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The pairwise production of neutral Higgs bosons ðh0A0;H0A0Þ is analyzed in the context of the future

linear colliders, such as the ILC and CLIC, within the general two-Higgs-doublet model (2HDM). The

corresponding cross sections are computed at the one-loop level, including the full set of contributions at

order Oð�3
ewÞ together with the leading Oð�4

ewÞ terms, in full compliance with the current phenomeno-

logical bounds and the stringent theoretical constraints inherent to the consistency of the model. We

uncover regions across the 2HDM parameter space, mainly for low tan�� 1 and moderate—and

negative—values of the relevant �5 parameter, wherein the radiative corrections to the Higgs-pair

production cross section, �ðeþe� ! A0h0=A0H0Þ, can comfortably reach j��j=�� 50%. This behavior

can be traced back to the enhancement capabilities of the trilinear Higgs self-interactions—a trademark

feature of the 2HDM, with no counterpart in the minimal supersymmetric standard model (MSSM). The

corrections are strongly dependent on the actual value of �5 as well as on the Higgs mass spectrum.

Interestingly enough, the quantum effects are positive for energies around
ffiffiffi
s

p ’ 500 GeV, thereby

producing a significant enhancement in the expected number of events precisely around the fiducial

startup energy of the ILC. The Higgs-pair production rates can be substantial, typically a few tens of

femtobarn, therefore amounting to a few thousand events per 500 fb�1 of integrated luminosity. In

contrast, the corrections are negative in the highest energy range (viz.
ffiffiffi
s

p � 1 TeV and above). We

conclude that a precise measurement of the 2H final states could carry unambiguous footprints of an

extended (nonsupersymmetric) Higgs sector. Finally, to better assess the scope of these effects, we

compare the exclusive pairwise production of Higgs bosons with the inclusive gauge boson fusion

channels leading to 2Hþ X final states, and also with the exclusive triple Higgs boson production. We

find that these multiparticle final states can be highly complementary in the overall Higgs bosons search

strategy.
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I. INTRODUCTION

It was already in the 1960’s when the pioneering works
of Higgs, Kibble, Englert and others suggested the exis-
tence of a fundamental spinless building-block of Nature
[1], whose nonvanishing vacuum expectation value could
explain the spontaneous breaking of the SUð2ÞL �Uð1ÞY
gauge group of the electroweak (EW) interactions down to
the Uð1Þem Abelian symmetry group of the electromagne-
tism. Indeed, this so-called Higgs mechanism is the most
fundamental long-standing issue that remains experimen-
tally unsettled in particle physics. For one thing, it is the
only known strategy capable of building up a (perturbative)
renormalizable quantum field theoretical description of the
electroweak symmetry breaking (EWSB) phenomenon. It
is difficult to overemphasize that, to a great extent, the
Higgs mechanism embodies the backbone of the SM struc-
ture and that in its absence we would have to cope with an
entirely different conception of the inner functioning of the
SM as a quantum field theory (QFT).

The central assumption here is the existence of (at least)
one elementary spinless field—the so-called Higgs boson.
Its relevance is particularly evident if we take into account
that the presence of one or more such fields in the structure
of the model is indispensable for the unitarity of the theory.
If no Higgs bosons exist below the TeV scale, weak inter-
actions would actually become strong at that scale and e.g.
theWþW� cross section would violate the unitarity of the
scattering matrix. Moreover, in the absence of Higgs bo-
sons the various particle masses could not be generated
consistently (i.e. without spoiling the ultraviolet behavior
of the theory at higher orders of perturbation theory). In
short, if no Higgs bosons are there to protect the (pre-
sumed) perturbative structure of the weak interactions,
the latter would enter a perilous runaway regime at high
energies. It is, thus, essential to confirm experimentally the
existence of one or more Higgs boson particles through
their explicit production in the colliders.
Amazingly enough, more than 40 years after the Higgs

mechanism was naturally blended into the conventionally
accepted SM landscape of the strong and electroweak
interactions [2], it remains still thickly curtained and no
direct evidence has been found yet of its main testable
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prediction: the existence of fundamental spinless particles.
Notwithstanding the many efforts devoted at LEP and at
the Tevatron in the last decades, all experimental searches
for Higgs boson signatures have come up empty-handed,
and one has to admit that no conclusive physical signature
for the existence of these elementary scalar fields—not
even the single one predicted by the SM—has been found
for the time being. Thus, we do not know whether the
conventional Higgs boson exists at all, or if there are no
Higgs particles of any sort. On the contrary, it could be that
there are extensions of the SM spanning a richer and
elusive spectrum of Higgs bosons which have escaped all
our dedicated experimental searches. Be that as it may, this
pressing and highly intriguing enigma will hopefully be
unveiled soon, specially with the advent of the new gen-
eration of supercolliders, like the brand new LHC, the
future International Linear Collider (ILC) [3] and, hope-
fully, the Compact Linear Collider (CLIC) too [4].

Therefore, we have to (and we can) be well prepared to
recognize all kind of hints from Higgs boson physics. Let
us recall that apart from the single neutral (CP -even) Higgs
boson H0 of the SM, other opportunities arise in model
building that could serve equally well the aforementioned
purposes. Perhaps the most paradigmatic extension of the
SM is the minimal supersymmetric standard model
(MSSM) [5], whose Higgs sector involves two doublets
of complex scalar fields. The physical spectrum consists of
two charged states, H�, two neutral CP -even states h0, H0

(with masses conventionally chosen as Mh0 <MH0) and
one CP -odd state A0. We shall not dwell here on the whys
and wherefores of supersymmetry (SUSY) as a most
sought-after realization of physics beyond the SM. It suf-
fices to say that it provides a Higgs sector which is stable
(to all orders in perturbation theory) under embedding of
the low-energy structure into a grand unified theory, and, in
particular, it provides the most natural link with gravity [5].

But, how to test the structure of the Higgs sector? In the
MSSM case, such structure is highly constrained by the
underlying supersymmetry. A consequence of it, which is
particularly relevant for our considerations, is the fact that
the self-interactions of the SUSY Higgs bosons turn out to
be largely immaterial from the phenomenological point of
view, in the sense that they cannot be enhanced (at the tree-
level) as compared to the ordinary gauge interactions and,
therefore, cannot provide outstanding signatures of physics
beyond the SM. The bulk of the enhancing capabilities of
the MSSM Lagrangian is concentrated, instead, in the rich
structure of Yukawa-like couplings between Higgs bosons
and quarks or between Higgs boson and squarks, or even
between squarks and chargino-neutralinos, as it was shown
long ago in plentiful phenomenological scenarios involv-
ing quantum effects on the gauge boson masses [6,7] and
gauge boson and top quark widths [8], as well as in many
other processes and observables (see e.g. [9–13]. For the
present state of the art, cf. [14,15]; and for recent compre-
hensive reviews, see [16,17], for example.

The two-Higgs SULð2Þ-doublet structure of the Higgs
sector in the MSSM is a trademark prediction of SUSY
invariance. Nonetheless, the very same doublet structure
can appear in the form of a nonsupersymmetric framework,
the so-called general (unconstrained) two-Higgs-doublet
model (2HDM), which does also entail a rich phenome-
nology [18]. Again, the same spectrum of CP -even
ðh0;H0Þ and CP -odd (A0) scalar fields arise. However,
we should keep in mind that the most distinctive aspects
of the general 2HDM Higgs bosons could well be located
in sectors of the model quite different from the MSSM case
[19]. Indeed, even the very couplings involved in the
structure of the Higgs potential (viz. the so-called trilinear
and quartic Higgs boson self-interactions) could be the
most significant ones as far as the phenomenological im-
plications are concerned, rather than just the enhanced
Yukawa couplings with the heavy quarks. In such circum-
stance, we should be able to detect a very different kind of
experimental signatures. Assuming, for instance, that the
LHC will find evidence of a neutral Higgs boson, a critical
issue will be to discern whether the newcomer is compat-
ible with the SM or any of its extensions and, in the latter
case, to which of these extensions it most likely belongs.
In order to carry out this ‘‘finer’’ hunting of the Higgs
boson(s), a TeV-range accessible linear collider machine
(such as the aforesaid ILC/CLIC) will be needed. In this
work, we will show how useful it could be such collider to
discriminate neutral supersymmetric Higgs bosons from
generic (non-SUSY) 2HDM ones.
The paper is organized as follows. In the next section,

we remind the reader of some relevant Higgs boson pro-
duction processes in the linear colliders. In Sec. III, we
describe the structure of the 2HDM and the relevant phe-
nomenological restrictions, including the properties of the
trilinear Higgs self-interactions and their interplay with the
notion of unitarity and vacuum stability. In Sec. IV, we
develop in detail the renormalization program for the
Higgs sector of the general 2HDM. The theoretical setup
for the one-loop computation of the Higgs boson cross
sections is elaborated in Sec. V, leaving Sec. VI to present
a comprehensive numerical analysis of our results. Finally,
Sec. VII is devoted to a thorough general discussion and to
present the conclusions of our work.

II. HIGGS BOSON PRODUCTION AT LINEAR
COLLIDERS

The leading Higgs boson production mechanisms at the
LHC have been studied thoroughly for the last 20 years,
they are well under control both in the SM [20] and in the
MSSM [21,22]. In addition, several studies are also avail-
able for the 2HDM [23,24]. Hopefully, they may soon help
revealing some clues on Higgs boson physics at the LHC—
for a review see e.g. [17] and references therein. However,
it is not obvious that it will be possible to easily disentangle
the nature of the potentially produced Higgs boson(s). The
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next generation of TeV-class linear colliders (based on both
eþe� and �� collisions), such as the ILC and the CLIC
projects [3,4], will be of paramount importance in finally
settling the experimental basis of the ‘‘Higgs issue’’ as the
most fundamental theoretical construct of the SM of elec-
troweak interactions. Thanks to its extremely clean envi-
ronment (in contrast to the large QCD background inherent
to a hadronic machine such as the LHC), a linear collider
(linac for short) should allow for a precise measurement of
the Higgs boson parameters, such as: (i) the Higgs boson
mass (or masses, if more than one); (ii) the couplings of the
Higgs bosons to quarks, leptons and gauge bosons; (iii) the
Higgs boson self-couplings mentioned above, i.e. the tri-
linear (3H) and quartic (4H) Higgs boson self-interactions.
At the end of the day, a linac should allow us to dig deeper
than ever into the structure of the EWSB and, hopefully,
even to reconstruct the Higgs potential itself.

