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We present the results of an exploratory lattice QCD calculation of three-baryon systems through a high

statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion mass ofm� �
390 MeV. Because of the computational cost of the necessary contractions, we focus on correlation

functions generated by interpolating operators with the quantum numbers of the�0�0n system, one of the

least demanding three-baryon systems in terms of the number of contractions. We find that the ground

state of this system has an energy of E�0�0n ¼ 3877:9� 6:9� 9:2� 3:3 MeV corresponding to an

energy shift due to interactions of �E�0�0n ¼ E�0�0n � 2M�0 �Mn ¼ 4:6� 5:0� 7:9� 4:2 MeV.

There are a significant number of time slices in the three-baryon correlation function for which the

signal-to-noise ratio is only slowly degrading with time. This is in contrast to the exponential degradation

of the signal-to-noise ratio that is observed at larger times, and is due to the suppressed overlap of the

source and sink interpolating operators that are associated with the variance of the three-baryon

correlation function onto the lightest eigenstates in the lattice volume (mesonic systems). As one of

the motivations for this area of exploration is the calculation of the structure and reactions of light nuclei,

we also present initial results for a system with the quantum numbers of the triton (pnn). This present

work establishes a path to multibaryon systems, and shows that lattice QCD calculations of the properties

and interactions of systems containing four and five baryons are now within sight.

DOI: 10.1103/PhysRevD.80.074501 PACS numbers: 12.38.Gc

I. INTRODUCTION

One of the ultimate goals of lattice quantum chromody-
namics (LQCD) is to calculate the properties and interac-
tions of light nuclei to high precision from first principles.
While it is important to be able to explicitly demonstrate
that nuclei emerge from QCD, the underlying motivation
for this effort is to provide proof that LQCD provides a
reliable theoretical tool with which to calculate highly
complex low-energy strong interaction processes. With
such a tool in hand, calculations of strong interaction
systems for which experimental guidance is minimal, or
absent, can be performed with confidence and with uncer-
tainties that can be rigorously quantified. The interaction
between three neutrons, which is an important input into
many-body calculations of nuclei, provides an example of
a quantity that is difficult to access experimentally, but
which will be calculable to high precision with LQCD
within the next decade.

The theoretical framework with which to determine the
hadron-hadron scattering phase shifts below the inelastic
threshold from the volume dependence of the two-hadron
energy levels in the lattice volume was established a num-
ber of years ago by Lüscher [1,2]. This framework was
used to extract nucleon-nucleon scattering lengths in
quenched QCD (QQCD) [3] at unphysically large pion
masses. Subsequent fully dynamical LQCD calculations
also used the Lüscher method to extract nucleon-nucleon
[4], and hyperon-nucleon [5] scattering lengths and phase
shifts1 (from a single correlation function), albeit at un-

1Calculations of these same processes were subsequently
performed in quenched QCD [6,7] and in QCD [8,9]. In these
same works it was suggested that a phenomenologically useful
baryon-baryon potential could be defined from LQCD calcula-
tions. However, flawed reasoning led to such a conclusion, in
particular, the omission of the spatially dependent two-body
overlap factor which is present in the correlation functions
[10–12].
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physically large pion masses. The exponentially degrading
signal-to-noise ratio encountered in the region of the cor-
relation functions dominated by the ground state, expected
from the arguments presented by Lepage [13], severely
limited the precision with which the scattering phase shifts
could be extracted from all of these calculations. The
resources required to perform these calculations and the
anticipated scaling of the statistical uncertainties in such
calculations as a function of the pion mass [13] are suffi-
cient to estimate the resources required to perform calcu-
lations of baryon-baryon scattering at the physical value of
the pion mass to a given level of precision [10]. Given the
smallness of nuclear physics energy scales, typically a few
MeV, compared to the chiral-symmetry breaking scale,��,

or the pion mass, m�, it is guaranteed that a very large
number of measurements will be required to achieve the
necessary precision. At the physical pion mass, Ref. [10]
estimates that �3� 106 measurements will be required to
determine the nucleon-nucleon scattering length with a
�50% uncertainty. Such estimates will be further refined
as additional calculations at different pion masses, lattice
volumes, and lattice spacing are performed.

