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Phase Separation Dynamics under Stirring
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Phase separation dynamics in the presence of externally imposed stirring is studied. The stirring is
assumed independent of the concentration and it is generated with a well-defined energy spectrum. The
domain growth process is either favored or frozen depending on the intensity and correlation length of
this advective flow. This behavior is explained by analytical arguments.

PACS numbers: 64.60.My, 47.27.Sd

Phase separation, following a quench of a binary
mixture inside its coexistence curve, has become a model
system for studying generic nonequilibrium dynamical
features. The simplest realization of such a process
neglects hydrodynamic interactions, as it corresponds
to binary alloys, glasses, etc. In these situations one
looks for some sort of universality reflected in the
properties of the correlation and structure functions and in
power laws governing the domain growth of macroscopic
structures [1,2]. Phase separation of binary fluids has
also been considered in the literature [3,4]. As an
extension of this last problem, phase separation under
externally imposed stirring is progressively receiving an
increasing attention from both the theoretical [5—7] and
experimental [8—10] points of view. Actually, mixing of
domains under flow [11] has an intrinsic technological
interest mainly associated with the expected distinctive
rheological properties of phase separating binary fluids
[6]. When stirring is present, the central question to
analyze is the competition between the thermodynamic
forces, leading to segregation, and local shear effects
favoring droplet dissolution. Two nonequilibrium steady
behaviors can then be envisaged, and have indeed been
reported in the literature. Close to the critical point
and under vigorous stirring, a regime of completely
suppressed phase separation has been experimentally
observed [8], in accordance with theoretical predictions
[5] based on a linear stability analysis of the Cahn-
Hilliard equation. On the contrary, and following a
deep quench into the coexistence region, experimental
work [10] evidences a scenario of continuously ruptured
droplets once they have grown to sufficient size.

Motivated by the above experiments and restricting the
situation where stirring preserves phase separation, we aim
in this Letter to expand the perspectives of theoretical in-
vestigation in this field by proposing a new strategy based
on the use of stochastic differential equations to model
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a random advective flow [12,13]. Stated in short, we
will consider the kinetics of segregation of passive scalar
phases that are stirred by a space- and time-dependent in-
compressible flow, here assumed independent of the con-
centration field. Although in this last respect we are not
really facing the full hydrodynamical problem, the stirring
mechanism will already introduce its own time and length
scales to compete with those inherent to the underlying
phase separation process. The chosen level of description
of the stirring mechanism is purely statistical. In this sense
its energy spectrum and spatiotemporal scales are fully
defined in terms of the correlation tensor of the isotropic
stochastic velocity field. Even with such a reduced de-
scription we will be able to evidence distinctive scenarios
of domain growth, by appropriately varying the intensity
and correlation length of the random advective flow. In
particular, either a new regime of enhanced segregation or
the previously commented steady-state situation of frozen
growth will be characterized.

Our dynamical model for the phase separation process
subjected to turbulent stirring is based on the well-known
Cahn-Hilliard equation supplemented with the convective
term [5]

% =V (—c + 3 — V%) = V- (vo), )]
where c¢(r, t) is the concentration field variable and v(r, )
stands for the stochastic velocity field. We will take it
divergence free (incompressible fluid) [V - v(r,#) = 0]
and statistically isotropic, homogeneous and stationary,
with zero mean, and, for simplicity, Gaussian correlation

Vi, )V (ra, 1)) = RY(Iry — ol 1t — &), (@)

These requirements, for two-dimensional flows, are sat-
isfactorily assured by using a versatile approach that has
proven to be useful for a variety of spectral realizations of
well-behaved turbulent flows [12,13].
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The simulation strategy appropriate to the model defined
by Egs. (1) and (2) can be summarized in the following two
steps.

(i) According to the algorithms introduced in Refs. [12,
13] we generate a velocity field with correlation
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V) n‘n! + (1 - m)&‘j] )
where n! stands for the components of the unit vector in the
r = r; — rp direction. The three basic statistical parame-
ters identified in Eq. (3) are the spatial correlation length
A, the characteristic time correlation 7, and the effective
intensity of the velocity field u(z). These three parameters
together with the Gaussian property fully determine the
statistical properties of the velocity field. The choice (3)
corresponds to Kraichnan’s turbulent spectrum [14] and is
motivated by the fact that it reproduces a widely distributed
band of excitations with a peak centered at a well-defined
wave number ko = (3/2)"/2A7!. This model generates
eddies of typical size lp ~ /7 A. In this way, the random
advective field introduces a characteristic length scale
which competes with that of the phase separation process.