A detailed road map of predictions for Higgs-boson
observables at the linear colliders is called for, with a
special emphasis on those signatures which may be char-
acteristic of the different extensions of the SM. For ex-
ample, as indicated above, triple Higgs boson self-
interactions (3H) may play a cardinal role in this endeavor
because, in favorable circumstances, they could easily
distinguish between the MSSM and the general 2HDM
Higgs sectors. Such 3H couplings can mediate a plethora
of interesting processes. The key point here is the poten-
tially large enhancements that the 3H couplings may ac-
commodate in the general 2HDM case, in contrast to the
supersymmetric extensions. Actually, even for the SUSY
case there is a large number of works attempting to extract
vestiges of nonstandard dynamics in these couplings,
mainly through the radiative corrections that they can
undergo. For instance, the 3H-couplings have been inves-
tigated in [25–27], and in some cases considered for pos-
sible phenomenological applications in TeV-class linear
colliders through the double-Higgs strahlung process
eþe� ! HHZ or the double-HiggsWW-fusion mechanism
eþe� ! HþH��e ��e. These processes, which include ver-
tices like ZZH, WWH, ZZHH, WWHH, and HHH, are
possible both in the SM and its extensions, such as the
MSSM and the general 2HDM. Unfortunately, the cross
section turns out to be rather small both in the SM and in
the MSSM, being of order 10�3 pb at most, i.e. equal or
less than 1 fb [26]. Even worse is the situation regarding
the triple Higgs boson production in the MSSM, in
which—except in the case of some particular resonant
configuration—the typical cross sections just border the
line of �0:01 fb or less [26]. In the latter reference, for
instance, it has been shown that if the double and triple
Higgs production cross sections would yield sufficiently
high signal rates, the system of couplings could in principle
be solved for all trilinear Higgs self-couplings up to dis-
crete ambiguities using only these processes. But this is
perhaps a bit too optimistic since in practice these cross

sections are manifestly too small to be all measurable in a
comfortable way.
In stark contrast to this meager panorama within the SM

and the MSSM, 3H couplings have been tested for tree-
level processes in the context of the unconstrained 2HDM.
For example, in Ref. [28] the tree-level production of triple
Higgs boson final states was considered in the ILC. There
are three classes of processes of this kind compatible with
CP -conservation, namely

ð1Þ eþe� ! HþH�h;

ð2Þ eþe� ! hhA0;

ð3Þ eþe� ! h0H0A0; ðh ¼ h0;H0;A0Þ (1)

where, in class (2), we assume that the two neutral Higgs
bosons h must be the same, i.e. the allowed final states are
ðhhA0Þ ¼ ðh0h0A0Þ, (H0H0A0), and (A0A0A0). The cross
sections in the 2HDMwere shown to reach up toOð0:1Þ pb
[28], i.e. several orders of magnitude over the correspond-
ing MSSM predictions [29]. Besides the exclusive produc-
tion of three Higgs bosons in the final state, also the
inclusive pairwise production of Higgs bosons may be
critically sensitive to the 3H self-interactions. Sizable pro-
duction rates, again in the range of 0:1–1 pb have recently
been reported in Ref. [30], whose focus was on the inclu-
sive Higgs boson-pair production at order Oð�4

ewÞ through
the mechanism of gauge-boson fusion

eþe� ! V�V� ! hhþ X

ðV ¼ W�; Z; h ¼ h0;H0;A0;H�Þ: (2)

Similar effects have also been recently computed on 2H-
strahlung processes of the guise eþe� ! Z0hh [31]. In a
complementary way, 3H couplings can also be probed in
loop-induced processes. For instance, Ref. [32] presents a
computation of the single Higgs boson production rate
through the scattering process of (i) two real photons, using
the �� mode of a linear collider, i.e. �� ! h; and (ii) the
more traditional mechanism of virtual photon fusion in
eþe� colliders, eþe� ! ���� ! hþ X. In either case,
the obtained cross sections within the general 2HDM (up
to 1 pb for the first mechanism, and 0.01 pb for the latter)
are 1 to 2 orders of magnitude larger than the expected SM
yields and also well above the MSSM results (see [32] and
references therein). Promising signatures have also been
reported within the general 2HDM using loop-induced
production of two neutral Higgs bosons through real ��
collisions [33], although in this case the cross sections are
smaller than in the primary mechanism �� ! hmentioned
before.
A crucial observation concerning our aim here is the

following: all the processes described above are directly
sensitive to the 3H self-couplings already at the leading
order. In this paper, we continue exploiting the properties
of these couplings in the general 2HDM, but we concen-
trate now on their impact at the level of indirect effects
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through radiative corrections. The latter may significantly
affect processes that are kinematically more favored (e.g.
because they have a smaller number of particles in the final
state), but which are nevertheless totally insensitive to the
trilinear Higgs boson couplings at the lowest order.
Specifically, we wish to concentrate on identifying the
largest quantum effects that the 3H couplings can stamp
on the cross sections for two-body neutral Higgs boson
final states:

eþe� ! 2h ð2h � h0A0; H0A0Þ: (3)

Surprisingly enough, very little attention has been paid to
these basic production processes and to the calculation of
the corresponding radiative corrections within the 2HDM.
In contrast, a lot of work has been invested on them from
the point of view of the MSSM [25,26,34–39]—see also
[40] and references therein.1 To the best of our knowledge,
only Refs. [42–44] have addressed this topic in the general
2HDM, although they are restricted to the production of
charged Higgs pairs HþH�. In the present paper, we shall
be concerned exclusively on computing the quantum ef-
fects involved on the neutral Higgs boson channels (3) at
order Oð�3

ewÞ (and eventually also the leading Oð�4
ewÞ

terms). As wewill see, very large quantum effects (of order
50%) may arise on the cross sections of the two-body
Higgs boson channels (3) as a result of the enhancement
capabilities of the triple (and, to a lesser extent, also the
quartic) Higgs boson self-interactions. These effects are
completely unmatched within the MSSM and should there-
fore be highly characteristic of nonsupersymmetric Higgs
boson physics.

III. THE TWO-HIGGS-DOUBLET MODEL:
GENERAL SETTINGS AND RELEVANT

RESTRICTIONS

The two-Higgs-doublet model (2HDM) is defined upon
the canonical extension of the SM Higgs sector with a
second SUð2ÞL doublet with weak hypercharge Y ¼ 1, so
that it contains 4 complex scalar fields arranged as follows:

�1 ¼ �þ
1

�0
1

� �
ðY ¼ þ1Þ;

�2 ¼ �þ
2

�0
2

� �
ðY ¼ þ1Þ:

(4)

With the help of these two weak-isospin doublets, we can
write down the most general structure of the Higgs poten-
tial fulfilling the conditions of CP -conservation, gauge
invariance, and renormalizability. Moreover, a discrete Z2

symmetry �i ! ð�1Þi�i (i ¼ 1, 2)—which will be exact
up to soft-breaking terms of dimension 2—is usually im-
posed as a sufficient condition to guarantee the proper
suppression of the flavor-changing neutral-current
(FCNC) effects that would otherwise arise within the quark
Yukawa sector [45]2 (we shall return to this point later).3

All in all, one arrives at the following expression for the
tree-level potential:

Vð�1;�2Þ ¼ �1

�
�y

1�1 � v2
1

2

�
2 þ �2

�
�y

2�2 � v2
2

2

�
2

þ �3

��
�y

1�1 � v2
1

2

�
þ
�
�y

2�2 � v2
2

2

��
2

þ �4½ð�y
1�1Þð�y

2�2Þ � ð�y
1�2Þð�y

2�1Þ�
þ �5

�
<eð�y

1�2Þ � v1v2

2

�
2

þ �6½=mð�y
1�2Þ�2; (5)

where �iði ¼ 1; . . . 6Þ are dimensionless real parameters
and vi (i ¼ 1, 2) stand for the nonvanishing VEV’s that
the neutral component of each doublet acquires, normal-

ized as follows: h�0
i i ¼ vi=

ffiffiffi
2

p
.

The complex degrees of freedom encoded within each
Higgs doublet in Eq. (4) are conveniently split into real
ones in the following way:

�1 ¼ �þ
1

�0
1

� �
¼ �þ

1
v1þ�0

1
þi	0

1ffiffi
2

p

 !
;

�2 ¼ �þ
2

�0
2

� �
¼ �þ

2
v2þ�0

2
þi	0

2ffiffi
2

p

 !
:

(6)

Upon diagonalization of the Higgs potential (5) we may
obtain the physical Higgs eigenstates in terms of the gauge
(weak-eigenstate) basis:

H0

h0

� �
¼ cos� sin�

� sin� cos�

� �
�0

1

�0
2

� �
G0

A0

� �
¼ cos� sin�

� sin� cos�

� �
	0
1

	0
2

� �
G�
H�

� �
¼ cos� sin�

� sin� cos�

� �
��

1

��
2

� �
(7)

The parameter tan� is given by the ratio of the two VEV’s
giving masses to the up- and downlike quarks:

1For the analysis of the tree-level double Higgs production
processes in the MSSM, see e.g. the exhaustive overview [41].
For a detailed ‘‘anatomy’’ of the MSSM Higgs sector and an
updated account of its phenomenological consequences, see e.g.
[17].

2For alternative strategies of building up realizations of the
2HDM with no explicit Z2 symmetry, see e.g. [46] and refer-
ences therein.

3This symmetry is automatic in the MSSM case, although it is
again violated after introducing the dimension 2 soft-SUSY
breaking terms. These are essential for the EWSB, which other-
wise would not occur, see Eq. (15) below.
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tan� � h�0
2i

h�0
1i

¼ v2

v1

: (8)

Incidentally, let us note that this parameter could be ideally
measured in eþe� colliders [37] since the charged Higgs
event rates with mixed decays, eþe� ! HþH� !
t�b
 ��
; �tb�
 �
, do not involve the mixing angle �. The
physical content of the 2HDM embodies one pair of
CP -even Higgs bosons ðh0;H0Þ; a single CP -odd Higgs
boson (A0); and a couple of charged Higgs bosons (H�).
The free parameters of the general 2HDM are usually
chosen to be: the masses of the physical Higgs particles;
the aforementioned parameter tan�; the mixing angle �
between the two CP -even states; and finally the coupling
�5, which cannot be absorbed in the previous quantities
and becomes tied to the structure of the Higgs self-
couplings. To summarize, the vector of free inputs reads

ðMh0 ;MH0 ;MA0 ;MH� ; �; tan�; �5Þ: (9)

Therefore, we are left with 7 free parameters, which indeed
correspond to the original 6 couplings �i and the two
VEV’s v1, v2—the latter being submitted to the constraint
v2 � v2

1 þ v2
2 ¼ 4M2

W=g
2, which is valid order by order in

perturbation theory, whereMW is theW� mass and g is the
SULð2Þ gauge coupling constant. The dimension 2 term
that softly breaks the Z2 symmetry can be written as

�m2
12�

y
1�2 þ H:c:, with

m2
12 ¼

1

2
�5v

2 sin� cos� ¼ G�1
F

2
ffiffiffi
2

p tan�

1þ tan2�
�5; (10)

the second equality being valid at the tree level. Given tan�
one may trade the parameter �5 for m12 through this
formula, if desired.

Since we are going to adopt the on-shell renormalization
scheme [47–49] for the one-loop calculation of the cross
sections (cf. Sec. IV), it is convenient to introduce the
electromagnetic fine structure constant �em ¼ e2=4�,
which is one of the fundamental inputs in this scheme
(together with the physical Z0 mass, MZ, and the Higgs
and fermion particle masses). The electron charge �e is
connected to the original SULð2Þ gauge coupling and weak
mixing angle �W through the well-known relation e ¼
g sin�W , which is also preserved order by order in pertur-
bation theory. Then theW� mass can be related to �em and
the Fermi constant GF in the standard way in the on-shell
scheme, namely

GFffiffiffi
2

p ¼ ��em

2M2
Wsin

2�W
ð1� �rÞ; (11)

where the parameter �r [49] vanishes at the tree-level, but
is affected by the radiative corrections to -decay both
from standard as well as from new physics, for instance
from the MSSM [8,14] and also from the 2HDM (see
below). Notice that, in the above formula, MW also enters
implicitly through the relation sin2�W ¼ 1�M2

W=M
2
Z,

which is valid order by order in the on-shell scheme.
Since GF can be accurately determined from the
-decay, and MZ has been measured with high precision
at LEP, it is natural to take them both as experimental
inputs. Then, with the help of the nontrivial relation (11),
theW� mass can be accurately predicted in a modified on-
shell scheme where GF, rather than MW , enters as a physi-
cal input.
We shall not dwell here on the detailed structure of the

Yukawa couplings of the Higgs boson to fermions (see [18]
for an exhaustive treatment), since their contribution to the
processes eþe� ! h0A0=H0A0 under study at the one-loop
level is largely subdominant in the main regions of pa-
rameter space. However, it is precisely the coupling pattern
to fermions that motivates the distinction between the
different types of 2HDM’s, so let us briefly describe
them. Assuming natural flavor conservation [45], we
must impose that at most one Higgs doublet can couple
to any particular fermion type. As a result, the coupling of
the 2HDM Higgs bosons with fermions (say the quarks)
can be implemented in essentially two manners which
insure the absence of potentially dangerous (tree-level)
FCNC’s, to wit (cf. Table I)4: (i) type-I 2HDM, wherein
the Higgs doublet (�2) couples to all of quarks, whereas
the other one (�1) does not couple to them at all; or
(ii) type-II 2HDM, in which the doublet �1 (resp. �2)
couples only to downlike (resp. uplike) right-handed
quarks. In the latter case, an additional discrete symmetry
involving the chiral components of the fermion sector
must be imposed in order to banish the tree-level FCNC
processes, e.g. Di

R ! �Di
R, U

i
R ! Ui

R for the down and
up right-handed quarks in the three flavor families (i ¼ 1,
2, 3).

