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High statistics analysis using anisotropic clover lattices: Single hadron correlation functions
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We present the results of high-statistics calculations of correlation functions generated with single-
baryon interpolating operators on an ensemble of dynamical anisotropic gauge-field configurations
generated by the Hadron Spectrum Collaboration using a tadpole-improved clover fermion action and
Symanzik-improved gauge action. A total of 292, 500 sets of measurements are made using 1194 gauge
configurations of size 203 X 128 with an anisotropy parameter & = b,/b, = 3.5, a spatial lattice spacing
of b, =0.1227 = 0.0008 fm, and pion mass of M, ~ 390 MeV. Ground state baryon masses are
extracted with fully quantified uncertainties that are at or below the ~0.2%-level in lattice units. The
lowest-lying negative-parity states are also extracted albeit with a somewhat lower level of precision. In
the case of the nucleon, this negative-parity state is above the N7 threshold and, therefore, the isospin—%
N s-wave scattering phase-shift can be extracted using Liischer’s method. The disconnected contribu-
tions to this process are included indirectly in the gauge-field configurations and do not require additional
calculations. The signal-to-noise ratio in the various correlation functions is explored and is found to
degrade exponentially faster than naive expectations on many time slices. This is due to backward
propagating states arising from the antiperiodic boundary conditions imposed on the quark propagators in
the time direction. We explore how best to distribute computational resources between configuration
generation and propagator measurements in order to optimize the extraction of single baryon observables.
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I. INTRODUCTION

One of the primary goals of lattice QCD (LQCD) is to
calculate the properties and interactions of nucleons and,
more generally, systems comprised of multiple hadrons.
Precise exploration of the simplest multihadron systems
has recently become possible with significant advances in
computing resources, as well as through algorithmic and
theoretical developments. The two-pion system 7" 7" is
the simplest of such multihadron systems to calculate in
LQCD, and current computational resources have allowed
for a precise determination of the 77" 7" scattering length
[1,2] at the ~1% level. Recently, we have explored systems
comprised of up to 12 7’s [3,4] and also systems com-
prised of up to 12 K*’s [5] for the first time, allowing a
determination of the three-7" and three-K™ interactions.
In general, a determination of the two-particle scattering
amplitude, or multibody interactions, with LQCD requires
calculating the energy-eigenvalues of the system in the
finite-volume [6-9]. The energy differences between the
multiparticle energy-levels in the finite-volume and the
sum of the particle masses determines the scattering am-
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plitude or interaction. As processes of interest to low-
energy nuclear physics are in the MeV energy-regime,
while the masses of the baryons and nuclei are in the
GeV regime, the energy-levels in the volume must be
determined to high precision to yield useful constraints
and predictions for scattering amplitudes, phase-shifts
and electroweak properties. Consequently, correlation
functions of systems comprised of more than one hadron
must be calculated with small statistical and systematic
uncertainties ( << 1%) in order to provide useful informa-
tion about low-energy nuclear interactions and nuclei.
The correlation functions associated with systems of
baryons (and, more generally, states other than the pion)
suffer from an exponential degradation of the signal-to-
noise ratio as a function of time as argued by Lepage [10].
The scale that dictates this degradation is the difference
between the total energy of the baryons in the system and
half of the total energy of hadrons that contribute to the
correlation function associated with the square of the in-
terpolating operator for the baryon system. An example is
provided by the two point nucleon correlator (N is an
interpolating field with the quantum numbers of the nu-
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cleon) where,

signal ~ (N(£)N(0)) =" Ze~Mnt,

noise ~ {(N(DN (N (O)N(0)) =Z/e=C/2Mat (1)

neglecting effects of the finite temporal extent which we
discuss below (here Z and Z' are overlap factors). Since
My — %M - > 0, the signal degrades exponentially in time
with this exponent. Further, for multibaryon systems, this
exponent is scaled by the baryon number, B, and it con-
sequently requires exponentially larger computational re-
sources to calculate the properties of systems containing
B > 1 baryons than a single baryon. In many regards, it is
this signal-to-noise problem that distinguishes LQCD cal-
culations of quantities typically of importance to nuclear
physics from those typically of importance to particle
physics.

The main motivation for our present work is to explore
very high statistics calculations of the energy spectrum of
B =0, 1 correlation functions, quantifying the statistical
scaling and identifying any issues that appear in the regime
of precision calculations. More generally, we aim to assess
the feasibility of extracting precise phase-shifts and multi-
nucleon interactions from multibaryon systems but we
leave these discussions to subsequent work. Our focus is
on the statistical scaling behavior of these measurements
instead of on measuring physically relevant quantities.
Consequently, we work with a single ensemble of gauge
configurations that was produced by the Hadron Spectrum
Collaboration [11,12] (the details of these configurations
are discussed below). The analysis presented here enables
us to identify a number of issues that will be important to
LQCD calculations of quantities where exponentially de-
grading signal-to-noise ratios are a dominant concern:

(1) While the classic argument of Lepage [10] concern-
ing the behavior of the signal-to-noise ratios of
baryon correlation functions seems to be on a solid
theoretical footing, it has yet to be explored and
verified through direct calculation. We examine
the signal-to-noise ratios of the single hadron corre-
lation functions in detail and present a modified
version of the Lepage argument that incorporates
the finite extent of the temporal direction of the
gauge-field configuration, focusing on the case of
quark propagators subject to antiperiodic temporal
boundary conditions (BCs). Over large regions of
the temporal extent of the lattice, the signal-to-noise
ratio degrades exponentially faster than expected
from the original Lepage argument, see Sec. VIIIL.

(2) At present, and even more so in the past, the gen-
eration of gauge-field ensembles consumes most of
the computational resources of LQCD calculations.'

"For example, the USQCD collaboration used ~60% of its
resources for ensemble generation in 2008/9.
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However, it is not clear what the optimal distribution
of computational resources between gauge-field
production and measurements (propagator calcula-
tions and contractions) is when one is interested in
noisy quantities. To address this, we explore what
can be accomplished by performing hundreds of
measurements per configuration, and how precisely
the baryon ground-state masses can be determined
from an ensemble of 1194 configurations. We also
study whether the measurements ‘‘saturate” after
some critical number have been performed on one
configuration (that is, exhibit little or no improve-
ment in uncertainties after a critical number of
measurements), finding for baryons that they do
not, even up to ~200 measurements per
configuration.

Correlation functions that are determined to high
precision are amenable to analysis with a variety
of techniques, beyond those typically used success-
fully with low statistics data. On these anisotropic
configurations, multiple (five or more) exponential
fits to such correlation functions become stable as
statistical fluctuations decrease, and the ground state
energies can be extracted with high precision. We
show that the generalized effective mass (EM)
method, in which multiple energies are extracted
from a linear system (a method developed by
Gaspard Riche de Prony in 1795) also becomes
useful for correlation functions with small uncer-
tainties. As two (different but correlated) correlation
functions are computed per species of hadron, this
method is extended to construct the matrix-Prony
method, which is found to be a very clean and
effective tool for determining the ground-state
energies.

While the correlation function generated by a
single-baryon interpolating-operator will be domi-
nated by the baryon ground-state at large times, it
also contains contributions from all states that can
couple to the operator. This includes multihadron
states. The backward propagating component of the
nucleon correlation function is dominated by the
lowest energy negative-parity [/ =% state for the
projection-operator we have applied to the correla-
tion functions. By measuring the energy of this state,
which is above the 7N threshold and therefore is a
continuum state, the phase-shift associated with the
s-wave 7N interaction is determined at this energy.
The important point here is that this process con-
tains disconnected diagrams, which are encoded in
the gauge-field configurations, and do not require
additional (of order the volume in number)
calculations.

We also note that thermal states, while strongly
suppressed, are seen in our high precision data. In



HIGH STATISTICS ANALYSIS USING ANISOTROPIC ...

these states, some part of the hadronic state prop-
agates backward in time and can consequently
manifest itself in the correlation function as an ex-
ponential with energy less than that of the zero
temperature ground state. These contributions have
amplitudes that are exponentially suppressed by the
temporal extent of the configuration, but they can be
extracted in certain temporal regions of the correla-
tion function(s) where other components are also
small. They can lead to pollution of the ground-state
signal.

The structure of this work is as follows. Section II
introduces the details of the lattice calculations we per-
form, and in Sec. III we discuss our expectations for the
hadron spectrum on this ensemble. Section IV introduces
the tools used in our analysis and presents detailed com-
parisons of the different methods we utilize. Following
this, Secs. V, VI, and VII present our main results for the
pseudoscalar mesons, ground-state baryons and negative-
parity excited states, respectively. In Secs. VIII and IX we
discuss the behavior of noise in our measurements and
investigate the scaling of uncertainties in hadron masses
for varying numbers of gauge configurations and measure-
ments. We conclude in Sec. X. In subsequent works, we
will address states with baryon number, B > 1.

II. LATTICE QCD CALCULATIONS

A. Calculational details

In this study, we employ an ensemble of the ny = 2 +
1-flavor anisotropic clover gauge-field configurations that
are currently being produced by the Hadron Spectrum
Collaboration [11,12]. These ensembles are being gener-
ated with dynamical tadpole-improved clover fermions and
a Symanzik-improved gauge action (see Ref. [11,12] for
full details). All of the calculations that we present here
were performed on a single ensemble of gauge-field con-
figurations of size 20° X 128 with an anisotropy parameter
of £ = b,/b, = 3.5, a spatial lattice spacing of b = b, =
0.1227 = 0.0008 fm, a pion mass of M, ~ 390 MeV and a
kaon mass of Mg ~ 546 MeV. The ensemble used in this
study contains 1194 configurations taken at intervals of 10
trajectories, after allowing 1000 trajectories for thermal-
ization. Reference [11] provides a comprehensive analysis
of autocorrelation times and thermalization. Some corre-
lation is seen to be present between configurations sepa-
rated by 30 trajectories.

The light and strange quark-propagators were computed
using the same fermion action used in the gauge-field
generation. We use the clover discretization of the fermion
action as it requires significantly less computational re-
sources than, for instance, the Domain-Wall discretization,
in both the production of gauge-field configurations and in
the calculation of quark-propagators, while retaining an
O(b)-improved spectrum. Unlike the Domain-Wall discre-
tization, the Clover discretization does not have a lattice
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chiral symmetry. At moderate lattice spacings, this may
significantly impact the extraction of the properties and
interactions of pions and kaons, but it is not expected to
produce systematic uncertainties that are as significant in
the properties and interactions of baryons (this remains to
be verified and will not be addressed here).

The quark propagators are calculated with antiperiodic
BC’s imposed on the time direction and periodic BCs
imposed on the spatial directions. As multiple propagators
are calculated on each configuration, iterative solvers be-
yond the simple conjugate gradient algorithm can provide
significant speed improvements. In particular, we employ
the deflated conjugate gradient algorithm proposed in
Ref. [13], and implemented in the Chroma lattice field
theory library [14] as the E1gCG inverter. In our typical
production runs, we compute from 30 to 100 propagators in
sequence, observing a factor of ~7 improvement in inver-
sion speed after the first few solves are used to deflate low-
lying eigenvalues from subsequent inversions. Figure 1
shows the details of the propagators computed in this
work. The histogram indicates the number of propagators
computed on each of the 1194 configurations (averaged
over four adjacent configurations for clarity). The total
number of propagators computed in this data set is 292,
500, an average of 245 propagators per configuration (we
note that the maximum number of point-to-all propagators
that could be computed on each of the configurations is
~100)

Each propagator is generated from a gauge-invariantly
Gaussian-smeared source [15,16], on a stout-smeared [17]
gauge-field in order to optimize the overlap onto the
ground-state hadrons. On each configuration, the locations
of the propagator source points are chosen randomly
throughout the configuration. In Fig. 2, we show a histo-
gram of the 4d-separation, R, between the each pair of
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FIG. 1 (color online). The number of propagators, Ny, used
in measurements of correlation functions on each configuration
used in this study. For the purpose of clarity, bins of four
configurations (40 trajectories) have been averaged. The
ensemble-average of the number of propagators calculated per

configuration, 245, is indicated by the dashed horizontal line.
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FIG. 2 (color online). The separation between pairs of sources
on a given configuration, defined to be the minimum distance
between two sources, including the effect of the (anti-) periodic
boundary conditions. The height of the bar at R = 0 corresponds
to the total number of propagators.

sources on each configuration. The shoulder at R ~ 4 fm
appears because of the (anti) periodic boundary conditions.
The average source separation is (R) ~2.9 fm and the
source density is 3.43 fm 4.

