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We show that in the limit where the number of spacetime dimensions D grows to infinity a very large
class of black holes (including nonextremal, static, asymptotically flat ones, with any number of gauge-
field charges, possibly coupled to dilatons) possess a universal set of quasinormal modes whose complex
frequencies depend only on the horizon radius and no other black hole parameters. The damping ratio of
these modes vanishes like D−2=3, so they are almost normal modes, or “quasiparticle” excitations of the
black hole. The structure responsible for the existence of these modes at large D is also present very
generally in other black holes.
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If we probe a black hole by perturbing it away from
equilibrium, its response—the radiation it emits—is domi-
nated by the spectrum of its quasinormal modes. In many
respects these are analogous to normal modes, but they
have a dissipative part (imaginary frequency) due to the
absorptive nature of the horizon. They can be regarded as
the “free” (but damped) oscillations of the black hole
spacetime, and so they provide a way of characterizing it.
Black holes famously require very few parameters for their
complete characterization, but their quasinormal modes are
generically expected to carry the imprint of all of them.
This is indeed borne out by the analytic methods known to
approximate their calculation (for a review, see [1,2]).
Recently it has been argued that black holes and their

dynamics simplify greatly in the limit in which the number
D of spacetime dimensions diverges [3–6]. It is natural to
ask whether this limit is useful in the calculation of
quasinormal modes, and if so, what it reveals. We will
see that at large D an important part of the spectrum is not
only very easy to compute, but also it is universally shared
by many black holes, conveying only minimal information
about the horizon radius r0. If this property had been
discovered through case-by-case numerical computation of
quasinormal spectra for large values of D, it would
probably have been regarded as a surprise. We will argue
that it is a direct consequence of generic features of black
holes at large D discovered in [4,5].
More precisely, we shall show that for a large class of

static, asymptotically flat, nonextremal black holes, there
exist a number ∝ D2 of quasinormal modes whose complex
frequencies at large D are
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where l is the angular momentum number, and k ¼ 1; 2;…
is the “overtone” number with−ak being zeroes of the Airy
function Ai. These are very well approximated by
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All the information about, e.g., the gauge charges of the
black hole, or their coupling to scalars (dilatons), has been
effaced from (1). It will be clear from our analysis that the
structure responsible for this spectrum is also present in
many other settings.
The result (1) is valid for modes for which l=D and k are

parametrically of order D0 (i.e., l ≪ D2, k ≪ D). Then
Reω and Imω are of order D and D1=3, respectively.
Among the entire set of quasinormal modes of large D
black holes, these are not only most numerous, but they
also have the smallest damping ratio Imω=Reω ∝ D−2=3.
Their lifetime is very long on the time scale of their
vibrational period, so they resonate most sharply, almost
like a normal mode, to an external influence of the
appropriate frequency. Black holes have other quasinormal
modes that do not conform to this spectrum, e.g., with
frequencies parametrically smaller, ω ¼ OðD0Þ. These can
be of considerable interest [7,8] but they do not seem to
possess a similar degree of universality.
Consider a static, spherically symmetric black hole with

metric of the generic form

ds2 ¼ −hðrÞAðrÞBðrÞdt2 þ BðrÞ dr
2

hðrÞ þ r2dΩ2
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where

h ¼ 1 −
�
r0
r

�
D−3

(4)

fixes the position of the horizon at r ¼ r0. The functions
AðrÞ, BðrÞ are assumed to be nonzero and finite at all r ≥ r0
(hence we exclude extremal black holes). Asymptotic
flatness requires that A, B → 1 as r → ∞. Beyond these
basic assumptions, the class of solutions to which our
argument below applies is very broad but not easily
specified in full generality. A simple and very inclusive
requirement is that when we take the large D limit, the
metric functions A and B approach 1 exponentially fast in
D at any r > r0. This is indeed expected for any black hole
that only supports massless fields outside its horizon (no
massive hairs). We may then require that at any given value
of r > r0, A and B behave like
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where A0 and B0 remain finite and possibly nonzero in the
limit. This condition is satisfied by, e.g., dilatonic black
holes, or black holes with charges coupled to Uð1Þn gauge
theories (at least as long as the dilaton coupling, or n,
remain finite as D → ∞).
Linear perturbations of this black hole depend on