TABLE I. Neutral Higgs boson couplings to fermions in type-I
and type-II 2HDM, using third family notation. For example, the
SM Higgs boson coupling to top and bottom quarks,
�gmf=2MW (f ¼ t, b), multiplied by the corresponding factor

in the table provides the 2HDM couplings of the h0 boson to
these quarks. Worth noticing are the characteristic enhancement
factors arising at large (and low) values of tan�.

type I type II

h0tt cos�= sin� cos�= sin�
h0bb cos�= sin� � sin�= cos�
H0tt sin�= sin� sin�= sin�
H0bb sin�= sin� cos�= cos�
A0tt cot� cot�
A0bb � cot� tan�

4Strictly speaking, in the absence of CP -violation there are
four manners to have natural flavor conservation, giving rise to
four different kinds of allowed 2HDM’s that do not lead to tree-
level FCNC’s, see [50], although we will restrict ourselves here
to the two canonical ones [18].
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In turn, the Higgs self-couplings �i in the Higgs poten-
tial can be rewritten in terms of tan� and the physical
parameters of the on-shell scheme such as the masses and
the electromagnetic fine structure constant �em. At the tree
level, we have

�1 ¼ �5ð1� tan2�Þ
4

þ �em�

2M2
Ws

2
Wcos

2�

�
�
M2

H0cos
2�þM2

h0
sin2�

� 1

2
ðM2

H0 �M2
h0
Þ sin2� cot�

�
;

�2 ¼ �5ð1� 1=tan2�Þ
4

þ �em�

2M2
Ws

2
Wsin

2�

�
�
M2

h0
cos2�þM2

H0sin
2�

� 1

2
ðM2

H0 �M2
h0
Þ sin2� tan�

�
;

�3 ¼ ��5

4
þ �em� sin2�

2M2
Ws

2
W sin2�

ðM2
H0 �M2

h0
Þ;

�4 ¼ 2�em�

M2
Ws

2
W

M2
H� ;

�6 ¼ 2�em�

M2
Ws

2
W

M2
A0 ;

(12)

where sW ¼ sin�W , cW ¼ cos�W . From these Lagrangian
couplings in the Higgs potential, we can derive the ‘‘physi-
cal couplings,’’ namely, those affecting the physical Higgs
bosons in the mass-eigenstate basis. We call these cou-
plings the triple (3H) and quartic (4H) Higgs couplings.
Their behavior and enhancement capabilities are at the

very core of our discussion. Indeed, from our analysis it
will become clear that they furnish the dominant source of
quantum corrections to the Higgs-pair production pro-
cesses eþe� ! h0A0=H0A0 within the general 2HDM.
The physical 3H and 4H couplings are not explicitly

present in the 2HDM potential (5). They are derived from it
after spontaneous breaking of the EW symmetry and cor-
responding diagonalization of the Higgs boson mass ma-
trix using the rotation angles � and � in (7). In the
particular case of the SM, the trilinear and quartic Higgs
couplings have fixed values, which depend uniquely on the
actual mass of the Higgs boson. In the MSSM, however,
and due to the SUSY invariance, the Higgs boson self-
couplings are of pure gauge nature, as we shall revise
briefly below. This is in fact the primary reason for the
tiny production rates obtained for the triple Higgs boson
processes (1) within the framework of the MSSM [26]. In
contrast, the general 2HDM accommodates trilinear Higgs
couplings with great potential enhancement. The full list is
displayed in Table II.
As can be seen, the couplings in this table depend on the

7 free parameters (9). In the particular case where �5 ¼ �6,
this table reduces to Table 1 of Ref. [28]. The equality of
these couplings takes place automatically e.g. in the
MSSM, where in addition other simplifications occur, as
we discuss below. Let us note, for example, that in the limit
� ¼ �� �=2 the h0h0h0-trilinear coupling in Table II
reduces exactly to the SM form i�SM

HHH ¼
�3igM2

H=ð2MWÞ—where we denote by H the SM Higgs

boson. This situation would correspond to the so-called
decoupling limit in the MSSM [51] since it is correlated
withMA0 ! 1, although there is no such correlation in the
general 2HDM.

TABLE II. Trilinear Higgs boson self-interactions (i�3H) in the Feynman gauge within the 2HDM. Here G0 is the neutral Goldstone
boson. These vertices are involved in the radiative corrections to the A0h0Z0ðA0H0Z0Þ bare couplings.

h0h0h0 � 3ie
2MW sin2�sW

½M2
h0
ð2 cosð�þ �Þ þ sin2� sinð�� �ÞÞ � cosð�þ �Þcos2ð�� �Þ 4�5M

2
Ws2W

e2
�

h0h0H0 � ie cosð���Þ
2MW sin2�sW

½ð2M2
h0
þM2

H0 Þ sin2�� ð3 sin2�� sin2�Þ 2�5M
2
Ws2W

e2
�

h0H0H0 ie sinð���Þ
2MW sin2�sW

½ðM2
h0
þ 2M2

H0 Þ sin2�� ð3 sin2�þ sin2�Þs2W 2�5M
2
W

e2
�

H0H0H0 � 3ie
2MW sin2�sW

½M2
H0 ð2 sinð�þ �Þ � cosð�� �Þ sin2�Þ � sinð�þ �Þsin2ð�� �Þs2W 4�5M

2
W

e2
�

h0A0A0 � ie
2MWsW

½cosð�þ�Þ
sin2� ð2M2

h0
� 4�5M

2
Ws2W

e2
Þ � sinð�� �ÞðM2

h0
� 2M2

A0 Þ�
h0A0G0 ie

2MWsW
ðM2

A0 �M2
h0
Þ cosð�� �Þ

h0G0G0 � ie
2MWsW

M2
h0
sinð�� �Þ

H0A0A0 � ie
2MWsW

½sinð�þ�Þ
sin2� ð2M2

H0 � 4�5M
2
Ws2W

e2
Þ � cosð�� �ÞðM2

H0 � 2M2
A0 Þ�

H0A0G0 � ie
2MWsW

ðM2
A0 �M2

H0 Þ sinð�� �Þ
H0G0G0 � ie

2MWsW
M2

H0 cosð�� �Þ
h0HþH� � ie

2MWsW
½cosð�þ�Þ

sin2� ð2M2
h0
� 4�5M

2
Ws2W

e2
Þ � ðM2

h0
� 2M2

H�Þ sinð�� �Þ�
H0HþH� � ie

2MWsW
½sinð�þ�Þ

sin2� ð2M2
H0 � 4�5M

2
Ws2W

e2
Þ � cosð�� �ÞðM2

H0 � 2M2
H�Þ�
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Let us recall that the MSSMHiggs sector is a type-II one
of a very restricted sort: it is enforced to be SUSY invariant.
This is a very demanding requirement as, for example, it
requires that the superpotential has to be a holomorphic
function of the chiral superfields [5,18]). This implies that
we cannot construct the MSSM with two Y ¼ þ1 Higgs
superfields. Then, in order to be able to generate masses for
both the top and bottom quarks through EWSB, the �2

doublet can be kept as it is with Y ¼ þ1, although we must
replace �1 with the conjugate (Y ¼ �1) SULð2Þ doublet

H1 ¼ H0
1

H�
1

� �
� ���

1 ¼ �0�
1

���
1

� �
ðY ¼ �1Þ; (13)

where � ¼ i�2, with �2 the second Pauli matrix. Thus, for
the first doublet the correspondence with the MSSM case
reads �1 ¼ ��H�

1 , and the second doublet (the one with
no change) is just relabeled H2. Moreover, the tree-level
relationships imposed by supersymmetry between the �i

couplings of the potential (5) are the following:

�1 ¼ �2; �3 ¼ ��em

2s2Wc
2
W

� �1;

�4 ¼ 2�1 � 2��em

c2W
; �5 ¼ �6 ¼ 2�1 � 2��em

s2Wc
2
W

:

(14)

Substituting (13) and (14) in (5) one obtains the usual
MSSM potential, which in practice must be supplemented
with soft SUSY-breaking scalar mass terms m2

i H
2
i , includ-

ing a bilinear mixing term m2
12H1H2 for the two Higgs

doublets. This term is the analog of (10) for the 2HDM, but
in the soft-SUSY breaking context is arbitrary. The result
can be cast as follows:

VðH1; H2Þ ¼ ðjj2 þm2
1ÞjH1j2 þ ðjj2 þm2

2ÞjH2j2

þ ��em

2s2Wc
2
W

ðjH1j2 � jH2j2Þ2

þ 2��em

s2W
jHy

1H2j2 �m2
12ð�ijHi

1H
j
2 þ H:c:Þ;

(15)

where  is the Higgsino mass term in the superpotential
[5]. The obtained potential is one where all quartic cou-
plings become proportional to �em, which is tantamount to
say that in the SUSY case these self-couplings are purely
gauge. Thus, after EWSB also the trilinear self-couplings
will be purely gauge. As warned before, this is the primary
reason for their phenomenological inconspicuousness.
Under the supersymmetric constraints, the entries of
Table II boil down to the MSSM form listed e.g. in [18].
Moreover, the five constraints (14) reduce the number of
free parameters from 7 to 2 in the supersymmetric context,
typically chosen to be tan� and MA0 . For the general
2HDM case, however, we shall stick to the form presented
in Table II, where the 7 free inputs are chosen as in (9).

In another vein, it is of paramount importance when
studying possible sources of unconventional physics to
make sure that the SM behavior is sufficiently well repro-
duced up to the energies explored so far. Such a require-
ment translates into a number of constraints over the
parameter space of the given model. In particular, these
constraints severely limit the a priori enhancement possi-
bilities of the Higgs boson self-interactions in the 2HDM.
(i) To begin with, we obviously need to keep track of the

exclusion bounds from direct searches at LEP and
the Tevatron. These amount toMh0 * 114 GeV for a
SM-like Higgs boson—although the bound is weak-
ened down to 92.8 for models with more than one
Higgs doublet [52]. In the 2HDM all the mass
bounds can be easily satisfied upon a proper choice
of the different Higgs masses—which, unlike the
SUSY case, are not related with each other.

(ii) Second, an important requirement to be enforced is
related to the (approximate) SULþRð2Þ custodial
symmetry satisfied by models with an arbitrary
number of Higgs doublets [53]. In practice, this
restriction is implemented in terms of the parameter
�, which defines the ratio of the neutral-to-charged
current Fermi constants. In general it takes the form
� ¼ �0 þ ��, where �0 is the tree-level value. In
any model containing an arbitrary number of dou-
blets (in particular the 2HDM), we have �0 ¼
M2

W=M
2
Zc

2
W ¼ 1, and then �� represents the devia-

tions from 1 induced by pure quantum corrections.
From the known SM contribution and the experi-
mental constraints [52] we must demand that the
additional quantum effects coming from 2HDM
dynamics satisfy the approximate condition
j��2HDMj & 10�3. It is thus important to stay in a
region of parameter space where this bound is re-
spected. In our calculation we include the dominant
part of these corrections, which involve one-loop
contributions to �� mediated by the Higgs boson
[54]. The basic effect of �� is to restrict the mass
splitting between the Higgs bosons. In particular, we
note that if MA0 ! MH� then ��2HDM ! 0, and
hence if the mass splitting between MA0 and MH�

is not significant ��2HDM can be kept under con-
trol.5 Let us also recall in passing that the ��
correction translates into a contribution to the pa-
rameter �r of (11) given by �ðc2W=s2WÞ��.
Therefore, the tight bounds on �r, together with
the direct bounds on the ratio of charged and neutral
weak interactions, restrict this contribution as indi-
cated above.