B. Correlation functions

The propagators are used to compute two-point correla-
tion functions which, for baryons, take the form

Corr(pit) = Y e THUHP(X, ) H (%0, 00, (2)

where JH “(x, 1) is an interpolating operator for the appro-
priate baryon state, e.g., for the proton H *(x,t) =
€5 UT Cysd”)uc(x, t) where C is the charge conjuga-
tion matrix. The Dirac matrix I" is an arbitrary particle-
spin-projector and the point X is the propagator source
point. Similar correlation functions are used for the me-
sons. The interpolating-operator at the source, F, is con-
structed from gauge-invariantly—smeared quark field
operators, while at the sink, the interpolating operator is
constructed from either local quark field operators, or from
the same smeared quark field operators used at the source,
leading to two sets of correlation functions. For brevity, we
refer to the two sets of correlation functions that result
from these source and sink operators as smeared-point (SP)
and smeared-smeared (SS) correlation functions,
respectively.

We calculate the smeared-point and smeared-smeared
correlation functions associated with the 7=, K+ (J™ =
07) mesons, and the N, A, 3, B (J7 = 1*) baryons. For
the baryons, the energy projectors I'. = 1(1 * y,) are
used to project separately onto either the positive- or
negative-energy (parity) states (one of which can be

PHYSICAL REVIEW D 79, 114502 (2009)

time-reversed and added to the other to improve statistics).
Correlation functions associated with a given pair of inter-
polating fields are averaged over all sources on each con-
figuration, producing one correlation function per
interpolating operator pair per configuration.

C. Statistical behavior

Before extracting results for observables, we analyze the
statistical behavior of the measured correlators. As the
computational cost of each measurement is much less
than the computational cost of generating each configura-
tion, performing multiple, O(10), measurements on each
configuration is a practical way to cheaply reduce uncer-
tainties and is an approach that has been used by many
groups. Averaging the measurements on a given configu-
ration produces a more accurate estimation of the correla-
tion function on that configuration. A priori, one might
argue that performing a significantly larger number, say
O(100-1000), of measurements on a given configuration is
an inefficient use of computing resources as the additional
measurements will contain little or no new information and
will not decrease the statistical uncertainty in the measure-
ments of interest. This argument is likely true for configu-
rations extending over small volumes. Physically, one
expects there are a number of length scales associated
with the possible ‘“‘saturation” density of the measure-
ments on a given configuration. As the lightest hadron is
the pion, one expects the critical saturation density of
measurements to depend parametrically upon the dimen-
sionless quantity p/M?%, where p = N./V where V is the
four-volume, and N, is the number of measurements on
the configuration. For a simple quantity such as the energy,
E, of an eigenstate in the volume, one also expects to find a
dependence upon p/E*. For instance, we expect a depen-
dence upon the dimensionless quantity p/M3, for the
nucleon. Generically, the scale of chiral symmetry break-
ing, A, is also expected to enter as p/A%. Figure 3 shows
the scaling of the uncertainty in the effective mass (the
logarithm of the ratio of the correlator on adjacent time
slices) at one particular time slice for the 7, K*, N and 2
as a function of the number of measurements per configu-
ration. This calculation was performed on 664 of the 1194
configurations in the ensemble, those for which we have
made more than 200 measurements. The correlation func-
tions, after being averaged over the sources on each con-
figuration, were blocked in units of 10 configurations (100
trajectories), and the uncertainties in the effective mass
(EM) on each time slice were generated with the single
omission Jackknife procedure. The 77 and K™ correlation
functions clearly show deviations from statistical indepen-
dence beyond ~10 sources per configuration, and by 200
sources per configuration there is little to be gained by
performing additional measurements on a configuration. In
contrast, measurements of the baryon correlation functions
are behaving as if they are statistically independent even
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FIG. 3 (color online). A log-log plot of the normalized uncer-
tainty in the mean value of the effective mass of the 7, K*, N,
and E at time-slice 1 = 34, t = 34, t = 39, and t = 49, respec-
tively, as a function of the number of sources on 664 of the
gauge-field configurations (those with more than 200 measure-
ments). The fits correspond to a power-law of the form
8C/{C) = A(Ng.)". The best fit values for the exponent are b =
—0.31(2), —0.36(1), —0.51(9), and —0.41(5) for the #*, K*, N,
and E, respectively. (Statistically independent measurements
would produce b = — % J)

with 200 sources per configuration. It is clear that the
statistical uncertainties in the baryon correlators can be
further reduced by performing even more measurements
per configuration. These observations are consistent with
the arguments regarding the critical source densities.

An alternative way to investigate this question is to
consider the correlation between measurements of a corre-
lation function from different sources on the same configu-
ration. A natural quantity to consider is an extension of the
standard autocorrelator to a source-to-source autocorrela-
tor, Y, defined by
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FIG. 4 (color online).
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Xsre(R3 19) = [;C(fo; c, S)]izl:z Z Z C(to; sy, ©)

c 85 8

X C(fo;Sz, C)H(Sl, Sy R)] -1 (3)

where C(z, ¢, s) is the correlation function of interest eval-
uated on time-slice ¢, configuration ¢ and from source s and
the function 6(s;, so: R) is unity if the two sources are
separated by a 4d-distance |s; — s,] < R. A nonzero value
of yc(R) indicates the presence of significant correlations
over distances shorter than R. We have calculated y,,. for a
number of the correlation functions we analyze but find no
sign of deviation from zero even for the case of the 7.
This may in part be due to the poor statistics at small
source—source separations (see Fig. 2).

A further consideration is that for a given number of
configurations, at some value of N, the uncertainty in the
measurements of a correlation function on a given configu-
ration will become smaller than the uncertainty in the
measurements over the entire ensemble. Once this limit
is reached, it is pointless to perform further measurements
without also increasing the ensemble size. Our measure-
ments are far from this limit as is illustrated by Fig. 4 where
the uncertainties in the measurements of 77+ and N corre-
lation functions on some individual configurations are
shown as a function of the number of sources and com-
pared to the overall uncertainty attained with the full
ensemble.

An important consideration in generating high statistics
measurements is the correlation between configurations.
Ideally, enough trajectories separate each gauge-field in the
ensemble so that they are statistically independent to the
precision of the calculation of interest. The degree of
correlation between configurations dictates the number of
measurements that should be performed on a given set of
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The normalized uncertainties in the measurements of N (left panel) and 7" (right panel) correlation functions

for time-slice + = 10 are shown for some individual configurations as a function of the number of measurements on that configuration.
The dashed lines significantly below the data are the normalized uncertainties on our full ensemble.
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FIG. 5 (color online). A log-log plot of the normalized uncer-
tainty in time-slice t = 34, t = 34 t = 29 and ¢ = 39 of the EM
of the 7%, K, N and Z, respectively, as a function of the
number of gauge-field configurations, each with 50 measure-
ments. The fits correspond to a power-law of the form §C/(C) =
A(chg)b. The best fit values are b = —0.52(1), —0.47(1),
—0.45(2), and —0.45(1) for the #* K*, N, and E, respectively.
(Statistically independent measurements would produce b =
_ %)

configurations before it is more cost effective to enlarge the
ensemble. In Fig. 5 we show the uncertainty at given time
slices of the EM for the 7, K™, N and E as a function of
the number of gauge-fields on which 50 measurements are
performed. The configurations are maximally separated in
Monte Carlo time, but an increasing number of configura-
tions means a reduced separation in Monte Carlo time
between each configuration. The curves in Fig. 5 corre-
spond to what is expected for statistically independent
configurations. The 100 maximally separated configura-
tions are separated by 80 trajectories, the configurations
separated by 20 trajectories appear to be contributing as
one expects for statistically independent configurations
(assuming that those separated by 80 trajectories are sta-
tistically independent). This is consistent with the hadronic
autocorrelation times measured on sets of configurations
similar to this ensemble in Ref. [11], 7, ~ 7y ~ 40.

D. Computational costs

These calculations required significant computing re-
sources to perform; the total cost of the measurements
was approximately 7 X 10 JLab 6n cluster node hours
(this is an older machine with a dual core 3 GHz Pentium D
processor per node) distributed over various computational
facilities. To put this into context, the generation of the
gauge-field configurations required approximately one-
third of this time [18]. Our calculational method makes
use of hadronic building blocks (partly contracted sets of
propagators) which are extremely useful for contracting
multiparticle correlation functions but inefficient for single
hadron correlation functions; only 4 X 10° JLab 6n cluster
node hours were directly relevant to the calculations pre-

PHYSICAL REVIEW D 79, 114502 (2009)

sented herein. Nevertheless, it seems that in order to
achieve the level of precision of the B = 1 correlation
functions presented here, propagator generation rather
than gauge-field generation is the most computationally
intensive component of the LQCD calculation. However,
even this will be superseded by the calculation of the
contractions that are required for systems involving more
than two baryons (the subject of future work).

III. EXPECTED SPECTRA

The form of the correlation functions that are expected
to emerge from these calculations is a textbook discussion,
but is now becoming more relevant as advances in the field
are enabling more complicated processes to be explored,
such as scattering, excited states and multihadron interac-
tions. Additionally, the accurate statistical sampling we
perform in the current work brings to light features that
have been safely neglected in the past. A discussion of the
impact of the boundary conditions (here we use antiperi-
odic temporal BCs for the quark fields) on multiple meson
correlation functions that were used in a recent calculation
of K*K* scattering can be found in Ref. [5], and a more
detailed derivation for a two-particle system can be found
in Ref. [19].

For interpolating functions O, p, the correlation func-
tion that is calculated with antiperiodic BCs on the quark-
fields is

Golt) = 5 Tile 7 0}() 04(0)]

1 ” o
= > BTt B 0L O)IkXK Op0)1)), (4)
jk

where T is the length of the time direction and Z =
Tt[e H77] is the partition function.?

As an example, consider the interpolating operator with
baryon number zero, strangeness zero (S = 0), and isospin
equal to two (I = 2) that couples to the 77+ 7" -state. This
state can be written in terms of hadronic field operators as

O00)=2Z,atat +Z oo omtamtw0a® + ..,
where the ellipses denote all other possible hadronic field
operators with the same quantum numbers and the Z’s are

unknown overlap factors. In Eq. (4), this operator thus
gives nonzero values for (7~ 7~ 10(0)|0), (7~ |O0)|7"),
01O0)| 7+ 7+), plus all other states with the same quan-
tum numbers as the 7" 7" source. Consequently the cor-
responding correlation function contains exponentials

e M with energies M =E_ .+ +, M=E_+ —E_ =0,
M=—-F_+_+, M =E_+ .+ 0.0, M= —E_+ .+ 0.0,
M =E_+ +x+x, ... In the zero temperature limit, only

2Typically, 0, and Oy are closely related; in our calculations,
they differ only in the type of smearing of the quark-fields and in
the momentum injection.
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those exponentials with M = E_+ .+ survive. States with
energies less than E_+_+ are thermal excitations, for in-
stance arising from the process shown in Fig. 6, and are
quite apparent in the measured / = 2 7r7r correlation func-
tions and have also been observed in hadronic systems
involving a static quark [20].

Baryon correlation functions are somewhat different, as
the interpolating operator for the single nucleon, for in-
stance, can couple not only to the N, but also to a state
containing the N and an even number of 7’s, to a p-wave
AK state, to a p-wave 2K state,to a p-wave N state, and
to any other state with the same quantum numbers as the
nucleon. Further, it can also couple to backward propagat-
ing negative-parity states, such as an s-wave Nr. Finally,
the single nucleon interpolating operator can couple for-
ward and backward propagating hadronic states (these are
thermal states as they exist only because of the finite
temporal extent (temperature) of the configuration), an
example being a forward propagating N and a backward
propagating 7 or vice versa. These states are simply illus-
trated by an example shown in Fig. 7, a N7 thermal state.
Here the finite temporal extent of the configuration is
indicated by the vertical lines (these should be (anti-)
identified). The two grey regions correspond to the source
and sink interpolating field. In the case depicted, the inter-
polating field at the source is N = (#Cysd”)ii and that at
the sink is N = (u” Cysd)u, suppressing spin and color
indices. For the usual zero temperature ground state, the
source produces three valence quarks and the sink annihi-
lates three valence quarks. In the thermal state depicted, the
source (right grey region) produces two valence antiquarks
and a valence quark (solid lines) while also producing, via
gluonic interactions, a sea quark-antiquark pair (dashed
line). The three antiquarks between the grey regions com-
bine to form an antinucleon propagating as exp(—My (T —
t)) where ¢ is the separation between the source and sink
and we ignore excited states for simplicity. The quark—
antiquark pair propagating around the temporal boundary
(since two quarks propagate, the boundary appears peri-
odic at the hadronic level) contribute a factor of

Y

A

FIG. 6. A depiction of the thermal contribution to 77 corre-
lation function. The vertical lines indicate the antiperiodic tem-
poral boundaries of the configuration and the grey regions
represent the 77 77" source and sink. The solid lines correspond
to valence quark propagators.

PHYSICAL REVIEW D 79, 114502 (2009)

— — . — = =

Y

FIG. 7. A depiction of the thermal N7 system produced by the
single-nucleon interpolating field. The vertical lines indicate the
antiperiodic temporal boundaries of the configuration and the
grey regions represent the single-nucleon source and sink. The
solid lines correspond to valence quark propagators, while the
dashed lines correspond to a sea quark loop from the gauge-field.

exp(—M .t) where T is the temporal extent of the configu-
ration. The resulting contribution to the two-point correla-
tor is then

G(t) ~ Zyse MaT o= My=Mz)t (%)

corresponding to a state with energy My — M, in the
observed spectrum.