the specific Lagrangian of the theory. However, among
the gravitational perturbations, those that are tensors of
SOðD − 1Þ do not couple to vector or scalar fields in the
theory. The number of polarizations of tensor modes grows
like D2, much larger than vectors, ∼D, or scalars, ∼D0.
Assuming they are governed by Einstein’s equations, the
tensor modes satisfy the equation for a minimal massless
scalar fieldΦ in thebackgroundspacetime (3) [9]. Separating

variablesasΦ¼ r−ðD−2Þ=2ϕðrÞe−iωtYðlÞ
D−2ðΩÞ, thisequationis

− d2ϕ
dr2�
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and dr� ¼ dr=ðh ffiffiffiffi
A

p Þ, so that r� → −∞ at the horizon.
For large D, r� approaches very closely the coordinate r
wherever r > r0ð1þ ðln DÞ=DÞ.

The function V describes a potential barrier that vanishes
at infinity and at the horizon, and will reach a maximum at
finite r�. Now, under the assumptions above, when D is
very large, the potential can be written (up to subleading
terms in 1=D) in the form
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with

ϖl ≡ 1

2
þ l
D
; (9)

and where the function CðrÞ remains finite at any r > r0 as
D → ∞. It is now easy to see that this kind of potential has
a maximum at

rmax� ¼ r0

�
1þ ln aD

D
ð1þOð1=DÞÞ

�
; (10)

(with constant a) and therefore rmax� → r0 as D → ∞,
whenever Cðr0Þ < 1. The latter condition holds for, e.g.,
dilatonic black holes, but when it is not satisfied the
maximum is expected at rmax� ¼ r0ð1þ b=DÞ (with con-
stant b > 0) so again rmax� → r0. The potential around this
maximum is very simple: to its left, r� < rmax� , we have
h ∼ eDðr�−rmax� Þ so the potential drops to zero exponentially.
To its right, r� > rmax� , we have that ðr0=rÞD is exponen-
tially small in D, so in this region V becomes the radial
potential of the scalar field in Minkowski space. Then,
when D → ∞ the potential becomes simply (see Fig. 1)

FIG. 1. Effective potential Vðr�Þ at largeD. WhenD → ∞, V is
given by (11) and the maximum becomes a sharp peak.
Quasinormal modes correspond to bound states in the inverted
potential −V (inset). The lowest ones are the Airy-function bound
states of a triangular well.
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Vðr�Þ →
D2ϖ2

l

r2�
Θðr� − r0Þ: (11)

The upshot of this discussion should be plain now: very
generally, as a consequence of the expected behavior of the
metric functions A and B as D → ∞, we find a flat space
radial potential cutoff at r� ¼ r0, with Vmax ∝ D2. As will
be clear presently, we are only interested in the potential
close to this maximum. In some cases there may be other
subleading extrema to the left of this maximum, with
V ∼OðD0Þ, which we shall not consider.
We now seek the quasinormal modes of the potential

(11), i.e., solutions satisfying ϕ ∼ e�iωr� at r� → �∞.
Upon continuation r� → −ir�, ϖl → iϖl, these can be
equivalently obtained as the bound states in the inverted
potential −V, satisfying ϕ ∼ e∓ωr� at r� → �∞ [10]. We
are interested in the least damped modes, which correspond
to the lowest bound states in −V. At large D these are very
strongly localized near the minimum, which can be
approximated as a triangular well. There, defining
x ¼ ðr� − r0Þ=r0, the wave equation for x ≥ 0 is

− 1

D2

d2ϕ
dx2

þ 2ϖ2
lxϕðxÞ ¼

�
ϖ2

l − ω2r20
D2

�
ϕðxÞ: (12)

Up to normalization, the bound state wave functions are

ϕ ¼ Ai
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��
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Since the depth of the well diverges ∝ −D2, we must
impose ϕðx ¼ 0Þ ¼ 0. This quantizes the values of ω in
terms of the Airy zeroes Aið−akÞ ¼ 0. Then, after undoing
the analytic continuation, we get the spectrum (1). The
asymptotic formula