Recently, we have performed a high statistics calculation
of a number of single-hadron correlation functions [14] on
an ensemble of the anisotropic gauge-field configurations
generated by the Hadron Spectrum Collaboration [15,16]
with a pion mass of m� � 390 MeV, a spatial lattice
spacing of bs � 0:1227, an anisotropy � ¼ bs=bt ¼ 3:5,
and a lattice volume of 203 � 128. The goal of the study
was to ‘‘jump’’ an order of magnitude in the number of
measurements performed to estimate correlation functions,
and to explore the ‘‘new territory’’ that subsequently
emerged. The baryon masses were extracted with precision
at the & 0:2% level from the 292 500 measurements per-
formed on 1194 of these gauge-field configurations. A
number of important and surprising observations were
made in that work that have modified the path from
LQCD to nuclei that we envisage. One of the most impor-
tant aspects of that high statistics work was that a detailed
study of the signal-to-noise ratio in the single-baryon
correlation functions became possible. The signal-to-noise
ratio was found to be approximately independent of time
for a significant number of time slices prior to evolving
toward the expected exponential degradation [13,14]. This
window of ‘‘clean’’ time slices is understood in terms of
the relative magnitude of the overlap of the single-baryon
interpolating operator onto the single-baryon eigenstates,
compared with the overlap of the corresponding interpolat-
ing operator onto the lightest eigenstates (involving both
meson and baryon-antibaryon states) that contribute to the
correlation function that governs the variance of the single-
baryon correlation function. Given that the signal-to-noise
ratio for a system containing more than one baryon is
expected to scale (approximately) as the product of the
signal-to-noise ratio’s of the individual baryons (neglecting

their interactions), this window of clean time slices sug-
gests that it may well be possible to calculate the energy
levels of systems containing a number of baryons in this
lattice volume with these interpolating operators.
In this work we present the first LQCD calculations of a

system comprised of three baryons. As the number of
contractions required to form the correlation functions is
naively Nu!Nd!Ns!, one of the least computationally ex-
pensive systems2 to explore is the one that couples to a
source and sink of the form �0�0n. For simplicity, the
product of the single baryon interpolating operators with
the quantum numbers of the �0 and n are used in the
calculations. The energy eigenstates of the QCD
Hamiltonian in the finite volume are defined by their global
quantum numbers, baryon number (B), strangeness (s),
isospin (I), and third component of isospin (Iz) in addition
to their properties under hypercubic transformations. As
such, any source defined by a subset of these quantum
numbers will couple at some level (unless, by chance, it
is orthogonal) to states with these same quantum numbers.
The interpolating operator of the form�0�0n that we have
just described, will, in general, couple to all states with
B ¼ 3, s ¼ þ4, J ¼ þ 1

2 , Iz ¼ þ 1
2 , and with either I ¼ 3

2

or I ¼ 1
2 . An analogous statement is true for an interpolat-

ing operator of the form�0�� which has B ¼ 3, s ¼ þ4,
J ¼ þ 1

2 , Iz ¼ þ 1
2 , and I ¼ 1

2 , but which is of lower

energy in the absence of interactions. In a large lattice
volume, the �0�0n interpolating field is expected to
couple predominantly to the continuum states that are
dominated by noninteracting �0 and n single-particle
states.3 Further, we present preliminary calculations of
the pnn system which will contain the triton if it is bound
for this pion mass. We are presently unable to explore even
the simplest system containing four baryons because of the
computational resources required to perform the contrac-
tions (which are usually the least expensive component of a
lattice calculation), but we see no reason why systems
containing four and five baryons could not be explored in
the near future.

II. LATTICE QCD CALCULATIONS

In this study, we employ a single ensemble of the nf ¼
2þ 1-flavor anisotropic clover gauge-field configurations
that have been produced by the Hadron Spectrum
Collaboration [15,16]. The technical details of the propa-
gators computed on this ensemble are presented in
Ref. [14] and we do not repeat them here. In the current

2The ���0 system requires fewer contractions; however the
additional strange quark in the �0�0n system is expected to
result in a cleaner signal.

3The energy of the eigenstate(s) with the largest overlap with
the �0�0n interpolating field is denoted by E�0�0n despite this
being a somewhat misleading designation. Further, this state is
generically denoted by �0�0n.
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calculation, the analysis is restricted to a slightly smaller
data set, corresponding to an average on 218 randomly
distributed measurements on each of 1191 configurations
(a total of �260 000 measurements).4 In our analysis, the
sets of measurements on each configuration are averaged,
and then these averaged measurements are blocked (aver-
aged) in sets of ten neighboring configurations (see
Ref. [14] for a detailed study of correlations between
different sources and configurations).

Each of the propagators calculated on the gauge-field
configurations is used to determine two-point correlation
functions, which for a single baryon have the form

CH ;�ðp; tÞ ¼
X
x

eip�x��
�hH �ðx; tÞ �H �ðx0; 0Þi; (1)

where H �ðx; tÞ is an interpolating operator for the appro-

priate baryon state, e.g., for the proton H �ðx; tÞ ¼
�abcðua;TC�5d

bÞuc;�ðx; tÞ, where C is the charge conjuga-
tion matrix. The Dirac matrix � is an arbitrary particle-spin
projector and the point x0 is the propagator source point.

