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High Energy Physics Group, Departament d’Estructura i Constituents de la Matèria, and Institut de Ciències del Cosmos (ICC),
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In the present mainstream cosmology, matter and space-time emerged from a singularity and evolved

through four distinct periods: early inflation, radiation, dark matter, and late-time inflation (driven by

dark energy). During the radiation and dark matter dominated stages, the universe is decelerating while

the early and late-time inflations are accelerating stages. A possible connection between the accelerating

periods remains unknown, and, even more intriguing, the best dark energy candidate powering the

present accelerating stage (�-vacuum) is plagued with the cosmological constant and coincidence

puzzles. Here we propose an alternative solution for such problems based on a large class of time-

dependent vacuum energy density models in the form of power series of the Hubble rate, � ¼ �ðHÞ. The
proposed class of �ðHÞ-decaying vacuum model provides: (i) a new mechanism for inflation (different

from the usual inflaton models), (ii) a natural mechanism for a graceful exit, which is universal for the

whole class of models; (iii) the currently accelerated expansion of the universe, (iv) a mild dynamical

dark energy at present; and (v) a final de Sitter stage. Remarkably, the late-time cosmic expansion history

of our class of models is very close to the concordance �CDM model, but above all it furnishes the

necessary smooth link between the initial and final de Sitter stages through the radiation- and matter-

dominated epochs.
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I. INTRODUCTION

Several cosmological observations (supernovae type Ia,
CMB, galaxy clustering, etc.) have converged to a para-
digm of a cosmic expansion history that involves a spa-
tially flat geometry and a recently initiated accelerated
expansion of the universe [1–11]. This expansion has
been attributed to an energy component called dark energy
(DE) with negative pressure, which dominates the universe
at late times. The easiest way to fit the current cosmologi-
cal data is to include in the Friedmann equations the
cosmological constant (CC) [9–11]. Despite the fact that
the so-called concordance model (or �CDM model) de-
scribes well the global properties of the observed universe,
it suffers from the CC problem [12,13]. However, the
alternative frameworks (e.g., quintessence models and the
like) are not free from similar fine-tuning and other no less
severe problems (including the presence of extremely tiny

masses). Whichever way it is formulated, the CC problem
appears as a tough issue which involves many faces:
not only the problem of understanding the tiny current
value of the vacuum energy density (�� ¼ c2�=8�G ’
10�47 GeV4) [13] in the context of quantum field theory
(QFT) or string theory, but also the cosmic coincidence
problem, i.e., why the density of matter is now so close to
the vacuum density [14].
Even before the discovery of the accelerating universe

based on Supernovae observations (see [2–5] and Refs.
therein), a great deal of attention was dedicated to time-
evolving vacuum models, � � �ðtÞ, motivated basically
by the age of the universe and CC problems [15–25] (see
also [26] for a short review of this earlier literature). These
models also act as an important alternative to the cosmic
concordance (�CDM) and scalar-fields dark energy mod-
els, since they can explain in an efficient way the accel-
erated expansion of the universe and also provide an
interesting attempt to evade the coincidence and cosmo-
logical constant problems of the standard �-cosmology
(see, for instance, Lima in [1]).
Although the precise functional form of �ðtÞ is not

known, which is however also the case for the vast majority
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of the usual dark energy models, an interesting QFT ap-
proach within the context of the renormalization group
(RG) was proposed a long time ago [27,28]. Later on, the
RG-running framework was further explored in [29–34]
from the viewpoint of QFT in curved space-time by
employing the standard perturbative RG-techniques of
particle physics (see [35,36] for recent reviews). These
RG-based dynamical vacuum energy models emphasize
on the evolution of the vacuum energy as a particularly
well-motivated function of the Hubble rate, i.e., �ðtÞ ¼
�ðHðtÞÞ, namely functions containing even powers of H
and including also an additive constant term. These
proposals were confronted with the first supernovae data
in [32], and later on with the modern observations on
supernovae, baryonic acoustic oscillations, CMB, and
structure formation in [37–41]. Variants of these models
facing efficiently the cosmic coincidence problem and
some aspects of the CC problem also exist in the literature
[42,43], including the implications on the possible varia-
bility of the fundamental constants [44]. As remarked
before, there is an extensive (old and new) literature in
which the time-evolving vacuum has been phenomenolog-
ically modeled as a function of time in various possible
ways, in particular, as a function of the Hubble parameter
[18–26,45–56].

Technically speaking, it would be important if we could
find away to unify all the stages of the history of the universe
within the generic framework of the running vacuummodels,
as these are the closest ones to fundamental QFT physics.
While a first formulation of this unification was given in
[55,56], the aim of the current work is to put forward a large
class ofmodels of this kind inwhich the vacuumdynamics of
the early universe is linked with that of the late universe in a
way fully consistent with the phenomenological observa-
tions. At the same time we suggest possible clues to solve
or alleviate some of the fundamental problems of the early
universe, most particularly the transition from the inflation-
ary epoch to the standard radiation epoch. It starts from a
nonsingular inflationary stagewhich has a natural (universal)
ending into the radiation phase (thereby alleviating the hori-
zon and graceful exit problems), and, finally, the small
current value of the vacuum energy density can be conceived
as a result of the massive disintegration of the vacuum into
matter during the primordial stages.

The plan of the paper is as follows. In Sec. II we discuss
the energy conservation in general dynamical models of the
vacuum energy, whereas in Secs. III and IV we motivate in
different ways the form � ¼ �ðHÞ we are interested in.
In Secs. V to VII we provide the analytical solutions in the
early and late universe respectively (the formulation in
terms of an effective potential is presented in Sec. VI).
The summary and general discussion is provided in
Sec. VIII. Finally, in the appendix we furnish some addi-
tional technical details related to the derivation of the
cosmological equations for themodels under consideration.

II. MODELS WITH DYNAMICAL
VACUUM ENERGY

In the current article we would like to investigate
the cosmic expansion within the context of the time
varying vacuum energy density. To start with, let us model
the expanding universe as a mixture of perfect fluids
N ¼ 1; 2; . . . with 4-velocity fields UN

� and total energy

momentum tensor given by

T�� ¼ X
N

TN
�� ¼ X

N

½�pNg�� þ ð�N þ pNÞUN
�U

N
� �: (1)

The components of T
�
� are the following:

T0
0 ¼ X

N

�N � �T; Ti
j ¼ �X

N

pN�
i
j � �pT�

i
j; (2)

where �T and pT are the total energy density and pressure
in the comoving frame ðU0

N;U
i
NÞ ¼ ð1; 0Þ, respectively.

Consider now the covariant local conservation law for
the mixture, r�T

�� ¼ 0. This expression can be worked

out explicitly from (1), and then we can contract the result
withUN

� and use the relationUN
�r�U

�
N ¼ 0 (which follows

immediately from the fact that for any four-velocity vector,
we have U

�
NU

N
� ¼ 1). The final result reads [57]X

N

½U�
Nr��N þ ð�N þ pNÞr�U

�
N � ¼ 0: (3)

This equation is the local conservation law in a more
explicit form, but we can still further reduce it. In the case
of a Friedmann-Lemaı̂tre-Robertson-Walker (FLRW)
metric, it is straightforward to check that for a comoving
frame (U

�
N ¼ �

�
0 ), one finds:

r�U
�
N ¼ 3H ðN ¼ 1; 2; . . .Þ; (4)

and this relation implies that Eq. (3) boils down toX
N

½ _�N þ 3Hð�N þ pNÞ� ¼ 0: (5)