Aið−zÞ ¼ 1ffiffiffi
π

p
z1=4

cos

�
2z3=2

3
− π

4

�
ð1þOðz−3=2ÞÞ (14)

yields the approximation (2), which estimates the first Airy
zero a1 ¼ 2.338 to better than 1% accuracy.
This universal spectrum is easy to understand: when

D → ∞, the geometry outside the horizon becomes
Minkowski space, and nothing specific remains of the
black hole geometry other than an abrupt cutoff at r0. We
find the physics of scalar oscillations on a hole of radius r0,
which absorbs perfectly all waves with frequencies larger
than Dϖl=r0 and resonates quasinormally with the modes
(1) just below this threshold.
Reference [4] argued that these geometries of holes cut

out in Minkowski or (anti)–de Sitter space appear very
generally in the limit D → ∞ of black hole spacetimes,
including black holes with charge, rotation, or cosmologi-
cal constant. This structure gives effective potentials for
wave propagation with maxima that become triangular

shaped whenD → ∞. So we expect quasinormal spectra of
the form (1) in many other instances—possibly replacing l
with eigenvalues of the Laplacian in the transverse space, or
changing the slope of the triangular well depending on the
background geometry—but still carrying minimal infor-
mation about the black hole size and none of its other
parameters. For Schwarzschild-anti–de Sitter (AdS) black
holes, the peak is present only for small black holes, more
precisely, r0 < L arctanð1= ffiffiffi

2
p Þ for l < OðDÞ [small AdS

black holes also have another set of modes with lower
damping ratio, Imω=Reω ∼ ðr0=LÞDþ2l]. The quasinor-
mal modes of rotating black holes are somewhat more
complicated, but we expect that these features still play
a role.
The simplicity of the argument allows us to extend the

analysis to gravitational vector and scalar perturbations.
The radial potentials for these perturbations of
Schwarzschild black holes are more complicated than (7)
[9], but in the leading large D limit they possess the same
peak as in (12), so we recover the universal modes. These
potentials have further structure that is responsible for other
quasinormal modes not captured by this analysis, with Imω
of order D0, so they are longer lived than the universal set,
but they are also broader, with Imω=Reω ∼D0.
Our computation is largely independent of the specifics

of the near-horizon geometry, but it makes an implicit
assumption of genericity. It is easy to see that the generic
behavior around the peak region (where 1=D ≪ x ≪ 1) of
a near-horizon solution ϕðxÞ is that Dϕ=ϕ0jx¼0 ¼ OðD0Þ,
which for (13) indeed requires that ϕðx ¼ 0Þ → 0. The
boundary conditions imposed by nonextremal horizons do
indeed generically lead to this behavior, but this may fail
for extremal black holes [possibly also for black holes
exponentially close (in D) to extremality], for which a
detailed matched asymptotic construction of the near-
horizon and far-zone solutions is needed—similar to the
conclusion in [6]. We expect to provide more details on this
issue elsewhere.
Let us now comment on Eq. (1) as an approximation to

the quasinormal spectrum at finite D. First, observe that it
may be appropriate to replace D → D − 3 in (1), since it is
D − 3 that e.g., controls the falloff of the gravitational field.
Second, an often useful method to compute quasinormal
spectra is a WKB approximation in which the radial
potential V is expanded near the maximum to quadratic
order, and thus replaced by an inverted parabola [11]. For
the D-dimensional Schwarzschild black hole this method
[12,13] yields, at large D, the same leading value
Reω ¼ Dϖl=r0 ¼

ffiffiffiffiffiffiffiffiffiffi
Vmax

p
, but it would predict that

Imω ∼D1=2. This is incorrect: the parabola is a bad
approximation when the maximum becomes very pointy.
Still, this suggests that, as a function of D, Imω could
change from ∼D1=2 at moderate D, to ∼D1=3 at very large
D. This change may not be easy to detect numerically. A
naive estimate suggests that the crossover may occur at
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rather large values ofD (possibly> 20), so, without further
analysis, it is unclear how accurately Eq. (1) gives the value
of Imω at moderately large D.
To conclude, we have identified a set of quasinormal

black hole oscillations with remarkable properties: not only
are they very simply identified and universally present for
large classes of black holes, but they are also highly
degenerate and very sharp (long lived in their own time
scale r0=D: the “string scale” of [5]). All these may be

indications of an important role of these modes for a further
understanding, possibly microscopic, of black holes within
the large D expansion.