(iii) Also remarkable are the restrictions over the
charged Higgs masses coming from FCNC radia-
tive B-meson decays, whose branching ratio

5For more refined analyses on �� constraints, see e.g. [55]
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Bðb ! s�Þ ’ 3� 10�4 [52] is measured with suf-
ficient precision to be sensitive to new physics.
Current lower bounds render MHþ * 295 GeV for
tan� * 1 [56,57]. It must be recalled that these
bounds apply for both Type-I and Type-II models
in the region of tan�< 1. In contrast, they are only
relevant for Type-I in the large tan� regime, since
for them the charged Higgs couplings to fermions
are proportional to cot� and hence the loop con-
tributions are highly suppressed at large tan�—
cf. Ref. [58] for detailed analytical expressions of
the contributions to Bðb ! s�Þ from the 2HDM.
Besides, data from B ! l�l may supply additional
restrictions on the charged Higgs mass at large
tan� for the type-II 2HDM [59]. For a very recent
updated analysis of the different B-physics con-
straints on the 2HDM parameter space, see
Ref. [46].

(iv) Further constraints apply to tan� coming from the
following two sources: (i) The Z0 ! �bb and B� �B
mixing processes strongly disfavor tan� below 1
[57]; (ii) The requirement that the Higgs couplings
to heavy quarks remain perturbative translates into
an (approximate) allowed range of Oð0:1Þ<
tan�< 60 [50].

(v) Besides the available experimental data, an addi-
tional set of requirements ensues from the theoreti-
cal consistency of the model. In particular, we shall
introduce the following set of conditions ensuring
the stability of the vacuum [60–62]:

�1 þ �3 > 0; �2 þ �3 > 0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1 þ �3Þð�2 þ �3Þ

q
þ 2�3 þ �4

þmin½0; �5 � �4; �6 � �4�> 0: (16)

(vi) Last but not least, we have to account for the
unitarity bounds. Indeed, they turn out to be a
fundamental ingredient of our computation. As
we have already been mentioning, the trademark
behavior that we aim to explore shall depend criti-
cally on the enhancement capabilities of the Higgs-
boson self-interactions which, in turn, will be
sharply constrained by unitarity. The basic idea
here is that, within perturbative QFT, the scattering
amplitudes are ‘‘asymptotically flat,’’ meaning that
they cannot grow indefinitely with the energy. This
is tantamount to say that the unitarity of the S-
matrix must be guaranteed at the perturbative level.
Several authors have dealt with this requirement in
the context of the 2HDM [63–76] and also to its
complex (CP -violating) extensions [77]. The strat-
egy here is to compute the S-matrix elements Sij in

a set of 2 ! 2 scattering processes involving Higgs
and Goldstone bosons. The resulting eigenvalues

are then constrained to satisfy the tree-level condi-
tion j�ij< 1=2 ð8 iÞ—to a great extent, a natural
extension of the pioneering analysis of Lee, Quick,
and Thacker in the SM [78]. This leads to a set of
conditions over several linear combinations of the
quartic couplings in the original Higgs potential
[67–69]—see these references for explicit details.

IV. RENORMALIZATION OF THE 2HDM HIGGS
SECTOR

In this section, we discuss in detail the renormalization
of the Higgs sector. The renormalization of the SM fields
and parameters is performed in the conventional on-shell
scheme in the Feynman gauge, see e.g. Refs. [47–
49,79,80]. At present, highly automatized procedures are
available for loop calculations, especially in the MSSM,
see e.g. [16,81–84]. However, in our case the calculation of
the cross sections for the processes eþe� ! h0A0=H0A0 is
performed within the general (nonsupersymmetric) 2HDM
and we must deal with the renormalization of the Higgs
sector in this class of generic models. To this end, we attach
a multiplicative wave-function (WF) renormalization con-
stant to each of the SULð2Þ Higgs doublets in the 2HDM,

�þ
1

�0
1

� �
! Z1=2

�1

�þ
1

�0
1

� �
;

�þ
2

�0
2

� �
! Z1=2

�2

�þ
2

�0
2

� �
; (17)

The renormalized fields are those on the right-hand side of
these expressions. At one-loop we decompose Z�1;2

¼ 1þ
�Z�1;2

þOð�ewÞ. These WF renormalization constants in

the weak-eigenstate basis can be used to construct the WF
renormalization constants Zhihj ¼ 1þ �Zhihj in the mass-

eigenstate basis by means of the set of linear transforma-
tions (7). We are interested only in the production of
neutral Higgs bosons in this paper, and therefore we shall
only quote the relations referring to them. The correspond-
ing �Zhihj in the neutral Higgs sector (using the notation

�Zhihi � �Zhi) are determined as follows:

�Zh0 ¼ sin2��Z�1
þ cos2��Z�2

�ZH0 ¼ cos2��Z�1
þ sin2��Z�2

�ZA0 ¼ sin2��Z�1
þ cos2��Z�2

�ZG0 ¼ cos2��Z�1
þ sin2��Z�2

�Zh0A0 ¼ sin� cos�ð�Z�2
� �Z�1

Þ
�ZA0G0 ¼ sin� cos�ð�Z�2

� �Z�1
Þ;

(18)

where in the last two equations we have also included the
mixing of the two CP -even Higgs bosons and that of the
CP -odd state with the neutral Goldstone boson in the
Feynman gauge. The different counterterms �Zhihj must

be anchored by specifying a set of subtraction conditions
on a finite number of 2-point functions. The various scalar-
scalar self-energies needed for this calculation involving
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both Higgs bosons and Goldstone bosons in diagonal or
mixing form can be written as follows. For the CP -even
sector,

�̂H0ðq2Þ ¼ �H0ðq2Þ þ �ZH0ðq2 �m2
H0Þ � �m2

H0

�̂h0H0ðq2Þ ¼ �h0H0ðq2Þ þ 1

2
�Zh0H0ðq2 �m2

H0Þ

þ 1

2
�Zh0H0ðq2 �m2

h0
Þ � �m2

h0H0

�̂h0ðq2Þ ¼ �h0ðq2Þ þ �Zh0ðq2 �m2
h0
Þ � �m2

h0
:

(19)

For the CP -odd sector,

�̂A0ðq2Þ ¼ �A0ðq2Þ þ �ZA0ðq2 �m2
A0Þ � �m2

A0

�̂G0ðq2Þ ¼ �G0ðq2Þ þ �ZG0q2 � �m2
G0

�̂A0G0ðq2Þ ¼ �A0G0ðq2Þ þ �ZA0G0

�
q2 �MA0

2

�
� �m2

A0G0 :

(20)

The structure of the Higgs sector beyond the leading order
is somewhat more involved. Similarly as in the SM, scalar-
vector mixing terms arise in the Lagrangian of the general
2HDM. Such contributions originate from the gauged ki-
netic terms of the Higgs doublets,

L K ¼ ðD�1ÞyðD�1Þ þ ðD�2ÞyðD�2Þ; (21)

where, in our conventions, the SUð2ÞL �Uð1ÞY covariant
derivative reads (using pretty standard notations),

D ¼ @ þ i
e

2sW
Wa


a þ i
e

2cW
YB; (22)

with �e being the electron charge. Upon spontaneous EW
symmetry breaking, the following scalar-vector mixing
terms are generated:

LSV
0 ¼ ie

2sW
ðv1@

��
1 þ v2@

��
2 ÞWþ

 þ H:c:

� e

2sWcW
ðv1@

	0
1 þ v2@

	0
2ÞZ0

: (23)

The subindex in LSV
0 means that this is a bare Lagrangian,

and therefore all fields in it are bare fields �ð0Þ
i and the

parameters are bare parameters.
Similarly for the VEV’s vi of the two Higgs doublets.

Here we have to include the corresponding WF renormal-
ization constants from (17). Therefore, the decomposition
of the bare VEV’s into the renormalized ones plus counter-
terms reads as follows:

vð0Þ
i ¼ Z1=2

�i
ðvi þ �viÞ ¼ vi

�
1þ 1

2
�Z�i

þ �vi

vi

�
: (24)

As we shall explain below in more detail, we will adopt the
following renormalization condition for the parameter
tan� ¼ v2=v1 [34,85]:

�v1

v1

¼ �v2

v2

: (25)

This condition insures that the ratio v2=v1 is always ex-
pressed in terms of the true vacua (that is, the VEV’s
resulting from carrying out the renormalization of the
Higgs potential). The corresponding counterterm tan� !
tan�þ � tan� associated to this definition therefore reads

� tan�

tan�
¼ �v2

v2

� �v1

v1

þ 1

2
ð�Z�2

� �Z�1
Þ

¼ 1

2
ð�Z�2

� �Z�1
Þ: (26)

Proceeding in this way, we may rewrite Eq. (23) asLSV
0 ¼

LSV þ �LSV, with

L SV ¼ iMWW
þ
@

G� þ H:c:�MZZ
0
@

G0 (27)

and where all the fields and parameters here are the renor-
malized ones. Similarly, the overall counterterm
Lagrangian reads

�LSV¼1

2

�
�ZG� þ�ZWþ�M2

W

M2
W

�
iMWW

þ
@

G�þH:c:þ1

2

�
�ZH�G� þ sin2�

� tan�

tan�

�
iMWW

þ
@

�H�þH:c:

�1

2

�
�ZG0 þ�ZZþ�M2

0

M2
Z

�
MZZ

0
@

G0�1

2

�
�ZG0A0 þ sin2�

� tan�

tan�

�
MZZ

0
@

A0; (28)

where we have reabsorbed the parameter v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

2

q
into the gauge-boson masses,MW ¼ gv=2,MZ ¼ MW=cW
and their associated counterterms.

Following the on-shell prescription, we arrange that the
four renormalized Higgs boson masses coincide with the
four input (physical) Higgs masses, and hence we enforce
them to be the pole masses of the corresponding renormal-
ized propagators. Equivalently, we declare that the real part
of the corresponding renormalized self-energies vanishes

for on-shell Higgs bosons. In a nutshell:

<e�̂h0ðM2
h0
Þ ¼ 0 <e�̂H0ðM2

H0Þ ¼ 0

<e�̂A0ðM2
A0Þ ¼ 0 <e�̂H�ðM2

H�Þ ¼ 0:
(29)

Incidentally, let us point out that this is a different approach
with respect to the MSSM (see e.g. [16]), in which case and
owing to the supersymmetric invariance, less freedom is
left over to settle independent renormalization conditions.
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However, additional conditions are needed due to the
extended structure of the Higgs sector of the 2HDM with
respect to the simpler SM case. In particular, the condition
(25) has been applied, but we still have to fix the structure
of the counterterm � tan� in (28), which we will unravel
later on below.

