

_xiμ
_x2i

L ð39Þ

and the equations of motion

_p1μ ¼ −
∂L
∂xμ1 ¼ þ 1

2

rμ
r2

L; _p2μ ¼ −
∂L
∂xμ2 ¼ −

1

2

rμ
r2

L:

ð40Þ
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It is clear that the result will be that the Killing vectors
are those of the conformal group, but the equations we will
find here will be important for the analysis of the Killing
tensors we will do in the next section. This analysis is
relevant for the higher spin symmetries that have been
recently considered in the literature [14,25].
By taking the time derivative of G, using the expression

of the momenta given in Eq. (39) and the Lagrange
equations of motion (40), we obtain

_G ¼ −
1

2

X2
i;j¼1

ð∂jμξiνðx1; x2ÞÞ
_xμj _x

ν
i

_x2i
L

þ ðξ1μðx1; x2Þ − ξ2μðx1; x2ÞÞrμ
L
r2

¼ 0; ð41Þ

where ∂iμ ¼ ∂=∂xiμ. Notice that the first term of this
equation is not symmetric in j and i.
A necessary condition to have a solution is

∂jμξiνðx1; x2Þ ¼ 0; j ≠ i; ð42Þ

which implies that ξiν ¼ ξiνðxiÞ. If we use this information
in (41),

−
1

2

X2
i¼j

ð∂iμξiνðxiÞÞ
_xμi _x

ν
i

_x2i
L

þ ðξ1μðx1; x2Þ − ξ2μðx1; x2ÞÞrμ
L
r2

¼ 0: ð43Þ

Now the first term is symmetric in μ; ν. The solution of this
equation is

1

2
ð∂iμξiνðxiÞ þ ∂iνξiμðxiÞÞ ¼ gμνλðiÞðxiÞ; i ¼ 1; 2;

ð44Þ

1

2

X2
i¼1

λðiÞ ¼ ðξ1μ − ξ2μÞrμ
1

r2
: ð45Þ

By contracting together the indices μ; ν in (44) we find

λðiÞ ¼
1

D
∂ρ
i ξiρ: ð46Þ

The two equations (44) tell us that ξμ1 and ξμ2 are the
Killing vectors of two conformal groups SOðD; 2Þi acting
on the two variables x1 and x2 respectively. This is the
symmetry group of two massless noninteracting particles.
However, it is easily proved that the second condition (45)
is satisfied if and only if the infinitesimal parameters
defining the two Killing vectors are identical. Therefore
the symmetry SOðD; 2Þ1 ⊗ SOðD; 2Þ2 is broken down to
the diagonal subgroup SOðD; 2Þ due to the interaction
between the two particles.

VI. HIGHER SPIN SYMMETRIES

In the previous section we have shown that the quantity
G [see (38)] is a constant of motion if the parameters
defining the two conformal Killing vectors, corresponding
to the two particles, are the same. It is a trivial observation
that the power Gn is also a constant of motion

dGn

dτ
¼ 0: ð47Þ

The explicit expression for Gn is

Gn ¼
X2

i1;i2;���;in¼1

ξi1μ1ξi2μ2ξinμnp
μ1
i1
pμ2
i2
� � �pμn

in
: ð48Þ

This defines a tensor of rank n constructed in terms of the n
conformal Killing vectors in n variables x1; x2; � � � ; xn.
In principle, one could try to generalize the expression

(48) to a generic Killing tensor [22]

G0 ¼
X2

i1;i2;���;in¼1

ξμ1μ2���μni1i2���in pi1μ1pi2μ2 � � �pinμn : ð49Þ

Notice that the tensor ξμ1μ2���μni1i2���in may depend on the variables
x1; x2; � � � ; xn. Requiring G0 to be a conserved quantity one
gets

0 ¼
X2

k;i1;i2;���;in¼1

∂μ
kξ

μ1μ2���μn
i1i2���in pi1μ1pi2μ2 � � �pinμn _xkμ

þ
Xn
j¼1

X2
i1;i2���;in¼1

ξμ1μ2���μni1i2���in pi1μ1pij−1μj−1

�
ð−1Þij−1 rμ

r2
L

�

× pijþ1μjþ1
� � �pinμn ; ð50Þ

where we have used Eqs. (40) in the form

_piμ ¼ ð−1Þi−1 rμ
r2

L: ð51Þ

Then, using (39)