In the case of the correlation function resulting from a
single nucleon interpolating operator in the A; representa-
tion of the cubic group, one expects to see a state with
energy equal to the N mass, M, and also states (a subset of
all states) with energy My — 2M,. — 6E .., My + OEy,,
and My + 2M, + 8Ey,,, Where 8E .. is the interaction
energy of two 7r’s in an [ = 0 state, 0 Ey . is the interaction
energy of the N system, while 6y, is the interaction
energy of the N7rar system. Particularly disturbing is the
state with energy My + SEy, corresponding to N7 mov-
ing forward in time and a 77 moving backwards in time, that
conspire to produce a state with an energy that differs from
the nucleon mass only by the N interaction energy. Such
states will be exponentially suppressed by the temporal
extent of the configuration, however, accurately disentan-
gling such states from the zero temperature ground-state
will ultimately require calculations on ensembles of gauge-
field configurations with different temporal extents.

It is important to realize that thermal states are not
simply a curiosity that can be safely ignored. As we shall
see in Sec. VIII, they dominate the statistical uncertainty of
baryon correlation functions at large times, providing de-
viations from the naive form of the signal-to-noise ratio.
The amplitudes of these states are exponentially sup-
pressed by the temporal extent of the configuration times
the mass of the backward going hadronic state.
Consequently, the most important thermal states involve
backward propagating pions, and, to suppress these states,
the product M, T must be large. As the chiral limit is
approached this will become more and more difficult since,
in the limit, it is impossible to separate any particular state
from itself and any number of pions.
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Multiexponential fits to smeared-smeared and smeared-point E—correlation functions as a function of the number of

exponentials, Ne,,,. The number of successful fits, N, has been defined to be fits with Q > 0.1 for a fixed time-length R with a fixed set
of initial parameter values. The time window listed is taken as a representative example of a good fit. The first uncertainty is statistical
while the second is taken from the standard deviation of successful fits, as defined above.

—
=

th thl Nexp R: Imins -+ Imax Nsuc Thlock feff Nsrc chg Xz/dOf Q

0.24138(33)(44) - 1 20: 47-67 16 1 35 245 1194 0.50 1.00
0.24108(28)(10) 0.377(6)(8) 2 45: 24-69 12 1 35 245 1194 0.70 0.99
0.2411524)(07)  0.371(8)(5) 3 50: 14-64 10 1 35 245 1194 0.77 0.95
0.24115(25)(07) 0.368(9)(4) 4 50: 10-60 12 1 35 245 1194 0.84 0.86

IV. ANALYSIS METHODS
A. Multiexponential fits

The high statistics accumulated for this work allows us
to perform stable multiexponential fits using a standard y?>
minimization. In this section, we explore the determination
of the ground and excited states as a function of several
variables; the number of exponentials used in the fit func-
tion, Nexp, the range of the fit, R, the number of sources per
configuration, the number of configurations, the blocking
time T,,k, and the (effective) anisotropy, &.¢. We present
details of our fits for the =, using a correlated fit to the
smeared-smeared and smeared-point correlation functions.

To begin, we performed combined multiexponential fits
by minimizing

2= [y = C))(Cov )y Ty (1) = Ci)] (6)

tt,s,s'

where y,(¢) are the lattice measured correlation functions,
s =[SS, SP], and Cov is the covariance matrix between
both time slices and correlation functions. The fitting
functions used are,

Css(t) = Y ZoZie™™', Coplt) = Y Z3Zfe ™', (1)
n n

where Cgg (Cgp) denotes the smeared-smeared (smeared-
point) correlation function. To perform these fits we start
with a single exponential and perform the correlated fit to
Z5, Z8 and E;. A selected set of best fit parameters from
this fit are used as initial estimates for the two-exponential
fits. This is performed recursively by taking the best fit
results from the N exponential fit as an initial estimates to
the N + 1 exponential fit. With this strategy, successful
minimizations with up to six exponentials have been per-
formed. However, with the inclusion of the fifth and higher
exponentials, the minimizer performs poorly, and often
returns two masses that are degenerate within their uncer-
tainties. Furthermore, as discussed in detail in the previous
section, the expected spectrum of states on these aniso-
tropic configurations is such that the resulting masses for
the excited states are likely averages of nearby energy
levels, see also Sec. IVE below for demonstrations of
this. For these reasons, we are only confident in the
ground-state energies extracted in these fits. However, the

number of exponentials used in a successful minimization
plays an important role in minimizing the fitting systematic
uncertainty.

The extracted mass of the = as a function of the number
of exponentials in the fit form is detailed in Table 1. With
the high statistics in this study, fitting a single exponential
yields a statistical uncertainty of less than 0.2%, with a
slightly larger fitting systematic uncertainty, however, 50
time slices must be discarded because of excited state
contamination. For our multiexponential fits, the fitting
systematic uncertainty is defined to be the standard devia-
tion of all successful fits in a given minimization. To define
a successful fit, we take a fixed length in time, R = #,,,, —
tmin» and a fixed set of initial parameters, and keep all fits
with an integrated probability distribution Q > 0.1 while
varying fmin.. One observes that the statistical and system-
atic uncertainties are not further reduced by including more
than three exponentials in the fit. The resulting ground-
state mass of the E as a function of the #,,;, used in the fit is
shown in upper panel of Fig. 8 (in a style similar to an
effective mass plot) with the color and symbol shapes
indicating the number of exponentials in the fit. The ex-
traction of the nucleon mass is also shown in the lower
panel. Increasing the number of exponentials in the fit,
Neyp, allows the 7,;,-interval over which the ground-state
energy is seen to plateau to be brought closer to the source
where statistical uncertainties are much reduced.

The full set of measurements have been used to generate
the fits presented in Table I, and the correlation functions
from configurations nearby in Monte Carlo time have not
been blocked. Blocking is known to be important, since for
correlated configurations, unblocked correlation functions
can lead to underestimates of the true uncertainty. For
hadronic quantities, we expect that the ensemble we have
used has an autocorrelation time of about 40 Monte Carlo
time steps [11]. Our calculations have been performed on
configurations separated by only 7 = 10. Several different

*The quality of fit value, Q, is defined as the integrated
probability distribution of x?> with d degrees of freedom, Q =
[ PP d), where P, d) = N> exp(—x?/2),

min

with N the normalization constant. The lower limit of the
integration, x2,,, is the x? of the fit under consideration.
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FIG. 8 (color online). The mass of the = (upper panel) and N
(lower panel) extracted from multiexponential fits as a function
of the 7,,;, used in the fit.
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fits were performed to determine the effects of blocking on
our multiexponential fits, the results of which are collected
in Table II. To normalize these fits, a fitting interval, with a
range of R = 30, was determined from the N, =3 ex-
ponential fits. For these fits, the blocking time 7y, has no
detectable impact on either the statistical or systematic
uncertainties (7, = | corresponds to no blocking, while
Thlock = 10 corresponds  to  blocking every 10
configurations).

The range of time used in the fits also plays an important
role in minimizing the uncertainty. The resulting fits for
short and long time ranges used in three and four expo-
nential fits are shown in Table III. While the range does not
have a significant impact on the statistical uncertainty, it
does significantly reduce the systematic uncertainty in the
fit. To have such long ranges of statistically useful time
slices, the anisotropy ¢ = b,/b,, which is 3.5 for this
ensemble, is crucial. We have not performed calculations
with a different anisotropy (including isotropy), but this
can be qualitatively studied by constructing correlation
functions using only every second or every third time slice,
with an effective anisotropy of &4 = 1.75 and 1.17, re-
spectively. In the lower section of Table III, we display fits
of 1, 2 and 3 exponentials to these reduced sets of mea-
surements. This reduced anisotropy has a significant im-
pact on the resulting uncertainties, particularly for
&oir = 1.17. We were unable to find successful four expo-
nential fits, and the number of successful fits with 1, 2 and 3
exponentials has been reduced. Furthermore, the smaller

TABLE II. Effects of blocking on the determination of the ground-state = mass.

th Nexp R: Imins -+ Tmax Nsuc Thlock ‘feff Nsrc chg Xz/dOf Q
0.24113(25)(36) 3 30: 1444 17 1 35 245 1194 0.84 0.79
0.24130(30)(09) 3 30: 1444 15 2 35 245 1194 0.83 0.81
0.24123(33)(31) 3 30: 1444 21 5 35 245 1194 091 0.67
0.24139(34)(34) 3 30: 1444 11 8 35 245 1194 1.1 0.35
0.24063(25)(36) 3 30: 30-60 2 10 35 245 1194 0.93 0.62
TABLE III.  Effects of fit range, R and anisotropy, &.¢ on the determination of ground-state =
mass.

th Nexp R: Imins -+ Tmax Nsuc Thlock geff Nsrc chg XZ/dOf Q
0.24138(33)(44) 1 20: 47-67 16 1 35 245 1194 050  1.00
0.24108(28)(10) 2 45: 24-69 12 1 35 245 1194 070 099
0.24102(26)(25) 3 24: 2044 20 1 35 245 1194 081 0.80
0.24112(26)(15) 4 25: 1742 15 1 35 245 1194 094 0358
0.24113(25)(07) 3 55: 14-69 10 1 35 245 1194 074 098
0.24106(24)(08) 4 60: 9-69 8 1 35 245 1194 079 095
0.24062(49)(29) 1 24:52,54,..., 74 4 1 1.75 245 1194 074 0.78
0.24106(51)(34) 2 24:34,36,...,58 11 1 1.75 245 1194 055 095
024111(25)(30) 3 28:14,16,...,42 10 1 1.75 245 1194 096 051
0.24119(37)(30) 1 15: 48,51,...,63 5 1 1.17 245 1194 046 0.9
0.24115(46)(14) 2 24:33,36,..., 57 2 1 1.17 245 1194 072 0.74
0.2411021)(24) 3 27:21,24,...,48 4 1 1.17 245 1194 099 045
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TABLE IV. Effects of the number of sources, N, and number of configurations, N, on the

determination of the ground-state & mass.

th Nexp R: mins ++» Tmax Nsuc Thlock ‘feff Nsrc chg Xz/dOf Q

0.24304(101)(54) 1 20: 48-68 18 1 35 245 120 095 0.55
0.24248(64)(24) 1 20: 45-65 22 1 35 245 239 0.65 0.96
0.24178(36)(34) 1 20: 43-63 17 1 35 245 597 066 0.95
0.24110(37)(13) 3 40: 1646 8 1 35 245 239 099 0.50
0.24134(24)(17) 3 50: 22-72 16 1 35 245 597 072 0.98
0.24309(162)(137) 1 20: 43-63 24 1 35 1 1025 1.07 035
0.24075(129)(44) 1 20: 52-72 24 1 35 10 1025 0.72 0.91
0.24063(45)(56) 1 20: 46-56 20 1 35 50 1025 0.72 091
0.24088(39)(48) 1 20: 46-56 17 1 35 100 1025 1.00 047
0.24174(72)(60) 3 50: 11-61 13 1 35 1 1025 1.10 024
0.24116(38)(22) 3 50: 15-65 13 1 35 10 1025 0.87 0.81
0.24108(28)(15) 3 50: 15-65 8 1 3.5 50 1025 0.94 0.64
0.24115(30)(04) 3 50: 20-70 3 1 35 100 1025 1.15 0.15
0.24138(33)(44) 1 20: 47-67 16 1 35 245 1194 050 1.00
0.24115(24)(07) 3 50: 14-64 10 1 35 245 1194 077 0.95

number of time slices in the same physical extent, reduces
our ability to control the systematics of the fits.

Finally, the impact of the number of sources, Ny, and
number of configurations N, on the uncertainties in the
extracted mass of the = has been explored, the results of
which are collected in Table IV. With Ny = 50 or Ng, =
597, the statistical uncertainties with N, = 3 exponential
fits are the same as with the full set of measurements.*
However, in both cases the systematic uncertainty is larger
than that of the full set of measurements. The correspond-
ing dependence of more complicated multiparticle observ-
ables on the number of configurations and sources are
under investigation.

For multiexponential fits, it appears that the most im-
portant feature in controlling the uncertainty the ground
state is the number of exponentials with which a successful
minimization can be performed. Neither the statistical nor
systematic uncertainties improve beyond the inclusion of
three exponentials in the fits. To have confidence in the
Neyp = 3 exponential fits, the anisotropy is found to be
essential. A quantitative exploration of the effects of the
anisotropy on the stability of multiexponential fits is desir-
able, but this would be a very costly numerical endeavor.
With three or more exponentials, the fitting range, number
of sources and number of configurations have essentially
the expected effect on the statistical (and systematic)
uncertainties.

