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Many extensions of the standard model predict the existence of hidden sectors that may contain

unbroken Abelian gauge groups. We argue that in the presence of quantum decoherence photons may

convert into hidden photons on sufficiently long time scales and show that this effect is strongly

constrained by CMB and supernova data. In particular, Planck-scale suppressed decoherence scales D /
!2=MPl (characteristic for noncritical string theories) are incompatible with the presence of even a single

hidden U(1). The absence of photon decoherence in this simple standard model extension complements

other strong bounds derived from solar, reactor, and atmospheric neutrinos.
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I. INTRODUCTION

Physics beyond the standard model (SM) typically pre-
dicts the existence of hidden sectors containing extra mat-
ter with new gauge interactions. There is no compelling
reason why these extra sectors should be very massive if
their interaction with standard model matter is sufficiently
weak. This can be accomplished, e.g., in extra dimensional
extensions with a geometric separation of sectors or in
models where tree-level interactions are absent and higher
order corrections are suppressed by the scale of messenger
masses.

The presence of these light hidden sectors can have
various observable effects. For example, in the case of
kinetic and mass mixing [1,2] between a hidden U(1) and
the electromagnetic U(1), hidden sector matter can receive
small fractional electromagnetic charges. These ‘‘mini-
charged’’ particles can have a strong influence on early
Universe physics and astrophysical environments [3]. If the
hidden sector U(1) is only slightly broken by a Higgs or
Stückelberg mechanism we can have a situation analogous
to neutrino systems with characteristic oscillation patterns
between photons and hidden photons over sufficiently long
baselines [4].

Here we concentrate on another effect induced by the
presence of these light hidden sectors: the sensitivity of
photon propagation to sources of quantum decoherence,
e.g. quantum gravity effects [5]. A heuristic picture de-
scribes space-time at the Planck scale as a foamy structure
[6], where virtual black holes pop in and out of existence
on a time scale allowed by Heisenberg’s uncertainty prin-
ciple [7]. This can lead to a loss of quantum information
across their event horizons, providing an ‘‘environment’’
that might induce quantum decoherence of apparently
isolated matter systems [5,8].

It is an open matter of debate whether quantum decoher-
ence induced by a quantum theory of gravity would simul-

taneously preserve Poincaré invariance and locality [5,7,9–
11]. A violation of energy and momentum conservation by
particle reactions with a space-time foam could be re-
flected by an (energy dependent) effective refractive index
in vacuum [12]. This could be tested, e.g., by the measure-
ment of the arrival time of gamma rays or high-energy
neutrinos at different energies or by the propagation of
ultrahigh-energy cosmic rays [13].
If, on the other hand, Poincaré invariance is preserved,

the presence of a nontrivial space-time vacuum can still be
signaled by decoherence effects in systems of stable ele-
mentary particles [9]. A particularly interesting and well-
studied case are neutrino systems, where the interplay
between mixing, mass oscillation, and decoherence can
influence atmospheric, solar, and reactor neutrino data
[14–17], as well as flavor composition of astrophysical
high-energy neutrino fluxes [18,19].
If hidden sectors contain unbroken Abelian gauge

groups it is also feasible that the system of the electromag-
netic photon (�0) and hidden photons (f�ig with i � 1)
experience energy and momentum conserving decoher-
ence effects: transitions between different photon ‘‘spe-
cies,’’ �� ! ��, are allowed by gauge and Poincaré

invariance. This is the only alternative system to neutrinos
involving a stable and neutral elementary particle of the
standard model, which can experience these decoherence
effects on extremely long (cosmological) time scales.
The outline of this paper is as follows. We will start in

Sec. II with an outline of the Lindblad formalism of
quantum decoherence. We will then discuss in Sec. III
the effect of photon decoherence on the Planck spectrum
of the cosmic microwave background (CMB) and the
luminosity distance of type Ia supernovae, respectively.
This enables us to derive strong limits on various decoher-
ence models in this scenario. We comment in Sec. IVon the
interplay of decoherence and photon interactions and out-
line a possible mechanism to extend the survival probabil-
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ity of extra-galactic TeV gamma rays. We finally summa-
rize in Sec. V.