The interpolating operator at the source, �H , is constructed
from gauge-invariantly smeared quark field operators,
while at the sink, the interpolating operator is constructed
from either local quark field operators, or from the same
smeared quark field operators used at the source, leading to
two sets of correlation functions. For brevity, we refer to
the two sets of correlation functions that result from these
source and sink operators as smeared-point (SP) and
smeared-smeared (SS) correlation functions, respectively.
The correlation functions for the three-baryon systems
have the form,5

CH 1H 2H 3;~�
ðp1;p2;p3; tÞ ¼

X
x1;x2;x3

eip1�x1eip2�x2eip3�x3 ~�
�1�2�3

�1�2�3

hH �1

1 ðx1; tÞH �2

2 ðx2; tÞH �3

3 ðx3; tÞ �H 1;�1
ðx0; 0Þ �H 2;�2

ðx0; 0Þ �H 3;�3
ðx0; 0Þi;

(2)

where ~� is the tensor that projects onto the required angular
momentum state. The same quark propagators have been
used in each baryon, and thus the source for each baryon is
located at the same spatial point. More physically moti-
vated sources and sinks involving spatial separations
would likely improve the overlap onto the ground state in
these systems; however this approach would be more
computationally demanding and is not used in this explor-
atory work.

In the present work, we have restricted ourselves to the
calculation of correlation functions for which each baryon
is projected to zero momentum at the sink, defining
CH 1H 2H 3;~�

ðtÞ ¼ CH 1H 2H 3;~�
ð0; 0; 0; tÞ. Further, the opti-

mal analysis of the three-baryon systems (with propagators
from a single source) would have involved calculating the
correlation functions associated with the different sink
smearing, SP and SS, for each baryon. Because of the
lack of computational resources we have restricted our-
selves to the ðSSÞ3 and the ðSPÞ3 correlation functions, and
have not calculated the ‘‘mixed’’ correlation functions,
such as the ðSSÞ2ðSPÞ correlation function.

With two correlation functions associated with each set
of quantum numbers in both the one- and three-baryon

sectors, a linear combination of the pair of correlation
functions can be constructed to produce a combined cor-
relation function that more cleanly projects onto the lowest
energy state in the lattice volume. One way to accomplish
this is by hand, where one simply ‘‘looks’’ for the linear
combination of correlation functions that has an effective
mass plot (EMP) with the ground state extending to the
shortest time slice. A refinement of this ‘‘brute-force’’
method is to use the matrix-Prony method presented in
our previous paper [14], which we now review.
The two correlation functions, SS and SP, are sums of

exponentials and satisfy the following matrix relation:

Myð	þ tJÞ � Vyð	Þ ¼ 0; (3)

where M and V are 2� 2 matrices and yðtÞ is a column
vector with two components corresponding to the two
correlation functions. Equation (3) implies then the corre-
lation functions are

yðtÞ ¼ X2
n¼1

Anqn

�t
n ; (4)

where qn and 
n ¼ expðmnÞ are the eigenvectors and
eigenvalues of the following generalized eigenvalue prob-
lem:

Mq ¼ 
tJVq: (5)

4The computational resources required to perform this calcu-
lation were (1) propagator generation: �3:6� 106 JLab 6n
cluster node hours; (2) block production (� 520 000 blocks—-
smeared-smeared and smeared-point):�2:7� 106 JLab 6n clus-
ter node hours; (3) ��n contractions on �520 000 blocks:
�4:2� 106 JLab 6n cluster node hours; (4) pnn contractions
on 9000 blocks only: �0:7� 106 JLab 6n cluster node hours.
The timings are in units of JLab 6n cluster node hours. The JLab
6n cluster is an older machine with dual-core 3 GHz Pentium D
processors per node.

5A more complete calculation would generate correlation
functions between sources and sinks that carry the same global
quantum numbers, such as �0�0n ! �0�þ��, in order to
identify all of the states in the lattice volume. For computational
expediency we study only one combination of source and sink.
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Given the two sets of correlation functions, the masses can
be found by determining the matrices M and V that are
needed in order for the signal to satisfy Eq. (3). Solving
Eq. (5) leads to the eigenvalues and eigenvectors needed to
reconstruct the amplitudes of each exponential in the cor-
relation functions. It is straightforward to show that a
solution for M and V is

M ¼
�XtþtW

	¼t

yð	þ tJÞyð	ÞT
��1

;

V ¼
�XtþtW

	¼t

yð	Þyð	ÞT
��1

:

(6)