B. Generalized effective mass plots

Correlation functions on an ensemble of configurations
of infinite extent in the time direction become dominated

“The set of measurements with varying numbers of sources has
been constructed by including all configurations which have at
least Ny, = 100.

by a single exponential at large times with an argument that
is the energy of the ground state of the system,

C(t) = Z Z,e Bt — Z e o,
n=0

®)

It is conventional to define the effective mass (EM) from
the logarithm of the ratio of the correlation function on
adjacent time slices. It is also possible5 to form a more
general EM from time slices separated by ¢, > 1

1 C(1)
Mg ; (1) = — logl =——— | — E,. 9
eft,r, (1) . Og(C(t-i- t])> 0 9
For exponentially decreasing signals with time-

independent noise, this will naturally reduce the statistical
uncertainty in the EM and improve the extraction of
energy-eigenvalues as it increases the “lever-arm” of the
exponential. In such a case, the uncertainty in Mg (f;) in
Eq. (9) will decrease as 1/1,. Simple correlation functions
involving 7’s have time-independent uncertainties, but this
is not the case for baryonic correlation functions, whose
relative uncertainties grow exponentially with time. We
explore the improvements to baryon EMs, and ultimately
the extraction of baryon masses and the energy-
eigenvalues in the volume, that result from ¢; > 1. In fitting
an energy to an EM (and other generalizations), either the
Bootstrap or Jackknife procedures are used to generate the
covariance matrix associated with the time slices in the
range of the fit.° This covariance matrix is then used to

>This was suggested by K. Juge in a talk at Lattice 2008, see
Ref. [21], but may have been used earlier.

°In the Bootstrap method, Ny, = chg randomly generated
bootstrap samples are used after blocking over sets of five
configurations, while the Jackknife ensembles are constructed
by single omission after blocking over 10 configurations. We
have found consistent results using both methods and by using
different blockings and values of Ny.
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form the y?/dof, which is minimized to determine the
energy, and then explored to determine the uncertainty in
this energy. The statistical uncertainty is obtained by find-
ing values of the fit parameters where the y? function
attains a value of y2. + 1.

To demonstrate the impact of #; > 1 for baryon EMs, we
examine the smeared-smeared correlation function of the
E-baryon. Figure 9 shows the EMs obtained with ¢, = 1
(left panel) and ¢; = 10 (right panel). The scatter of the
effective mass from time slice to time slice is significantly
reduced with #; = 10 compared with ¢; = 1, allowing for a
clear identification of the time range over which it is
reasonable to extract the (ground-state) mass of the =.
Therefore, the systematic uncertainty associated with the
fitting range in the EM is reduced. The statistical uncer-
tainty in the mass of the E extracted from the EMs with the
two different values of #;, when fit over the time time-slice
interval, are however very similar, as can be seen in the
resulting fits to time-slices t = 48 to t = 58,

MY~ = 0.24087 + 0.00057 = 0.00080,

x?/dof = 0.68,
1,=10 (10)
= = 0.24060 % 0.00061 = 0.00060,

\2/dof = 0.44.

The first uncertainty corresponds to the statistical uncer-
tainty in the mass determined from the y?/dof minimiza-
tion, while the second corresponds to systematic
uncertainty associated with the fitting interval. The system-
atic uncertainty of this fit is determined by varying the
fitting interval at each end by 0, =1, =2 time slices,
performing a y?/dof minimization over each interval and
taking half of the spread of the extracted masses.
Alternative procedures such as using fits to rolling win-

S0
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FIG. 9 (color online).
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dows of time slices within the fitting interval return similar
uncertainties.

It is interesting to explore how different values of ¢,
modify the form of the covariance matrix that is input into
the y?/dof minimization. The covariance matrices associ-
ated with the time-interval t = 48 to t = 51 from these two
EMs are shown in Eq. (11). They are quite different, with
the distant off-diagonal elements becoming more signifi-
cant for increasing ;.

4.82
1.97
2.71
2.70

4.75
5.09
5.29
5.26

1.97
6.21
3.03
3.15

5.09
5.65
5.91
5.96

2.71
3.03
7.83
3.35

5.29
5.92
6.41
6.48

2.70
3.15
335 |
7.06

5.26
5.96
6.48
6.90

2 107
;- =10

(1)

2 1077
or=10 = 10

In this comparison, it is important to note that the two
extractions make use of different parts of the correlation
function. The #; = 1 fit uses five time slices, while the ¢; =
10 fit uses eight well-separated time slices.

The EMs from the smeared-point = correlation func-
tions with #; = 1 and t; = 10 are shown in Fig. 10. The
scatter in the EM for £; = 1 is substantially less than for the
smeared-smeared correlation function, as the overlap of the
interpolating operator onto the ground state is larger.
However, the overlap onto excited states is even larger,
and the ground-state component of the correlation function
does not become dominant until later times, increasing the
fitting systematic uncertainty in the extraction of the
ground-state mass.
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The left panel shows the conventional EM (¢, = 1) from the smeared-smeared = correlation function, and the

right panel shows the EM for the same correlation function with #; = 10.
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The left panel shows the conventional EM (¢, = 1) from the smeared-point = correlation function, and the

right panel shows the EM for the same correlation function with #; = 10.

C. Prony’s method/linear prediction

As the signal-to-noise ratio of baryon correlation func-
tions degrades exponentially with time, it is important to
extract the ground-state signal (or excited-state signal if
that is the state of interest) from a range of time slices
starting at the earliest possible time. Significant effort has
been placed into determining interpolating operators that
maximize the overlap onto the ground states of the baryons
in order to facilitate this. Further, there has been significant
effort put into using the variational method [22,23], for
which the correlation functions resulting from a number of
hadronic interpolating operators are diagonalized on each
time slice to give the eigen-energies with the appropriate
quantum numbers. A few years ago, Fleming suggested
that generalizing the EM-method to two or more exponen-
tial functions might be useful in LQCD analysis based on
findings of NMR spectroscopists [24].” At that time, we
explored this method with sets of correlation functions that
were available to us at that time, and found the method was
quite unstable to the statistical fluctuations in those mea-
surements. More recently, Lin and Cohen [27] and Fleming
et al. [28] compared this method favorably to the varia-
tional approach. Given the small statistical uncertainties in
the correlation functions we are presently considering, and
the reduction in the systematic uncertainties achieved with
t; > 1, we return to explore this method.

In LQCD, two-point correlation functions have the form

G(t) = Aoe_“‘)[ + Ale_a" + ...+ Ak_le_akflt + . ey
(12)

"The method is more generally referred to as Prony’s method
[25] after Gaspard Riche de Prony who first constructed it in
1795 [26]. These techniques and other related methods are
known as linear prediction theory in the signal analysis
community.

where ¢ denotes the time slice (time slices are implicitly
taken to be evenly-spaced). It follows from Eq. (12) that

G(t + nk) + C,_G(t + n(k — 1))

where the integer n is the generalization of ¢; to the case of
a multiexponential function. In order to determine the k
coefficients C;, k equations are required to be formed from
the measured correlation function. Given the C;, the roots
of

(e + Crmr(e7" Y7+ Crpe ") 2+ .+ Co =0,
(14)

and, in particular, the a’s, provide the energies of the states
contributing to the correlation function.

1. One-exponential : The standard effective mass

In the case of k = 1, where the correlation function is
assumed to be a single exponential, and taking n = 1,

Git+ 1)+ CyGt)=0, (e +Cy=0 (15

and the usual expression for the EM follows trivially.

2. Two exponentials

In the case of two exponentials in the correlation func-
tion, the most general pair of equations that can be used to
extract the two effective masses is

G(t+2n)+ C,G(t+n)+ CyG(1) =0
G(t+2n+gq)+CGt+n+q)+ CyG(t+ q) =0,
(16)

where ¢; is an arbitrary integer off set between the two
equations. Inserting the values of the calculated correlation
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function allows for an extraction of Cy ; on each time slice,
j. These coefficients are then inserted into

(e + Cy(e™") + Co = 0, (17)

to recover a numerical values of the e "“. By choosing
n = m = 1, the expressions of Fleming [24] are recovered.
In order to optimize the two-exponential extraction, a
search over values of the pair (n, g;) must be performed.
A further systematic uncertainty can be assigned from this
choice.

The ground-state extracted from the smeared-smeared 5
correlation function with n = ¢g; = 5 is shown in Fig. 11.
It is clear that the ground-state signal can be isolated from
the correlation function for a large number of time slices,
many more than using the single exponential EM (Fig. 9)
alone. We have shown the fit to the ground-state result
between time-slices ¢ = 30 and ¢ = 60. The lower-limit of
the time interval was chosen to be within an interval for
which y?/dof < 1. Extending the fit interval to lower time
slices gradually increases the y?/dof, as shown in the right
panel of Fig. 11, indicating contamination from higher
energy states. The upper-limit of the fitting interval was
chosen to be in the region for which backward propagating
states (due to the antiperiodic BC’s in the time direction)
were not visible in the EM (or in the y?/dof). The ground-
state = mass we extract from this 2-exponential analysis is

Mz = 0.24109 = 0.00043 = 0.00057,

S (18)
x2/dof = 0.38,

where the first uncertainty is statistical and the second is
the fitting systematic (as defined previously). The statisti-
cal uncertainty in the 2-exponential extraction is signifi-
cantly smaller than that obtained from the one-exponential
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FIG. 11 (color online).
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analysis (Eq. (10)). This is due to the substantially in-
creased number of time slices in the ground-state plateau
in the generalized EM.

One aspect of this method that is less appealing is the
ambiguity in the association of the two roots that result
from Eq. (17) to the two states on different time slices and
on different jackknife/bootstrap ensembles. This (mis-)
identification issue is the cause of the anomalously large
uncertainties at time-slices 31,...,36 in Fig. 11—this
should not be interpreted as variance of the signal for the
ground state. Additionally, on different time slices and
jackknife/bootstrap ensembles, this method can, and likely
will, select different terms in Eq. (12) particularly for the
subdominant excited state, adding additional artificial vari-
ance to the signals for particular energy eigenstates.
Consequently, the extracted second state is not physically
meaningful.

3. Three and more exponentials

The generalization of the method to arbitrary numbers of
exponential functions is straightforward. In the case of
three exponentials, inserting the values of the calculated
correlation functions,

G(t + 3n) + C,G(t + 2n) + C,G(t + n) + CyG(1) =0
G(t+3n+q)+ CG(t+2n+q)
+C,G(t+n+qy) + CoG(t+q) =0
G(t+3n + q,) + C,G(t + 2n + q5)
+C,G(t+n + qy) + CyG(t + g5) =0,
(19)

with ¢; # g, # 0 allows for an extraction of C ; , on each

0'8 [ '...l . ]

x?2/dof

04r 1

02k R 1

0O

The left panel shows the ground-state extracted from the smeared-smeared = correlation function with a 2-

exponential Prony determination with n = ¢g; = 5, and the correlated fit to the time slices between r = 30 and ¢ = 60. The inner
(darker) region corresponds to the statistical uncertainty, while the outer (lighter) region corresponds to the statistical and fitting
systematic uncertainties combined in quadrature. The right panel is the y?/dof for fits between time-slices ¢ = t,,;, and ¢ = 60.
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time slice, r. Again, these coefficients can be extracted
uniquely in terms of the G(¢) due to the fact that the system
is linear. These coefficients C; , are then inserted into
(e7")3 + Cy(e ™) + Ci(e™ ") + Cy = 0, (20)
to recover a numerical value of e™"“. Analysis of a given
correlation function involves searching for the values of the
triplet (n, g, g,) that optimizes the extraction (in each
equality in Eq. (19), different n can be used). In this
case, statistical fluctuations occasionally result in complex
roots of Eq. (20) on a particular Jackknife or Bootstrap
ensemble. At present, we simply omit these contributions
in our analysis. Such complex roots correspond to an
oscillatory solution and arise from short distance noise in
the correlation function (or nearly degenerate states in the
spectrum), and are a well-known issue with the simple
Prony method. More advanced methods [29] can mitigate
this issue, but do not result in improved extractions of the
ground-state so we do not discuss them in detail.

The ground-state energy extracted from the smeared-
smeared = correlation function withn = 10, ¢; = 3, g, =
6 is shown in Fig. 12. It is clear that the ground-state signal
is extractable from time slices even closer to the source
than with two-exponential analysis. In Fig. 12, the fit to the
ground-state between time-slices + = 10 and = 52 is
shown. The extracted mass is

Mz = 0.24124 = 0.00032 = 0.00034,

(2D
x2/dof = 0.22,

with the statistical uncertainty being slightly less than in
the two-exponential analysis. It is important to realize that

0.250 1 1

02451 1

=(0)

b M.

0.240 1 1

02351 1

TP | .

0 10 20

30 40 50 60
t/b,

FIG. 12 (color online).
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this level of precision corresponds to a statistical uncer-
tainty of ~2 MeV in the = mass.

We have successfully applied the four- and five- state
Prony method to our data but no improvement is seen
beyond the three-exponential extractions.