II. QUANTUM DECOHERENCE

The Lindblad formalism is a general approach to quan-
tum decoherence that does not require any detailed knowl-
edge of the environment [20]. In the presence of
decoherence the modified Liouville equation can be writ-
ten in the form

@�

@t
¼ �i½H;�� þD½��: (1)

The Hamiltonian H can include possible background con-
tributions, e.g. plasma effects for the photon. However, this
does not affect the evolution of the density matrix in the
absence of mixing between the gauge bosons. The deco-
herence termD in the modified Liouville equation (1) can
be written as

D ½�� ¼ 1

2

X
j

ð½bj; �byj � þ ½bj�; byj �Þ; (2)

where fbjg is a sequence of bounded operators acting on the
Hilbert space of the open quantum system, H , and sat-

isfying
P

jb
y
j bj 2 BðH Þ, where BðH Þ indicates the

space of bounded operators acting on H . The dynamical
effects of space-time on a microscopic system can then be
interpreted as the existence of an arrow of time which in
turn makes possible the connection with thermodynamics
via an entropy. The monotonic increase of the
von Neumann entropy, Sð�Þ ¼ �Trð� ln�Þ, implies the

Hermiticity of the Lindblad operators, bj ¼ byj [21]. In

addition, the conservation of energy and momentum can be
enforced by taking ½P�; bj� ¼ 0.

We will assume in the following that there is a total of N
Abelian gauge bosons �� with � ¼ 0; . . . ; N � 1 includ-

ing the photon �0. The solution to Eq. (1) is outlined in the
Appendix. For simplicity, we assume degeneracy of the
decoherence parameters Di ¼ D which simplifies the pho-
ton survival probability after a distance x ¼ t ¼ L signifi-
cantly (see the Appendix),

P�!� ¼ 1

N
þ N � 1

N
e�DL: (3)

The energy behavior ofD depends on the dimensionality
of the operators bj. We can estimate the energy dependence

from gauge invariance. Possible combinations of the field
strength tensors F�� and G�� of the two U(1)s are [5] bj /
ðF��G

��Þj / !j. This restriction of the energy behavior to

non-negative powers of ! may possibly be relaxed when
the dissipative term is directly calculated in the most
general space-time foam background [19].

An interesting example is the case where the dissipative
term is dominated by the dimension-4 operator b1 yielding
the energy dependence D / !2=MPl. This is characteristic

of noncritical string theories where the space-time defects
of the quantum gravitational environment are taken as
recoiling D-branes, which generate a cellular structure in
the space-time manifold [22].

III. OBSERVATIONAL CONSTRAINTS

In the following we will investigate the limits on quan-
tum decoherence in the presence of hidden massless U(1)s
from cosmological and astrophysical observations. Unless
otherwise stated, we will make the conservative assump-
tion that there exists only a single hidden U(1) in addition
to the standard model (N ¼ 2). We will parametrize the
decoherence rate of photons as

Dðz;!Þ ¼ ð1þ zÞpþ1D�
!pþ1

Mp
QD

� ð1þ zÞpþ1�0

�
!

GeV

�
pþ1

; (4)

where MQD is the scale of quantum decoherence, not

necessarily the Planck scale, and following the notation
of Ref. [16] we have introduced the effective parameter

�0 ¼ D�
�
GeV

MQD

�
p
GeV: (5)

This parametrization approximates the energy dependence
of decoherence as a power law and we will consider a wide
range of indices p ¼ 0, �1, �2 in the following.
The differential flux of photons from a source at redshift

z is reduced by the exponential factor

P�!�ðz; !Þ ¼ 1

2
þ 1

2
exp

�
�
Z z

0
d‘0Dðz0; !Þ

�
; (6)

where the propagation distance ‘ is given by dz ¼ HðzÞ�
ð1þ zÞd‘ with Hubble parameter H. The Hubble parame-
ter at redshift z is given by H2ðzÞ ¼ H2

0½ð1��m ��rÞ þ
�mð1þ zÞ3 þ�rð1þ zÞ4� where �mh

2 ’ 0:128 and
�rh

2 ’ 2:47� 10�5. The present Hubble expansion is
H0 ¼ h100 km s�1 Mpc�1 with h ’ 0:73 [23].

A. CMB distortions

In the standard big bang cosmology the CMB forms at a
redshift of about zCMB ’ 1100 after recombination of elec-
trons and (mostly) protons in the expanding and cooling
universe. The CMB is well described by a Planck spectrum
with a temperature of T ¼ 2:725� 0:001 K [24] and spec-
tral intensity (W m�2 Hz�1 sr�1)

d2I

d�d�
¼ 1

2�2

!3

expð!TÞ � 1
: (7)

The high degree of accuracy (better than 1 in 104 around
1 meV) between the CMB measurement and cosmological
predictions is an ideal probe for exotic physics that could
have affected the CMB photons in the redshift range 0<
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z < zCMB with energies from meV (z ¼ 0) to eV (z ¼
zCMB).