This is the overall conservation lawof the fluidmixture in its
final and useful form [57].
Up to this point we did not specify the nature of the

fluids involved. Let us now assume that we have a mixture
of two fluids, matter and vacuum energy. The matter fluid
itself is in general a mixture of relativistic matter (i.e.,
radiation, �r) and nonrelativistic matter (i.e., cold matter,
�m) components, but for simplicity we address here a
situation in which there is a single matter component that
dominates. This component can either be �r (in the early
universe after inflation) or �m (well after equality).
However, when we discuss a generic epoch we shall denote
by � the density for the (dominant) matter component or
!-fluid, whatever it be (radiation or cold matter) and by ��

the vacuum energy density, where �� ¼ �=ð8�GÞ in natu-
ral units. The corresponding pressures for matter and
vacuum energy are indicated by P and P�, respectively.
The equations of state of the two fluids are: P ¼ !� and
P� ¼ ��� (i.e., !� ¼ �1), where the equation of state
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(EoS) parameter for the !-fluid is a positive constant for a
spatially flat FLRW metric. In our case, ! ¼ 1=3 for
dominant relativistic matter (i.e., when � ¼ �r) and ! ¼
0 for dominant cold matter (� ¼ �m). The corresponding
Einstein field equations of the system formed by a domi-
nant matter component and the vacuum fluid read

8�G�T � 8�G�þ� ¼ 3H2 (6)

8�GpT � 8�GP�� ¼ �2 _H � 3H2; (7)

where H � _a=a is the Hubble rate, a ¼ aðtÞ is the scale
factor, and the overdot denotes derivative with respect to
the cosmic time t. Let us note that if we consider the two
Eqs. (6) and (7) together with the overall conservation law
(5), only two of them are independent. For example, if we
take the above pair as the two independent equations, then
one can easily show that (5) is just a first integral of the
system. However, for convenience we may also be inter-
ested in using, say, Eq. (6) and the overall conservation law
(5). These two are also independent. It should then be clear
that any two of the three equations contain all the infor-
mation and the third one is identically satisfied.

Let us now discuss the possibility, in contrast to �CDM
case, that � is not constant but a function of the cosmic
time, i.e., �� ¼ ��ðtÞ. This is perfectly allowed by the
cosmological principle embodied in the FLRW metric.
The EoS for the vacuum and matter fluids can still be
P�ðtÞ ¼ ���ðtÞ and P=� ¼ !, respectively, where the
latter takes the aforementioned values in the relativistic
and nonrelativistic regimes. It is important to realize that
under these conditions the above Eqs. (5)–(7) stay formally
the same, as it is easy to check. Therefore, applying the
conservation law (5) for a dominant matter !-fluid plus a
time-evolving vacuum (!� ¼ �1), we find:

_�� þ _�þ 3ð1þ!Þ�H ¼ 0: (8)

This law is a consequence of imposing the covariant con-
servation of the total energy density of the combined
system of matter and vacuum, and therefore is a direct
reflection of the Bianchi identity satisfied by the geometric
side of the Einstein’s equations. Such law will play an
important role in our discussions. In the �CDM model,
where �� ¼ const, it is obvious that it boils down to the
standard matter conservation law _�þ 3ð1þ!Þ�H ¼ 0.

III. GENERAL ANSATZ FOR THE EVOLVING
VACUUM AS A FUNCTION OF H

Our main aim in this paper is to study a relevant class
of time-evolving models for the vacuum energy. However,
we do not aim at an arbitrary function of the cosmic time
� ¼ �ðtÞ. In fact, we focus on a dynamical CC term, �,
whose primary dependence is on the Hubble rate and from
here the vacuum energy inherits its time dependence:
�ðtÞ ¼ �ðHðtÞÞ. As we will see, this is more in consonance

with the expectations in QFT. Nonetheless not all possible
functional dependences on H are allowed. In order to
obtain a definite decaying � cosmology we need to find
a viable expression for � in terms of the Hubble rate.
The motivation for a well-motivated function � ¼ �ðHÞ
can be provided from different points of view. Let us start
from a general phenomenological one, and only afterwards
(see the next section) we will motivate it in more formal
terms. The existence of two fluid components means that
we may introduce the following ratio:

�ðtÞ ¼ �� � ��0

�þ ��

; (9)

where��0 is a constant vacuumdensity defining the fiducial
constant �. This �ðtÞ parameter quantifies the time varia-
tion of the vacuum energy density. It has the following
properties: (i) If �� ¼ ��0, then � ¼ 0, and the model is
�CDM, (ii) If ��0 ¼ 0, then the ratio (9) defines a fraction
of the vacuum to the total density. If this fraction is constant
in the course of the cosmic evolution we have

�� ¼ ��T; (10)

or, equivalently, from Eq. (6),

� ¼ 3�H2: (11)

This kind of model was discussed long ago bymany authors
[17–19]. It needs only the assumption that the ratio (9)
remains constant. However, when confronted with the cur-
rent observations it provides a poor fit [37]. As a matter of
fact, it is ruled out by an even more fundamental reason,
because in these models there does not exist a transition
redshift from deceleration to acceleration as required by
supernovae data. The ansatz (11) implies that the universe
is always accelerating or decelerating depending on the
value of �. A brief discussion on this point is presented at
the end of Sec. VII, see also [39] for a more detailed
discussion. More recently, this �ðHÞ-law has also been
applied to discuss the late stages of the gravitational
collapse [58].
If we, instead, consider that the ratio given by (9) is

constant, then we have

�ðtÞ ¼ c0 þ 3�H2ðtÞ; (12)

where c0 ¼ 8�G��0. Notice that the present value of the
CC in this framework reads �0 ¼ c0 þ 3�H2

0 . Such a

model was first proposed in [29] from the point of view
of the RG and it has been studied extensively in the
literature, cf. Refs. [32,37–39,48]. In contrast to (11) the
presence of the additive term is well motivated within
the RG approach (see Sec. IV) and allows the existence
of a transition from deceleration to acceleration, and of
course then also a smooth connection with the �CDM
model is possible in the limit � ! 0. Notice that, in con-
trast, the model (11) has no �CDM limit. In general the
ratio (9) may not remain constant during the evolution, i.e.,
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� should be a time-dependent quantity. In this case the
vacuum energy density reads

�� ¼ ��0 þ �ðtÞ�T; (13)

or equivalently

�ðtÞ ¼ c0 þ 3�ðtÞH2: (14)

Since �ðtÞ is now variable, the value of the current CC is
�0 ¼ c0 þ 3�ðt0ÞH2

0 , where t0 is the present cosmic time.

Let us assume that we can expand the time-dependent
parameter �ðtÞ as follows: �ðtÞ ¼ �þ �ðHHI

Þn, where �,

� and HI are constants whose interpretation will become
apparent later on, and n is typically a positive integer
n � 1. The expansion of �ðtÞ in this form can be seen as
a constant term plus a time-dependent term. The latter
should naturally depend on a power of the expansion
rate, n ¼ 1 being the simplest possibility (although other
constraints could change this option). Several aspects of
the case n ¼ 1 with a flat geometry were discussed long
ago in [22], and, later on, the case for closed and hyper-
bolic geometries was also investigated [23]. The case with
c0 ¼ 0 and � ¼ 1� � and arbitrary values of n was first
phenomenologically proposed in [52] while the case n ¼ 2
with c0 ¼ � ¼ 0 (plus a linear term in H) was more
recently investigated in [53]. In general, for the above
�ðtÞ we arrive at the general ansatz:

�ðHÞ ¼ c0 þ 3�H2 þ 3�
Hk

Hðk�2Þ
I

; (15)

where k ¼ nþ 2. It is interesting to note that the next-to-
leading higher order power, i.e., the case k ¼ 4, can be
motivated on more fundamental QFT grounds, as shown
long ago in [59] and more recently in [30] within the
framework of the modified anomaly-induced inflation sce-
narios. These are a generalization of Starobinsky’s model
type of inflation [60], in which the vacuum effective action
for massive quantum fields can be computed using the
conformal representation of the fields action [61].

If wewould not attend other considerations, the integer k
in Eq. (15) is generally unrestricted, apart from k � 3.
Obviously the case k ¼ 2 (i.e., n ¼ 0) is not considered
because it corresponds to the situation � ¼ �þ � ¼
const, considered in the original RG formulation (12)
(see next section) which already containsH2 as the highest
power of the Hubble rate. This situation is equivalent to
k ¼ 0 upon redefining c0 and with � ¼ � ¼ const.
Nontrivial departure of these cases thus requires k � 3.