These inverses exist provided that the range, tW , is large
enough so that the matrices in the brackets are of full rank.
Once the eigenvalues 
n and eigenvectors qn are deter-
mined, the amplitudes An can be reconstructed using a
fixed time slice as a normalization point. The parameters
tW and tJ can be used to improve stability as investigated in
Ref. [14]. The eigenvectors associated with the ground-
state energy eigenvalue provide the linear combination of
SS and SP correlation functions for which the plateau in
the EMP sets in at the earliest time. As the eigenvectors can
be determined at early time slices, the degradation of the
signal at later times seen in the eigenvalues of the matrix-
Prony method, largely due to increasing fluctuations in the
SS correlation function, is greatly reduced. This method is
independently applied to the single baryon and the three-
baryon pairs of correlation functions, to produce a single
correlation function for each. For the present calculations,
the relevant ‘‘diagonalized’’ correlation functions are

�C�0ðtÞ ¼ �ðSSÞ
�0 CðSSÞ

�0 ðtÞ þ �ðSPÞ
�0 CðSPÞ

�0 ðtÞ;
�CnðtÞ ¼ �ðSSÞ

n CðSSÞ
n ðtÞ þ �ðSPÞ

n CðSPÞ
n ðtÞ;

�C�0�0nðtÞ ¼ �ðSSÞ
�0�0n

CðSSÞ
�0�0n

ðtÞ þ �ðSPÞ
�0�0n

CðSPÞ
�0�0n

ðtÞ;
(7)

where the coefficients �ðWÞ
H

(W ¼ SS, SP) are determined

numerically. To present the results, and to extract the
energies of the states, it is convenient to work with the
effective mass (EM), Mðt; tJÞ, defined via the ratio

Mðt; tJÞ ¼ 1

tJ
log

� �CH ðtÞ
�CH ðtþ tJÞ

�
; (8)

which is independent of time when the diagonalized cor-
relation function is dominated by a single exponential. The
EMP associated with the diagonalized nucleon correlation
function is shown in Fig. 1, and that associated with the
diagonalized �0 correlation function is shown in Fig. 2.
Extended and clean plateaus are observed for both the
nucleon and the �0, as discussed in detail in Ref. [14].
The source and sink used to produce the �0�0n state is

the product of interpolating operators that have good over-
lap onto the lowest-lying octet baryons, �0 and n.
However, since the three-baryon eigenstates of the QCD
Hamiltonian in the lattice volume, or in nature, are not
simple products of single baryon eigenstates, this source
and sink will couple (at some level) to all states with the
corresponding quantum numbers. This will be the case, no
matter how well the single-hadron interpolating operators
project to their respective ground states. We expect our
correlation functions to have significant contributions from
nearby states, such as�0�0n,�0��p,�0��,�0�þ��,
�0�0�0, ���þ�0, and ���þ� with thresholds (ne-
glecting interactions) of 0.6893, 0.6893, 0.6858, 0.7008,
0.7008, 0.7008, and 0.6933 in lattice units, respectively. It
is clear that the energy eigenstates in the lattice volumewill
be mixtures of the different states and from the above
considerations, we expect to find four relatively close
energy levels.6 In order to cleanly see these nearby states,
multiple correlation functions formed from different
sources and sinks, and more sophisticated analysis tech-
niques will be required. As the goal of this work is not to
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FIG. 1 (color online). The EMP’s associated with the diagonalized nucleon correlation function, with tJ ¼ 5. The left panel, which
also shows the fit to the plateau region, is a magnification of the right panel.

6It is interesting to note that nonstrange channels will be
simpler to analyze as the low-energy spectrum will be less dense.
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provide detailed spectroscopy of such states, but to dem-
onstrate the feasibility of studying such systems, we do not
make efforts to identify the total isospin of the ground
state, and are content with identifying what appears to be
(with the current statistics) a single state. As mentioned
previously, for simplicity, we refer to this state as �0�0n.
The EMP’s associated with the SS, SP, and diagonalized
�0�0n correlation functions are shown in Fig. 3. A corre-

lated fit to the plateau region between time slices t ¼ 21
and t ¼ 34 (with 12 degrees of freedom) yields an energy

E�0�0n ¼ 0:6890ð13Þð17Þð6Þl:u:
¼ 3877:9� 6:9� 9:2� 3:3 MeV;

�2=dof ¼ 1:9:

(9)
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FIG. 3 (color online). The EMP’s associated with the SS, SP, and diagonalized �0�0n correlation function, with tJ ¼ 5. The lower
right panel, which also shows the fit to the plateau region, is a magnification of the lower left panel.