piμ ¼ −
1

2

_xiμ
_x2i

L; ð52Þ

0 ¼ 1

2

X2
k;i1;���;in¼1

∂μ
kξ

μ1μ2���μn
i1i2���in

_xi1μ1 _xi2μ2 � � � _xinμn _xkμ
_x2i1x

2
i2
� � � x2in

−
Xn
j¼1

X2
i1;i2���;in¼1

ξμ1μ2���μni1i2���in
_xi1μ1 _xij−1μj−1
_x2i1x

2
i2
� � � x2ij−1

�
ð−1Þij−1 rμ

r2

�

×
_xijþ1μjþ1

� � � _xinμn
_x2ijþ1

_x2in
: ð53Þ
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Proceeding as in the previous section, one obtains equa-
tions for the tensor ξμ1μ2���μni1i2���in independent on _xi. We know
that these equations are satisfied when the tensor factorizes
in n conformal Killing vectors.
An interesting question remains open: is the factorized

case the only solution to the previous equations?
Let us study in detail the case of n ¼ 2. We have

X2
ijk¼1

�
1

4
∂ρ
kξ

μν
ij

_xkρ _xiμ _xjν
_x2i _x

2
j

�
−
X2
ij¼1

�
ξμνij ð−1Þi−1

_xjνrμ
_x2jr

2

�
¼ 0:

ð54Þ
Notice that this equation is not symmetric in k; i; j.
Proceeding as in the previous section, the necessary
condition to have a solution is

∂ρ
kξ

μν
ij ¼ 0; k ≠ i; k ≠ j; ð55Þ

using this condition we have

X2
k¼i;i≠j

2

�
1

4
∂ρ
i ξ

μν
ij

_xiρ _xiμ _xjν
_x2i _x

2
j

�
þ
X2
k¼i¼j

�
1

4
∂ρ
i ξ

μν
ii

_xiρ _xiμ _xiν
_x2i _x

2
j

�

−
X2
i≠j

�
ξμνij ð−1Þiþ1

_xjνrμ
_x2jr

2

�
−
X2
i¼j

�
ξμνii ð−1Þiþ1

_xiνrμ
_x2i r

2

�
¼ 0:

ð56Þ
We get a solution requiring

1

2
ð∂ρ

i ξ
μν
ij þ ∂μ

i ξ
ρν
ij Þ ¼ gρμWν

ðijÞ; i ≠ j; ð57Þ

∂ρ
i ξ

μν
ii þ ∂μ

i ξ
ρν
ii þ ∂ν

i ξ
μρ
ii ¼ gρμVν

ðiÞ þ gμνVρ
ðiÞ þ gνρVμ

ðiÞ;

ð58Þ
X2
i¼1

�
2
1

4
Wν

ðijÞ − ξμνij ð−1Þiþ1
rμ
r2

�
¼ 0; ð59Þ

X2
i¼1

�
1

4
Vν
ðiÞ − ξμνii ð−1Þiþ1

rμ
r2

�
¼ 0: ð60Þ

In these expressions

Wν
ðijÞ ¼

1

2
ð∂ν

i ξ
μ
ijμ þ ∂iμξ

νμ
ij Þ; i ≠ j; ð61Þ

and

Vν
ðiÞ ¼

1

Dþ 2
ð∂ν

i ξ
μ
iiμ þ 2∂iμξ

μν
ii Þ: ð62Þ

In the factorized case

ξμνij ¼ ξμi ðxiÞξνjðxjÞ; Wν
ij ¼ λðiÞξνj ; Vν

i ¼ 2λðiÞξνi ;

ð63Þ

where the λðiÞs are defined in Eq. (46). It is easily verified
that the previous equations (57), (58), (59) and (60) are
satisfied. On the other hand, in principle it is possible that
these equations have independent solutions, a fact that
would be rather interesting.

VII. A BILOCAL FIELD THEORY

Bilocal field theories have been considered recently in
the framework of higher spin symmetries; see for example
[21]. These bilocal field equations are conformal invariant;
therefore it is of some interest to construct a bilocal
conformal invariant field theory. This is made possible
by encoding the constraint equation given in Eq. (18) in a
bilocal field theory. To this end, let us introduce two bilocal
fields, ϕiðx1; x2Þ with i ¼ 1; 2. Then consider the action

