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In Newtonian theory, gravity inside a constant density static sphere is independent of spacetime

dimension. Interestingly this general result is also carried over to Einsteinian as well as higher order

Einstein-Gauss-Bonnet (Lovelock) gravity notwithstanding their nonlinearity. We prove that the necessary

and sufficient condition for universality of the Schwarzschild interior solution describing a uniform

density sphere for all n � 4 is that its density is constant.
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I. INTRODUCTION

In Newtonian gravity, the gravitational potential at any
point inside a fluid sphere is given by�MðrÞ=rn�3 for n �
4 dimensional spacetime. Now MðrÞ ¼ R

�rn�2dr, which
for constant density will go as �rn�1, and then the potential
will go as �rn�1=rn�3 ¼ �r2 and is therefore independent
of the dimension. This is an interesting general result: for
the uniform density sphere, gravity has the universal char-
acter that it is independent of the dimension of spacetime.
It is then a natural question to ask, Does this result carry
over to Einsteinian gravity? In general relativistic language
it is equivalent to ask, Does the Schwarzschild interior
solution that describes the uniform density sphere in four
dimensions remain good for all n � 4? The main purpose
of this paper is to show that it is indeed the case not only for
Einstein gravity but also for higher order Einstein-Gauss-
Bonnet (Lovelock) gravity. It is remarkable that this gen-
eral feature holds true notwithstanding the highly nonlinear
character of the theory.

In static spherically symmetric fluid spacetime, we have
two equations to handle: one is for density, which easily
integrates to give grr, and the other is the pressure isotropy
equation determining gtt. So long as density remains con-
stant, the former equation will always integrate to give grr
in all dimensions with constant density redefined. Then we
just need to make the latter equation free of dimension n so
that the constant density Schwarzschild interior solution
becomes universally true for all n. In particular, it turns out
that the universality condition indeed implies constant
density. Thus constant density is a necessary and sufficient
condition for universality of the Schwarzschild interior
solution for n � 4 not only for Einstein but also for
Einstein-Gauss-Bonnet (EGB) theory.

Higher dimension is a natural playground for string
theory and string inspired investigations (see a comprehen-
sive review [1]). The most popular studies have been of

higher dimensional black holes [2] with a view to gain
greater and deeper insight into quantum phenomena, black
hole entropy, and the well-known AdS/CFT correspon-
dence [3]. There have also been studies of fluid spheres
in higher dimensions [4]. We shall, however, focus on the
universal character of constant density solution in Einstein
and EGB theory and its matching with the corresponding
exterior solution. The paper is organized as follows. In the
next section, we establish the universality of the uniform
density solution for Einstein and EGB theories and dem-
onstrate the matching with an exterior solution for the five-
dimensional Gauss-Bonnet black hole. We conclude with a
discussion.

II. UNIFORM DENSITY SPHERE

A. Einstein case

We begin with the general static spherically symmetric
metric given by

ds2 ¼ e�dt2 � e�dr2 � r2d�2
n�2; (1)

where d�2
n�2 is the metric on a unit (n� 2) sphere. For the

Einstein equation in the natural units (8�G ¼ c ¼ 1),

GAB ¼ RAB � 1
2RgAB ¼ �TAB; (2)

and for perfect fluid, TB
A ¼ diagð�;�p;�p; . . . ;�pÞ, we

write

e��

�
�0

r
� n� 3

r2

�
þ n� 3

r2
¼ 2

n� 2
�; (3)

e��

�
�0

r
þ n� 3

r2

�
� n� 3

r2
¼ 2

n� 2
p; (4)

and the pressure isotropy is given by

PHYSICAL REVIEW D 81, 104026 (2010)

1550-7998=2010=81(10)=104026(5) 104026-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.81.104026


e��

�
2�00 þ �02 � �0�0 � 2

�0

r

�

� 2ðn� 3Þ
�
e���0

r
þ 2

e��

r2
� 2

r2

�
¼ 0: (5)

Let us rewrite this equation in a form that readily yields the
universal character of the Schwarzschild interior solution
for all n � 4,

e��

�
2�00 þ �02 � �0�0 � 2

�0 þ �0

r
� 4

r2

�

þ 4

r2
� 2ðn� 4Þ

�
ðn� 1Þ

�
e��

r2
� 1

r2

�
þ 2�

n� 2

�
¼ 0:

(6)