D. Multi-Correlation function Prony method

There are a number of extensions of the Prony method
that exist in the literature (see for example [29]), some of
which we have investigated in detail. For the correlation
functions we have in hand, these extensions do not signifi-
cantly improve on the standard Prony method. Typically,
these methods are applied in cases where only a single set
of measurements is available. However, we have two sets
of correlation functions (smeared-smeared and smeared-
point) whose energy spectra are identical in the limit of a
large number of configurations. It is straightforward to
generalize Prony’s method to include both correlation
functions—the matrix-Prony method. This form leads to a
further reduction in the uncertainty of the extraction of the
energy eigenvalues. A similar approach, has been briefly
discussed in Ref. [28,30].

Assume we have N (N = 2 in our case) correlation
functions from which we want to extract the energy levels.
If these correlation functions are a sum of exponentials
they satisfy the following recursion relation,

My(r + 1)) = Vy(7) = 0, (22)
where M and V are N X N matrices and y(7) is a column
vector of N components corresponding to the N correlation
functions. Equation (22) implies then the correlation func-
tions are

1471 1

121 1

2 /dof

06 . 1
0.4 1

02r ““." .................... T

0Ot

tmin/br

The left panel shows the ground-state extracted from the smeared-smeared = correlation function with a 3-

exponential Prony determination with n = 10, ¢; = 3, ¢, = 6, and the correlated fit to the time slices between t = 10 and ¢ = 52. The
inner (yellow) region corresponds to the statistical uncertainty, while the outer (red) region corresponds to the statistical and fitting
systematic uncertainties combined in quadrature. The right panel is the y?/dof for fits between the time-slices r = ¢,,;, (the horizontal

axis) and ¢t = 52.
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N
y(6) = Coq,A", (23)

n=1

where ¢, and A, = exp(m,) the eigenvectors and eigen-
values of the following generalized eigenvalue problem

Mg = \'Vq. 24)

Given the N sets of correlation functions, the masses can be
found by determining the matrices M and V that are needed
in order for the signal to satisfy Eq. (22). Solving Eq. (24),
then leads to the eigenvalues A, = exp(m,t;) and the
eigenvectors ¢, needed to reconstruct the amplitudes
each exponential enters the correlation functions. A simple
solution can be constructed as follows. First note that

t+ty t+ty
MY yr+ 1)y =V Y @y’ =0. (25

Clearly, a solution for M and V is

M= [Z ¥+ r,)y(r)T]”,

V= [tgymy(f)T]‘,

where these inverses exist provided that the range, tyy, is
large enough to make the matrices in the brackets full rank
(tw = N — 1). In our case with two exponentials the range
has to be two for achieving full rank. Once the eigenvalues,
A, and eigenvectors g, are determined, the amplitudes, C,,,
can be reconstructed using ¢ as a normalization point. The
shift parameter #; can be used it improve stability if this is
used in conjunction with ty,. The above solution is equiva-
lent to determining M and V by requiring that

(26)

P = ZW<[M)’(T + 1)) — Vy(D) ' [My(r + t;,) — Vy(7)])

27)

is minimized. Here, the (. ..) indicate a matrix trace

To go beyond extracting two states, one can construct
and solve a second order recursion relation. The minimi-
zation condition of Eq. (27) augmented to contain the
second order terms in the recursion, can be used to deter-
mine the unknown matrices. The resulting eigenvalue
problem a second order nonlinear generalized eigenvalue
problem which is straightforward to solve. However, to
isolate the ground state, which is our present focus, the two
state model is sufficient and we do not pursue this further.

To demonstrate how this method works, we return to =
correlation function discussed above. Figure 13 shows the
generalized EMP for the E mass as a function of time
determined with a N = 2 matrix-Prony extraction, using
both the smeared-smeared and smeared-point correlation
functions. The inset shows the second extracted state in

PHYSICAL REVIEW D 79, 114502 (2009)

addition to the ground state. The extracted value of the 2
mass, determined by fitting in the time-interval t = 11 to
t =50, is

x2/dof = 0.81,
(28)

Mz = 0.24097 = 0.00025 = 0.00003,

The EM of the dominant state in Fig. 13 plateaus around
time-slice t = 10, and is well-defined over a large interval.
In addition to being somewhat more visually appealing
than the previous Prony analyses of single correlation
functions, this method provides the smallest uncertainties,
particularly for the fitting systematic.

In our final extractions of baryon masses, our EM analy-
sis will use the matrix-Prony method. This method yields
ground-state energies that are in complete agreement with
those from the other methods discussed. The generalized
EMs from the matrix-Prony method are consistently clean,
and the quality of fits are uniformly good for the ground
state. Since they involve only one fit parameter, one can
easily assess the quality of the fits. The procedure for fitting
parameters and determining their statistical uncertainty has
been described in Sec. IV B. Systematic uncertainties are
calculated by performing fits over rolling windows of time
slices within the quoted overall range and looking at the
standard deviation of the central values of those fits. This is
combined in quadrature with a further systematic uncer-
tainty that is generated by sampling a large range of
possible values of 7; and fy, and taking the standard devia-
tion of the central values of the resulting fits. The general-
ized EMP for the E extracted with the matrix-Prony
method for a variety of values of #y and f; can be seen
in Fig. 14.

[ 045

0.250 [ 040
ro03s
0248 0.30
[ 025
0.20

0246 - 015

[ o010 ]
02441 0 10 20 30 40 50 60 70 ]
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0.240 w 3 A

0238 i ]

02360,y o v v v 3
0 10 20 30 40 50 60 70
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FIG. 13 (color online). The generalized EMP for the mass of
the B using a Matrix-Prony analysis with 7; = 7 and ry = 11,
and the correlated fit to the time slices between ¢ = 11 and 1 =
50. The inner (darker) region corresponds to the statistical
uncertainty, while the outer (lighter) region corresponds to the
statistical and fitting systematic uncertainties combined in quad-
rature. The inset shows both states extracted with the matrix-
Prony method.
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FIG. 14 (color online). The generalized EMP for the mass of
the E using a Matrix-Prony analysis for a variety of values for 7,
and fy.

E. Prony-Histograms

In extracting the energies of the states through the Prony
procedure, a set of roots are produced on each time slice for
each member of the Bootstrap or Jackknife ensemble. In
general these roots are real and there is an ambiguity in
associating the roots with energy-levels in the finite volume
(only the single particle masses are approximately known).
In order to aid identification of energy-levels it is useful to
form histograms of the complete set of roots generated
through the Bootstrap procedure. The simplest histogram is
formed by accumulating all of the roots obtained on a
subset of, or all of, the time slices over all bootstrap/jack-
knife ensembles. The dominant components of the corre-
lation function will appear as well-defined peaks in the
histogram.

In most cases, this histogramming procedure produces
very similar results when either two, three or four expo-
nential Prony, or matrix-Prony analyses are used. Only
atypically do the higher exponential analyses reveal a clean
state that is not present in the two-exponential analysis.
Additionally, since our baryon correlation functions are
asymmetric in time because of the parity projectors used
in Eq. (2), noise is reduced in these histograms by sepa-
rately accumulating the roots over the two half configura-
tion. As expected, the excited states have a larger presence
in the smeared-point correlation function. An example
histogram is shown in Fig. 15, corresponding to the Z
correlation function analyzed in Fig. 13. There is one clear
peak in the histogram, corresponding to the E ground-state
and one broad structure at higher mass, which the histo-
gram suggests is likely to be a collection of closely-spaced
states that currently are not resolvable. This interpretation
of the excited state is consistent with expectations for the =

PHYSICAL REVIEW D 79, 114502 (2009)
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FIG. 15 (color online). The histogram of the positive roots
extracted from time-slices t =11 to =50 from N =2
matrix-Prony analysis of the E correlation functions, with 7, =
7 and ty = 11.

spectrum and with the instability of the extractions of the
first excited state in the exponential fits discussed earlier.

V. MESON SPECTRUM

The 7% correlation functions do not suffer from expo-
nential signal-to-noise degradation for configurations of
infinite temporal extent (in Sec. VIII, we will find that
this is not true for a finite time direction even for the
pion). As a result, they can be calculated with small
statistical uncertainty on each time slice, as shown in
Fig. 16. As the EM for the 7% does not exhibit a plateau,
the 77 mass is determined by fitting cosh(M .(t — %)) toa
(large) number of time slices of the correlation function.
Performing a double cosh fit to time slices t = 21 to t = 41
yields

M, = 0.06936 = 0.00012 = 0.00005,

(29)
x%/dof = 0.73,
where the first uncertainty is statistical and the second is
fitting systematic. The statistical uncertainty in the mass is
determined with the Jackknife procedure, and the fitting
systematic is determined by varying the fitting interval
over a reasonable range.

The second set of peaks that are visible in the histogram
are at an energy consistent with the / = 1 KK state (with
a threshold at M, + 2M g ~ 0.2636) that can couple to the
source that produces a single 7. With even greater sta-
tistics, the energy of this state could calculated with
enough precision to extract the I = % Kmand I =0 KK
scattering lengths and the / = 1 KK three-body interac-
tion. An expression for the energy-levels of this system in a
finite-volume in terms of the KK and K scattering am-
plitudes and various three-body interactions has recently
been derived [31] and would be useful in analyzing this

114502-16



HIGH STATISTICS ANALYSIS USING ANISOTROPIC ...

0.2 F————————r——————— 7

01f o, E

00f * . o

by M+ (0)

-0.1 e

) 3 S S S S S S S B S St
0

/b,

I T

P S S S S S S S
0.00 0.05 0.10 0.15 0.20 0.25 0.30
by Mz(1)

™ -l

FIG. 16 (color online). The upper panel shows the EM for the
smeared-point 77* correlation function, while the lower panel
shows the associated matrix-Prony histogram.

state. There is no clear peak that can be associated with / =
1 7r7rar, which one would naively thought would have been
present. It must be the case that the source does not couple
with any appreciable strength to this state.

The EM associated with the smeared-point kaon corre-
lation function is shown in Fig. 17, along with the
bootstrap-Prony histogram. Despite the appearance of the
EM, no plateau is found in the EM, and the kaon mass is
extracted by fitting cosh(M(r — 1)) to a number of time
slices of the correlation function. Performing a double cosh
fit over the time slices between ¢ = 29 and t = 49, yields a
K* mass of

My = 0.097016 = 0.000099 = 0.000033,

5 _ (30)
x>/dof = 1.01.

The excited state(s) that are seen in the histogram in
Fig. 17 are consistent with the [ = % KKK. A better
measurement of this state, in analogy with the pion corre-
lation function, would allow for a determination of the I =
0 KK scattering amplitude.

PHYSICAL REVIEW D 79, 114502 (2009)
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FIG. 17 (color online). The upper panel shows the EM for the
smeared-point K* correlation function, while the lower panel
shows the associated Prony histogram.

VI. GROUND-STATE BARYON SPECTRUM

With the methodology we have presented in Sec. IV, we
are in a position to extract the masses of the lowest-lying
octet baryons. The E correlation functions have been used
extensively to demonstrate the strengths and weaknesses of
the various methods, with the resulting mass extraction
given in Eq. (28), and we do not repeat that discussion here.

The matrix-Prony method applied to the smeared-
smeared and smeared-point correlations functions associ-
ated with the X, A and N produces the Prony-histograms
and generalized EMs shown in Fig. 18-20. Fitting the 3
EM between time-slices t = 12 to t = 47 yields X mass,

Ms = 0.22811 = 0.00028 = 0.00018,  x?/dof = 0.77.

3D

Fitting the A EM between time-slices t = 12 to t = 52
yields A mass,

M, = 0.22255 = 0.00028 = 0.00005,  x*/dof = 1.21.

(32)

Finally, fitting N the EM between time-slices t = 11 tot =
40 yields N mass,
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FIG. 18 (color online). The upper panel shows the generalized
EM for the mass of the ¥ using a matrix-Prony analysis with
t; =9 and ty = 17, and the correlated fit to the time slices
between t = 12 and t = 47. The inner (darker) region corre-
sponds to the statistical uncertainty, while the outer (lighter)
region corresponds to the statistical and fitting systematic un-
certainties combined in quadrature. The inset show the same
ground-state EM plot along with that of the excited state (light
points). The lower panel shows the associated Prony histogram
of the positive roots for the time-slices t = 12 to t = 47.

My = 0.20682 = 0.00032 + 0.00010,  x2/dof = L5.

(33)

The results of the best extractions of the ground-state
baryon masses using multiexponential fitting and the
matrix-Prony method, which give consistent results for
each species of baryon, are collected in Table V. These
results are completely consistent within their uncertainties,
giving us confidence that our extractions are correct.