The constant additive term in (15) obviously represents
the dominant contribution at very low energies (i.e., when
H � OðH0Þ � HI). The H2 term represents a small cor-
rection (if � � 1) to the dominant term at the present time.
While it provides a mild time-evolving behavior to the
vacuum energy density at intermediate times. On the other
hand, the Hk (k � 3) power acquires a great relevance in

the early universe, near theHI energy scale—interpreted as
the inflationary expansion rate.
Since HI is presumably large, it is clear that �ðt0Þ ’ �

for any n and hence the value of the CC today is essentially
�0 ¼ c0 þ 3�H2

0 for all models of the class (15).

Thus, effectively, for any k � 3 the proposed model (15)
is very close to the model (12) for a description of
the postinflationary cosmology, including of course the
evolution near the current time. It follows that the coeffi-
cient � is the relevant one for the dynamical evolution of
the vacuum energy in most of the universe’s history.
However, for the early universe the additional term Hk

takes over and the effective behavior of Eq. (15) is then

�ðtÞ ’ 3�HkðtÞ=Hðk�2Þ
I (k � 3), and here the relevant co-

efficient is � together with the inflationary scale HI. Of
course � and HI appear to be a convenient way to break
down the single coefficient of the dominant power Hk. To
disentangle the value of the dimensionless coefficient �we
would need to relate HI to some physical high-energy
scale, for example a typical grand unified theory (GUT)
scale associated to the inflationary time.
Let us mention that the covariance of the effective action

of QFT in curved space-time indicates that the even powers
of H are preferred (see the next section); in other words,
the new term Hk correcting the original expression (12) is
expected to have k ¼ 2m (with m ¼ 2; 3; . . . ). Naturally,
despite the fact that the odd powers k ¼ 3; 5; . . . in (15) are
not favored, we will not completely neglect them, if only
from the phenomenological point of view (see
Refs. [22,23]). In contrast, the case k ¼ 0 leads to the
model (12) considered in [29], which is adequate for the
more recent universe [32,37,38] but not for the very early
stages. In this paper, we are proposing a generalization that
leads to the unification model (15) for the complete de-
scription of the cosmological history from the very early
universe to the present time.
Now, combining Eqs. (6), (8), and (15), and using the

EoS of the fluid components we obtain the following
differential equation for the time evolution of the Hubble
parameter:

_H þ 3

2
ð1þ!ÞH2

�
1� �� c0

3H2
� �

�
H

HI

�
n
�
¼ 0: (16)

Remarkably there are two constant value solutions to this

equation, namelyH ¼ HI½ð1� �Þ=��1=n, corresponding to
the very early universe, i.e., when c0 � H2. On the other

hand, at late times, whenH � HI we haveH ¼ ½c0=3ð1�
�Þ�1=2, whereby � � c0 which behaves as an effective
cosmological constant. Also using Eq. (16) the deceleration
parameter q � � €aa= _a2 ¼ �1� _H=H2 is given by

qðHÞ ¼ 3

2
ð1þ!Þ

�
1� �� c0

3H2
� �

�
H

HI

�
n
�
� 1: (17)

We shall present below the various phases of the decay-
ing vacuum cosmology (15), starting from an unstable
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inflationary phase powered by the huge value HI presum-
ably connected to the scale of a GUT or even the Planck
scale MP, then it deflates (with a massive production of
relativistic particles), and subsequently evolves into the
standard radiation and matter eras. Finally, it effectively
appears today as a slowly dynamical dark energy.

IV. RUNNING VACUUM �¼�ðHÞ
In the previous section we have motivated the time

evolution of the vacuum energy density as a function of
the Hubble rate using a general phenomenological argu-
mentation. However, the running of the vacuum energy is
expected in QFT in curved space-time on more fundamen-
tal grounds [29–31], see also [35,36] and references
therein. Running couplings in flat QFT provide a useful
theoretical tool to investigate theories as QED or QCD,
where the corresponding gauge coupling constants run
with a scale � associated to the typical energy of the
process, g ¼ gð�Þ. Similarly, in the effective action of
QFT in curved space-time �� should be an effective cou-
pling depending on a mass scale �. In the universe we
should expect that the running of �� from the quantum
effects of the matter fields is associated with the change of
the space-time curvature, and hence with the change of the
typical energy of the classical gravitational external field
linked to the FLRW metric. As this energy is pumped into
the matter loops from the tails of the external gravitational
field, it could be responsible for the physical running.
Therefore we naturally associate �2 to R, where (for flat
FLRW metric)

jRj ¼ 6

�
€a

a
þ _a2

a2

�
¼ 12H2 þ 6 _H: (18)

It follows that �2 is in correspondence with H2 and _H.
For simplicity we concentrate on the setting � ¼ H as we
expect that it already captures the essential dynamics (see
[39]). Within this RG approach the rate of change of ��

with � ¼ H should satisfy a corresponding RG equation:

ð4�Þ2 d��ð�Þ
d ln�2

¼ X
m¼1;2;...

A2m�
2m

¼ A2�
2 þ A4�

4 þ A6�
6 � � � (19)

The right-hand side of this expression defines essentially
the �-function for the RG running of ��. The coefficients
A2m receive loop contributions from boson and fermion
matter fields of different masses Mi. Notice that only the
even powers of � ¼ H are involved, since in this formu-
lation ��ðHÞ is of course part of the effective action of
QFT in curved space-time and hence it should be a cova-
riant quantity [29–31]. Worth noting is that we have omit-
ted the A0 term in (19), as it would be of order M4

i and
hence would trigger a too fast running of ��. This can also
be formally justified from the fact that all known particles
satisfy �<Mi (for � ¼ H). Thus, since none of them is

an active degree of freedom for the running of ��, only the
subleading terms are available. The first subleading term is
the A2�

2 one, where A2 has dimension of mass squared,
namely A2 �P

iaiM
2
i where the sum is over the masses of

all fields involved in the computation of the �-function
(including their multiplicities). Similarly, since all the
coefficients A2m (except A4) are dimensionful, it is conve-
nient to rewrite them appropriately in a way such that the
mass dimensions are explicit. Thus we rewrite (19) as
follows:

d��ð�Þ
dlnH2

¼ 1

ð4�Þ2
X
i

�
aiM

2
i H

2þbiH
4þci

H6

M2
i

þ���
�
: (20)

The sum over the masses of the fields involved in the loop
contributions is now explicit. Specific realizations of the
structure (20) can be obtained in one-loop calculations
within particular frameworks, see e.g., [30]. As we can
see, the series became now an expansion in powers ofH. If
we integrate equation (20) to obtain ��ðHÞ, an additive
term (independent of H) obviously appears as well. In
other words, the result for �ðHÞ ¼ 8�G��ðHÞ nicely
adapts to the form (15) suggested by the general argument
of the previous section, which means that the RG formu-
lation may provide a fundamental link of that form with
QFT in curved space-time. However, as emphasized, only
the even powers of H are involved in the RG realization,
owing to the general covariance of the effective action. As
it is obvious, the expansion (20) converges very fast at low
energies, where H is rather small—certainly much smaller
than any particle mass. No other H2m-term beyondH2 (not
evenH4) can contribute significantly on the right-hand side
of Eq. (20) at any stage of the cosmological history below
the GUT scale MX, typically a few orders of magnitude
below the Planck scale MP � 1019 GeV.
However, if we wish to have access to the physics of

inflation and in general to the very early states of the
cosmic evolution, we need to keep at least the terms H4.
It is interesting to note the structure of the leading term in
the series (20), i.e., �P

iM
2
i H

2. This term is of course
dominated by the loop contributions of the heaviest fields
with masses Mi of order of MX, the GUT scale near the
Planck mass. It follows that in the early universe (when H
is also close, but below, Mi �MX) the H