We now set the coefficient of (n� 4) to zero so that the
equation remains the same for all n � 4. This then straight-
way determines e�� without integration, and it is given by

e�� ¼ 1� �0r
2; (7)

where �0 ¼ 2�=ðn� 1Þðn� 2Þ. This when put in Eq. (3)
implies constant density. We thus obtain � ¼ const as the
necessary condition for universality of the isotropy equa-
tion for all n � 4. The sufficiency of constant density is
obvious from the integration of Eq. (3) for � ¼ const,
giving the same solution as above where a constant of
integration is set to zero for regularity at the center. Thus
constant density is a necessary and sufficient condition for
universality of field inside a fluid sphere, i.e. independent
of spacetime dimension. An alternative identification of
constant density is that the gravitational field inside a fluid
sphere is independent of spacetime dimension � 4. This
universal property is therefore true if and only if density is
constant.

As is well known, Eq. (6) on substituting Eq. (7) admits
the general solution as given by

e�=2 ¼ Aþ Be��=2; (8)

where A and B are constants of integration to be deter-
mined by matching to the exterior solution. This is the
Schwarzschild interior solution for a constant density
sphere that is independent of the dimension except for a
redefinition of the constant density as �0. This proves the
universality of the Schwarzschild interior solution for all
n � 4.

The Newtonian result that gravity inside a uniform
density sphere is independent of spacetime dimension is
thus carried over to general relativity as well despite non-
linearity of the equations. That is, the Schwarzschild in-
terior solution is valid for all n � 4. Since there exist more
general actions like Lovelock polynomial and fðRÞ than
the linear Einstein-Hilbert, it would be interesting to see
whether this result would carry through there as well. That
is what we take up next.

B. Gauss-Bonnet(Lovelock) case

There is a natural generalization of Einstein action to
Lovelock action that is a homogeneous polynomial in
Riemann curvature with Einstein being the linear order. It
has the remarkable property that on variation it still gives
the second order quasilinear equation that is its distinguish-
ing feature. The higher order terms make a nonzero con-
tribution in the equation only for dimensions � 5. The
quadratic term in the polynomial is known as Gauss-
Bonnet, and for that we write the action as

S ¼
Z

dnx
ffiffiffiffiffiffiffi�g

p �
1

2
ðR� 2�þ �LGBÞ

�
þ Smatter; (9)

where � is the GB coupling constant and all other symbols
have their usual meaning. The GB Lagrangian is the spe-
cific combination of Ricci scalar, Ricci, and Riemann
curvatures, and it is given by

LGB ¼ R2 � 4RABR
AB þ RABCDR

ABCD: (10)

This form of action is known also to follow from the low-
energy limit of heterotic superstring theory [5]. In that
case, � is identified with the inverse string tension and is
positive definite, which is also required for the stability of
Minkowski spacetime.
The gravitational equation following from the action (9)

is given by

GA
B þ �HA

B ¼ �TA
B; (11)

where

HAB � 2½RRAB � 2RACR
C
B � 2RCDRACBD þ RCDE

A RBCDE�
� 1

2gABLGB: (12)

Now density and pressure would read as follows:

� ¼ ðn� 2Þe��

2r2
ðr�0 � ðn� 3Þð1� e�ÞÞ þ ðn� 2Þe�2� ~�

2r4

� ð1� e�Þð�2r�0 þ ðn� 5Þð1� e�ÞÞ; (13)

p ¼ ðn� 2Þe��

2r2
ðr�0 þ ðn� 3Þð1� e�ÞÞ � ðn� 2Þe�2� ~�

2r4

� ð1� e�Þð2r�0 þ ðn� 5Þð1� e�ÞÞ: (14)

The analogue of the isotropy Eq. (6) takes the form

IGB �
�
1þ 2~�f

r2

�
IE þ 2~�

r

�
f

r2

�0�
rc 0 þ f

1� f
c

�
¼ 0;

(15)

where c ¼ e�=2, e�� ¼ 1� f, ~� ¼ ðn� 3Þðn� 4Þ�, and
IE is given by the left-hand side (LHS) of Eq. (5),
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IE � ð1� fÞ
c

�
c 00 �

�
f0

2ð1� fÞ þ
1

r

�
c 0

� ðn� 3Þ
2r2ð1� fÞ ðrf

0 � 2fÞc
�
: (16)