VII. NEGATIVE-PARITY EXCITED BARYON
STATES

The interpolating operators that produce even-parity
baryons moving forward in time also produce negative-
parity partners moving backwards in time. As the interpo-
lating operators couple to continuum states such as N7, it
is possible that, by using Liischer’s method (and ideally,

PHYSICAL REVIEW D 79, 114502 (2009)
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FIG. 19 (color online). The upper panel shows the generalized
EM for the mass of the A using a matrix-Prony analysis with
t; =9 and ty = 11, and the correlated fit to the time slices
between t = 10 and ¢ = 47. The inner (darker) region corre-
sponds to the statistical uncertainty, while the outer (lighter)
region corresponds to the statistical and fitting systematic un-
certainties combined in quadrature. The inset show the same
ground-state EM plot along with that of the excited state (light
points). The lower panel shows the associated Prony histogram
of the positive roots for the time-slices r = 10 to t = 47.

multiple spatial volumes), the phase-shifts for meson-
baryon scattering can be extracted in channels with con-
tributions from disconnected diagrams.

In addition to excited single-baryon states, and the con-
tinuum states that carry zero units of momentum in the
volume, there are also continuum states where each hadron
carries one or more units of momentum in the volume,
while having vanishing total momentum. The lowest en-
ergy state containing hadrons A and B with back-to-back
momenta *p = +27Tn (where n is an integer triplet)

occurs at

£ — JMg .

In attempting to unravel the spectrum of states contributing
to the correlation functions, we must also consider such
continuum states.

27T|n|

2”'“') . (34
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FIG. 20 (color online). The upper panel shows the generalized
EM for the mass of the N using a Matrix-Prony analysis with
t; =7 and ty =2, and the correlated fit to the time slices
between t = 11 and t = 40. The inner (darker) region corre-
sponds to the statistical uncertainty, while the outer (lighter)
region corresponds to the statistical and fitting systematic un-
certainties combined in quadrature. The inset show the same
ground-state EM plot along with that of the excited state (light
points). The lower panel shows the associated Prony histogram
of the positive roots for the time-slices ¢t = 11 to t = 40.

The lowest-lying negative-parity state that is expected to
couple to the interpolating operator for the single nucleon
is the s-wave N state (more precisely, we refer to the A}
representation of the hyper-cubic group), which has a
threshold, neglecting interactions, of M, + My =
0.27618 £ 0.00034 = 0.00011. Fitting the EM shown in
Fig. 21 between time-slices 1 = 93 to t = 119 yields,

PHYSICAL REVIEW D 79, 114502 (2009)
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FIG. 21 (color online). The upper panel shows the generalized
EM for the lowest-lying negative-parity state coupling to the N-
source using a matrix-Prony analysis with #; = 5 and #y, = 8,
and the correlated fit to the time slices between ¢ = 93 and 1 =
119. The inner (darker) region corresponds to the statistical
uncertainty, while the outer (lighter) region corresponds to the
statistical and fitting systematic uncertainties combined in quad-
rature. The lower panel shows the associated Prony histogram of
the positive roots for the time-slices t = 93 to r = 119.

Ey, =0.2861 = 0.0011 = 0.0020, x?/dof = 0.91,

(35)

significantly above threshold. Therefore, we conclude that

this state is an s-wave 7N scattering state with isospin / =

%, as it has energy considerably below that of the first

TABLE V. The ground-state masses of the J7 = %* baryons extracted by fitting four exponentials and by the matrix-Prony method.
The first uncertainty is statistical while the second is the fitting systematic.

Exponential Fitting

Matrix-Prony

state bM range x?/dof 0 bM range x?/dof
N 0.20693(33)(07) 7-64 0.72 0.99 0.20682(32)(10) 11-40 1.50
A 0.22265(25)(16) 9-64 0.89 0.78 0.22255(28)(5) 10-47 121
p3 0.22819(25)(07) 8-64 0.85 0.86 0.22811(28)(18) 1247 0.77
= 0.24112(21)(06) 7-64 0.84 0.87 0.24097(25)(3) 11-50 0.81
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momentum excitation in the volume at E}\',‘JT:I =
0.33889 + 0.00042 = 0.00014, and the 777N state. Given
that there are no other channels that are energetically
allowed for this state to mix with, the s-wave 7N phase-
shift® in this channel can be extracted at an energy of
OE,ny = Eyq /2y —My— M, =0.0095=*0.0011 = 0.0020
(6En=153*=1.8+3.2MeV) where the uncertainties
are dominated by the uncertainty in Ey; »-). It is important
to note that this channel receives contributions from dis-
connected diagrams, and in the calculation we are doing,
these contributions are completely accounted for in the
gauge-configurations. Using the standard Liischer proce-
dure, a phase-shift of 6,y = —26 =7 £ 6 degrees is
found at this energy. The Prony histogram in Fig. 21 shows
significant structure in this channel, and one could argue
that there is a single level at E ~ 0.45, but this would
require further exploration.

For the negative-parity state that couples to the interpo-
lating operators for the A, the situation is not so clean. The
thresholds for the lowest-lying continuum states, 27 and
NK, are located at Ms + M, = 0.29747 £ 0.00030 =
0.00019 and My + My = 0.30384 = 0.00033 = 0.00011,
respectively, in the absence of interactions. The corre-
sponding lowest-lying states with one unit of momentum

occur at EWIT! =0.35857 = 0.00037 + 0.00023, and

EM=T = 0.35763 *+ 0.00039 + 0.00012. Fitting the EM
shown in Fig. 22 between time-slices t = 88 to t = 117
yields,

Exq/a-) = 0.2983 % 0.0008 % 0.0004,

(36)
x?/dof = 1.02.
This is, within uncertainties, at the threshold for X7 or
NK. The eigenstates will be a combination of these two
systems and it is likely that we have not resolved the two
nearby-states in the EM, and the result in Eq. (36) is
actually and average of two closely-spaced energies.

For the lowest-lying negative-parity state(s) produced by
the interpolating operator for the 2, the situation is even
more complicated. The threshold of the noninteracting
s-wave X7 state is at Ms + M, = 0.29747 = 0.00030 =+
0.00019, for the A state is M, + M, = 0.29191 =
0.00030 = 0.00007, and for the NK state is My + My =
0.30384 = 0.00033 = 0.00011. Therefore, in this large
volume, we expect to observe three eigenstates that are
nearly degenerate. The lowest-lying states with one unit of

momentum occur  at E';lrzl = (0.35857 = 0.00037 =
0.00023, EM=! =0.35341 + 0.00030 * 0.00007, and

EM=T = 0.35763 + 0.00039 + 0.00012 and are well-
separated from the n = 0 states. Fitting the EM shown in

8Here we ignore possible contributions from L =46, ...
partial waves that also contribute in the A representation of
the hyper-cubic group H(4).
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FIG. 22 (color online). The upper panel shows the generalized
EM for the lowest-lying negative-parity state coupling to the
A-source using a matrix-Prony analysis with £; = 1 and ty, = 5,
and the correlated fit to the time slices between ¢ = 88 and t =
117. The inner (darker) region corresponds to the statistical
uncertainty, while the outer (lighter) region corresponds to the
statistical and fitting systematic uncertainties combined in quad-
rature. The lower panel shows the associated Prony histogram of
the positive roots for the time-slices t = 88 to r = 117.

Fig. 23 between time-slices t = 95 to t = 118 yields,
Es(1/2-) = 0.3068 = 0.0011 = 0.0011,

Vo (37)
x2/dof = 0.80,

in the region where one expects to find three closely-
spaced states, corresponding to the eigenstates dominated
by 3, A, and NK. Given how closely spaced these
states are expected to be, the extraction in Eq. (37) is likely
a complicated average of three energies.

The situation is no better for the lowest-lying negative-
parity states that are expected to couple to the interpolating
operator for the Z. The lowest-lying s-wave continuum
states are 7=, AK and X K. The threshold for these states,

in the absence of interactions, are EL’T"E:‘) =0.31033 =
0.00028 = 0.00006, ER=Y = 0.31957 = 0.00030 =

0.00006, and EfL = 0.32513 + 0.00030 = 0.00018, re-
spectively. The corresponding states where both hadrons
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FIG. 23 (color online). The upper panel shows the generalized
EM for the lowest-lying negative-parity state coupling to the
3.-source using a Matrix-Prony analysis with ¢; = 7 and tyy = 2,
and the correlated fit to the time slices between ¢ = 95 and 1 =
118. The inner (darker) region corresponds to the statistical
uncertainty, while the outer (lighter) region corresponds to the
statistical and fitting systematic uncertainties combined in quad-
rature. The lower panel shows the associated Prony histogram of
the positive roots for the time-slices t = 95 to t = 118.

carry one unit of momentum have thresholds state

ERI=! = 0.37058 = 0.00033 % 0.00007, Ep= =
0.37214 = 0.00035 = 0.00007, El = 037731 =

0.00034 = 0.00021, respectively, Therefore, we expect to
observe two sets of three nearly degenerate eigenstates.
Fitting the EM shown in Fig. 24 between time-slices t =
91 to + = 118 yields,

TABLE VL
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FIG. 24 (color online). The upper panel shows the generalized
EM for the lowest-lying negative-parity state coupling to the
E-source using a Matrix-Prony analysis with £, = 5 and t, =
11, and the correlated fit to the time slices between r = 91 and
t = 118. The inner (darker) region corresponds to the statistical
uncertainty, while the outer (lighter) region corresponds to the
statistical and fitting systematic uncertainties combined in quad-
rature. The lower panel shows the associated Prony histogram of
the positive roots for the time-slices t = 91 to r = 118.

EE(I/Z’) = 03243 * 00010 + 00009,

L (38)
x2/dof = 0.72,

in the region where one expects to find three closely-
spaced states, corresponding to the eigenstates dominated
by n =0 Em, AK, and XK. Given how closely spaced
these states are expected to be, the extraction in Eq. (38) is

The masses of the lowest-lying J7 = %’ states with unit baryon number extracted by fitting three exponentials and by

the matrix-Prony method. The first uncertainty is statistical while the second is the fitting systematic.

Exponential Fitting

Matrix-Prony

state bM range x?/dof 0 bM range x?/dof
N(%f) 0.2871(18)(10) 90-117 1.11 0.28 0.2861(11)(20) 93-119 0.91
A(%_) 0.2954(05)(15) 90-113 0.89 0.64 0.2983(8)(4) 88-117 1.02
2(%_) 0.3074(15)(15) 90-118 1.02 0.41 0.3068(11)(11) 95-118 0.80
E(%f) 0.3261(09)(15) 89-115 1.07 0.36 0.3243(10)(9) 91-118 0.72
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likely an average of three unresolved energies. There are
hints of a couple of other peaks in the Prony-histogram, but
nothing conclusive.

The results of the best extractions of the ground-state
baryon masses using multiexponential fitting and the
matrix-Prony method, which give consistent results for
each species of baryon, are collected in Table VI.

VIII. SIGNAL-TO-NOISE RATIOS

Many observables of importance to particle physics that
are currently being calculated with LQCD, such as the pion
decay constant and the Gasser-Leutwyler coefficients, re-
quire the calculation of mesonic correlation functions.
Statistical fluctuations on each time slice of these correla-
tion function are well-behaved. In contrast, as argued by
Lepage [10], correlation functions involving one or more
baryons exhibit exponentially growing statistical noise. In
the case of a single positive parity nucleon, the correlation
function has the form

(On(0) = Y TEUN(x, ONF(0,0)) — Zoe Mnt,  (39)

X

where N is an interpolating field that has nonvanishing
overlap with the nucleon and the angle brackets indicate
statistical averaging over measurements on an ensemble of
configurations. The variance of this correlation function is

Na? ~ (0}()0x(1) — (On(0)?

= Y TETY(N(x, DVA(y, HN? (0, 0)N?(0, 0))
Xy

N0

= Z37T€_3M”t + ZZNE_ZMN[ +...— Z37Te_3M”'[, (40)

and therefore, as Lepage [10] argued, the noise-to-signal
ratio behaves as

7 _ o0 1 y-cmom (41)

X 00 JN

at large times (for intermediate times, the overlap factors in
Eq. (40) may be such that other components of the noise
are dominant; if |Z5,/Z,y| << 1 then the ratio o /% will
remain constant for a significant temporal extent). More
generally, for a system of A nucleons, the noise-to-signal
ratio behaves as

~ L paon-emx @2)

VN

SRS

for asymptotic times. Therefore, in addition to the signal
itself falling as G ~ e A~ the noise-to-signal associated
with the correlation function grows exponentially, as in
Eq. (42).