4 effects can also
be significant, whereas the termsH6=M2

i and above are less
and less important. Therefore, the dominant part of the
series (20) is expected to be naturally truncated at the H4

term. These terms should contain the bulk of the high
energy contributions within QFT in curved space-time,
namely within a semiclassical description of gravity near
but (possibly a few orders) below the Planck scale. Models
of inflation based on higher order terms inspired by the RG
framework have existed for a long time in the literature, see
[59] as well as the unified inflation-dark energy framework
of [30] (see also [22,23,52,53] for a more phenomenologi-
cal treatment).
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We can find the explicit relation between the one-loop
coefficients of the RG equation (20) with the phenomeno-
logical coefficients introduced in Sec. III. Let us consider
the case n ¼ 2, for which the highest power of the Hubble
rate in the vacuum expression is H4. Upon integrating the
RG equation (20) and comparing with Eq. (15) we obtain

� ¼ 1

6�

X
i¼f;b

ci
M2

i

M2
P

; (21)

and

� ¼ 1

12�

H2
I

M2
P

X
i¼f;b

bi: (22)

A few words will help to better interpret this result. First
of all let us note that � acts indeed as the reduced
(dimensionless) �-function for the RG running of �� at
low energies, whereas � plays a similar role at high
energies. Moreover, both coefficients are predicted to be
naturally small because M2

i � M2
P for all the particles,

even for the heavy fields of a typical GUT. In the case of
the low energy coefficient �, a concrete realization of the
structure (21) is given in [30], and an estimate within a
generic GUT is found in the range j�j ¼ 10�6–10�3.
Similarly, the dimensionless coefficient � is naturally pre-
dicted small, j�j � 1, because the inflationary scale HI is
certainly below the Planck scale MP. In a typical GUT
whereMX�1016 GeV4 we haveHI=MP�M2

X=M
2
P&10�6.

Even counting the large multiplicities of the fields in usual
GUT’s, the two coefficients � and � are expected to be
rather small, which is indeed the natural expectation since
they play the role of one-loop �-functions at the respective
low and high energy scales. Using a joint likelihood
analysis of the recent supernovae type Ia data, the CMB
shift parameter, and the baryonic acoustic oscillations,
one finds that the best fit value for � in the case of a flat
universe is at most of order j�j ¼ Oð10�3Þ [37,38], which
is nicely in accordance with the aforementioned theoretical
expectations.

V. FROM THE EARLY DE SITTER STAGE
TO THE RADIATION PHASE

Let us first discuss the transition from the initial de Sitter
stage to the radiation phase, while c0 � H2. The solution
(A2)—see the Appendix—of Eq. (16) for ! ¼ 1=3 and
c0 ¼ 0 becomes

HðaÞ ¼ ~HI

½1þDa2nð1��Þ�1=n ; (23)

where we have defined ~HI � ð1��
� Þ1=nHI, is the critical

Hubble parameter associated to the initial de Sitter era, orZ a

a?

d~a

~a
½1þD~a2nð1��Þ�1=n ¼ ~HIt; (24)

where t here is the time elapsed after (approximately) the
end of the inflationary period, indicated by t?, and we have
defined a? ¼ aðt?Þ. The integration constant D is fixed
from the condition Hða?Þ � H?, thus

D ¼ a�2nð1��Þ
?

�� ~HI

H?

�
n � 1

�
: (25)

Equation (24) will be useful below for particular
considerations. However, rather than directly integrating
this equation it is possible to retake (23) and cast it in a
more appropriate form that allows us to express the result
t ¼ tðaÞ in terms of special functions. This is done in the
Appendix. The final result is

tðaÞ ¼ ð1þDa2nð1��ÞÞ1þn
n

2ð1� �Þ ~HIDa2nð1��Þ 	 F

�
1; 1; 1� 1

n
;

�1

Da2nð1��Þ

�
;

(26)

where F½�1; �2; �3; z� is the Gauss hypergeometric func-
tion, and as in (24) we count the time passed after t?, i.e., t
is the cosmic time within the FLRW regime. Using the
Einstein equations and the above solutions we can obtain
the corresponding vacuum, radiation, and total energy
densities:

��ðaÞ ¼ ~�I

1þ �Da2nð1��Þ

½1þDa2nð1��Þ�1þ2=n
; (27)

�rðaÞ ¼ ~�I

ð1� �ÞDa2nð1��Þ

½1þDa2nð1��Þ�1þ2=n
; (28)

�TðaÞ ¼ ~�I

1

½1þDa2nð1��Þ�2=n : (29)

where we have defined

~�I � 3 ~H2
I

8�G
(30)

is the primeval critical energy density associated with the
initial de Sitter stage. We can see from (27) that the value
(30) just provides the vacuum energy density for a ! 0,

namely ��ð0Þ ¼ ~�I. As j�j � 1 we have ~�I=�I � ��2=n

and hence the density ~�I can differ a few orders of
magnitude from �I since we also expect (see the previous
section) that j�j � 1. Let us also emphasize from the

previous formulas that for a ! 0 we have �r=�� /
a2nð1��Þ ! 0, i.e., the very early universe is indeed vacuum
dominated with a negligible amount of radiation. For the
numerical analysis of the energy densities, see Fig. 1.
Notice that the constant (25) entering Eq. (23) is greater

than zero precisely for ~HI > H?, which is tantamount to
say �? < ~�I, where �? � 3H2

?=8�G is the critical energy
density at the time t ¼ t?. The existence of a point marking
the decrease of the energy density from the initial steady
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value ~�I is indeed the condition that points to a deflationary
period after inflation.

For Da2nð1��Þ � 1 (during the very early universe) the
solution (23) can be approximated by the constant value
solution H � ~HI. As mentioned, the vacuum energy den-
sity remains almost constant �� � ~�I in this period and
coexists with a negligible radiation density, which just

starts to grow as �r ’ ��ð1� �ÞDa2nð1��Þ. This stage
obviously depicts the primeval de Sitter era in the cosmic
evolution, with

aðtÞ / exp ½f ~HItg�; (31)

in which the universe undergoes a process of primordial
inflation. The result (31) can be derived by expanding the

solution (26) around Da2nð1��Þ � 1:

~HIt � 1

2nð1� �Þ 	 ½Cþ lnDa2nð1��Þ�; (32)

whereC is a constant (dependent on n) not playing a role in
this argument. Notice that Eq. (31) can also be substanti-
ated by simply letting a ! 0 before integrating Eq. (24).

The outcome of the above considerations is that for
D � 0 the universe starts without a singularity and thus
this model overcomes the horizon problem. The universe
then evolves naturally toward a radiation-dominated uni-
verse (hence providing a useful clue to explaining the
‘‘graceful exit’’ from the inflationary stage, see Fig. 2).
On the other hand, a light pulse beginning at t ¼ �1 will
have traveled by the cosmic time t a physical distance,

dHðtÞ ¼ aðtÞRt
�1

dt0
aðt0Þ , which diverges thereby implying

the absence of particle horizons, thus the local interactions
may homogenize the whole universe.

The solution for the radiation energy density (28)
reaches a maximum value when the scale factor a takes

on the value a
 � ð2D=nÞ�1=2nð1��Þ, which is the value
when the inflation period is accomplished and the
radiation-dominated era begins (see Figs. 1 and 2).