0 10 20 30 40 50 60
0.238

0.239

0.240

0.241

0.242

0.243

0.244

t bt

b t
E

0 20 40 60 80 100 120

0.3

0.2

0.1

0.0

0.1

0.2

0.3

t bt

b t
E

FIG. 2 (color online). The EMP’s associated with the diagonalized �0 correlation function, with tJ ¼ 5. The left panel, which also
shows the fit to the plateau region, is a magnification of the right panel.
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The uncertainties in this result correspond to a statistical
uncertainty, a fitting uncertainty from the analysis pre-
sented above, and an additional fitting uncertainty from
comparison to alternate analysis techniques using either
multiple exponential fits or other Prony methods (see
Ref. [14] for details). An additional uncertainty associated
with the determination of lattice scale bs ¼ 0:1227ð8Þ is
not included. Figure 3 also shows a plateau for a backward
propagating negative parity state, which is consistent with
a four-body state with the quantum numbers of �0�0n�
(which ultimately will allow for the calculation of pion
interactions with multibaryon systems).

As the diagonalized correlation functions are dominated
by their respective ground states even at relatively short
times, the energy splitting between the ground state of the
�0�0n system and that of the two �0’s and a neutron can
be found efficiently by forming the ratio of the diagonal-
ized correlation functions, �CH ðtÞ,

�G�0�0nðtÞ ¼
�G�0�0nðtÞ
�C2
�0ðtÞ �CnðtÞ

! A0e
��E

�0�0n
t; (10)

which at large times (for gauge-field configurations that are

infinitely long in the time direction) tends to an exponential
that depends upon the energy splitting �E�0�0n ¼
E�0�0n � 2M�0 �Mn. Figure 4 shows the effective mass
corresponding to �G�0�0nðtÞ, along with the correlated fit to
the plateau region. The energy splitting �E�0�0n is deter-
mined to be

�E�0�0n ¼ 4:6� 5:0� 7:9� 4:2 MeV;

�2=dof ¼ 2:0;
(11)

from fitting the time interval from t ¼ 21 to t ¼ 35 (with
13 degrees of freedom), using tJ ¼ 3, which is consistent
with zero (the splitting is computed relative to the non-
interacting system of two �0s and a neutron for conve-
nience). It is very encouraging that the uncertainty in the
energy shift per baryon is �3 MeV, which is smaller than
the binding energy per nucleon in typical nuclei, B�
8 MeV, and not significantly larger than the binding en-
ergy per nucleon in the deuteron or triton at the physical
values of the light-quark masses. The single energy-level
fit to the EMP in Fig. 4 has a �2=dof ¼ 2:0, indicating that
there may be additional structure in the correlation func-
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FIG. 4 (color online). The EMP’s for the energy splitting associated with the ratio of SS, SP, and diagonalized correlation functions
�G�0�0nðtÞ as defined in Eq. (10) with tJ ¼ 3. The lower right panel, which also shows the fit to the plateau region, is a magnification of

the lower left panel.
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tion. Including a second energy level shifted by �E�
�0:004 lattice units might provide a better description of
the EMP, and this would be consistent with the lower-
energy state, �0��, that is expected to contribute to the
four low-lying eigenstates in the lattice volume. However,
enhanced statistics are required to determine if this is, in
fact, the case. The total computational cost of performing
these measurements (propagator, block, and contraction
production) was �10:6� 106 JLab 6n node hours.
Naively, a factor of 25 increase in the number of measure-
ments would be required to reduce the statistical uncer-
tainty in this measurement to �1 MeV. Assuming that
such an enhancement could be accomplished without fur-
ther gauge-field generation, an extra �250� 106 JLab 6n
node hours would be required (without further code and
algorithm developments). Given that two-body contrac-
tions are inexpensive (by factors of at least 5) compared
with three-body contractions, such additional computer
resources would also provide a similar statistical enhance-
ment in all of the two-body measurements.

At present, unlike the situation in multimeson systems
[17–19], the analytical tools are not in place to use the
above energy shift and those of the associated two-baryon
systems to extract the parameters describing the relevant
two- and three-body interactions. While the volume de-
pendence of the simplest three-fermion systems has been
studied in Ref. [20], the mixing we expect between four
closely spaced states complicates the situation.

III. SIGNAL-TO-NOISE RATIOS

The �0�0n calculation is possible with our present
resources because there are time slices in the correlation
functions for which the signal-to-noise ratio is approxi-
mately independent of time. This is a region of time slices
for which the correlation function that dictates the variance
of the signal is not yet dominated by its ‘‘ground state,’’
which for the single-nucleon correlation function is three
pions. Given the importance of this observation in
Ref. [14], it is worth restating and expanding upon it here.