(i1) In a second step, Eq. (1) with a velocity field satisfy-
ing (3) has been simulated following standard procedures
[12] in a two-dimensional lattice L X L, with L = 128,
a mesh size Ax = Ay = 1, and a time integration step
At = 0.025. The initial quench is assumed to take place
inside the off-critical region of coexistence in order to bet-
ter detect the effects of the advective turbulent flow on the
growth of segregated droplets. Triggering conditions for
growth correspond to an initial seeding in a stationary con-
figuration of the flow pattern with c¢(r,0) = co + &(r,0),
co being the mean concentration, ¢p = 0.4, and ¢ a random
number uniformly distributed in the interval [—0.1,0.1].
In all the simulations we take 7 fixed (7 1), whereas
the effective intensity (u%) and correlation length of turbu-
lence (A) will be considered as variable parameters.

A snapshot corresponding to an instantaneous state of
the phase separation process under random advection is
presented in Fig. 1. Two characteristic behaviors are eas-
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ily evidenced when comparing our simulation results here
with those corresponding to a phase separation process
in a quiescent medium [Fig. 1(a)]. Under the lower stir-
ring intensities, configurations of larger although slightly
distorted droplets are obtained [Fig. 1(b)]. However, in
a more turbulent ambient [Fig. 1(c)], the domains appear
largely corrugated under the stretching or thinning effects
of the local turbulent shears. A better quantitative rep-
resentation of the spatiotemporal dynamics in our phase
separating system is provided by the pair-correlation
function

G(r,t) = <z15 Z[c(r +r' e, ) — c§]>, 4)

or by its circularly averaged form g(r,t) =
N, '3 G(r,t), where the sum runs over a set of N,
points inside a corona of radii » and r + Ar. This
quantity is depicted in Figs. 2 and 3.

Figure 2 shows the spatial structures corresponding ex-
actly to the conditions of Fig. 1, whereas Fig. 3 reproduces
the two distinctive dynamic scenarios already announced
in the introductory remarks. Steadily phase separating
conditions under low stirring correspond to the larger but
still well-defined (Fig. 2; dashed line) and continuously
growing domains (Fig. 3; discontinuous lines). In con-
trast, vigorous random advection results in a truly frozen
phase separation dynamics as evidenced by the nonoscilla-
tory and practically flat decay (Fig. 2; continuous line) of
the stationary nonequilibrium correlation function g(r, )
(Fig. 3; continuous lines joining symbols).

A more comprehensive representation of the whole
dynamical process is displayed in Fig. 4, where we plot
the time evolution of a characteristic droplet size R(z)
defined as the distance at which g(R(z),t) = 0.2. Before
going into a more analytic discussion let us try to
qualitatively describe the different scenarios reproduced in
Fig. 4. We could consider two different and subsequent
stages of the phase separation process depending on
whether the characteristic main domain size R(t) is
smaller or larger than the correlation length of the
stirring flow A. When R(z) < A the apparent generic
behavior corresponds to a faster growth as compared

@
FIG. 1. Concentration patterns at time ¢ = 2500 for (a) u(z) = 0; (b) A = 4, u(z) = 0.015; and (c) A = 4, u% = 0.25.
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FIG. 2. Radial correlation function g(r,7) for the same time
and parameters showed in Fig. 1: u(z, = 0 (dotted line), A = 4,
u% = 0.015 (dashed line), and A = 4, u(z) = 0.25 (solid line).

to the hydrodynamic-free situation. Actually the growth
dynamics seems to approach a power law 7% with a =
1/2 rather than the usual Lifshitz-Slyozov behavior (o =
1/3). On the contrary when R(z) > A the system either
goes through a crossover leading to the asymptotic growth
mode ¢'/3 or it is really trapped into a frozen phase
separation stage whose characteristic domain size largely
depends-on A. This is clearly depicted in Fig. 4 where
we reproduce two cases of continuous growth, (bl) and
(b2), and two cases of frozen phase separation, (c1) and
(c2). The longer lasting regimen of droplet coalescence
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FIG. 3. Radial correlation functions for A = 4 and two values
of u(z): 0.25 (symbols) and 0.015 (lines), for times ¢t = 1000
[(O) and dotted line], ¢ = 2500 [(<) and dashed line], and
t = 4000 [(A) and dot-dashed line].

when increasing A, under steady growth conditions, is
evidenced when comparing (bl) and (b2). However,
beyond their respective crossovers (marked by arrows),
situations (bl) and (b2) get adjusted equally to the
Lifshitz-Slyozov regime illustrated by the nonstirring case
(a). On the other hand, the corresponding dependence on
A of the ruptured droplets under higher levels of stirring
is apparent when comparing (cl) and (c2). Actually,
this suppression growth mechanism turns out to be very
effective as also evidenced in Fig. 4 where two routes,
either a full time superimposed stirring or a situation of
activated random advection at a late growth stage collapse
into a unique pattern of frozen phase separation.