The influence of light particles coupling to the CMB has
been studied previously for the case of axionlike particles
[25], minicharged particles [26], and massive hidden pho-
tons with kinetic mixing [27]. In the case of photon ab-
sorption or decoherence the observed spectrum is modified
as

d2Iobs

d�d�
¼ P�!�ðzCMB; !Þ d2I

d�d�
: (8)

As an illustration of the effect of decoherence, Fig. 1 shows
the distortion of the CMB spectrum for the case p ¼ 1 and
MQD ¼ MPl ’ 1:2� 1019 GeV for D� ¼ 0:01, 0.1, 1

(upper panel) and D� ¼ 10�4 (lower panel). The 3� limits
from a �2 fit of various models to the COBE/FIRAS data
[24] are shown in Table I.

B. SN dimming

Also the luminosity distance measurements of cosmo-
logical standard candles like type Ia supernovae (SNe)
[28,29] are able to test feeble photon absorption and deco-
herence effects. The luminosity distance dL is defined as

dLðzÞ �
ffiffiffiffiffiffiffiffiffiffi
L

4�F

s
; (9)

whereL is the luminosity of the standard candle (assumed
to be sufficiently well known) andF the measured flux. In a
homogeneous and isotropic universe this is predicted to be

dLðzÞ ¼ ð1þ zÞa0�
�Z z

0

dz0

a0Hðz0Þ
�
; (10)

with a�1
0 ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1��totj
p

and �kð�Þ ¼ ðsinh�; �; sin�Þ
for spatial curvature k ¼ �1, 0, 1, respectively. If the
photon flux of a source, located at distance z and observed
in a (small) frequency band centered at!?, is attenuated by
photon interactions or quantum decoherence the observed
luminosity distance increases as

dobsL ðzÞ ¼ dLðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�!�ðz;!?Þ

q : (11)

The apparent extension of the luminosity distance by
photon interactions and oscillations has been investigated
in the context of axionlike particles [25,30], hidden pho-
tons [31], chameleons [32], and minicharged particles [33].
One of the main attractions of these models is the possi-
bility that the conclusions about the energy content of our
Universe drawn from the Hubble diagram can be dramati-
cally altered. We will briefly comment on this possibility at
the end of this section.
As an example, the upper panel of Fig. 2 shows the effect

on quantum decoherence in the �CDM model assuming a
single hidden U(1) (N ¼ 2). The luminosity distance of the
SNe is shown as the difference between their measured
apparent magnitudem and their known absolute magnitude
M,
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FIG. 1 (color online). Modification of the CMB spectrum by
decoherence effects. The dots show the residual CMB spectrum
measured by COBE/FIRAS [24] (1 JyðJanskyÞ �
10�26 Wm�2 Hz�1). The upper panel shows the effect of D� ¼
0:01, 0.1, 1 and the lower panel D� ¼ 10�4. The curves show the
accumulated deficit in photons compared to the ‘‘no decoher-
ence’’ case. (A different shadowing is included to guide the eye.)

TABLE I. The 3� limits on the parameter combination �0 ¼
D�ðGeV=MQDÞp ðGeVÞ derived from the COBE/FIRAS data

[24] and SN data [28] assuming one extra U(1) (N ¼ 2). Note
that the limits become stronger by up to a factor 2 for N > 2. For
illustration, the last two columns show the limits obtained from
reactor and solar [16] as well as atmospheric neutrinos [14,17].

Model CMB SNe Reactor

& solar �
Atmospheric

�

p ¼ �2 1:4� 10�58 5:6� 10�52 7:8� 10�27a 1:5� 10�21b

p ¼ �1 1:2� 10�46 4:1� 10�43 6:7� 10�25a � � �
p ¼ 0 3:9� 10�35 2:9� 10�34 5:8� 10�23a 1:2� 10�27c

p ¼ 1 1:1� 10�24 1:9� 10�25 4:7� 10�21a 1:3� 10�31c

p ¼ 2 2:4� 10�15 1:3� 10�16 � � � 5:3� 10�36c

aBounds are at the 95% C.L. Their notation corresponds to n ¼
pþ 1 [16].
bThe authors consider the case p ¼ �2 with �2=ðGeVÞ2 ¼
2�0=GeV [14].
cBounds are at the 90% C.L. Their notation corresponds to n ¼
pþ 1 and D�ðGeVÞp ¼ �0=GeV [17].
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m�M ¼ 5log10dL;Mpc þ 25: (12)

As in the previous case we can derive 3� limits for various
decoherence models that are shown in Table I.