The scalar-vector mixing contributions at the tree-level
in (28) are canceled by the addition of gauge-fixing terms.
Using the ’t Hooft-Feynman gauge choice � ¼ 1 in the
class of linear R� gauges, we have:

LGF ¼ �FþF� � 1
2jF 0j2;

F� ¼ @W�
 � iMWG

�

F 0 ¼ @Z0
 þMZG

0:

(30)

Let us, however, point out that the scalar-vector mixing can
always take place via quantum corrections—see the dia-
grams of Fig. 1, and thereby a related set of counterterms
must be introduced in order to renormalize the correspond-
ing mixed self-energies. In particular, from Eq. (28) it
follows that the A0 � Z0 mixing counterterm reads

�ZA0Z0 ¼ � 1

2
�ZG0A0 � 1

2
sin2�

� tan�

tan�

¼ � 1

2
sin2�ð�Z�2

� �Z�1
Þ; (31)

where in the last equality we have taken �ZA0G0 from
Eq. (18) and used (26). Let us also derive the explicit
expression for the renormalized A0 � Z0 mixing self-
energy, as displayed in Fig. 1(a). By plugging the corre-
sponding Feynman rules, we may cast conveniently the
amplitude in the form

�A0Z0

 � i

q2 �M2
A0

½q��̂A0Z0ðq2Þ� �ig�

q2 �M2
Z

; (32)

where the structure of the renormalizedA0�Z0 self-energy
encapsulates both the corresponding bare self-energy con-
tribution and the related counterterm as follows:

�̂ A0Z0ðq2Þ ¼ �A0Z0ðq2Þ þMZ�ZA0Z0 ; (33)

with �ZA0Z0 given by Eq. (31). In the same vein, a similar
expression can be derived for the mixing with the
Goldstone boson, G0:

�A0G0 � i

q2 �M2
A0

½i�̂A0G0ðq2Þ� i

q2 �M2
Z

; (34)

with �̂A0G0 defined in (20). We are now ready to tackle the
renormalization of the Higgs-boson fields. Two indepen-
dent conditions are needed to fix �Z�1

, �Z�2
. Insofar as we

will be dealing with the neutral Higgs sector, it is more
convenient for us to impose such conditions on the A0

boson:

<e�̂
0
A0ðq2Þjq2¼M2

A0
¼ 0; (35)

<e�̂A0Z0ðq2Þjq2¼M2

A0
¼ 0; (36)

where the shorthand notation f0ðq2Þ � dfðq2Þ=dq2
has been employed. The above conditions, together with
(29), ensure that the outgoing A0 particle is on its mass
shell and that the residue of the renormalized propagator is

precisely equal to 1=½1þ �̂
0
A0ðM2

A0Þ� ¼ 1—see Sec. V.

Besides, the second condition guarantees that no mixing
between the A0 and Z0 bosons will take place at any order
in perturbation theory as long as that A0 Higgs boson is on
shell. Actually, also the scalar-scalar mixing A0 �G0 is
generated through a similar class of one-loop interactions
[recall Fig. 1(b)]. However, one can see that both mixing
phenomena turn out to be related by the Slavnov-Taylor
(ST) identity

q2�̂A0Z0ðq2Þ þMZ�̂A0G0ðq2Þ�q2¼M2

A0
¼ 0; (37)

which ultimately stems from the underlying BRS symme-
try of the theory [86].
A comment on the physical definition of tan� is now in

order. Recall that we have assumed that the relation (25)
holds between the counterterms of the VEV’s. Such rela-
tion says that the renormalized value of tan� is defined to
be the ratio of the renormalized values of v2 and v1. This is
tantamount to enforce the Higgs tadpoles to vanish [34,85],

TH0fh0g þ �tH0fh0g ¼ 0: (38)

Indeed, the tadpoles are absent at the tree level and must be
absent too at one-loop if v1 and v2 are to be the renormal-
ized VEV’s characterizing the true ground state of the
potential at the given order of perturbation theory.
Combining the renormalization conditions (35) and

(36), and using (18), (20), and (31), we are lead to

<e�0
A0A0ðM2

A0Þ þ sin2��Z�1
þ cos2��Z�2

¼ 0

<e�A0Z0ðM2
A0Þ � 1

2MZ sin2�ð�Z�2
� �Z�1

Þ ¼ 0:
(39)

The WF renormalization constants for the Higgs doublets
can now be solved explicitly as follows:

FIG. 1. Renormalized scalar-vector and scalar-scalar self-
energies at all orders in perturbation theory.
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�Z�1
¼ �<e�0

A0ðM2
A0Þ � 1

MZ tan�
<e�A0Z0ðM2

A0Þ;

�Z�2
¼ �<e�0

A0ðM2
A0Þ þ tan�

MZ

<e�A0Z0ðM2
A0Þ:

(40)

From (26) and (40) the specific form of the counterterm
associated to our definition of tan� finally ensues:

� tan�

tan�
¼ 1

MZ sin2�
<e�A0Z0ðM2

A0Þ: (41)

Up to now, we have established a set of conditions that
allows us to renormalize five out of the seven free parame-
ters (9) of the 2HDM. These are the conditions (25), (29),
and (36). Notice that the additional one (35) is a field
renormalization condition and, therefore, it does not affect
the definition of the parameters themselves—although it
certainly affects the renormalization of the Green’s func-
tions and cross sections. The two renormalized parameters
that remain to be defined are the CP -even mixing angle �
and the coupling �5. As far as � is concerned, we can split

its bare value in the usual form �ð0Þ ¼ �þ ��, where we
define the renormalized value � by setting to zero the
renormalized h0 � H0 mixing self-energy at the scale of
the Higgs mass in the final state. If e.g. the final state is the
lightest CP -even Higgs boson, then

<e�̂h0H0ðq2 ¼ M2
h0
Þ ¼ 0; (42)

whereas if it is the heavy CP -even Higgs-boson thenM2
h0
is

replaced byM2
H0 . In what follows we presume that the final

state is the lightest CP -even state. It is not difficult to see
that the renormalization condition (42) fixes the mixing
angle counterterm �� in terms of the mixing mass counter-
term �m2

h0H0 in the expression of the renormalized mixed

self-energy �̂h0H0—see Eq. (19). Obviously, (42) implies

�m2
h0H0 ¼ <e�h0H0ðM2

h0
Þ þ 1

2�Zh0H0ðM2
h0
�M2

H0Þ; (43)

with �Zh0H0 ¼ sin2�ð� tan�= tan�Þ. On the other hand,
one may show from the renormalized Higgs potential that

�� ¼ �m2
h0H0

M2
h0
�M2

H0

: (44)

Actually, the condition (42) is bound to the fact that the
external Higgs bosons ðh0;H0Þ are to be on-shell to all
orders in perturbation theory. To better assess the signifi-
cance of our renormalization conditions in the CP -even
Higgs sector, we note that the quantum corrections in this
sector induce the following nontrivial inverse propagator
matrix:

��1
h0H0 ¼ p2 �M2

H0 þ �̂H0H0 �̂h0H0

�̂h0H0 p2 �M2
h0
þ �̂h0h0

 !
:

(45)

The physical Higgs boson masses6 ensue from the real part
of the roots of det��1

h0H0 ¼ 0, i.e. of the algebraic equation

ðp2 �M2
H0 þ �̂H0H0Þðp2 �M2

h0
þ �̂h0h0Þ � �̂

2
h0H0 ¼ 0:

(46)

The above equation makes clear that both conditions (29)
and (42) are needed in order to settle the correct on-shell
properties for the h0 boson. Similarly, we have Eq. (29) and

<e�̂h0H0ðq2 ¼ M2
H0Þ ¼ 0 in the case of H0.

The set of renormalization conditions that we have in-
troduced so far enable us to anchor the full collection of
counterterms within the Higgs sector, in particular, the
mass counterterms �m2

G0 , �m
2
A0G0 that remain unsettled

in Eq. (20). In terms of the tadpole counterterms and
� tan� (all of them already fixed in this renormalization
scheme), we may write their explicit expressions as fol-
lows:

�m2
G0 ¼ �e

2sWMW

½sinð�� �Þ�th0 þ cosð�� �Þ�tH0�
(47)

�m2
A0G0 ¼ e

2sWMW

½sinð�� �Þ�tH0 � cosð�� �Þ�th0�
� sin� cos�M2

A0� tan�: (48)

The only parameter left is �5. However, this parameter is
not involved at the tree-level in any of the cross sections
under study, which are entirely dependent on just the
electroweak gauge-boson couplings at the lowest order.
Therefore, there cannot be any one-loop UV divergent
quantity that needs to be absorbed into the renormalization
of the parameter �5. In other words, this parameter is not
renormalized at one-loop for the processes under consid-
eration. It goes without saying that the situation would be
different at higher orders, e.g. at 2-loop order and beyond.
But we need not go that far to illustrate the main message
of this paper and its potential implications. In Sec. VII, we
shall briefly return to this point.

V. NEUTRAL HIGGS-BOSON PAIR PRODUCTION
AT 1 LOOP IN THE LINEAR COLLIDER:

THEORETICAL SETUP

The theoretical setup for the one-loop calculation starts
from the basic bare interaction vertices extracted from
Eq. (21):

6Let us recall that all Higgs boson masses are input parameters
within the general 2HDM, unlike the MSSM case.
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L A0h0Z0 ¼ e cosð�� �Þ
2sWcW

Z0
A

0@
$h0; (49)

L A0H0Z0 ¼ � e sinð�� �Þ
2sWcW

Z0
A

0@
$H0: (50)

In Fourier space, they read:

�A0h0Z0 :
e cosð�� �Þ

2sWcW
ðp� p0Þ; (51)

�A0H0Z0 :
e sinð�� �Þ

2sWcW
ðp� p0Þ; (52)

p and p0 being the 4-momenta of the CP -odd and even
Higgs boson pointing outwards, respectively. Being these
couplings generated from the electroweak kinetic terms
(21), they are fully determined by the gauge symmetry,
and as a consequence they are formally the same both in
the MSSM and in the 2HDM. It means that, if we aim at
distinguishing between the two basic types (supersymmet-

ric and nonsupersymmetric) of Higgs boson scenarios, the
study of the quantum corrections is mandatory here. Even
at one-loop order, this implies to cope with a formidable
calculation.
The set of diagrams that drive the one-loop corrections

to the eþe� ! A0h0 process are schematically shown in
Figs. 2 and 3. The shaded blobs summarize the loops with
all possible virtual particles. More specifically, we come up
with the following subsets of contributions: (i) the self-
energy corrections to the Z0 propagator and the �� Z0

mixing propagator; (ii) the vertex corrections to the
A0h0Z0 interaction; (iii) the loop-induced �h0A0 interac-
tion; (iv) the vertex corrections to the eþe�Z0 interaction;
(v) the box-type diagrams (cf. Fig. 3); (vi) the finite wave-
function renormalization of the external Higgs-boson legs
(cf. the bottom row of Fig. 2); and, finally, the counterterm
diagrams (cf. Figure 4). Let us also note that, throughout
our calculation, we employ a vanishing electron mass, so
that the diagrams with Higgs-electron couplings are ex-
plicitly discarded. Of course an equivalent set of diagrams
would be needed to describe the complementary process
eþe� ! A0H0, but we refrain from displaying it explicitly.
For each one of these process the number of diagrams
involved is huge and they have been generated using
standard algebraic tools, such as FEYNARTS [81], but we
refrain here from displaying the complete sets explicitly.
We limit ourselves to show the generic one-particle irre-
ducible structures inserted in the tree-level amplitudes as
effective vertices or effective external legs (cf. Fig. 2), and
then we show a few explicit samples in Figs. 3 and 5. In
Sec. VI we expand on the systematic numerical calculation
of the corresponding cross sections, which involves all of
them.

FIG. 3. Set of Feynman diagrams contributing to the eþe� !
A0h0 process at the one-loop level within the 2HDM. These
diagrams describe the box-type quantum corrections.

FIG. 2. Set of Feynman diagrams contributing to the eþe� ! A0h0 process at the one-loop level within the 2HDM. These diagrams
account generically for the gauge-boson propagator corrections and the vertex corrections (top line); and the WF corrections to the
external Higgs boson legs (bottom line). The shaded blobs summarize the one-loop corrections with all possible virtual particles.