From Eq. (13), we write

ð~�rn�5f2 þ rn�3fÞ0 ¼ 2

n� 2
�rn�2; (17)

which integrates for � ¼ const to give

~�rn�5f2 þ rn�3f ¼ �0r
n�1 þ k; (18)

where k is a constant of integration that should be set to
zero for regularity at the center and 2�=ðn� 1Þðn� 2Þ ¼
�0 as defined earlier. Solving for f, we get

e�� ¼ 1� f ¼ 1� �0GBr
2; (19)

where

�0GB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4~��0

p � 1

2~�
: (20)

So the solution is the same as in the Einstein case and the
appropriate choice of sign is made so as to admit the limit
� ! 0 yielding the Einstein �0 (the other choice would
imply �0GB < 0 for positive �). This, when substituted in
the pressure isotropy Eq. (15), would lead to IE ¼ 0 in
Eq. (16) yielding the solution (8) as before. This estab-
lishes sufficient condition for universality.

For the necessary condition, we have from Eq. (15) that
either �

f

r2

�0 ¼ 0 (21)

or

rc 0 þ f

1� f
c ¼ 0: (22)

The former straightway leads with the use of Eq. (17) to
the same constant density solution (19) and IE ¼ 0 inte-
grates to Eq. (8) as before. This shows that universality
implies constant density as the necessary condition. For the
latter case, when Eq. (22) is substituted in Eq. (16) and
IE ¼ 0 is now solved for �, we again obtain the same
solution (19). Equation (17) again implies � ¼ const as
the necessary condition. Now c is determined by Eq. (22),
which means the constant A in solution (8) must vanish.
Then the solution turns into de Sitter spacetime with � ¼
�p ¼ const, which is a particular case of Schwarzschild
solution. This is, however, not a bounded finite
distribution.

Thus universality and finiteness of a fluid sphere
uniquely characterize the Schwarzschild interior solution
for Einstein as well as for Einstein-Gauss-Bonnet gravity.
That is, gravity inside a fluid sphere of finite radius is
universal; i.e. it is true for all n � 4 if and only if the

density is constant and it is described by the Schwarzschild
interior solution. It is only the constant density that gets
redefined in terms of �0 and �0GB. If we relax the condition
of finiteness, it is de Sitter spacetime with � ¼ �p ¼
const.
Our entire analysis is based on the two equations (15)

and (17). Let us look at GB contributions in them. In the
former, there is a multiplying factor to the Einstein second
order differential operator IE and another term with the
factor ~�ðf=r2Þ0. This indicates that the contributions of
higher orders in the Lovelock polynomial will obey this
pattern to respect quasilinearity of the equation. The higher
orders will simply mean inclusion of the corresponding
couplings in the multiplying factor as well as in the second
term appropriately while the crucial entities, IE and ðf=r2Þ0
on which the proof of the universality of Schwarzschild
solution hinges remain intact. On the other hand, Eq. (17)
is quadratic in f for the quadratic GB action, which means
the degree of f is tied to the order of the Lovelock poly-
nomial. It essentially indicates that as �0GB is obtained
from a quadratic algebraic relation, similarly in higher
order its analogue will be determined by the higher degree
algebraic relation. The solution will always be given by
Eq. (7). Thus what we have shown explicitly for EGB will
go through for the general Einstein-Lovelock gravity.
Since Eqs. (15)–(17) owe their form and character to

quasilinearity of the EGB equation, hence the carrying
through of the Newtonian result of universality of gravity
inside a uniform density fluid sphere critically hinges on
quasilinearity. Thus this general result will not go through
in theories like fðRÞ gravity, which do not in general
respect quasilinearity. It could in a sense be thought of as
yet another identifying feature of Einstein-Lovelock
gravity.
Let us now also indicate an intriguing and unusual