S ¼
Z

d4x1d4x2

�
1

2
ð∂1μϕ1ðx1; x2Þ∂μ

1ϕ1ðx1; x2Þ

þ ∂2μϕ2ðx1; x2Þ∂μ
2ϕ2ðx1; x2ÞÞ

− ϕ1ðx1; x2ÞVðx1; x2Þϕ2ðx1; x2Þ
�
; ð64Þ

where the potential V is given by

Vðx1 − x2Þ ¼
α2

4

1

ðx1 − x2Þ2
: ð65Þ

Varying with respect to ϕ1 and ϕ2 we get the equations of
motion

□1ϕ1 þ Vϕ2 ¼ 0; □2ϕ2 þ Vϕ1 ¼ 0: ð66Þ

Eliminating ϕ2 from the first equation

ϕ2 ¼ −V−1
□1ϕ1; ð67Þ

and substituting inside the second one

□2ðV−1
□1ϕ1Þ − Vϕ1 ¼ 0: ð68Þ

Then, multiplying by V, we obtain

V□2ðV−1
□1ϕ1Þ − V2ϕ1 ¼ 0: ð69Þ

Now let us look for solutions of the type

ϕiðx1; x2Þ ¼ eiðp1x1þp2x2Þ ~ϕiðx1 − x2Þ: ð70Þ

Substituting inside the equations of motion (69) we find

p2
1
~ϕ1 − V ~ϕ2 ¼ 0; p2

2
~ϕ2 − V ~ϕ1 ¼ 0: ð71Þ

Eliminating again ~ϕ2 from the first one
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~ϕ2 ¼ V−1p2
1
~ϕ1; ð72Þ

and substituting inside the second one (r ¼ x1 − x2)�
p2
1p

2
2 −

α4

16r4

�
~ϕ1ðp1; p2; rÞ ¼ 0; ð73Þ

and an analogous equation for ~ϕ2. Notice that what we have
done here is not to take the Fourier transform of the bilocal
fields, but we have simply looked at a particular solution of
the field equations.
As we have seen our theory gives rise to the constraint

(18); therefore, in quantum theory it would be natural to
transform it in a wave equation of the type

�
□1□2 −

1

16

α4

r4

�
ϕðx1; x2Þ ¼ 0; ð74Þ

which should be looked at as a generalization of the
conformal invariant massless Klein-Gordon equation to
two conformal particles. On the other hand, this equation
is fourth order in the derivatives and it might produce
problems in a related field theory. In fact, higher order
theories present, in general, ghosts in the spectrum. For this
reason we prefer to start with a system of two fields, each of
them obeying a second order equation.
An interesting point is to expand the equations of motion

(69) in terms of a series of higher spin local fields, but we
defer this problem to a future paper.

VIII. CONFORMAL INVARIANT LAGRANGIANS
FOR MANY PARTICLES

In this section extend the case of a conformal invariant
interaction between two particles to the case of N particles.
The kind of model one obtains depends on the symmetries
one assumes in the exchange of the particles. We will start
assuming the maximal symmetry, that is invariance under
any permutation among the particles. This requirement and
conformal invariance fix completely the interaction among
the N particles up to N − 1 dimensionless couplings.
We start again from the einbein formulation for the

Lagrangian describing N massless free particles

Lfree ¼ −
XN
i¼1

_x2i
2ei

: ð75Þ

We recall from Sec. III that under inversion

_x2i →
_x2i
x4i

; r2ij →
r2ij
x2i x

2
j
; i; j ¼ 1; 2; � � �N: ð76Þ

In order for the free part to be invariant under inversion the
einbeins must transform as

ei →
ei
x4i

; ð77Þ

whereas under reparametrization they must transform as a
time derivative. In order to write down the invariant terms
for the many particle case, let us notice that the two point
interaction can be written in the following form:�

eiej
r2ijr

2
ji

�
1=2

: ð78Þ

This expression suggests that an invariant term for n
particles is of the form�

ei1ei2 � � � ein
r2i1i2r

2
i2i3

� � � r2in−1inr2ini1

�
1=n

: ð79Þ

In fact, it is easily seen that this term is conformal invariant
and transforms as a first derivative with respect to time.
Then the most general conformal invariant Lagrangian

symmetric under the exchange of any pair of particles has
the following structure:

L¼−
XN
i¼1

_x2i
2ei

−
XN
n¼2

βn
X

i1<i2<���<in

�
ei1ei2 � � �ein

r2i1i2r
2
i2i3

� � �r2in−1inr2ini1

�
1=n

;

ik ¼ 1;2; � � � ;N: ð80Þ

It should be noticed that, differing with other theories
involving N particles, such as for instance the Calogero
model [15], in our case we have not only two-body
interactions but all the possible interactions among the
N particles; therefore, we have a real “democratic” model.
It is rather interesting that this arises from the requirement
of conformal symmetry.
If we imagine dividing the N particles in two clusters

of fng and fmg particles, with nþm ¼ N, the previous
Lagrangian can be written in the form