FIG. 4. Counterterm diagrams for the renormalization of the eþe� ! A0h0 process.
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One might expect that the cross sections under study
could be sensitive to the model differences between type-I
and type-II 2HDM’s through the Yukawa coupling correc-
tions (cf. the top line of diagrams in Fig. 5). However, the
leading effects are concentrated on the triple Higgs boson
self-interactions (bottom line of Fig. 5), and being the latter
identical for type-I and type-II, the model differences are
tiny in the relevant regions of the parameter space.

Let us also mention that for our current purposes we can
safely discard the pure QED corrections to the eþe�Z0

vertex. These QED corrections and the pure weak ones
factorize into two subsets which are separately UV finite
and gauge invariant. Moreover, these photonic contribu-
tions are fully insensitive, at the order under consideration,
to the relevant 3H self-couplings on which we are focusing
in this work. For the processes under consideration, where
the Higgs bosons in the final state are electrically neutral,
the one-loop QED effects are confined to the initial eþe�
vertex. In practice, the net outcome of the accompanying
initial-state real photon bremsstrahlung is to lower the
effective center-of-mass energy, and hence to modify the

shape of the cross sections as a function of
ffiffiffi
s

p
. These QED

effects are the only source of infrared (IR) divergences in
our calculation, and since we do not consider them the
obtained scattering amplitude is IR finite. Finally, let us
also emphasize that its inclusion would not change signifi-
cantly the overall size of the radiative corrections, as in the
regions of the parameter space where the 3H self-couplings
are dominant the QED effects are comparatively negligible
(as we have checked explicitly). In short, they are unes-
sential at this stage to test the presence of the new dynami-
cal features triggered by the 2HDM in the processes under
consideration.
The UV divergent contributions arising from the set of

Feynman diagrams that we have just described can be
absorbed by means of the associated counterterm diagrams
of Fig. 4. In particular, we need to include corresponding
counterterms to renormalize the A0h0Z0 and A0H0A0 basic
interaction vertices at the one-loop level. The analytical
expressions ensue from Eqs. (49) and (50) after splitting
parameters and fields in the usual way into renormalized
ones plus counterterms. The final result reads as follows:

�LA0h0Z0 ¼ e cosð�� �Þ
2sWcW

Z0
A

0@
$h0

�
�e

e
þ s2W � c2W

c2W

�sW
sW

� sin� cos� tanð�� �Þ� tan�

tan�
þ 1

2
�Zh0 þ

1

2
�ZA0 þ 1

2
�ZZ0

� 1

2
tanð�� �Þ�ZH0h0 þ

1

2
tanð�� �Þ�ZA0G0 þ 1

2
tanð�� �Þ�ZA0Z0

�
:

�LA0H0Z0 ¼ � e sinð�� �Þ
2sWcW

Z0
A

0@
$H0

�
�e

e
þ s2W � c2W

c2W

�sW
sW

þ sin� cos� cotð�� �Þ� tan�

tan�
þ 1

2
�ZH0 þ 1

2
�ZA0

þ 1

2
�ZZ0 � 1

2
cotð�� �Þ�ZH0h0 �

1

2
cotð�� �Þ�ZA0G0 � 1

2
cotð�� �Þ�ZA0Z0

�
: (53)

When writing down the above counterterms, one has to
keep track explicitly of the UV divergences stemming from
the Higgs-Higgs (h0 � H0), Higgs-Goldstone (A0 �G0)
and Higgs-vector (A0 � Z0) mixing effects which arise at
the quantum level. By the same token, and despite there are
no �h0A0=�H0A0 tree-level couplings, we must also in-
troduce appropriate counterterms in order to dispose of the

associated UV-divergences that appear on account of the
�� Z0 mixing at the quantum level. The relevant terms are

�L�h0A0 ¼ cosð�� �Þ
2sWcW

�ZZ0�

2
AA

0@
$h0 (54)

and

FIG. 5. Sample of Feynman diagrams describing the one-loop corrections to the A0h0Z0- vertex for the process eþe� ! A0h0 within
the 2HDM, including quark-mediated (top line) and Higgs boson-mediated effects (bottom line).
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�L�H0A0 ¼ � sinð�� �Þ
2sWcW

�ZZ0�

2
AA

0@
$H0: (55)

Likewise, we must introduce the corresponding counter-
terms for the eþe�Z0 vertex, as well as for the Z0 � Z0 and
Z0 � � self-energies, for which we import the same ex-
pressions that hold in the standard on-shell scheme for the
SM, see e.g. [48,79], but of course including in their
calculation the loop contributions from the 2HDM Higgs
bosons. Let us denote by Mð1Þ the overall set of one-loop
contributions to eþe� ! h0A0, and by �Mð1Þ the associ-
ated counterterm amplitude. As we have discussed previ-
ously in terms of Feynman diagrams, we can split the one-
loop amplitudes into the following (UV-finite) subsets;

Mone-loop
eþe�!A0h0

¼ M1;Z0�Z0
Oð�2

ewÞ
þM��Z0

Oð�ew�emÞ
þMeþe�Z0

Oð�2
ewÞ

þMA0h0Z0
Oð�ew�

2
3HÞ

þM�h0A0
Oð�em�

2
3HÞ

þMbox Oð�2
ewÞ

þMWF;h0 Oð�ew�
2
3HÞ

þMh0H0
Oð�ew�

2
3HÞ

þMA0Z0;A0G0
Oð�ew�

2
3HÞ (56)

and similarly for the case of the heavy Higgs boson,
eþe� ! A0H0. In the above equations, we understand
that each amplitude is supplemented with the correspond-
ing counterterm. The complete expression Mone-loop ¼
Mð1Þ þ �Mð1Þ is free of UV divergences, as we have
explicitly checked. Moreover, at this point of the discus-
sion we are keeping track explicitly of the �3H factors, in
order to highlight those contributions which can be en-
hanced by the 3H self-couplings. For example, among the
interference terms between the tree-level amplitude and the
one-loop amplitude (56) we have the class of termsOð�3

ewÞ
and also the class of terms Oð�2

ew�
2
3HÞ, both classes of the

same order in perturbation theory, although the latter are
expected to be comparatively enhanced. We will check it
numerically in the next section.

Taking into account the above expressions, the overall
(one-loop corrected) scattering amplitude for the process
eþe� ! A0h0 reads as follows:

M eþe�!A0h0 ¼
ffiffiffiffiffiffiffi
Ẑh0

q
Mð0Þ

eþe�!A0h0
þMð1Þ

eþe�!A0h0

þ �Mð1Þ
eþe�!A0h0

: (57)

In the first term on the right-hand side of this equation, we

have appended a finite WF constant Ẑh0 for the Higgs-
boson external leg. Actually, only the h0 field receives a
nontrivial contribution of this sort after we have chosen

ẐA0 ¼ 1. Indeed, while we are entitled to do so for the
CP -odd field on account of the field renormalization con-
dition (36), this is not possible for h0. The reason is that we
use a WF renormalization constant for each Higgs doublet,
not for each field, see Eq. (17), and thus the relations (18)
give no further room to normalize to one the residue of the
propagator for the other fields. The nontrivial finite renor-

malization contribution Ẑh0 � 1 for the other external
Higgs boson in this process, h0, must be computed explic-
itly, the result being

Ẑ h0 ¼
1

1þ<e�̂
0
h0ðq2Þ �

�
<e�̂

2

h0H0
ðq2Þ

q2�M2
Hþ<e�̂

H0
ðq2Þ

�0
����������������

q2¼M2

h0

(58)

Retaining from this expression only the Oð�ew�
2
3HÞ con-

tributions to the scattering amplitude, we are left with

ffiffiffiffiffiffiffi
Ẑh0

q
Mð0Þ

eþe�!A0h0
¼
�
1�<e�̂

0
h0ðM2

h0
Þ

2

�
Mð0Þ

eþe�!A0h0

þOð�3
ewÞ; (59)

At the same time, our definition of the renormalized
CP -even mixing angle implies that the h0 � H0 contribu-
tion to the one-loop amplitude (56) vanishes identically:

M h0H0

eþe�!A0h0
¼ Ẑh0H0Mð0Þ

eþe�!A0h0

¼ � <e�̂h0H0ðM2
h0
ÞMð0Þ

eþe�!A0h0

M2
h0
�M2

H0 þ<e�̂H0ðM2
h0
Þ ¼ 0:

(60)

In turn, the finite correction associated to the on-shell A0

leg can be expressed in terms of the renormalized mixing
self-energies in the guise

iMA0Z0þA0G0

 ¼ � e sinð�� �Þ
sWcW

�̂A0G0ðM2
A0Þ

M2
A0 �M2

Z

p

�MZ sinð�� �Þ
sWcW

�̂A0Z0ðM2
A0Þ

M2
A0 �M2

Z

p

¼ � e sinð�� �Þ
sWcWðM2

A0 �M2
ZÞ
p½�̂A0G0ðM2

A0Þ

þMZ�̂A0Z0ðM2
A0Þ�

¼ � e sinð�� �Þ
sWcW

�̂A0G0ðM2
A0Þ

M2
A0

p; (61)

where in the last step we have made use of the Slavnov-
Taylor identity (37). The 4-momentum p stands for an

outgoing A0 boson. Finally, the expression for the renor-
malized mixing self-energy A0 �G0 appearing in Eq. (61)
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is obtained from (20) after substituting in it the explicit
form of the counterterm (48).

Notice that since Eq. (36) decrees that the real part of the

function �̂A0Z0ðM2
A0Þ must vanish, in the above amplitude

(61) the only nonvanishing contribution shall stem from the

imaginary part, =m�̂A0G0ðM2
A0Þ. A similar expression may

be derived for the H0A0 channel:

iMA0Z0þA0G0

 ¼ � e cosð�� �Þ
sWcW

�̂A0G0ðM2
A0Þ

M2
A0

p: (62)

The complete eþe� ! A0h0 amplitude at order Oð�3
ewÞ

can finally be rearranged in the following way:

M eþe�!h0A0 ¼ Mð0Þ
eþe�!h0A0 �

�
1�<e�̂

0
h0ðM2

h0
Þ

2

� tanð�� �Þ �̂A0G0ðM2
A0Þ

M2
A0

�

þMð1Þ
eþe�!h0A0 þ �Mð1Þ

eþe�!h0A0 : (63)

where the tree-level amplitude takes the explicit form:

iMð0Þ
eþe�!h0A0 ¼ � 2�em� cosð�� �Þ

sWcWðs�M2
ZÞ

�vðp1; �1Þðk6 2 � k6 1Þ

� ðgLPL þ gRPRÞuðp2; �2Þ: (64)

In the above expression, the notation reads as follows: eþ,
with 4-momentum p1 and helicity �1; e�, with 4-
momentum p2 and helicity �2; A0, with 4-momentum
k1; and h

0, with 4-momentum k2. We have also introduced
the left and right-handed weak couplings of the Z0 boson to
the electron, gL ¼ ð�1=2þ s2WÞ=cWsW , gR ¼ sW=cW and
the left and right-handed projectors PL;R ¼ ð1=2Þð1	 �5Þ.
Let us also mention that we have neglected the contribution
of the Z0-width, as it is completely irrelevant at the work-
ing energies of the linear colliders (s 
 M2

Z0). Finally, the

total cross section is obtained after squaring the matrix
element, performing an averaged sum over the polariza-
tions of the colliding eþe� beams and integrating over the
scattering angle:

�ðeþe� ! h0A0Þ ¼
Z

dðcos�Þ�
1=2ðs;M2

h0
;M2

A0Þ
32�s2

� ���1;�2
jMeþe�!h0A0 j2; (65)

where we have introduced the standard definition of the
Kählen function �ðx; y; xÞ ¼ x2 þ y2 þ z2 � 2xy� 2xz�
2yz.

Before closing this section, let us stress once more that a
similar set of formulae hold for the companion process
eþe� ! A0H0, which can be related to the equations

above through the correspondence cosð�� �Þ !
� sinð�� �Þ and Mh0 ! MH0 .