We thank Vitor Cardoso for useful comments. Work
partially supported by MEC FPA2010-20807-C02-02,
AGAUR 2009-SGR-168 and CPAN CSD2007-00042
Consolider-Ingenio 2010. K. T. is supported by a grant
for research abroad by JSPS.

[1] E. Berti, V. Cardoso, and A. O. Starinets, Classical Quantum
Gravity 26, 163001 (2009).

[2] R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys. 83, 793
(2011).

[3] V. Asnin, D. Gorbonos, S. Hadar, B. Kol, M. Levi,
and U. Miyamoto, Classical Quantum Gravity 24, 5527
(2007).

[4] R. Emparan, R. Suzuki, and K. Tanabe, J. High Energy
Phys. 06 (2013) 009.

[5] R. Emparan, D. Grumiller, and K. Tanabe, Phys. Rev. Lett.
110, 251102 (2013).

[6] R. Emparan and K. Tanabe, J. High Energy Phys. 01 (2014)
145.

[7] G. S. Hartnett and J. E. Santos, Phys. Rev. D 88, 041505
(2013).

[8] O. J. C. Dias, G. S. Hartnett, and J. E. Santos, “Quasinormal
Modes of Asymptotically Flat Rotating Black Holes” (to be
published); R. Emparan, R. Suzuki, andK. Tanabe, “Instability
of Rotating Black Holes: LargeDAnalysis” (to be published).

[9] H. Kodama and A. Ishibashi, Prog. Theor. Phys. 110, 701
(2003).

[10] B. Mashhoon, in Proceedings of the Third Marcel
Grossmann Meeting on Recent Developments of
General Relativity, Shanghai, 1982, edited by H. Ning
(North-Holland, Amsterdam, 1983); V. Ferrari and
B. Mashhoon, Phys. Rev. D 30, 295 (1984).

[11] B. F. Schutz and C. M. Will, Astrophys. J. 291, L33 (1985).
[12] R. A. Konoplya, Phys. Rev. D 68, 024018 (2003).
[13] E. Berti, M. Cavaglia, and L. Gualtieri, Phys. Rev. D 69,

124011 (2004).

ROBERTO EMPARAN AND KENTARO TANABE PHYSICAL REVIEW D 89, 064028 (2014)

064028-4

http://dx.doi.org/10.1088/0264-9381/26/16/163001
http://dx.doi.org/10.1088/0264-9381/26/16/163001
http://dx.doi.org/10.1103/RevModPhys.83.793
http://dx.doi.org/10.1103/RevModPhys.83.793
http://dx.doi.org/10.1088/0264-9381/24/22/015
http://dx.doi.org/10.1088/0264-9381/24/22/015
http://dx.doi.org/10.1007/JHEP06(2013)009
http://dx.doi.org/10.1007/JHEP06(2013)009
http://dx.doi.org/10.1103/PhysRevLett.110.251102
http://dx.doi.org/10.1103/PhysRevLett.110.251102
http://dx.doi.org/10.1007/JHEP01(2014)145
http://dx.doi.org/10.1007/JHEP01(2014)145
http://dx.doi.org/10.1103/PhysRevD.88.041505
http://dx.doi.org/10.1103/PhysRevD.88.041505
http://dx.doi.org/10.1143/PTP.110.701
http://dx.doi.org/10.1143/PTP.110.701
http://dx.doi.org/10.1103/PhysRevD.30.295
http://dx.doi.org/10.1086/184453
http://dx.doi.org/10.1103/PhysRevD.68.024018
http://dx.doi.org/10.1103/PhysRevD.69.124011
http://dx.doi.org/10.1103/PhysRevD.69.124011