For Da2nð1��Þ � 1 the solution (23) can be approxi-
mated as

H � ~HID
�1=na�2ð1��Þ; (33)

which displays the behavior H � a�2ð1��Þ � a�2 in the
limit of small j�j. Similarly from (26) we find

t � a2ð1��Þ: (34)

The derivation of the latter expression is particularly straight-

forward from (24) if we use the limitDa2nð1��Þ � 1 before
integration. As j�j � 1, it is obvious that we have essen-

tially reached the radiation domination era for which a /
t1=2ð1��Þ ’ t1=2. This is confirmed after inspecting the radia-

tion density (28), which decays as �r / ð1� �Þa�4ð1��Þ �
a�4. We can also see from (27) that the vacuum energy

density follows a similar decay law �� / �a�4ð1��Þ, but is
suppressed by the factor ��=�r / � (with j�j � 1) as
compared to the radiation density. This is exactly the oppo-

site situation to the very early period whenDa2nð1��Þ � 1,
in which the vacuum energy density is huge and stuck at the
value ~�I,whereas the radiation density is largely suppressed

by the power a2nð1��Þ of the very small scale factor at that
time. In between these two eras, we see that we can have

either huge relativistic particle production �r / a2nð1��Þ in
the deflation period (namely around Da2nð1��Þ < 1) or

FIG. 1. Left panel: The evolution of the vacuum and radiation energy densities during the primordial era, where H2 � c0. We
normalize the densities with respect to the primeval critical value ~�I defined in (30). The plots show that the decay of the vacuum
density, as well as the production and subsequently dilution of radiation, occur in a faster way for large values of the parameter n
[recall that k ¼ nþ 2 in Eq. (15)], thereby ensuring the universality of the graceful exit for any n � 2. Additionally, in this figure we
can see that the vacuum density always decays faster than it does the radiation density after the transition period. Right panel: The
behavior of the vacuum density with the variation of the parameter � for n ¼ 2. In this graph, we can see that during the radiation-
dominated era the vacuum density ceases to decay; it only dilutes with time (in a similar way as the radiation energy density) due to the
effect of the expansion. The precise instant when this change occurs is earlier for larger values of the parameter �. On the other hand,
the evolution of the radiation energy density is affected very little by the variation of the parameter �, for � � 10�3. In this figure we
show the radiation energy density for � ¼ 10�4.
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standard dilution�r / a�4 (up to small corrections of order

j�j � 1) well in the radiation era (Da2nð1��Þ � 1).

A. Radiation temperature

In the case of ! ¼ 1=3, we have relativistic matter

production �r / a2nð1��Þ during the deflationary era and

corresponding dilution �r / a�4ð1��Þ during the subse-
quent radiation-dominated era (due to the expansion of
the universe). Considering ‘‘adiabatic’’ expansion of the
universe during both eras, the radiation energy density
scales as �r � T4

r [62,63] with its temperature. Thus we

can see that the radiation temperature grows as Tr /
anð1��Þ=2 during the initial de Sitter era of accelerated
expansion if the specific entropy per particle remains con-
stant during this period. Hence, the universe is naturally
heated before it enters the radiation-dominated era.

After the de Sitter stage, the temperature decreases

continuously in the course of the expansion as Tr /
a�ð1��Þ, namely very close to 1=a for j�j � 1, as it should
be for an noninteracting adiabatic expansion. Accordingly,

the comoving number density of photons scales as n� �
T3 / a�3ð1��Þ, which shows a tiny departure from the
�CDM case since the vacuum energy density itself is
evolving mildly owing to the nonzero value of �. For
further interesting thermodynamical considerations about
this type of universes (starting from a de Sitter phase)
which show their viability from the point of view of the
generalized second principle of thermodynamics [64].
It is worth noting that several models starting from a de

Sitter phase (deflation) induced by gravitational particle
creation of relativistic particles have also been discussed
in the literature [65]. As occurs in the present scenario,
some of them also evolve between two extreme de Sitter
phases [66] and the general thermodynamic analysis pre-
sented in [64] remains valid (see also [67] for a possible
connection between scenarios driven by decaying �
models and gravitationally induced particle creation).

B. Primordial transition: From an accelerating vacuum
to a decelerating radiation phase

In this case (c0 � H2 and for! ¼ 1=3) the deceleration
parameter follows from (17) and (23):

qðaÞ ¼ ð1� 2�ÞDa2nð1��Þ � 1

Da2nð1��Þ þ 1
: (35)

It varies from qI � �1 when a ! 0 to a positive value
near the standard radiation regime (q ¼ 1� 2� ’ 1) when

Da2nð1��Þ � 1. The primordial transition (pt) between the
early accelerating period and the decelerating radiation
phase (when still H � H0) occurs for the scale factor:

apt ¼
�

1

ð1� 2�ÞD
�
1=2nð1��Þ

: (36)

In Fig. 3 we display some numerical examples of the
evolution of qðaÞ in this period.

FIG. 2 (color online). Left panel: Universality of the graceful exit with respect to the variation of the EoS parameter for the matter
!-fluid. Once more we normalize the densities with respect to the primeval critical value ~�I defined in (30). This figure shows that the
rate of the vacuum decay, radiation production, and subsequent dilution is larger for greater values of !. As always, the vacuum decay
is faster than the rate of dilution of the radiation, thereby ensuring the transition toward a radiation domination era after the end of the
inflationary stage. Right panel: The evolution of the scale factor predicted by the decaying �ðHÞ model at the late stage HI � H for
�� 10�3 (solid line) versus the traditional �CDM cosmology (open points). In this plot we have adopted the best fit, �0

� ¼ 0:6825,
from the recent results of PLANCK data [11]. Clearly, the expansion history of the scale factor of the �ðHÞ model is almost
indistinguishable from the �CDM model for the entire postinflationary era up to our days, and into the future.
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VI. ALTERNATIVE DESCRIPTION IN TERMS
OF THE EFFECTIVE POTENTIAL

In Sec. IV we have elaborated on the motivation of the
present model within the general structure of the effective
action of QFT in curved space-time, and we have used the
RG equation (20) which naturally leads to the expression of
the unified model of the vacuum energy density, Eq. (15).
Although at the moment we cannot provide the effective
action leading to this kind of framework in the general case
[31], except in some particular formulations [30], we can
mimic it through an effective scalar field (	) model [68].
Let us note that any time-evolving vacuum energy density
model can be described in this way [34]. This can be useful
for the usual phenomenological descriptions of the DE, and

can be obtained from the usual correspondences: �T !
�	 ¼ _	2=2þ Vð	Þ and pT ! p	 ¼ _	2=2� Vð	Þ in

Friedmann’s Eqs. (6) and (7). We find 4�G _	2 ¼ � _H and

VeffðaÞ ¼ 3H2

8�G

�
1þ _H

3H2

�
¼ 3H2

8�G

�
1þ 1

3

d lnH

d lna

�
: (37)

The effective potential can be readily worked out for our
model starting from the expression of the Hubble function
in the early universe (23). We perform the calculation
neglecting the small Oð�Þ corrections, as they are not
important for the present discussion. The final result is
the following:

VeffðaÞ ¼ �I

�2=n

1þDa2n=3

ð1þDa2nÞðnþ2Þ=n ; (38)

where �I � 3H2
I =8�G. The interesting case n ¼ 2, corre-

sponding to having a term H4 in the high energy sector of
the vacuum energy density (15), yields

VeffðaÞjn¼2 ¼ �I

�

1þDa4=3

ð1þDa4Þ2 : (39)

This specific form was first derived in [55,56], and is just a
particular case of the general effective potential (38). From
the general expression it becomes clear that the potential

energy density remains constant, Veff � �I=�, while

a � D�1=ð2nÞ (i.e., before the transition from inflation to
the deflationary regime). However, when the transition is

left well behind (i.e., when a � D�1=ð2nÞ) the effective
potential (38) decreases in the precise form VðaÞ � a�4,
valid for all n, as it should be in order to describe a
radiation-dominated universe independently of the value
of n. This result corroborates, in the effective scalar field
language, the transition of the de Sitter stage into the
relativistic FLRW regime, which we have described pre-
viously in the original Einstein picture, and shows once
more that our unified model leads to the correct radiation-
dominated epoch for any value of n. In other words, the
entire class of �ðHÞ models (15) leads to an acceptable
solution of the graceful exit problem.

VII. FROM THE MATTER TO THE RESIDUAL
VACUUM DOMINATION

In the following we consider the expanding universe
well after the inflationary period and the radiation epoch.
To be more precise, we address the universe at a time after
recombination, therefore consisting of dust (! ¼ 0) plus
the running vacuum fluid described by (15) with H � HI.
In this case the Hk term (k � 3) is completely negligible
compared to H2 and that equation reduces to

�ðHÞ ¼ �0 þ 3�ðH2 �H2
0Þ; (40)

where �0 � c0 þ 3�H2
0 is the current value of the CC.