VI. NEUTRAL HIGGS-PAIR PRODUCTION AT 1
LOOP: NUMERICAL ANALYSIS

A. Computational setup

In this section, we describe in detail the results that are
obtained from the numerical analysis of the processes
eþe� ! h0A0=H0A0 at the one-loop level. The basic quan-
tities of interest are two: (i) the predicted cross section (65)

at the Born-level �ð0Þ and at one-loop �ð0þ1Þ; and (ii) the
relative size of the one-loop radiative corrections, which
we track through the parameter

�r ¼ �ð0þ1Þ � �ð0Þ

�ð0Þ : (66)

In practice, the computation has been performed with the
help of the standard algebraic and numerical packages
FEYNARTS, FORMCALC, and LOOPTOOLS [81] for the gen-

eration of the Feynman diagrams, the analytical calculation
and simplification of the scattering amplitudes as well as
the numerical evaluation of the cross section.
Aiming at a wider survey of the regions of phenomeno-

logical interest, wewill explore the relevant range of values
for both cosð�� �Þ and sinð�� �Þ by picking up repre-
sentative configurations in the parameter space, e.g. � ¼
�, �� �=6, �� �=3, and � ¼ �=2. Such choices cover
basically all phenomenologically relevant values for the
A0h0Z0 tree-level coupling strength. In particular, the case
� ¼ �=2 corresponds to one of the so-called fermiophobic
scenarios; namely, for type I 2HDM, the lightest CP -even
Higgs couples to all fermions as cos�= sin� times the SM
coupling (cf. Table I); therefore, if � ¼ ��=2 the lightest
Higgs decouples from all the fermions.7 Full fermiophobia
is of course not possible for type-II models (although it is
partly possible). In particular, for the MSSM this phenome-
non is impossible and its detection would be a direct signal
of non-SUSY physics. Let us clarify, however, that per se
the fermiophobic scenarios are not particularly relevant for
the current analysis because the Yukawa couplings do not
play a central role here (as we will discuss below).
However, our cross sections are indeed sensitive to the
particular value of � that we select, and in this sense the
two fiducial choices � ¼ � and � ¼ �=2 represent two
distinctive regimes for our numerical analysis, as we will
see.

7In the two additional realizations of the 2HDM [50] (i.e. those
beyond the canonical ones indicated in Table I)—usually de-
noted as type-I’ and type-II’ models-, the leptons couple differ-
ently from the quarks of the same third weak-isospin component,
and as a result not even the type I’ models can exhibit full
fermiophobia.
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For practical reasons, throughout our calculation we will
be interested in projecting out the large radiative correc-
tions from regions of the parameter space for which the
predicted production rates at the tree-level are already
sizable. This means that we shall mainly dwell on regimes
nearby the optimal value of the tree-level coupling for the
h0A0 channel (� ’ �) and for the H0A0 one (� ’ �=2þ
�).
In Table III we quote the different Higgs-boson mass

spectra that we shall consider in our numerical analysis.
These mass sets have been designed to cover a wide span of
phenomenologically motivated regimes. Because of their
mass splittings, Sets I-III can only be realized within a
general 2HDM, whereas Sets IV-VI reflect characteristic
benchmark scenarios of Higgs boson masses within the
MSSM; they have been generated through the MSSM
parameter inputs specified in Table IV. Note that Sets I to
III (similarly, Sets IV to VI) are organized through increas-
ing values of the Higgs boson masses. Furthermore, let us
also highlight that, due to the presence of a light charged
Higgs boson, Sets I-II and IV-Vare adequate only for type-
I 2HDM, whereas Sets III and VI are valid either for type-I
or type-II 2HDM.
In turn, the value of �5 is severely restrained by the

theoretical constraints stemming from the tree-level uni-
tarity and vacuum stability. The bottom line is that �5 > 0
is strongly disfavored, and the permissible values lie
mostly in the range

� 11 & �5 & 0: (67)

The value of tan� that is preferred so as to optimize the

TABLE III. Choices of Higgs masses that used throughout our
computation. Because of the value of MH� , Sets I–II and IV–V
are only suitable for type-I 2HDM, while Sets I–II and VI can
describe either type-I or type-II 2HDM. Moreover, Sets IV–VI
have been specially devised to reproduce the characteristic
splitting of the Higgs masses within the MSSM at one-loop.

Mh0 [GeV] MH0 [GeV] MA0 [GeV] MH� [GeV]

Set I 100 150 140 120

Set II 130 150 200 160

Set III 150 200 260 300

Set IV 95 205 200 215

Set V 115 220 220 235

Set VI 130 285 285 300

TABLE IV. Choices of MSSM parameters which give rise to
the Higgs mass sets IV–VI in Table III, thus mimicking the
characteristic one-loop mass splittings within the Higgs sector of
the MSSM. The numerical value for these masses has been
obtained with the aid of the program FeynHiggs by taking the
full set of EW corrections at one-loop [82]. Universal trilinear
couplings (At ¼ Ab ¼ A
) and GUT relations for the gaugino
soft-SUSY breaking mass terms are assumed throughout.

Set IV Set V Set VI

tan� 3.7 20.0 20.0

MA0 200 220 285

MSUSY 300 650 800

 300 300 300

M2 300 200 300

Xt � At �= tan� �300 �300 �1100

FIG. 6 (color online). Contour plots of the quantum corrections �r (in %)—defined in Eq. (66)—to the eþe� ! A0h0 cross section
as a function of tan� and �5, for Set II of Higgs boson masses (cf. Table III), � ¼ � and

ffiffiffi
s

p ¼ 500 GeV (left panel),
ffiffiffi
s

p ¼ 1000 GeV
(right panel). The shaded area at the top stands for the region excluded by the vacuum stability bounds, whereas the disjoint shaded
area occupying most of the central and lower region signals the domain excluded by the tree-level unitarity bounds.
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cross sections in the above range is tan� ’ 1. We will
carefully derive these constraints in what follows and shall
examine their implications on the numerical analysis of the
cross sections under study.

B. eþe� ! h0A0

A fairly generous overview of the numerical results for
the Higgs-pair production through eþe� ! h0A0 at one
loop is provided systematically in Figs. 6 and 7 and in
Table V. In the latter, we display the predicted values for
the total cross section �ðeþe� ! h0A0Þ, together with the
relative size of the associated quantum corrections (66) for
each of the Higgs-boson mass sets in Table III. The results
are obtained for fixed tan� ¼ 1 and different values of �

indicated in the table. The fiducial ILC center-of-
mass energy is taken to be either

ffiffiffi
s

p ¼ 500 GeV orffiffiffi
s

p ¼ 1 TeV. For each mass set, �5 is allowed to take its
largest (negative) attainable value indicated in Table VI.
As we will confirm throughout the numerical analysis,
this prescription insures maximally enhanced quantum
corrections.
The corresponding loop-corrected cross sections

�ð0þ1Þðeþe� ! h0A0Þ stay in the approximate range 2–
30 fb for

ffiffiffi
s

p ¼ 500 GeV—this would entail up to barely
103–104 events in the standard segment 500 fb�1 of inte-
grated luminosity. At

ffiffiffi
s

p ¼ 1 TeV, however, the predicted
yields deplete down toOð1Þ fb in most cases, although this
would still give a turnover of a few hundred events at the
end of the luminosity shift.

FIG. 7 (color online). As in Fig. 6, but for the Set IVof Higgs boson masses (cf. Table III), � ¼ � and
ffiffiffi
s

p ¼ 500 GeV (left panel),ffiffiffi
s

p ¼ 1000 GeV (right panel).

TABLE V. Maximum total cross section �ð0þ1Þðeþe� ! A0h0Þ at ffiffiffi
s

p ¼ 500 GeV and
ffiffiffi
s

p ¼ 1 TeV, together with the relative size of
the radiative corrections, defined by �r in Eq. (66), for the different sets of Higgs bosons masses quoted in Table III. The results are
obtained at fixed tan� ¼ 1 and different values of �, with �5 at its largest attainable value, cf. Table VI.ffiffiffi

s
p ¼ 500 GeV

ffiffiffi
s

p ¼ 1 TeV
� ¼ � � ¼ �� �=3 � ¼ �� �=6 � ¼ �=2 � ¼ � � ¼ �� �=3 � ¼ �� �=6 � ¼ �=2

Set I �max½fb� 34.13 13.12 24.96 18.93 2.89 0.99 1.64 0.99

�r [%] 3.27 58.83 0.70 14.57 �72:99 �62:69 �79:58 �81:47
Set II �max½fb� 26.71 7.34 20.05 13.10 4.08 0.85 2.70 1.56

�r [%] 31.32 44.43 31.42 28.81 �58:42 �65:14 �63:28 �68:11
Set III �max½fb� 11.63 3.60 9.08 6.36 6.11 1.39 4.22 2.86

�r [%] 35.17 67.59 40.68 47.86 �30:16 �36:36 �35:62 �34:58
Set IV �max½fb� 27.44 12.12 18.37 15.41 5.99 1.19 2.65 1.67

�r [%] 12.86 99.42 0.76 26.81 �40:53 �52:78 �64:96 �66:81
Set V �max½fb� 23.03 9.17 16.90 13.21 6.35 1.35 3.48 2.26

�r [%] 21.87 94.22 19.25 39.80 �34:22 �44:05 �51:98 �53:21
Set VI �max½fb� 8.78 2.33 6.86 4.63 7.33 1.63 4.78 3.34

�r [%] 19.17 26.21 24.13 25.58 �14:08 �23:71 �25:28 �21:70

NEUTRAL HIGGS-PAIR PRODUCTION AT LINEAR . . . PHYSICAL REVIEW D 81, 033003 (2010)

033003-17



As for the radiative corrections themselves, they are also
explicitly quoted in Table V. One can see that they can be
remarkably large, being either positive (at ‘‘low’’ energies,
viz. for

ffiffiffi
s

p � 500 GeV) or negative (for
ffiffiffi
s

p � 1 TeV and
above). In the most favorable instances, such corrections
can boost the cross section value up to �r � 100% at

ffiffiffi
s

p ¼
500 GeV, whereas the corresponding suppression in the
high energy range (

ffiffiffi
s

p ¼ 1 TeV) can attain �r ��80%
owing to a severe destructive interference between the tree-
level and the one-loop amplitudes.

In Figs. 6 and 7 we explore in more detail the behavior of
the radiative corrections and their interplay with the theo-
retical constraints associated to the perturbative unitarity
and vacuum stability conditions. Although the range
tan� � 1 is usually the preferred one from the theoretical
point of view, we entertain the possibility that tan� can be
slightly below 1 in order to better assess the behavior
around this value. In these plots, we depict �r (in %) for
two choices of energies,

ffiffiffi
s

p ¼ 500 GeV (left panels) andffiffiffi
s

p ¼ 1 TeV (right panels). For each of these figures we
show independent contour plots corresponding, respec-
tively, to the Sets II and IV of Higgs boson masses
(cf. Table III) in the tan�� �5 plane. The first of these
sets involves an assorted spectrum of Higgs boson masses,
which is impossible to reproduce in the MSSM, whereas
the second set closely mimics a typical MSSM-like Higgs
mass spectrum, in which we recognize the characteristic
(approximate) degeneracy of the heavy Higgs boson
masses: MH0 ’ MA0 ’ MH� . We find that these scenarios
are well representative of the phenomenological trends
shown by all Higgs mass spectra under analysis. By setting
� ¼ � we optimize the tree-level A0h0Z0 coupling and in
this way we insure a sizable value of the lowest order cross
section, which is of course a good starting point for having
a chance to eventually measure quantum corrections on it.