LN ¼ Ln þ Lm þ Lnm; ð81Þ
where Ln and Lm have exactly the same structure of LN and
Lnm contains all the terms involving distances between any
particle of the set fmg with any particle of the set fng.
Therefore, for very large distances among the particles
belonging to the two different clusters, the term Lnm goes to
zero, that is

lim
for all r2ij→∞

LN ¼ Ln þ Lm;

such that i ∈ fng; j ∈ fmg:
ð82Þ

This shows that this Lagrangian is separable for large
distances among the two clusters. We could say that
our Lagrangian satisfies the cluster decomposition at the
classical level.
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In a complete analogous way we can get a conformal
invariant Lagrangian without using the einbeins. The
Lagrangian turns out to be

L ¼ −
XN
n¼2

αi
X

i1<i2<���<in

�
_x2i1 _x

2
i2
� � � _x2in

r2i1i2r
2
i2i3

� � � r2in−1inr2ini1

�1=2n

: ð83Þ

Again this Lagrangian vanishes when all the interactions
are turned off. We have not proved that this expression is
obtained by eliminating the einbeins from the Lagrangian
(80), but we conjecture that this is actually the case. The
derivation of this result would be very useful in order to get
the relation between the couplings βi and αi.
As a final observation we underline that the Lagrangian

(80) depends on N − 1 dimensionless couplings βn and
that the number of terms involving n particles out of N is
given by

�
N

n

�
. ð84Þ

Notice that the previous result applies also to the number
of free terms (each of them involving one particle), by
choosing n ¼ 1. Therefore, the total number of terms in
(80) is given by

XN
n¼1

�
N

n

�
¼ 2N − 1: ð85Þ

Whereas in this model there are many particle inter-
actions, one could consider a model with only two-body
interactions. Imagine associating the particle labels with the
sites of a one-dimensional lattice and consider only nearest
neighbor interactions. The action would be

S ¼ −
Z

dτ

�XN
i¼1

_x2i
2ei

þ α2

4

XN−1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
eieiþ1

p
r2i;iþ1

�
; ð86Þ

with

ri;iþ1 ¼ xi − xiþ1: ð87Þ

Here we have assumed a single coupling. The asymptotic
cluster decomposition holds also in this case. We could also
consider a closed lattice identifying the first and the last
particle. In this case the model has an obvious invariance
under discrete translations. Furthermore, it can be extended
to the continuum obtaining a conformal string (open or
closed). This extension is actually under study and it will be
the object of a different publication [32].

IX. CONCLUSIONS AND OUTLOOK

In this paper we have studied what relativistic conformal
symmetry can teach us about possible interactions among
N classical massless particles. The Lagrangian considered
here depends on the symmetry we assume under the
exchange of the particles. Assuming invariance under any
permutation among the particles, the Lagrangian is com-
pletely fixed up to N − 1 dimensionless coupling constants.
This Lagrangian is rather interesting because it does not
contain two-body interactions only, but, for any subset of n
particles out of the total set, it contains n-body interactions
and it appears to be completely democratic. This is also
shown by the number of terms in the Lagrangian, which does
not grow with a power of N but rather in an exponential
way, namely like 2N − 1. Another possibility that we have
considered is the one corresponding to nearest neighbor
interactions. The interest of this case is mainly related to the
possibility of getting a simple limit in the continuum,
obtaining in this way a conformal string [32].
We have analyzed the case N ¼ 2 with a particular

emphasis on the symmetries. In fact, it is known that the
conformal symmetry of the free massless Klein-Gordon
equation can be extended to the enveloping algebra of
the conformal group, obtaining in this way higher spin
symmetries. In our case, we have two (or more) interacting
particles preserving conformal symmetry, so a natural
question to investigate is the possibility to enlarge the
higher spin symmetries to interacting massless particles.
An interesting point is the extension of the conformal

models presented here to superconformal ones [32].
The N particle models could be considered in the case

of D ¼ 1, that is a pure quantum mechanical case, in order
to study their possible integrability. In particular, the
nearest neighbor model looks similar to the Calogero-type
models [15–17].
Another problem, to be investigated in the future, is the

quantization of these models. A promising possibility, in
our opinion, would be to try the world-line quantization,
along the way paved by string theory. We recall here that
the world-line quantization can be extended to the self-
interactions of scalar particles [33]. Another option is field
quantization using, in the case of two particles, bilocal
fields as introduced in Sec. VII.
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