Obviously, c0 plays an essential role to determine the value
of �, whereas the H2 dependence gives some remnant
dynamics even today, which we can use to fit the parameter
� to observations. Using a joint likelihood analysis of the
recent supernovae type Ia data, the CMB shift parameter,
and the baryonic acoustic oscillations one finds that the
best fit parameters for a flat universe are:�m0 ’ 0:27–0:28
and j�j ¼ Oð10�3Þ (see [37–39]). It is remarkable that the
fitted value of � is within the theoretical expectations when
this parameter plays the role of �-function of the running

FIG. 3. Evolution of the decelerating parameter during the primordial era for several values of the free parameter n. All plots were
obtained for H2 � c0 and show the universality of the transition between the early accelerated de Sitter stage (q ’ �1) and the
subsequent decelerated radiation era (q ’ 1) as driven by the Hnþ2 decaying vacuum models (from the left to the right we have fixed,
respectively, n ¼ 2, 4, 6; equivalently, k ¼ 4, 6, 8 in Eq. (15). Note that the transition occurs faster for the bigger values of the
inflationary energy scale HI and n. This general behavior does not change appreciably for any finite value of n � 1.
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CC. As already mentioned, in specific frameworks one
typically finds � ¼ 10�5–10�3 [30].

For H � HI and ! ¼ 0 the evolution equation of
the Hubble parameter (16) becomes simplified. Trading
the cosmic time by the scale factor, upon using d=dt ¼
aHd=da, it can be rewritten as

aHH0 þ 3

2
ð1� �ÞH2 � c0

2
¼ 0; (41)

where the prime denotes derivative with respect to the scale
factor a. The above equation can now be integrated with
the result (A19) (see the Appendix)

H2ðaÞ ¼ H2
0

1� �
½ð1��0

�Þa�3ð1��Þ þ�0
� � ��; (42)

where we have used the corresponding boundary condition
at the present time: c0 ¼ 3H2

0ð�0
� � �Þ. Notice that the

previous equation can, if desired, easily be reexpressed in
terms of the redshift z through the relation 1þ z ¼ 1=a.

Similarly, the matter and vacuum energy densities are
found to be (see the Appendix):

�mðaÞ ¼ �0
ma

�3ð1��Þ; (43)

and

��ðaÞ ¼ �0
� þ ��0

m

1� �
½a�3ð1��Þ � 1�: (44)

where �0
m and �0

� are the corresponding values at present

(a ¼ 1). The total energy density reads

�TðaÞ ¼ �0
m

1� �
½a�3ð1��Þ � �� þ �0

�: (45)

Integrating once more the equation (42) with respect to
the cosmic time we obtain the following time dependence
of the scale factor:

aðtÞ ¼
�
1��0

�

�0
� � �

� 1
3ð1��Þ

	 sinh
2

3ð1��Þ
h
3H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þð��0 � �Þ

q
t=2

i
: (46)

As expected, for � � 1 at late enough times the above
solution mimics the Hubble function HðaÞ of the usual flat
�-cosmology, which means that the final dynamics of the
universe is determined by a single parameter namely�0

� or

�0
m, which are well known to be related by the cosmic sum

rule �0
m þ�0

� ¼ 1.
From these equations it is clear that for � ¼ 0 we

recover exactly the�CDM expansion regime, the standard
scaling law for nonrelativistic matter and a strictly constant
vacuum energy density �� ¼ �0

� (hence � ¼ �0).

Recalling that j�j is found to be rather small when the
model is confronted with the cosmological data, j�j �
Oð10�3Þ [37,38], we see that the model under considera-
tion deviates very small from the �CDM, specially in the

postinflationary epoch, where the only distinctive trace left
of the model is the existence of a slowly evolving vacuum
energy density or cosmological term (40). This is compat-
ible with the general notion of dynamical dark energy,
which in this case would be caused by a dynamical vacuum
in interaction with matter.
At very late time we get an effective cosmological

constant dominated era, H � H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�0

� � �Þ=ð1� �Þ
q

, see

Eq. (42) for sufficiently large a, that implies a pure de
Sitter phase of the scale factor. This is the late time
de Sitter phase or DE epoch.

A. The deceleration parameter in recent times

In the epoch under consideration, we have ! ¼ 0 and
H=HI � 1. Thus, with the help of Eqs. (17) and (42) the
deceleration parameter takes the form

qðaÞ ¼ ð1� 3�Þ�0
ma

�3ð1��Þ � 2ð1� ���0
mÞ

2�0
ma

�3ð1��Þ þ 2ð1� ���0
mÞ

; (47)

In the limit � ! 0 this expression reduces to that of the
�CDM model. In particular, the current value (a ¼ 1) is
q0 ¼ ð3�m � 2Þ=2 ’ �0:58, where �0

m ’ 0:28. The late-
time transition (lt)—in contrast to the aforementioned
primordial transition (36)—between the decelerated
matter-dominated era and the late accelerated residual
vacuum stage of the expanding universe occurs when

alt ¼
� ð1� 3�Þ�m

2ð1� ���mÞ
�
1=3ð1��Þ

: (48)

In the limit � ! 0 it gives alt ’ 0:58. In Fig. 4 we show this
late transition point and compare it with the slightly differ-
ent values obtained for the case when � � 0.
Despite the dynamical character of the vacuum energy

(40) near our time, it is important to understand that a
model of this kind would not work for c0 ¼ 0, i.e., with

FIG. 4. Evolution of the decelerating parameter during the late
stages, when H � HI. This figure shows the small departure of
the current model (with � & 10�3) from the �CDM model. The
effect of greater values of � is summarized in shifting forward in
time the transition point from deceleration to acceleration into
the current accelerated stage.
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only pure H-dependent terms on �. This has been proven
in [37,39] and recently discussed also in [69]. The basic
drawback of the c0 ¼ 0 models is that the deceleration
parameter never changes sign, and therefore the universe
always accelerates or always decelerates [39]. In the
present case this can be seen as follows. We can easily
check that the condition c0 ¼ 0 enforces Eq. (42) to take

the simpler form H2ðaÞ ¼ H2
0a

�3ð1��Þ. From here we im-

mediately find

q ¼ �1� a
H0ðaÞ
HðaÞ ¼ �1þ 3

2
ð1� �Þ: (49)

It follows that acceleration (q < 0) is possible only for
� > 1=3, which is unacceptable since we have emphasized
that j�j � 1. What is more, since q given by (49) is a
constant (i.e., independent of time or of the scale factor) it
can only have a sign for a given value of �, so even if we
would admit � > 1=3 as a mere phenomenological possi-
bility, we would be also admitting that the universe has
been accelerating forever, which is of course difficult to
accept.

B. The present value of the vacuum energy

After showing the importance of having a nonvanishing
c0 term in our unified vacuum model �ðHÞ, Eq. (15),
specially for the low energy segment of the cosmological
observations, let us note that the RG formulation of it
(cf. Sec. IV) provides a natural explanation for the pres-
ence of such c0 � 0 value, to wit: the integration of the RG
equation (20) must necessarily lead to a nonvanishing
additive term in the structure of ��ðHÞ. Therefore, a
term of this sort is naturally motivated in this framework.
From it the current value of the vacuum energy density
reads �0

� ¼ ðc0 þ 3�H2
0Þ=ð8�GÞ. Of course the value of c0

must be fixed by the boundary condition of the RG differ-
ential equation, which is fixed by current observations:
�0
� ¼ ��ðH0Þ.
The following observation is now in order: despite our

model providing a dynamical explanation for the drastic
reduction of the early vacuum energy of our universe from
��ðHIÞ to the comparatively very small quantity �0

� �
��ðHIÞ, and at the same time ensuring that ��ðHÞ will be
totally harmless for the correct onset of the radiation epoch
(see Sec. V), the ultimate value that ��ðHÞ takes at present,
i.e., �0

�, cannot be predicted within the model itself and

hence can only be extracted from observations. Notice that
if we could have the ability to predict this value it would be
tantamount to solve the CC problem [13]. This is of course
the toughest part of the longstanding unsolved cosmologi-
cal constant problem. In our case, however, we have as-
cribed a new look to the problem, one that could perhaps
make it more amenable for an eventual solution; namely,
we have shown that the cosmological term which we have
measured at present is not the same immutable tiny quan-
tity that the �CDM assumes for the entire cosmic history,

but rather a time-evolving variable that underwent a dra-
matic dynamical reduction from the inflationary time until
the present days.