Two arguments may be relevant to interpret the scenar-
ios just described. When the characteristic domain size is
smaller than the correlation length of stirring, each indi-
vidual droplet may be viewed as an independent Brownian
particle immersed in the much more rapidly evolving
superimposed random flow, relative to the much slower
time scale of the coarsening process itself [2]. When two
such droplets approach each other they would coalesce
into a larger droplet. This process would continue until
the mean distance between droplets, typically comparable
to the average domain size, becomes of the order of
the correlation length of the advective flow. Under the
hypothesis of passive phases with stochastic stirring, one
can define an effective diffusion constant D, independent
of the droplet radius R, for the Brownian motion of the
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FIG. 4. Log-log plot of the time evolution of R(z), for
(@) uy = 0; (bl) A = 3, ug = 0.015; (b2) A = 5, uj = 0.015;
(c) A =4, uj =025 and (c2) A =6, u} =025 The
results have been averaged over an ensemble of ten runs. The
broken line illustrates the suppression of the growth once the
stirring is plugged into the system with the parameter values of
(c2). The straight line illustrates the 1/2 regime, and the arrows
illustrate the crossover from the droplet coalescence regime to
the Lisfshitz-Slyozov dynamics.
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droplets. Under these asumptions, the mean free time
between collisions is related to the radius of the droplets
by R? = DAt. Since each encounter increases the droplet
radius by an amount of order R, we end up with a simple
equation, AR/At = R/At ~ D/R. From it the power
law R ~ ¢'/2 is trivially recovered. Once the droplets
have attained the typical size of the random advective vor-
tices their dynamics cannot be longer described according
to the previous picture. Either they continue to grow or
they burst apart under vigorous enough stirring. In the
first regime, the random motion mechanism no longer ap-
plies for already largely segregated domains, but rather the
Lifshitz-Slyozov (or evaporation-condensation) mecha-
nism becomes dominant.

The remaining question consists precisely of predicting
whether or not this sustained growth, versus a frozen
dynamics, will take place. According to our simulations
this would depend on the two statistical parameters of
the random flow: the intensity and the correlation length.
Actually, our numerical simulations indicate that, for each
value of the stirring intensity, a critical correlation length
A. appears to fix a threshold such that for values of A
below (above) A. a continuous (interrupted) growth mode
is predicted. The argument behind this observation can
only be based on the competition between the distorting
effect (on large enough droplets) of the turbulent shear
flow and the stabilizing effects of their surface tension.
An approximate analytical argument is developed as
follows. Let us assume a perturbing bump of lateral
extent /g and vertical size h(x, t), caused by an advective
flow v = (0,v,) of amplitude up, on a planar surface
(very large droplet) along the x axis. In terms of the one-
dimensional steady-state solution co(y) of the equation
without stirring (—cg + c(3) - a’zco/a’y2 = () we write
this perturbation in the form

c(x,y) = coly) + no(y)h(x), (5)

with 719(y) = dco(y)/dy. Substituting Eq. (5) into
Eq. (1), using Green’s functions technique, and by going
to Fourier space one can obtain the following relation for
the perturbation Ay ()

dh;t(’) = —% Khe + uo, (6)
where o = [(dco/dy)? = 2+/2/3 is related with the sur-
face tension. The first term of the right-hand side of
Eq. (6) is the usual surface-tension mediated stabilizing
mechanism. The second term represents the effect of the
velocity field, which tends to deform the interface inde-
pendently of A;. Both effects will be equal when h; ~
2ug/ok®. Considering that the break of the interface
takes place for h; ~ lp = /7 A, and taking into account
that k ~ /7 A1, we can find the critical value for A as

7 o

A§~7;O. )
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This equation allows us to understand the numerical
results of Fig. 4. For uj = 0.015, Eq. (7) gives a A, ~ 6,
so for the cases (bl) and (b2) of Fig. 4 with A = 3
and A =5, respectively, we would expect a sustained
growth process. Contrarily for u(z) = 0.25, Eq. (7) gives
a A, ~ 3, and hence for the cases (cl) and (c2) with
A > A, a situation of frozen growth would be predicted.
Both conclusions are in agreement with the numerical
results of Fig. 4.

In summary, we have discussed, by numerical simu-
lations, dynamical aspects of segregating passive scalar
phases subjected to random advective flows. Both situa-
tions of favored and frozen growth are predicted, depend-
ing on the statistical parameters of the superimposed flow.
In this respect, the crucial competition between the intrin-
sic length of the stirring mechanism and that of the phase
separation process itself is analytically discussed. In ad-
dition, a transient faster growth regime, different from the
standard Lifshitz-Slyozov dynamics, has been found and
interpreted in terms of a diffusionlike behavior applying
to small size uncorrelated droplets immersed in a much
more rapidly evolving advective flow.
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FIG. 1. Concentration patterns at time ¢ = 2500 for (a) u5 = 0; (b) A = 4, 4 = 0.015; and (¢c) A = 4, uj = 0.25.