As argued by Lepage [13], correlation functions involv-
ing one or more baryons exhibit statistical noise that in-
creases exponentially with Euclidean time. In the case of a
single positive parity nucleon, the correlation function has
the form

h�NðtÞi ¼
X
x

���
þ hN�ðx; tÞ �N�ð0; 0Þi ! ZNe

�MNt; (12)

where N�ðx; tÞ is an interpolating field that has nonvanish-
ing overlap with the nucleon, �þ is a positive energy
projector, and the angle brackets indicate statistical aver-
aging over measurements on an ensemble of configura-
tions. The variance of this correlation function is given by

N2 � h�yNðtÞ�NðtÞi � h�NðtÞi2
¼ X

x;y

���
þ ���

þ hN�ðx; tÞ �N�ðy; tÞN�ð0; 0Þ �N�ð0; 0Þi

� h�NðtÞi2 ! ZN �Ne
�2MNt � Z2

Ne
�2MNt

þ Z3�e
�3m�t þ � � � ! Z3�e

�3m�t; (13)

where all interaction energies have been neglected, and N
is the number of (independent) measurements (distinct
from the nucleon field operator N). Therefore, at large
times, the noise-to-signal ratio behaves as



�x
¼ ðtÞ

h�ðtÞi �
1ffiffiffiffi
N

p e½MN�ð3=2Þm��t: (14)

More generally, for a system of A nucleons, the noise-to-
signal ratio behaves as



�x
� 1ffiffiffiffi

N
p eA½MN�ð3=2Þm��t (15)

at large times. The degradation of the signal-to-noise ratio
on gauge-field configurations of finite temporal extent is
exponentially more rapid than that given in Eq. (15) due to
the presence of thermal states, as discussed in Ref. [14].
From the signals and variances that we have measured in

the one-, two-, and three-baryon sectors, it is clear that
there is a suppression of the overlap onto the three-meson
state from theN �N source and sink [the variance correlation
function of Eq. (13)], as encapsulated in the factor Z3�. If
Z3� � ZN �N , Z

2
N there will be a number of time slices, near

the source of the correlation function, for which the noise-
to-signal ratio behaves as



�x
� 1ffiffiffiffi

N
p ; (16)

and does not depend exponentially upon time, or the
differences of hadron masses. The correlation functions
we have constructed lead to an implicit suppression of
Z3� compared to ZN �N and Z2

N , due to the fact that the
overlap onto the three-meson state, or any meson state, is
strongly suppressed when the sinks N�ðx; tÞ and �N�ðy; tÞ
do not overlap within a volume approximately defined by
the pion Compton wavelength. Therefore, summing inde-
pendently over the volumes for N�ðx; tÞ and �N�ðy; tÞ leads
to a suppression factor that scales with the spatial lattice
volume7 as Z3�=ZN �N � 1=�3L3. The pion mass dictates
the weakest suppression, and hence we set � ¼ m� for the
estimates that follow (if the width,w, of the smearing of the
source and sink is larger than the pion Compton wave-
length, then�� 1=w). Results consistent with this volume
scaling have been found explicitly in calculations of single
baryon energies using domain-wall fermions on MILC
gauge configurations.

7This has been noted independently by Kaplan [21].
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By generalizing this argument to systems composed of A
nucleons8 where each interpolating field is projected to
zero momentum, the noise correlation function is expected
to behave parametrically as

N2 � ðA!Þ2
ðm�LÞ3A

ZAe
�3Am�t

þ ððA� 1Þ!Þ2
ðm�LÞ3ðA�1ÞZA�1e

�ð2MNþ3ðA�1Þm�Þt þ�� �

þ A2

ðm�LÞ3
Z1e

�ð2ðA�1ÞMNþ3m�Þt þZ0e
�2AMNt þ�� � ;

(17)

where we have made explicit the parametric dependence of
the overlap factors on the baryon number and spatial
volume. The dependence on A arises from the number of
ways that N and �N sink operators can overlap to form one
or more three-pion contributions to the correlation func-
tion. Provided that the spatial volume is large compared to
the Compton wavelength of the pion, m�L � 1, there will
be a range of time slices in which only the last two terms in
Eq. (17) are important. In this region, the signal-to-noise
ratio in the multibaryon correlation function does not
degrade exponentially faster that the signal-to-noise ratio
in the single baryon correlation function. Instead,



�x
� 1ffiffiffiffi

N
p

�
Zþ Z0 A2

m3
�L

3
e½MN�ð3=2Þm��t þ � � �

�
; (18)

where Z and Z0 are Oð1Þ ratios of overlap factors.
Consequently, the signal-to-noise ratio starts degrading
exponentially only after time slice tnoise, which has para-
metric dependence

tnoise � 2

2MN � 3m�

ln

�
m3

�L
3

A2

�
: (19)

It is important to note that tnoise depends only logarithmi-
cally on the number of baryons, and hence it is conceivable
that plateaus may be found in the EMP’s of systems con-
taining four or more baryons with the current number of
measurements if the contractions are performed.