feature of GB(Lovelock) gravity. What happens if the
multiplying factor 1þ 2~�f=r2 ¼ 0 in Eq. (15)? Then the
entire equation becomes vacuous, leaving c completely
free and undetermined while e�� ¼ 1þ r2=2~�. This leads
to p ¼ �� ¼ ðn� 1Þðn� 2Þ=8~�, which is an anti–
de Sitter distribution for � � 0. This is a special prescrip-
tion where density is given by GB coupling �. There is no
way to determine c , and so we have a case of genuine
indeterminacy of the metric. It is because GB(Lovelock)
contributes such a multiplying factor involving ð�; r; fÞ to
second order quasilinear operator, which could be set to
zero and thereby annul the equation altogether. Such a
situation has been studied in the Kaluza-Klein split-up of
six-dimensional spacetime into the usual M4 and 2-space
of constant curvature in EGB theory [6]. It gave rise to a
black hole from pure curvature where the equations split up
into a four-dimensional part and a scalar constraint from an
extradimensional part. As here by fine-tuning�,�, and the
constant curvature of the 2-space, the four-dimensional
part was turned vacuous, and then the metric was, however,
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determined by the remaining single scalar equation. This
was because for vacuum (the null energy condition implies
�þ � ¼ 0 in our notation), there was only one free pa-
rameter to be determined for which there was still a scalar
constraint equation. The solution of that gave the black
hole without matter support onM4 [6]. In contrast, here we
have two metric functions to be determined and there is
only one equation remaining after the fine-tuning of den-
sity with �. Thus one metric function will have to remain
undetermined. As argued above, the form of Eq. (15) will
be generic for the Lovelock system, and hence this kind of
indeterminacy under the fine-tuning of parameters will also
be generic.

C. Matching with the exterior

Now we would like to demonstrate matching of the
interior with the corresponding exterior five-dimensional
Gauss-Bonnet black hole solution [7]. In the interior, pres-
sure is given by

p ¼ 3

4�
ð1��Þ

�
1� �

1þ 2A
ffiffiffi
�

p

B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ð1��Þþ4�

p
�
; (23)

where

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8��0GB

p
: (24)

At the boundary, r ¼ r�, pressure vanishes, which is
equivalent to the continuity of g0tt, and that is what we
shall employ. Besides this, the metric should be continuous
across r�. The five-dimensional Gauss-Bonnet black hole
is given by the metric [7],

ds2 ¼ FðrÞdt2 � dr2

FðrÞ � r2ðd�2 þ sin2ð�Þ
� ðd’2 þ sin2ðc Þdc 2ÞÞ;

where

FðrÞ ¼ 1þ r2

4�
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8M�=r4

q
Þ:

Now matching grr means ½grr�� ¼ 0, which after appro-
priate substitutions determines the mass enclosed inside
the radius r�,

M ¼ 1
6�0GBr

4
�: (25)

Further ½gtt�� ¼ 0 and ½g0tt�� ¼ 0 determine the constants,

A ¼ ð1� BÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �0GBr

2
�

q
(26)

and

B ¼ �
�
1þ 8�M

r4
�

��1=2
: (27)

This completes the matching of the interior and exterior
solutions.

III. DISCUSSION

We have established that the gravitational field inside a
constant density fluid sphere has a universal character for
spacetime dimensions � 4. This is true not only for
Einstein-Hilbert action but also for the more general
Lovelock action, which is a homogeneous polynomial in
Riemann curvature. We have explicitly shown this for the
linear Einstein and the quadratic Gauss-Bonnet cases and
have argued that the proof would go through for the general
Lovelock polynomial. That is, the Schwarzschild interior
solution describing the gravitational field of the constant
density sphere is true for all spacetime dimensions� 4 for
Einstein as well as for higher order Einstein-Lovelock
polynomial gravity. It turns out that the necessary and
sufficient condition for the universality of fluid sphere is
that its density must be constant. Equivalently, universality
uniquely characterizes the Schwarzschild interior solution
for a fluid sphere of finite radius.
This result is obvious but perhaps not much noticed in

Newtonian gravity as argued in the opening of the paper. It
is, however, not so for Einstein-Lovelock gravity because
of its highly nonlinear character. Yet it is carried through
because the equation of motion still remains second order
quasilinear. It is this feature that carries the general char-
acter of the solution into higher order gravity. Clearly it
would not in general be carried along for non-quasilinear
theory like fðRÞ gravity. Apart from Lovelock’s original
derivation of the action [8], there are two other character-
izations of Lovelock action [9,10]. In [9], the identifying
feature is the existence of the homogeneous polynomial in
curvatures analogous to the Riemann curvature whose
trace of the Bianchi derivative yields the corresponding
analogue of the Einstein tensor in the equation, while for
[10] it is the requirement that both metric and Palitini
variations give the same equation of motion. Here we
have yet another identifying property of Einstein-
Lovelock gravity. Also it exhibits that the obvious
Newtonian result is carried through in higher order non-
linear theories. Universality characterizes uniform density
for the static fluid sphere.
The main aim of such investigations is essentially to

probe and identify universal features of gravity for greater
understanding and insight. Such universal features also
provide discerning criteria for competing generalizations
of Einstein gravity.
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