However, we would like to emphasize that these limits
depend on the cosmological model and the normalization
of the SN data. If the SN dimming by photon decoherence
is strong this can have an effect on the evaluation of
cosmological data. We give an example in the lower panel
of Fig. 2 where the decoherence effect could even be able
to reproduce the observed SN luminosities from a CDM
model. Note that this model is not excluded by the corre-
sponding CMB limits, though it is not compatible with the
analogous bound from atmospheric neutrinos. In addition,
one has to keep in mind that the photon frequency depen-

dence of the parameterD causes a color excess (unless p ¼
�1) which is in conflict with observation [28]. For the
example shown in the right panel of Fig. 2 the color excess
between the B and V band of the form, E½B� V� �
�ðm�MÞB � �ðm�MÞV, is larger than 0.8 for redshifts
0:2 & z & 0:8, more than twice the median color excess
observed from SNe at this distance [34]. Moreover, photon
absorption as a SN dimming mechanism would violate the
cosmic distance duality, i.e. the luminosity and angular
diameter distance relation dL=dA ¼ ð1þ zÞ2 [35]. Hence,
it is unlikely that decoherence can fully account for SN
dimming. Nevertheless, it could have an effect on the
evaluation of cosmological data.
The 3� limits on the parameter �0 [cf. Eq. (5)] shown in

Table I translate into bounds on D� as a function of the
decoherence scale MQD [cf. Eq. (4)]. The dimensionless

parameterD� is naturally expected to be of order 1. Hence,
limits on photon decoherence in the presence of hidden
U(1)s require D� 	 1 for p 
 1. In reverse, a quantum
theory of gravity predicting Planck-scale suppressed deco-
herence is not compatible with the existence of unbroken
hidden U(1)s unless, unnaturally, D� 	 1.
The two rightmost columns in Table I show decoherence

limits derived from solar and reactor neutrino data [16] as
well as atmospheric neutrino results [14,17]. One must
bear in mind that the bounds from neutrino data and the
ones derived in this work are not directly comparable
without assumptions. First, our bounds rely on the presence
of massless hidden U(1)s while the neutrino bounds hold in
the absence of those. Second, it is still feasible that deco-
herence effects are not universally present in both, neutrino
and photon/hidden photon systems (though if quantum
decoherence has a common origin, e.g. quantum gravity,
it seems reasonable to assume a universal decoherence
scale MQD). But most importantly the simple power law

parametrization (4) does not necessarily approximate the
decoherence effects at the very different experimental
energy scales probed by the different data from meV
(CMB) up to TeV (atmospheric �).
Generically, high (low) energy data—either photons or

neutrinos—are more sensitive to decoherence effects that
grow (decrease) with energy. This tendency can be ob-
served in Table I. Consequently, higher power quantum
decoherence with p � 2 are only weakly constrained by
photon/hidden photon systems in the meV to eV energy
range. We will speculate in the following section, how
high-energy gamma ray sources could possibly explore
this unconstrained parameter space.

IV. PHOTON PROPAGATION

Decoherence effects can also have interesting effects on
the propagation of photons in the presence of photon
absorption. We can account for photon absorption effects
in the Liouville equation (1) by a contribution
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FIG. 2 (color online). Upper panel: Enhanced SNe dimming
by decoherence effects assuming N ¼ 2, p ¼ 1, MQD ¼ MPl

and D� ¼ 10�6, 10�5, 10�4 assuming sources observed in a
frequency interval centered at !? ¼ 1 eV. The dots show the
SNe Ia ‘‘union’’ compilation from Ref. [28]. The luminosity
distance dL is shown by the difference �ðm�MÞ to an empty
(�tot ¼ 0) flat universe. The thin lines show the accumulated
deficit in photons compared to the ‘‘no decoherence’’ case
(standard �CDM model) indicated by the thick line. Lower
panel: As the upper panel, but now showing also a flat CDM
model with �m ¼ 1 and �� ¼ 0 (dotted line). For illustration,
we consider a hidden photon model with p ¼ 1, N ¼ 2, and
D� ¼ 6� 10�6 and show the dimming for the B (	? ’ 440 nm,
upper line) and V (	? ’ 550 nm, lower line) bands. Whereas the
overall dimming effect is practically indistinguishable from the
�CDM model, the strong reddening of the starlight from the
energy dependence of D / !2=MPl is challenged by the data
[34].
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D �½�� ¼ ��

2
f�0; �g; (13)

where � ¼ 1=	 is the photon absorption rate,1 e.g. in the
intergalactic photon background (BG) via �þ �BG !
eþ þ e�, and �0 is the photon projection operator.