In order to investigate the signal-to-noise ratio in the
correlation functions of interest, it is useful to form the
effective noise-to-signal plot [14], in analogy with the
EMPs. On each time slice, the quantity

S ðtÞ ¼ ðtÞ
�xðtÞ (20)

is formed, from which the energy governing the exponen-
tial behavior can be extracted via

ESðt; tJÞ ¼ 1

tJ
log

�
Sðtþ tJÞ

SðtÞ
�
: (21)

If the correlation function is dominated by a single state,
and a single energy scale determines the behavior of the
noise-to-signal ratio, the quantity ESðt; tJÞwill be indepen-
dent of both t and tJ.
In Fig. 5, the energy scales of the noise-to-signal ratio

are shown for the nucleon and�0. As discussed previously
in Ref. [14], it is clear that for t * 45 this scale is signifi-
cantly greater than the asymptotic estimate of Lepage (the
lowest horizontal line in each figure) because of thermal
states involving propagation around the temporal extent of
the lattice. It is also clear that even the simple Lepage
scaling does not set in for many time slices corresponding
to a large window in which the signal is statistically clean.
Figure 5 indicates that the suppression of mesonic inter-
mediate states is stronger for the � correlation function
than for the nucleon correlation function, as evidenced by
the energy scale of the signal-to-noise ratio remaining
small for longer times.
The energy scale associated with the noise-to-signal

ratio of the diagonalized �0�0n correlation function is
shown in the left panel of Fig. 6. While degrading expo-
nentially, the signal-to-noise ratio of the three-body corre-
lation function is exponentially better in the plateau region
t & 32 than expected based upon the arguments of Lepage,
consistent with the expectations based upon the behavior of
the signal-to-noise ratio of the nucleon and �. The right
panel of Fig. 6 shows that the energy scale associated with
the signal-to-noise ratio in the�0�0n correlation function
is consistent with the simple sum of the energy scales from
the single baryon correlation functions (within statistical
uncertainties of the calculation).
In creating sources and sinks for correlation functions, a

great deal of attention is paid to optimizing the overlap
onto the states of interest. Variational techniques [22,23],
the matrix-Prony method, and related approaches make use
of sources and sinks with substantial, but different, over-
laps onto the states of interest to enable a diagonalization to
the eigenstates in the lattice volume (up to exponentially
suppressed contributions). For multibaryon systems, the
results of this work make clear that an equally important
component of source and sink optimization is to minimize
the overlap onto the lightest states that contribute to the
variance of the correlation function. This will also be true
for the extraction of the properties of excited single-
particle states.
Figure 7 shows a comparison of the relative uncertain-

ties (statistical and systematic uncertainties are added in
quadrature and normalized by the mean value of the mea-
surement) in the extraction of the ground-state hadron
energy for a selection of one-, two- and three-baryon
systems using the measurements for which �0�0n con-
tractions exist. We find that this quantity is approximately
constant, due to there being a sufficiently large window of

8This simple argument holds for A 	 4 nucleons and general-
izes simply to A 	 16 octet baryons. Further generalizations of
this argument accounting for Fermi statistics are straightforward.
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time slices for which the signal-to-noise ratio does not
degrade exponentially. The extent of this window is em-
pirically seen to decrease with the number of baryons as
shown in the lower panel of Fig. 7 where the matrix-Prony
effective energies9 of exemplary one-, two- and three-

baryon systems are shown (detailed analysis of the two-
baryon sector will appear in future work [24]). This result
is consistent with the scaling anticipated in Eq. (19).
There have been several suggestions for alleviating the

signal-to-noise problem at large times [25–30], although
none of these methods have been applied to correlation
functions of one or more baryons. It would be useful to
determine if the implementation of these methods could
significantly reduce the computation needed for a similar
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FIG. 6 (color online). The left panel shows the energy scales associated with the signal-to-noise ratios for the �0�0n correlation
function, as defined in Eq. (21). The horizontal line corresponds to mN þ 2m� � 2m� � 5

2m�, the asymptotic energy scale in a lattice

with infinite temporal extent. The right panel shows the difference between the signal-to-noise energy scales of the diagonalized
�0�0n correlation function and that of the nucleon and twice that of the � correlation function.
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FIG. 5 (color online). The energy scales associated with the signal-to-noise ratios for the nucleon (left panel) and� (right panel), as
defined in Eq. (21). The horizontal lines in the left panel correspond to the energy scales mp � 3

2m�, mp � 1
2m�, mp, mp þ 1
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mp þ 3
2m� (from lowest to highest energy). The horizontal lines in the right panel correspond to the energy scales m� � 3

2m�, m� �
mK � 1
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2m�, m� � 1

2m�, m�, m� þ 1
2m�, and m� þm� � 1

2m� (from lowest to

highest energy).