VIII. CONCLUSIONS

In this article we have proposed a new phenomenologi-
cal scenario which provides a complete cosmic expanding
history of the universe. It is based on a dynamical model (in
fact an entire class of models) for the vacuum energy that
covers all the relevant states of the cosmic evolution. The
function � ¼ �ðHÞ that we propose involves a power
series of the Hubble rate H, which in practice consists of
an additive term, a powerH2 and finally a higher powerHk

(k > 2) which is responsible for the transition from the
inflationary stage to the FLRW radiation epoch. The ansatz
that we used is motivated by the covariance of the effective
action of QFT in curved space-time and in this sense the
even powers ofH are preferred, although for completeness
we have described the general case.
First of all the model itself predicts that the universe

starts from a nonsingular state and thus we can solve easily
the horizon problem. This early accelerated regime asso-
ciated with the inflation has a natural ending by virtue of
the faster decrease of the vacuum energy density thereby
generating the radiation fluid and the ultrarelativistic gas
particles. The novelty in the current work is the fact that the
dynamical vacuum model that we propose smoothly
accommodates the standard cosmic epochs characteristic
of the �CDM model, namely the radiation-dominated,
matter-dominated and late-time de Sitter phase (� ¼
const). The universe described in our proposal therefore
evolves from a primeval de Sitter epoch to another late-time
de Sitter epoch, which is the one we have recently entered.
Let us note that the mechanism for inflation in our case is
quite different from that of usual inflaton models. In this
sense it may provide an alternative to them, especially after
realizing that the PLANCK results [11] rule out some of
these scalar field models, whereas in our case the sustained
plateau we have in the vacuum inflationary phase could
perhaps help explain better the new data and in particular
the so-called ‘‘unlikeliness problem’’ [70]. A devoted
analysis is of course needed, but it is clear that we remain
as motivated as ever to look for new ideas and alternative
mechanisms for inflation. Let us finally note that our model,
apart from avoiding the initial singularity and alleviating
the horizon and graceful exit problems, it also helps to
mitigate the cosmological constant problem i.e., the fact
that the observed value of the vacuum energy density
(�� ¼ c2�=8�G ’ 10�47 GeV4) is many orders of mag-
nitude below the value found using quantum field theory.
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APPENDIX: GENERAL SOLUTIONS

1. From the early de Sitter stage to the
!-dominated phase

At early stages of the universe, the c0 parameter is
negligible and the Eq. (16) for the evolution of the
Hubble function becomes

_H þ 3

2
ð1þ!ÞH2

�
1� �� �

�
H

HI

�
n
�
¼ 0: (A1)

The integration of the above equation gives

HðaÞ ¼ ~HI

½1þDan
�1=n ; (A2)

where 
�3ð1þ!Þð1��Þ=2 and ~HI � HI½ð1� �Þ=��1=n.
We stress that in our analysis we consider epochs of the
cosmic evolution where matter is dominated by the rela-
tivistic or the nonrelativistic components, i.e., epochs
where we have ! ¼ 1=3 and ! ¼ 0, respectively, without
considering the interpolation regime between the two.
Therefore, in practice for all the considerations in this
section, we have ! ¼ 1=3—and so 
 ¼ 2ð1� �Þ—as
our discussion is related to the transition from the initial
de Sitter to the radiation-dominated universe. However, a
simulation of the!-dependence from! ¼ 0 to! ¼ 1=3 is
done in Fig. 2.

In Eq. (A2),D is an integration constant that can be fixed
using the condition Hða?Þ � H? [where a? ¼ aðt?Þ, typi-
cally corresponding to the initial time t? of the !-fluid
dominated era]. Thus,

D ¼ a�n

?

�� ~HI

H?

�
n � 1

�
; (A3)

and it is greater than zero for ~HI > H?. Note that if D ¼ 0
the solution remains always de Sitter.

Using the auxiliary variable

u ¼ � 1

Dan

; (A4)

which transforms Eq. (A2) as

_u ¼ �n
 ~HIu
1þ1=nðu� 1Þ�1=n; (A5)

and its inversion results:

dt

du
¼ � 1

n
 ~HI

u�ð1þ1=nÞðu� 1Þ1=n: (A6)

The second derivative may be put in the form:

uð1� uÞ d
2t

du2
þ

�
1þ 1

n
� u

�
dt

du
¼ 0: (A7)

Hence, we have the hypergeometric equation with parame-
ters a ¼ 0, b ¼ 1=n, and c ¼ 1þ 1=n. Its integration
yields

tðuÞ ¼ B� Anu�1=nF

�
� 1

n
;� 1

n
; 1� 1

n
; u

�
; (A8)

where B and A are integration constants. We can set B ¼ 0
if the origin of time is placed just after the inflation period
and t is then the cosmic time in the FLRW epoch. Using
Euler’s relation for the hypergeometric function and the
boundary condition (when t ¼ t? at the end of the infla-
tionary period) for the Hubble parameter H the above
solutions can be rewritten as

tðaÞ ¼ Bþ ð1þDan
Þ1þn
n


 ~HIDan

F

�
1; 1; 1� 1

n
;
�1

Dan


�
; (A9)

and for n ¼ 2 this solution becomes

tðaÞ ¼ Bþ 1


HI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þDa2
Þ

1� �

s
� 1


HI

	
ffiffiffiffiffiffiffiffiffiffiffiffi
�

1� �

r
ArcCoth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDa2


p
: (A10)

Using the Einstein equations and the above solutions we
can obtain the corresponding energy densities:

��ðaÞ ¼ ~�I

1þ �Dan


½1þDan
�1þ2=n
; (A11)

�ðaÞ ¼ ~�I

ð1� �ÞDan


½1þDan
�1þ2=n
; (A12)

�TðaÞ ¼ ~�I

1

½1þDan
�2=n ; (A13)

with ~�I � 3 ~H2
I =8�G. It is easy to check that these expres-

sions correctly reproduce the energy densities we have
used in Sec. V for the primeval de Sitter and radiation-
dominated epochs.

2. From the !-dominated era
to the residual vacuum stage

Next we consider the derivation of the corresponding
formulas for the more recent universe when the !-fluid
plus a vacuum fluid [described by (15)] expand under he
condition H � HI. In this case the evolution equation for
the Hubble parameter Eq. (16) can be approximated as

aHH0 þ 
H2 � ð1þ!Þ
2

c0 ¼ 0; (A14)

where the prime denotes derivative with respect to the
scale factor a, and again 
 � 3ð1þ!Þð1� �Þ=2. The first
integral of this equation gives

PERICO et al. PHYSICAL REVIEW D 88, 063531 (2013)

063531-12



H2 ¼ c0
3ð1� �Þ

��
C1

a

�
2
 þ 1

�
; (A15)

where the constant

C1
2
 ¼ a0

2


�
3H2

0ð1� �Þ
c0

� 1

�
; (A16)

is obtained from the condition Hða0Þ � H0 today.
Using the above solutions, the Friedmann equations

provide the total and the !-fluid densities

8�G�TðaÞ ¼ c0
1� �

��
C1

a

�
2
 þ 1

�
; (A17)

8�G�ðaÞ ¼ c0

�
C1

a

�
2

: (A18)