The photon survival probability in the presence of a
single hidden U(1) can be readily solved from the modified
Liouville equation and gives (see the Appendix for details)

P�!� ¼ e�ðL=2ÞðDþ�Þ
�
cosh

�
L

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ �2

p �

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ �2

p sinh

�
L

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ �2

p ��
: (14)

We can estimate the sensitivity of extra-galactic TeV
gamma ray sources to decoherence effects as

D� � 10�38þ16p

�
MQD

MPl

�
p
�
TeV

!

�
pþ1

�
kpc

L

�
: (15)

In particular for MQD �MPl, D� � 10�22 for p ¼ 1 or

D� � 10�6 for p ¼ 2. Hence, this probe has the potential
to be more sensitive to Planck-scale suppressed decoher-
ence than existing neutrino data [14,17] by many orders of
magnitude. We will discuss in the following possible sig-
nals of decoherence in the spectra of TeV gamma ray
sources.

Figure 3 shows the survival probability for three differ-
ent values of D. The functional behavior can be easily
understood as follows: The hidden U(1) serves as an invis-
ible ‘‘storage’’ of photons during propagation. If D	 � 1
decoherence quickly equalizes the number of photons and
hidden photons. This results into a decrease of the photon
survival probability to 1=2 (for N ¼ 2) for L & 	. On the
other hand, inelastic scattering only affects photons.
Therefore at larger L photons can be ‘‘replenished’’ by
the decoherence of the unabsorbed hidden photons into
photons. Hence, for propagation distances L> 	 the pres-
ence of hidden photons increases the photon survival
probability.

For the general case of N U(1)s and strong decoherence
D � � we can express the photon survival probability at a
distance much larger than the decoherence scale L � 1=D
as (see the Appendix for details)

P�!� ’ 1

N
exp

�
� L

N	

�
: (16)

This can have an important effect on the spectra of TeV

gamma ray sources.2 First, if the onset of decoherence
appears at energies covered by the spectra one could ob-
serve a steplike drop of the flux by a factor 1=N. And
second, as long as the absolute source emissivity of pho-
tons is unknown [such that the prefactor 1=N in Eq. (16)
gets renormalized], the expected spectral cutoffs of the
sources could be shifted according to an extended photon
interaction length 	eff ¼ N	. These effects can be clearly
seen in Fig. 3 for the case N ¼ 2. For a TeV gamma ray
source at 100 Mpc and Planck-scale suppressed decoher-
ence this requires D� � 10�27 (D� � 10�11) for p ¼ 1
(p ¼ 2). In comparing this with Table I and Eq. (5) we see
that there is ample room for models that could have such an
effect on the spectra.

V. CONCLUSIONS

We have discussed the effects of quantum decoherence
of photons in the presence of hidden sector U(1)s.
Quantum decoherence in the system of photon and hidden
photons could be induced by a foamlike structure of space-
time in a quantum theory of gravity, where virtual black
holes pop in and out of existence at scales allowed by
Heisenberg’s uncertainty principle.
We have shown that these decoherence effects are

strongly constrained by the absence of photon disappear-
ance in the cosmic microwave background. Furthermore
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FIG. 3 (color online). Photon survival probability in the pres-
ence of decoherence with a single hidden U(1) (N ¼ 2). The
black line shows the photon attenuation, e.g. in the intergalactic
photon background via �þ �BG ! eþ þ e�, in the absence of
decoherence (D ¼ 0). The dashed curve shows decoherence
with D	 ¼ 1 and the dotted curve D	 � 1.

1Since we consider point-source fluxes in the following we
will treat the reaction �þ �BG ! eþ þ e� as an absorption
process of the photon. Subsequent electromagnetic interactions
of secondary e� will contribute to the diffuse GeV-TeV
background.