9These EMPS and the central values of these extractions
slightly differ from the extractions presented in Figs. 1–3, but
are consistent.
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determination of the (multi) baryon correlation functions
as compared with the current study and that of Ref. [14].

IV. THE TRITON CHANNEL

One of the main motivations for the present work is to
show that three-baryon (and beyond) calculations can be
done at unphysical quark masses with present day resour-
ces. We have shown the results for channels that couple to
�0�0n sources and sinks as their correlation functions are
some of the least computationally expensive, requiring the
calculation of only 288 Wick contractions. A significantly
more computationally expensive, but physically more in-
teresting, channel is that of the triton (pnn) for which there
are 2880 Wick contractions.10 We do not have the compu-
tational resources available to perform the pnn contrac-
tions on all of the 260 000 measurements we have made,

and to date have only performed �9200 measurements of
the smeared-smeared correlation function.11 The general-
ized EMP resulting from a 3-exponential Prony analysis is
shown in Fig. 8, and given the relatively large uncertain-
ties, we do not present a value for the ground-state energy.
At the physical pion mass one expects to find a negatively
shifted state corresponding to the triton. To conclude that
such a signal corresponded to a bound state would require
further studies showing exponentially suppressed sensitiv-
ity to the lattice volume in contrast to continuum states.

V. CONCLUSIONS

In this work, we have presented the first lattice QCD
calculations of a three-baryon state, focusing on a system
with the quantum numbers of�0�0n. We find a state with
an energy of E�0�0n ¼ 3877:9� 6:9� 9:2� 3:3 MeV
corresponding to an energy shift from the free three-baryon
system of �E�0�0n ¼ 4:6� 5:0� 7:9� 4:2 MeV. Our
high statistics analysis of the behavior of the signal-to-
noise ratio of single- and multiple-baryon correlation func-
tions indicates that there is a window of time slices for
which the signal-to-noise ratio does not degrade exponen-
tially. This implies that multibaryon correlation functions
can be calculated in this time interval with significantly
less computational resources than previously estimated,
and we demonstrate that this is indeed the case in the
three-baryon sector. The signal-to-noise ratio does not
depend exponentially upon the number of baryons in this
time interval; however, the length of this window decreases
logarithmically with the number of baryons.
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FIG. 7 (color online). The upper panel shows the relative
uncertainties in the extraction of one-, two- and three-baryon
ground-state energies. The lower panel shows the corresponding
EMPs for some of these systems obtained with the matrix-Prony
method.
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FIG. 8 (color online). The standard EMP for the smeared-
smeared pnn correlation function is shown (circles) along with
the generalized EMP resulting from a 3-exponential Prony
analysis [14] of the data (squares). The horizontal light band
corresponds to three times the nucleon mass.

10The pnn source has global quantum numbers B ¼ þ3, s ¼ 0,
and Iz ¼ 1

2 . Projecting each nucleon onto zero three-momentum
further restricts the total isospin to I ¼ 1

2 , as the B ¼ þ3, s ¼ 0,
Iz ¼ þ 3

2 ppp state does not have such a projection.

11To perform the pnn contractions on all �520 000 blocks
would require �40� 106 JLab 6n node hours without further
code and algorithm improvements.
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We have focused only on the state(s) that couples to the
�0�0n interpolating operator simply due to limited com-
putational resources. In the past it has been the case that
gauge-field generation has required the majority of LQCD
resources, but this is no longer true for precise calculations
of baryonic observables. The resources required to perform
the large number of measurements required for nuclear
systems are significantly greater than those required for
gauge-field generation. This situation will improve as more
effort is put into algorithmic improvements for contrac-
tions, in the same way that the use of deflation [31] and
other techniques have greatly reduced the resources re-
quired for propagator generation. Work in this direction
is in progress. Given the observed behavior of the signal-
to-noise ratio, we hope to be able to identify at least the
ground state in systems of four and five baryons.

As the central goal for applications of lattice QCD to
nuclear physics is the calculation of nuclei and their inter-
actions, we have also presented the first calculations of the
correlation function that would contain the triton if the
calculations were at the physical pion mass. The statistics
are very limited compared with the �0�0n correlation
function, but it is encouraging to see that there is a clear
plateau visible in the effective mass (within somewhat
large uncertainties).

The increase by more than 1 order of magnitude in the
number of measurements performed on a given ensemble
of gauge-field configurations has given rise to a new under-
standing of how to pursue nuclear physics processes with
lattice QCD. Source and sink optimization involves two
considerations (maximal overlap onto the baryon states
and minimum overlap onto the mesonic states in the cor-
relation function dictating the variance of the baryon cor-
relation functions) to make optimal use of available
resources. It is clear that, at unphysical values of the quark
masses, high statistics calculations can be used to explore
multinucleon systems (perhaps beyond A ¼ 5) with
present day resources.
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