These arguments are constructed for a system with an
infinite time direction and are modified in an important
way for systems with a finite time direction with given

PHYSICAL REVIEW D 79, 114502 (2009)

BCs. The calculations that are presented in this work have
employed antiperiodic BC’s in the time direction. With
such BCs the positive parity nucleon correlation function
in Eq. (39) becomes

(On(1) = Zye Mnt + Zy et Enalt=T), (43)

where Ey, is the energy of the lowest-lying negative-
parity state in the volume, which, for this ensemble of
configurations, is a continuum nucleon and pion at rest.
The arrow denotes the behavior of the correlation function
far from source (in both time directions). Further, the
correlation function dictating the behavior of the variance
of the nucleon correlation function is modified similarly,
with Eq. (40) becoming

T
No? — Ay, e~ 3/2M:T cosh(SMW[t — 5])

T
+ A, e~ C/2MT cosh(M,T[t - 5])

+ Age M (44)

The first term in Eq. (44) arises from 37’s propagating
forward and 37’s propagating backwards, the second term
arises from 27’s propagating forward along with one 7
propagating backward and vice versa, the third (time-
independent) term arises from a nucleon propagating for-
ward and a nucleon propagating backward, and the ellipses
denotes terms involving larger masses. As the negative-
parity state is more massive than the nucleon, the nucleon
is the dominate component in the correlation function,
Eq. (43), for a number of time slices beyond the midpoint
of the configuration. From this argument, one expects to
see the signal-to-noise ratio degrade even more rapidly
than the expectation shown in Eq. (41) in the time slices
near the midpoint of the configuration where the correla-
tion function is still dominated by the nucleon. One expects
to find regions of the correlation function, depending on the
structure of the source, which have the noise-to-signal
scaling as e(mpf(?a/Z)M,,)t, e*(l/Z)M,,Te(mpf(l/Z)M,.,)t,
e~ MaT om, +(1/DM )t o =(/DM,T o(m,+(3/2M )t (=T),

or combinations thereof.

The high-statistics calculations we are presenting here
enables a detailed study of the behavior of the signal-to-
noise ratio associated with the correlation functions formed
with quark propagators generated with antiperiodic BCs. It
is useful to form the effective noise-to-signal plot, in
analogy with the EMs. On each time-slice, the quantity

o(1)
x(t)’
is formed, from which the energy governing the exponen-
tial behavior can be extracted via

1 S(t+ 1)
Es(t;t;) = E log(W). (46)

and e™»

S(t) = (45)
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The left panel shows the EM of the smeared-point N correlation function formed with with #; = 3. The right

panel shows the energy-scale, Eg, associated with the growth of the noise-to-signal ratio, as defined in Eq. (46). The horizontal lines
correspond to the energy-scales m, — %MT,, m, — %Mﬂ, my, m, + %Mﬂ., and m, + %Mw (from lowest energy to highest energy).

If the correlation function is dominated by a single state,
and a single energy-scale determines the behavior of the
noise-to-signal ratio, the quantity Es(z; 7;) will be indepen-
dent of both ¢ and ¢;.

In Fig. 25, the full EM of the smeared-point nucleon
correlation function is shown (with #; = 3), and in Fig. 26,
the full EM of the smeared-smeared nucleon correlation
function is shown (with ¢; = 5). Also shown are the
energy-scales associated with the growth of the noise-to-
signal ratio from Eq. (46), with uncertainties generated
using the Jackknife procedure. Considering the smeared-
point correlation function in Fig. 25, after time-slice t =
35 or so, the correlation function is dominated by the
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FIG. 26 (color online).

ground-state nucleon which persists until time-slice 7 ~
70. Beyond this time slice the backward propagating
negative-parity Nm-state becomes dominant. Between
time-slices ¢ ~ 40 and 7 ~ 50, the noise-to-signal ratio is
determined by the expectation of m, — %MW. However,
after t+ ~ 50 the signal-to-noise ratio degrades exponen-
tially faster than this, and by 7 ~ 65 the relevant energy-
scale is ~m,, + %Mq, and increasing with ¢. Similar behav-
ior is clear in the smeared-smeared correlation function, for
which the nucleon ground state dominates from an earlier
time slice.

It is clear from this analysis of the noise-to-signal ratio,
that the length of the time direction of these configurations

0.4 (s

03[

|b; Es(t)]
(=]
o

The left panel shows the EM of the smeared-smeared N correlation function formed with z; = 5. The right

panel shows the energy-scale, E s, associated with the growth of the noise-to-signal ratio, as defined in Eq. (46). The horizontal lines
correspond to the energy-scales m, — %M,T, m, — %MW, mp, m, + %MW, and m, + %Mw (from lowest energy to highest energy).
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The left panel shows the EM of the smeared-point = correlation function formed with z; = 3. The right panel

shows the energy-scale, Eg, associated with the growth of the noise-to-signal ratio, as defined in Eq. (46). The horizontal lines

correspond to the energy-scales mg — 3mﬂ, ms — Mg — lmn, ms
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mz + %M,T, and mg + m, — %Mﬁ (from lowest energy to highest energy).

and resulting thermal states are limiting the precision of the
ground-state nucleon mass determination. This will be
even more true for the multiple baryon correlation func-
tions for which the signal-to-noise degrades exponentially
faster than in the single-nucleon correlation functions.
Increasing the length of the time direction will lead to
exponential improvement of the correlation function at
large times where the nucleon component dominates the
correlation function. It is interesting to note that the coef-
ficients of the backward propagating contributions to the
noise-to-signal ratio are suppressed by powers of
e~/2MzT On the current configurations with 7 = 128,
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FIG. 28 (color online).

in order to reduce the contribution to the noise from the
m, — %M » component by an order of magnitude, the time
extent would need to be increased to 7'~ 192. This will
reduce the m, + %M,, component by a factor of ~84 and
the m, + %Mﬂ component by ~770. Such an increase in
the temporal extent would significantly decrease the sta-
tistical uncertainties with which ground-state signals are
extracted.

The noise-to-signal analysis of the Z correlation func-
tions is somewhat more complex, because there are a
number of low-lying states which can contribute to the
variance. For the 2 E noise correlation function, the light-

0-4 T T T T T T

1br Es(0)]

80 100 120

The left panel shows the EM of the smeared-smeared = correlation function formed with ¢, = 3. The right

panel shows the energy-scale, Eg, associated with the growth of the noise-to-signal ratio, as defined in Eq. (46). The horizontal lines
correspond to the energy-scales mz — 3m,, mz — Mg —im,, mz —m, —IM, mz —im,, mz — Mg +1m,, mz —IM_ mz +
IM,, mz, and mz + m, — M, (from lowest energy to highest energy).
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est intermediate states that can couple to quark-content
ssussu are KKmn, nmm and nnn. The full EMs and the
Es plots for the smeared-point and smeared-smeared =
correlation functions are shown in Fig. 27 and 28. In both
the smeared-point and smeared-smeared = correlation
functions, the noise-to-signal ratio is growing exponen-
tially slower than naive expectations, until about time-slice
t~55. As the E ground-state dominates the smeared-
smeared correlation function beyond f ~ 40, this allows
for a extraction of the mass with higher precision than
expected. This suggests that the noise-source does not
couple to the low-lying mesonic states as strongly as ex-
pected, and that more massive mesonic states are dominat-
ing the noise over many time slices. However, eventually,
for t = 55, the growth of noise overshoots the original
Lepage expectation (indicated by the lowest horizontal
line in Figs. 27 and 28.

Whilst we are primarily interested in noise in the bar-
yonic sector, it is interesting to note that the mesonic
correlation functions also suffer from similar issues.
According to the above arguments, the pion correlation
function on lattices at zero temperature (infinite temporal
extent) will have noise that is independent of time (up to
fluctuations) while the kaon will have noise that grows
exponentially with the small energy difference myg —
Im, —1m,. However at finite temperature, the noise cor-
relation functions of both systems receive additional con-
tributions that grow faster than the above expectations.
This is shown in Fig. 29.

IX. SCALING WITH COMPUTATIONAL
RESOURCES

An important component of our current work is to
address the future requirements for LQCD calculations in
nuclear physics, a field characterized by small energy
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FIG. 29 (color online).
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scales in heavy systems, for example, the 2 MeV binding
energy of the ~2 GeV deuteron. In Fig. 30, we show the
extracted mass of the 71, K™, N and E as a function of the
number of configurations in the ensemble for both the
exponential and matrix-Prony analysis methods. The full
set of measurements performed on each configuration are
included, and the fitting intervals are chosen to optimize
the extraction for each ensemble size. In each case, the
uncertainty in the mass is reduced, as expected, with
increasing ensemble size, and the mass extracted from
the smaller ensembles tends to be less than that from the
larger ensembles. Figure 31 shows the fractional uncer-
tainty in the mass of the 7, K™, N and E, associated with
the results in Fig. 30, as a function of the number of
configurations. An extrapolation can be performed with a
fit to the uncertainties in Fig. 31 of the form M /M =
AN, The exponents extract in these fits are —0.55(4),
—0.51(3), —0.38(4), —0.67(6) for the #*, K™, N and E,
respectively.

The dependence of our results for hadron masses on the
number of sources used in the calculations is explored in
Fig. 32 where we show the fractional uncertainty in the
mass of the 77, K+, N and E as a function of the number
of sources used on each configuration. In this figure we use
an ensemble of 1012 configurations, those on which there
are at least 100 measurements. A simple fit of the form
SM/M = AN®. returns exponents b = —0.03(2),
—0.65(19), —0.41(3), and —0.40(6) for the #*, K*, N,
and =, respectively.

The results of this analysis can be simply summarized
for baryons (averaging over the nucleon and Z) as

SMy 1
MB Ngréthfg

(47)

For mesons, a similar scaling is seen, with a somewhat
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The energy-scale, Eg, associated with the growth of the noise-to-signal ratio in the 7% (left) and K+ (right)

smeared-smeared correlation functions using 7; = 3. The horizontal lines correspond (from lowest to highest) to 0, M, for the pion

and My — $m, — $my for the kaon.
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The extracted masses of the 7+, K*, N and E as a function of the number of configurations (with the full set

of measurements performed on it). Statistical and systematic uncertainties have been combined in quadrature. For the baryon states,

both the matrix-Prony and exponential fits are shown.

worse scaling with the number of measurements per con-
figuration in the case of the pion, consistent with the
saturation seen in Fig. 3. This functional form enables us
to quantify the relative benefit of increasing the number of
sources per configuration compared to increasing the total
number of configurations. The costs involved in this are as
follows:
(i) Gauge configuration generation: The total cost of
generating the ensemble of 1194 gauge configura-

tions was 2 M JLab-6n cluster node-hours and the
production took a significant amount of wall-clock
time. Configuration generation costs scale linearly
with the number of configurations once a
Monte Carlo trajectory has thermalized (in this
case the overhead of thermalization was approxi-
mately 10%). In order to generate significantly larger
ensembles (containing 10* or 10° gauge fields) in a
reasonable wall-clock time, it will be necessary to
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The fractional uncertainty in the extracted masses of the 7+, K, N and = as a function of the number of

configurations (with the full set of measurements performed on it) for the exponential analysis. Statistical and systematic uncertainties

have been combined in quadrature. The curves correspond to fits of the form SM/M = AN”

cfg The exponents extract in these fits are

—0.55(4), —0.51(3), —0.38(4), —0.67(6) for the 7w+, K™, N and =, respectively.
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The fractional uncertainty in the extracted masses of the 77+, K™, N and E as a function of the number of

sources used on each configuration (1012 configurations were used in this study) for the exponential analysis. Statistical and systematic
uncertainties have been combined in quadrature. The curves correspond to fits of the form §M/M = AN?.. The exponents extract in
these fits are —0.03(2), —0.65(19), —0.41(3), and —0.40(6) for the v+, K*, N and E, respectively.

run multiple trajectories in parallel. Given wall-
clock time and memory constraints, an individual
trajectory will produce O(1000) gauge-field configu-
rations that are wuseful for measurements.
Consequently the thermalization overhead will con-
servatively remain at about 10%. Each configuration
requires ~2 X 103 JLab-6n node-hours to produce.
Measurement calculations: The total cost of comput-
ing all of the measurements performed in this work
was 7 X 10° Jlab-6n node-hours. The cost to gen-
erate the 245 light-quark and strange-quark propa-
gators per configuration on the 1194 configurations
in this ensemble was ~3 M Jlab-6n node-hours,
while the cost to generate the baryon and meson
blocks (used at intermediate stages of the calcula-
tions) was ~3.5 M Jlab-6n node-hours. Contracting
the blocks to accomplish the desired measurements
(one, two, ... baryons, one, two,... mesons and so
forth) cost ~0.5 M Jlab-6n node-hours. If propaga-
tors on a given configuration are computed in sets of
100, the initial overhead of constructing deflation
vectors in the E1gCG algorithm becomes negligible
(at the 1% level) and can be eliminated for further
sets of calculations by storing the eigenvector infor-
mation. On typical machines, each set of propagators
and associated hadron blocks (technically, not an
efficient way to calculated the single hadron spec-
trum, but critical for two and more hadron calcula-
tions) requires 22 JLab-6n node-hours to produce.
(iii) Anisotropy: The anisotropy of the lattices used in our
calculations proved useful in reducing systematic
errors in our fits (see Table III), providing approxi-
mately a 1//&. reduction. However, the cost of

(i)

producing gauge-field configurations and propaga-
tors scales as approximately &2 for the same physical
extent (one power arises from the additional time
slices and one power arises from the worsening
condition number of the Dirac operator).
Comparing these exponents, we would conclude
that using anisotropic configurations is not ideal.
However for more complicated multihadron systems
where useful fit ranges are much reduced in physical
units, the anisotropy will likely prove to be very
useful. This remains to be investigated further in
subsequent studies.
Using this information and the scalings in Eq. (47), we can
address the question of how much computation is required
to achieve a particular level of statistical precision. With
the current data this is only possible in the single hadron
sector; ongoing analyses will address the B > 1 in the near
future. To halve the uncertainty in the determinations of the
ground-state baryon masses (calculating the nucleon mass
at the ~1 MeV-level), an increase in the number of con-
figurations by a factor of four, or of the number of mea-
surements per configuration by a factor of 5.6 is required.
Achieving this precision by performing more measure-
ments on the existing set of configurations ( ~ 1100 addi-
tional measurements on 1200 configurations) would cost
30 M JLab-6n node-hours. Achieving the same precision
by generating an additional configurations and performing
the same number of measurements on them (3600 configu-
rations with 245 measurements) would require 27 M
JLab-6n node-hours. Both approaches have similar cost
at this level of precision, but for further improvements, the
generation of additional configurations will be more effi-
cient. Additionally, the second approach will further im-
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prove the uncertainty for observables such as the pion mass
that have saturated in terms of the number of sources per
configuration. This approach would clearly be of more
benefit to the broader community.