2Note that in the absence of hidden sectors, as long as ! & v
(v being the scale of electroweak symmetry breaking) the photon
survival probability is 1 independently on whether the Higgs
potential around virtual black holes has its minimum at the
trivial vacuum v ¼ 246 GeV or at the unbroken vacuum v ¼
0. For photon energies beyond the electroweak breaking scale,
one may theorize over a possible decoherence effect between the
neutral SM gauge bosons. In this case the conservation of energy
and momentum in decoherence effects, which forbids transitions
of the form � ! Z, is a crucial assumption.
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quantum decoherence as an additional source of starlight
dimming can also be constrained by the luminosity dis-
tance measurements of type Ia supernovae. Consequently
based on the standard �CDM model we can derive con-
straints on the decoherence in the presence of hidden
U(1)s. In principle, the decoherence effect could be strong
enough to influence the evaluation of cosmological data.
However, color dependencies in the dimming via photon
decoherence are not favored by the data and could be used
to derive further constraints.

Our main results are summarized in Table I. We observe
that Planck-scale suppressed decoherence scales D /
!2=MPl are incompatible with the presence of even a
single hidden U(1). These results complement other strong
decoherence limits derived from solar, reactor, and atmos-
pheric neutrinos.

We have also discussed the interplay between photon
absorption and decoherence. This effect can become im-
portant for distant TeV gamma ray point sources if the
decoherence length is much smaller than the photon inter-
action length. Assuming N � 1 additional U(1)s this could
leave characteristic features in gamma ray spectra in the
form of steplike drops by factors 1=N or by an effective
increase of the absorption length 	 to 	eff ¼ N	.
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APPENDIX: LINDBLAD FORMALISM

We outline the solution to the Liouville equation (1) in
the presence of quantum decoherence. The density matrix
� and Lindblad operators bj can be expanded in a basis of

Hermitian matrices F� that satisfy the orthonormality

condition TrðFy
�F�Þ ¼ 
��=2. Without loss of generality

we consider a basis with ðF0Þij ¼ 
ij=
ffiffiffiffiffiffiffi
2N

p
. Explicitly, we

have

� ¼ X
�

��F�; bj ¼
X
�

bðjÞ� F�: (A1)

The free propagation of photons and hidden photons (H ¼
�i@=@x) can be readily solved in terms of ‘‘light-cone’’
coordinates x̂ ¼ ðx� tÞ=2 and t̂ ¼ ðxþ tÞ=2. In these new
coordinates Eq. (1) can be written @�=@t̂ ¼ D½��.
Hence, the coefficients of the free equations of motion

satisfy the differential equation

@

@t
�� ¼ �X

�

D����; (A2)

with D�0 ¼ D0� ¼ 0 and

Dij ¼ 1

2

X
k;l;m;n

bðnÞm fimlb
ðnÞ
k fjkl; (A3)

where fijk are structure constants defined by ½Fi; Fj� ¼
i
P

kfijkFk.

The solution of @t�0 ¼ 0 is trivial and requires �0ðtÞ ¼
�0 ¼ 2Trð��F0Þ ¼

ffiffiffiffiffiffiffiffiffi
2=N

p
for all species �. If Dij is

diagonalizable by a matrix M, ðM�1DMÞij ¼ Di
ij, we

can write the final solution as

P�!� ¼ 1

N
þ 1

2

X
i;k;j

e�Dkt�ið0ÞMikM
�1
kj �jð0Þ: (A4)

This reduces to Eq. (3) in the case Di ¼ D using 2 ¼P
��

2
� following from �2ð0Þ ¼ �ð0Þ and Tr½�� ¼ 1.

We can extend the Liouville equation (1) by a photon
decay term of the form (13). The modified equation can be
readily solved in the case of N ¼ 2, taking Fi ¼ 1

2�i with

Pauli matrices �i. In this basis the photon projection
operator in the term (13) has the form �0 ¼ F0 þ F3.
And the general solution of the photon survival probability
is given in Eq. (14).
In the case of strong decoherence, i.e. at propagation

distances L � 1=D andD � �, we can derive the asymp-
totic solution (16) of the general survival probability with
N U(1)s in the following way. In the presence of strong
decoherence we can assume that at any step during the
evolution Tr½���� ’ Tr½���� and, in particular, Tr½�� ’
N Tr½�0��. Since the trace of the decoherence term van-
ishes we can derive the asymptotic differential equation

Tr ½ _�� ’ N Tr½�0 _�� ’ ��Tr½�0��: (A5)

This has the solution (16), noting that P�!� ¼ Tr½�0��
and initially Tr½�0�ð0Þ� ¼ 1=N.
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