In a more explicit form, the Hubble function (A15) reads

H2ðaÞ ¼ H2
0

1� �
½�0

Xa
�2
 þ�0

� � ��; (A19)

where we have the sum rule �0
X þ�0

� ¼ 1, and we have

set ! ¼ 0 (X ¼ m) since we are in the matter-dominated
epoch. The !-fluid density (A18) can be expressed as

�ðaÞ ¼ �0a�2
; (A20)

where �0 is the current value. We can see that for � ¼ 0we

retrieve the standard scaling � ¼ �0a�3ð1þ!Þ. The depar-
ture from this law caused by a nonvanishing � is related to
the exchange of energy between matter and vacuum. By
the same token the vacuum is no longer static, and the
effective CC evolves as

�ðaÞ ¼ c0
1� �

�
�

�
C1

a

�
2
 þ 1

�
: (A21)

The corresponding vacuum energy density is the following:

��ðaÞ ¼ �0
� þ ��0

1� �
½a�2
 � 1�: (A22)

We see that only for � ¼ 0 we recover� ¼ c0 ¼ const and
��ðaÞ ¼ �0

� ¼ const, as in the �CDM case. Furthermore,

we can easily check that Eqs. (A20) and (A22) satisfy the
overall local conservation law (8), which can be rewritten in
terms of the scale factor as follows:

�0
�ðaÞ þ �0ðaÞ þ 3

a
ð1þ!Þ�ðaÞ ¼ 0; (A23)

where the prime indicates differentiation with respect to the
scale factor.
We can integrate Eq. (A15) to obtain the time evolution

of the scale factor aðtÞ:

aðtÞ¼C1sinh
1=


h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3c0ð1��Þ

q
ð1þ!Þðt�C2Þ=2

i
: (A24)

Without losing the generality we can set C2 ¼ 0.
Substituting (A24) in the previous equations we immedi-
ately get the time-evolving functions � ¼ �ðtÞ and
� ¼ �ðtÞ.
Let us finally mention for completeness that there are

cases where we have to deal with a mixture of cold matter
and radiation. Defining �0

m and �0
r as the standard non-

relativistic and radiation density parameters at the present
time, one can show that the complete Hubble function reads

H2ðaÞ ¼ H2
0

1� �
½�0

ma
�3ð1��Þ þ�0

� þ�0
ra

�4ð1��Þ � ��;
(A25)

where the density parameters satisfy the extended sum rule
�0

m þ�0
r þ�0

� ¼ 1.

[1] P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559
(2003); T. Padmanabhan, Phys. Rep. 380, 235 (2003);

J. A. S. Lima, Braz. J. Phys. 34, 194 (2004).
[2] M. Kowalski et al., Astrophys. J. 686, 749 (2008).
[3] M. Hicken, W. Michael Wood-Vasey, S. Blondin, P.

Challis, S. Jha, P. L. Kelly, A. Rest, and R. P. Kirshner,

Astrophys. J. 700, 1097 (2009).
[4] E. Komatsu et al., Astrophys. J. Suppl. Ser. 180, 330

(2009).
[5] G. Hinshaw et al., Astrophys. J. Suppl. Ser. 180, 225

(2009).
[6] E. Komatsu et al., Astrophys. J. Suppl. Ser. 192, 18 (2011).
[7] J. A. S. Lima and J. S. Alcaniz, Mon. Not. R. Astron. Soc.

317, 893 (2000).
[8] J. F. Jesus and J. V. Cunha, Astrophys. J. Lett. 690, L85

(2009).

[9] S. Basilakos and M. Plionis, Astrophys. J. Lett. 714, L185
(2010); S. Basilakos, M. Plionis, and J. A. S. Lima, Phys.

Rev. D 82, 083517 (2010).
[10] R. Amanullah et al., Astrophys. J. 716, 712 (2010).
[11] P. A. R. Ade et al. (PLANCK Collaboration),

arXiv:1303.5076.
[12] A. Zee, in High Energy Physics, Proceedings of the 20th

Annual Orbis Scientiae, edited by B. Kursunoglu, S. L.

Mintz, and A. Perlmutter (Plenum, New York, 1985).
[13] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[14] P. J. Steinhardt, in Critical Problems in Physics, edited by

V. L. Fitch, D. R. Marlow, and M.A. E. Dementi

(Princeton University, Princeton, NJ, 1997); Phil. Trans.

R. Soc. A 361, 2497 (2003).
[15] M. Ozer and O. Taha, Phys. Lett. B 171, 363 (1986); Nucl.

Phys. B287, 776 (1987).

COMPLETE COSMIC HISTORY WITH A DYNAMICAL . . . PHYSICAL REVIEW D 88, 063531 (2013)

063531-13

http://dx.doi.org/10.1103/RevModPhys.75.559
http://dx.doi.org/10.1103/RevModPhys.75.559
http://dx.doi.org/10.1016/S0370-1573(03)00120-0
http://dx.doi.org/10.1590/S0103-97332004000200009
http://dx.doi.org/10.1086/589937
http://dx.doi.org/10.1088/0004-637X/700/2/1097
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://dx.doi.org/10.1088/0067-0049/180/2/225
http://dx.doi.org/10.1088/0067-0049/180/2/225
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://dx.doi.org/10.1046/j.1365-8711.2000.03695.x
http://dx.doi.org/10.1046/j.1365-8711.2000.03695.x
http://dx.doi.org/10.1088/0004-637X/690/1/L85
http://dx.doi.org/10.1088/0004-637X/690/1/L85
http://dx.doi.org/10.1088/2041-8205/714/2/L185
http://dx.doi.org/10.1088/2041-8205/714/2/L185
http://dx.doi.org/10.1103/PhysRevD.82.083517
http://dx.doi.org/10.1103/PhysRevD.82.083517
http://dx.doi.org/10.1088/0004-637X/716/1/712
http://arXiv.org/abs/1303.5076
http://dx.doi.org/10.1103/RevModPhys.61.1
http://dx.doi.org/10.1098/rsta.2003.1290
http://dx.doi.org/10.1098/rsta.2003.1290
http://dx.doi.org/10.1016/0370-2693(86)91421-8
http://dx.doi.org/10.1016/0550-3213(87)90128-3
http://dx.doi.org/10.1016/0550-3213(87)90128-3


[16] O. Bertolami,NuovoCimento Soc. Ital. Fis. B 93, 36 (1986).
[17] K. Freese, F. C. Adams, J. A. Frieman, and E. Mottola,

Nucl. Phys. B287, 797 (1987).
[18] J. C. Carvalho, J. A. S. Lima, and I. Waga, Phys. Rev. D

46, 2404 (1992).
[19] R. C. Arcuri and I. Waga, Phys. Rev. D 50, 2928 (1994).
[20] I. Waga, Astrophys. J. 414, 436 (1993).
[21] J. A. S. Lima and J.M. F. Maia, Mod. Phys. Lett. A 08, 591

(1993).
[22] J. A. S. Lima and J.M. F. Maia, Phys. Rev. D 49, 5597

(1994).
[23] J. A. S. Lima and M. Trodden, Phys. Rev. D 53, 4280

(1996).
[24] J. Salim and I. Waga, Classical Quantum Gravity 10, 1767

(1993).
[25] A. I. Arbab, Gen. Relativ. Gravit. 29, 61 (1997).
[26] J.M. Overduin and S. Cooperstock, Phys. Rev. D 58,

043506 (1998).
[27] B. L. Nelson and P. Panangaden, Phys. Rev. D 25, 1019

(1982); S. L. Adler, Rev. Mod. Phys. 54, 729 (1982); D. J.
Toms, Phys. Lett. 126B, 37 (1983).

[28] L. Parker and D. J. Toms, Phys. Rev. D 32, 1409 (1985);
I. L. Buchbinder, Theor. Forsch. Phys. 34, 605 (1986).
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Phys. 08 (2006) 011; Phys. Lett. B 645, 235 (2007); J.
Grande, R. Opher, A. Pelinson, and J. Solà, J. Cosmol.
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