X. CONCLUSIONS

The energy-scales that arise in nuclear physics are typi-
cally in the MeV range, and in order for LQCD to have
significant impact in this field, baryon masses (and energy-
eigenstates in the volumes relevant to scattering processes)
must be calculable with uncertainties that are a fraction of
an MeV (including isospin-breaking and electromagnetic
interactions, quark mass, lattice volume and lattice spacing
extrapolations). Current computational resources do not
permit such calculations. In this work we have performed
the first high-statistics study of baryon correlation func-
tions to better understand a number of issues that will
impact the precision with which quantities of importance
to nuclear physics can be determined with LQCD. In the
future, we will extend our analysis to look at observables in
the B > 1 baryon sector.

At the single lattice spacing, lattice volume and unphys-
ical light-quark mass used in this work, we find the follow-
ing set of ground-state masses

M, = 390.3(0.7)(0.3)(2.5) MeV,
My = 546.0(0.6)(0.2)(3.6) MeV,
My = 1163.9(1.8)(0.6)(7.6) MeV,
M, = 1252.4(1.6)(0.3)(8.2) MeV,
Ms = 1283.7(1.6)(1.0)(8.4) MeV,
M= = 1356.1(1.4)(0.2)(8.8) MeV,
Enij-y = 1610(06)(11)(11) MeV,
Enqja-y = 1679(05)(02)(11) MeV,
Es( -y = 1727(06)(06)(11) MeV,
Ez(1/2-) = 1825(6)(5)(12) MeV,

which we present in physical units. Since the lattice spac-
ing is known with less precision than the lattice masses
presented here, we make the systematic uncertainty arising
from the lattice spacing explicit (third uncertainty). Given
that there are significant ambiguities in scale setting, the
most precise result will be for dimensionless quantities.
With high precision measurements of baryon correlation
functions obtained from a single type of source for the
light-quark and strange-quarks propagators, we have
shown that the number of methods that can be used to
extract the arguments of the contributing exponentials
increases. This is due to the fact that some methods become
stable when the uncertainties become small, such as the
method of Prony and also the direct fitting of multiple
exponentials. Histograms constructed from the roots found
in the Prony method are found to be useful in identifying
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mass regions where states may exist, but we have not yet
arrived at a well-defined (rigorous) method with which to
use these histograms directly. It is likely that a more refined
statistical analysis of these correlation functions using the
most modern statistical tools will further increase the
physics that can be extracted.

The exponential signal-to-noise degradation that
plagues baryon correlation functions is currently a serious
limitation for the calculation of nuclear physics observ-
ables, and is one significant difference between particle
and nuclear physics LQCD calculations. The high-
statistics calculations we have performed have allowed us
to systematically explore this issue. We find that the issue
is more serious than one would naively expect, due to
(what in hindsight is now obvious) the use of antiperiodic
BC’s in the time direction on the quark-propagators. The
variance of the correlation function is symmetric about the
midpoint of the time direction of the configuration.
Therefore, the optimal region in which to determine the
baryon masses (and also their interactions) is in the first
half of the configuration, far from the midpoint. This
significantly reduces the number of useful time slices.
Given that most the time required for these calculations
is in the measurements, and not in the configuration gen-
eration, a cure for this problem is to generate ensembles of
configurations that are longer in the time direction than
those currently being used (as opposed to working with
different BC’s on the quark propagators that are less theo-
retically “clean”).” The multiexponential fitting and Prony
methods enable the ground-state to be probed closer to the
source where the statistical uncertainties are exponentially
smaller (also one of the important aspects of the variational
method), somewhat reducing the impact of the exponen-
tially degrading signal-to-noise near the midpoint of the
configuration. Given that the signal-to-noise degradation is
exponentially more severe in systems containing two or
more baryons, all currently available tools will be required
to make optimal use of the computational resources. For
excited states in a given channel, variational methods seem
to be superior to the standard approach used here.

An important result of this work has been to quantify the
statistical scaling of simple observables in the subpercent
regime of uncertainty. Scaling with the number of configu-
rations was found to adhere to the expected 1/,/N, be-
havior. We have also investigated the issue of saturation,
asking many measurements can be performed on a single
gauge-field configuration before it becomes more cost
effective to generate another statistically independent
gauge-field configuration? To address this we have looked

“We note that combining quark propagators with both periodic
and antiperiodic temporal BCs, to effectively double the length
of the configurations as seen by the valence quarks, will not
resolve all the noise issues as much of the problem is produced
by states involving sea quarks which are encoded in the gauge
configurations.
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for deviations from 1/./Ng. behavior in the uncertainties
in the correlation functions and extracted masses as a
function of the number of measurements performed on
each configuration in the ensemble. The measurements of
the mesons start to saturate after a relatively small number
of measurements, in this case of order ~10, while the
baryon correlation functions show no signs of saturation
up to ~200.

A natural question to ask is if the same extractions could
have been performed with fewer computational resources
by using the variational method with a number of different
sources for the baryons. We estimate that comparable
resources would have been required to achieve comparable
uncertainties in the states we have examined. However, we
have not been able to extract excited states of the nucleon
with much precision because of closely-spaced states with
the same quantum numbers. This is likely to be something
that the variational method would better control. Given that
the present work was exploratory in nature, this is not a
concern at present, but it is clear that high-statistics calcu-
lations of correlation functions arising from multiple inter-
polating operators will be required in order to explore the
structure and interactions of nuclei. We are working on
implementing this, but it will require significant computa-
tional resources to perform, even at pion mass ~390 MeV
and for a relatively small lattice volume and relatively
coarse lattice spacing.

It is clear that sub-MeV uncertainties an hadron energies
will become routine with the anticipated increase in com-
putational resources available to lattice QCD, and that the
small energy scales that characterize nuclear physics are
within reach. However, this program will require large
ensembles of gauge-field configurations that have large
extent in the time direction, and will require a large frac-
tion of the computational resources devoted to measure-
ments.

ACKNOWLEDGMENTS

We thank R. Edwards and B. Joo for help with the QDP+
+/Chroma programming environment [14] with which the

PHYSICAL REVIEW D 79, 114502 (2009)

calculations discussed here were performed. K. O. would
like to thank A. Stathopoulos useful discussion on numeri-
cal linear algebra issues and for his contribution in the
development of the EigCG algorithm. EigCG development
was supported in part by NSF grant CCF-0728915. We also
thank the Hadron Spectrum Collaboration for permitting us
to use the anisotropic gauge-field configurations, and ex-
tending the particular ensemble used herein. We gratefully
acknowledge the computational time provided by NERSC
(Office of Science of the U.S. Department of Energy,
No. DE-AC02-05CH11231), the Institute for Nuclear
Theory, Centro Nacional de Supercomputacion
(Barcelona, Spain), Lawrence Livermore National
Laboratory, and the National Science Foundation through
Teragrid resources provided by the National Center for
Supercomputing Applications, and the Texas Advanced
Computing Center. Computational support at Thomas
Jefferson National Accelerator Facility and Fermi
National Accelerator Laboratory was provided by the
USQCD collaboration under The Secret Life of a Quark,
a U.S. Department of Energy SciDAC project (http://
www.scidac.gov/physics/quarks.html). The work of
M.J.S. and W.D. was supported in part by the U.S.
Department of Energy under Grant No. DE-FGO03-
97ER4014. The work of K.O. and W.D. was supported
in part by the U.S. Department of Energy contract No. DE-
AC05-060R23177 (J.S.A.) and DOE grant DE-FG02-
04ER41302. K. O. and A. W. L. were supported in part by
the Jeffress Memorial Trust, grant J-813, DOE OJI grant
DE-FG02-07ER41527. The work of S.R.B. and A.T. was
supported in part by the National Science Foundation
CAREER grant No. PHY-0645570. Part of this work was
performed under the auspices of the US DOE by the
University of California, Lawrence Livermore National
Laboratory under Contract No. W-7405-Eng-48. The work
of A.P. is partly supported by the Spanish Consolider-
Ingenio 2010 Programme CPAN CSD2007-00042, by
grants Nos. FIS2008-01661 from MEC (Spain) and
FEDER and 2005SGR-00343 from Generalitat de
Catalunya, and by the EU contract FLAVIAnet MRTN-
CT-2006-035482.

[1] S.R. Beane, P.F. Bedaque, K. Orginos, and M.J. Savage
(NPLQCD Collaboration), Phys. Rev. D 73, 054503
(2000).

[2] S.R. Beane, T.C. Luu, K. Orginos, A. Parreno, M.J.
Savage, A. Torok, and A. Walker-Loud, Phys. Rev. D
77, 014505 (2008).

[3] S.R. Beane, W. Detmold, T.C. Luu, K. Orginos, M.J.
Savage, and A. Torok, Phys. Rev. Lett. 100, 082004
(2008).

[4] W. Detmold, M.J. Savage, A. Torok, S.R. Beane, T.C.

Luu, K. Orginos, and A. Parreno, Phys. Rev. D 78, 014507
(2008).

[5] W. Detmold, K. Orginos, M.J. Savage, and A. Walker-
Loud, Phys. Rev. D 78, 054514 (2008).

[6] L. Maiani and M. Testa, Phys. Lett. B 245, 585 (1990).

[71 H.W. Hamber, E. Marinari, G. Parisi, and C. Rebbi, Nucl.
Phys. B225, 475 (1983).

[8] M. Liischer, Commun. Math. Phys. 105, 153 (1986).

[9] M. Liischer, Nucl. Phys. B354, 531 (1991).

[10] G.P.Lepage, in From Actions to Answers: Proceedings of

114502-29



SILAS R. BEANE et al.

[11]
[12]

[13]
[14]

[15]
[16]
[17]

(18]
[19]

(20]

the TASI 1989, edited by T. Degrand and D. Toussaint
(World Scientific, Singapore, 1990); QCD 161, T45
(1989).

H. W. Lin et al. (Hadron Spectrum Collaboration), Phys.
Rev. D 79, 034502 (2009).

R.G. Edwards, B. Joo, and H. W. Lin, Phys. Rev. D 78,
054501 (2008).

A. Stathopoulos and K. Orginos, arXiv:0707.0131.

R. G. Edwards and B. Joo (SciDAC Collaboration), Nucl.
Phys. B, Proc. Suppl. 140, 832 (2005).

M. Teper, Phys. Lett. B 183, 345 (1987).

M. Albanese et al., Phys. Lett. B 192, 163 (1987).

C. Morningstar and M.J. Peardon, Phys. Rev. D 69,
054501 (2004).

R.G. Edwards and B. Joo, (private communication).

S. Prelovsek and D. Mohler, Phys. Rev. D 79, 014503
(2009).

W. Detmold, C.J. Lin, and M. Wingate, arXiv:0812.2583.

(21]
[22]
(23]
[24]
[25]
[26]

(27]
(28]

[29]
(30]

(31]

114502-30

PHYSICAL REVIEW D 79, 114502 (2009)

J. Juge, private communication.

C. Michael, Nucl. Phys. B259, 58 (1985).

M. Liischer and U. Wolff, Nucl. Phys. B339, 222 (1990).
G.T. Fleming, arXiv:hep-1at/0403023.

F.B. Hildebrand, Introduction to Numerical Analysis
(Dover, New York, 1987), 2nd ed..

G.R. de Prony, Journal de I'Ecole Polytechnique 1, cah-
ier 22, 24 (1795).

H.W. Lin and S.D. Cohen, arXiv:0709.1902.

G.T. Fleming, S.D. Cohen, H.W. Lin, and V. Pereyra,
arXiv:0903.2314.

M.R. Osborne and G.K. Smyth, SIAM J. Sci. Statist.
Comput. 16, 119 (1995).

G.T. Fleming, S.D. Cohen, H. W. Lin, and V. Pereyra,
Proc. Sci., LAT2007 (2007) 096.

B. Smigielski and J. Wasem, Phys. Rev. D 79, 054506
(2009).