From these plots, it is eye-catching that the unitarity
constraints are the most restrictive ones, and tend to dis-
favor large values of tan�> 1 or values tan� � 1. This is
natural because the triple and quartic Higgs self-couplings
rocket fast with large and small tan�, see Eq. (12) and
Table II. At the same time, these unitarity constraints place

a lower bound on another highly sensitive parameter of this
study, viz. �5, whereby �5 cannot be smaller than �11 or
thereabouts (in other words, j�5j & 11). Besides, this pa-
rameter is sharply stopped from above near �5 * 0 as a
direct consequence of the vacuum stability condition (cf.
the shaded band in the upper part of the plots). Thus, the
combined set of bounds build up a characteristic physical
domain in the parameter space of Figs. 6 and 7 which
pretty much looks like a deep valley flanked with sharp
cliffs on each side, and centered at tan� ¼ 1. As a result,
large departures from this central value are incompatible
with large values of j�5j. In particular, the range from
tan� ¼ 3 onwards is circumscribed to a narrow-edged
neck around �5 ’ 0. In addition, the heavier the Higgs
mass spectrum, the more severe the unitarity bounds are.
Let us also remark that all these constraints over j�5j
exhibit a mild dependence on the actual value of the
CP -even mixing angle � in the regimes considered here,
whereas our cross sections do vary significantly with it.
In short, from the analysis of Figs. 6 and 7 two basic

regimes of phenomenological interest can be sorted out:
On the one hand, we find scenarios in which �5 < 0 and
where this coupling can stay moderately large in absolute
value (viz. j�5j � 5–10) while tan� ’ 1; this would corre-
spond to the relatively narrow allowed stretch on the left-
hand-side of these plots. In such configurations, a subset of
3H self-couplings are remarkably singled out—the more
negative is �5, the greater is the coupling strength. Such
enhancement, which is transferred to the eþe� ! A0h0

amplitude through a set of Higgs-boson-mediated one-
loop vertex diagrams (see Fig. 5), translates into sizable
quantum corrections which become more vigorous with
growing j�5j. For instance, from Fig. 6 we see that around
tan� ’ 1, �r reaches �þ 10% at �5 ¼ �6, while it be-
comes þ30% for �5 ¼ �10. Furthermore, we encounter
that positive radiative corrections as big as �r �þ40% atffiffiffi
s

p ¼ 500 GeV may switch drastically into large negative
effects of the same order �� 40% (hence suppressing
significantly the cross section) when the center-of-mass
energy is increased up to

ffiffiffi
s

p ¼ 1 TeV—see e.g. the right
panel of Fig. 6. Obviously, positive radiative corrections
are preferred in practice because they invigorate the physi-
cal signal. Therefore, the startup energy

ffiffiffi
s

p ¼ 500 GeV of
the ILC seems to be the ideal regime to probe these
particular quantum effects rather than moving to higher
energies;
On the other hand, a very different behavior occurs in the

neck-shaped region of the contour plots at moderate
tan�> 1, as it is apparent in Figs. 6 and 7. Here the
enhancement capabilities of the leading 3H self-couplings
are rather meager with respect to the aforementioned
large-j�5j scenario. The reason is that for tan� * 3 the
coupling j�5j is nailed down to take very low values.
In the absence of a significant yield from the Higgs

boson-mediated loop corrections, we might expect alter-

TABLE VI. Approximate maximum (negative) value of the
parameter �5 which can be attained for each of the mass sets
in Table III, in accordance with the stringent constraints arising
from unitarity and vacuum stability bounds. As both sets of
constraints depend explicitly on the input Higgs masses, we find
a different maximum j�5j for each of the mass sets.

�5

Set I �11
Set II �10
Set III �8
Set IV �9
Set V �9
Set VI �6
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native sources of quantum effects to pop up. The first ones
coming to mind are of course those originating in the
Higgs-fermion Yukawa sector. However, it turns out that
the Yukawa interactions are not particularly efficient in the
regions explored in Figs. 6 and 7. Indeed, from Table I it is
apparent that none of the Higgs boson couplings to fermi-
ons is spurred on for tan� * 1 (in any of the two canonical
2HDM’s). Only the regions with tan�< 1—which are
disfavored by the general theoretical expectations—and
cos�� 1 could contribute here mainly via the Higgs-top
interaction, whose strength is h0

�
tt �mt cos�= sin� re-

gardless of considering type-I or type-II models.
Additionally, the Higgs-bottom Yukawa coupling
(�mb tan� within type-II 2HDM), could furnish a com-
petitive source of enhancement, as it does e.g. in the
MSSM. In the present case, however, no trace is left of
such effect owing to our main focus on the range tan� * 1,
although this situation could change in the region tan�< 1
(see below).

Closely related with the previous comment, we should
also stress the fact that there are no outstanding differences
between the obtained results from type-I and type-II
2HDM’s in the context of this analysis. Indeed, to start
with the Higgs-quark Yukawa interactions do not enter at
the tree-level in the processes eþe� ! h0A0=H0A0 under
consideration; second, the trilinear couplings are common
to both types of models; and third, we have already em-

phasized that the one-loop differences that could manifest
through the distinct form of these Yukawa couplings in
type-I and type-II models are virtually obliterated in the
physical region permitted by the constraints. All in all,
perhaps the most distinctive feature between both models
boils down, in this context, to just the requirement that
MH� * 300 GeV for type-II 2HDM’s as a result of the
low-energy B-meson physics constraints, which tend to
substantially raise the average mass of the Higgs spectrum
for this class of models—cf. Sets I-II and VI of in Table III.
The basic differences in the physics of eþe� ! A0h0 in
both models thereby narrow down to mass differences
between their characteristic Higgs-boson mass spectra.8

All the above mentioned phenomenological features are
transparent in Figs. 8 and 9, in which we explore the
evolution of the cross section as a function of the center-
of-mass energy. We include, in each plot, the tree-level

contribution �ð0Þ and the loop-corrected one �ð0þ1Þ for
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FIG. 8 (color online). Total cross section �ðeþe� ! A0h0Þ (in fb) at the tree-level and at one-loop (upper panels) and relative one-
loop correction �r (in %)—see Eq. (66)—(lower panels) as a function of

ffiffiffi
s

p
for Set II of Higgs boson masses, cf. Table III. Shown are

the results obtained within three different values of �5, at tan� ¼ 1 and for � ¼ � (left) and � ¼ �=2 (right)—the latter defining the
so-called fermiophobic limit for the h0 boson (for type I 2HDM).

8Recently, a combined analysis of different B-meson physics
constraints over the 2HDM parameter space suggests that values
of tan�� 1 could be disfavored for charged Higgs masses MH�
too near to 300 GeV (and certainly below) [46]. However, the
level of significance is not high and, moreover, our leading
quantum corrections are basically insensitive to the charged
Higgs mass. Therefore, a shift of MH� slightly upwards restores
the possibility of tan�� 1 at, say, 2� without altering signifi-
cantly our results (as we have checked).
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different values of �5. Worth noticing is that by testing the
influence of �5 on the cross sections, we are testing the
bulk capability of the 3H self-interactions, and hence their
potential fingerprint on the cross sections at the quantum
level. In the lower panels, we track the related behavior of
the quantum correction �r with

ffiffiffi
s

p
for the same set of �5

values. The plots are generated at fixed tan� ¼ 1 and for
two different values of the tree-level A0h0Z0 coupling:
namely, � ¼ � (where the tree-level coupling is maxi-
mum) and � ¼ �=2 (corresponding to the aforementioned
fermiophobic limit, in which h0 fully decouples from the
fermionic sector for type I models). In Figs. 8 and 9, we
display the numerical results obtained for Sets II and IVof
Higgs-boson masses, respectively. A similar numerical
output is obtained for the remaining mass sets in
Table III, showing no relevant departure from the phe-
nomenological trend that we have recorded as yet.

Let us focus e.g. on Fig. 8 for a while. The tree-level
curve exhibits the expected behavior with

ffiffiffi
s

p
, as it scales

with the s-channel Z0-boson propagator �1=ðs�M2
ZÞ.

The maximum cross section is achieved at �500 GeV.
The same pattern is followed by the full loop-corrected
cross section, although the dependence with

ffiffiffi
s

p
is sharper.

In fact, the range where �r > 0 is much briefer than the one
where �r < 0, although the former is characterized by very
significant quantum effects; so much so, that they may
skyrocket up to & 100% (at the largest allowed values of

j�5j) around the critical energy domain where
ffiffiffi
s

p ¼
500 GeV. Such effects could hardly be missed in the first
runs of the ILC. In contrast, when we move from

ffiffiffi
s

p ¼
500 GeV to

ffiffiffi
s

p ¼ 1000 GeV the resulting cross section

�ð0þ1Þ drops by at least 50%. The impact of the enhanced
3H self-couplings can be easily read off from the dramatic
differences in the one-loop production rates when the value
of �5 is varied in the theoretically allowed range (67).
Thus, when j�5j is pulled down at fixed tan�, the quantum
effects are rapidly tamed, in correspondence with the fact
that the 3H self-couplings are no longer stirred up.
The drastic decline of the triple Higgs boson self-

interactions in this domain cannot be counterbalanced by
the contribution of the Yukawa couplings, as they are not
very significant in the region of the parameter space where
tan� is of order one. At this point, it comes to mind our
former observation about the potential role that the region
tan�< 1 could play. Even though it is not favored on
theoretical grounds, we cannot exclude the possibility
that Oð0:1Þ< tan�< 1, and in fact the unitarity and vac-
uum stability bounds cannot dismiss in block this range
when �5 is sufficiently small. Thus, for example, in the
conditions of Fig. 6, and under the assumption that �5 ¼ 0,
we have checked that tan�� 0:2 is allowed by the afore-
said constraints, and in this region we encounter quantum
effects as large as þ30%. They are the result of the
combined effort from the diagrams involving the top quark
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FIG. 9 (color online). Total cross section �ðeþe� ! A0h0Þ (upper panels) and relative one-loop correction �r (lower panels) as a
function of

ffiffiffi
s

p
for Set IV of Higgs boson masses, cf. Table III. Shown are the results obtained within three different values of �5, at

tan� ¼ 1 and for � ¼ � (left) and � ¼ �=2 (right).
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Yukawa coupling and those involving the trilinear Higgs
boson couplings—which, in this case, become enhanced
by a pure tan�< 1 effect, rather than by an oversized �5.

It is also interesting to track carefully the fractional

payoff �r ¼ ð�ð0þiÞ � �ð0ÞÞ=�ð0Þ from the various one-
loop topologies (i ¼ 1; 2; 3; . . . ) of Feynman diagrams
contributing to the process eþe� ! h0A0. The correspond-
ing results are displayed in Table VII under the given
conditions. Included there are the gauge-invariant subsets
of diagrams of various types, namely Z0 � Z0=� vacuum
polarization effects, box diagrams, the renormalized
A0h0Z0 and eþe�Z0 vertex corrections, the loop-induced
form factor �h0Z0, and finally the finite WF corrections to
the external h0 leg. We can see that the gauge-boson self-
energies provide tiny contributions of order 1% at most.
The box diagrams, in their stead, are non-negligible (of
order 10%), albeit negative. At the same time we detect
mutually destructive effects between e.g. the finite WF
correction and the eþe�Z0 vertex. Most conspicuously,
we also confirm the dominant role of the Higgs-boson–
mediated loop diagrams as the leading source of quantum
corrections to the cross section. In particular, Table VII
shows, very convincingly, that the A0h0Z0 interaction,
which is purely gaugelike at the tree-level, becomes sig-
nificantly augmented at the one-loop order (being respon-
sible for an increase of the cross section by 20–40%) as a
result of the quantum effects triggered by 3H self-
interactions. Simple power counting arguments and edu-
cated guess provide the following estimate for the one-loop
A0h0Z0 coupling:

�eff
A0h0Z0 � �0

A0h0Z0

�2
3H

16�2s
fðM2

h0
=s;M2

A0=sÞ (68)

where fðM2
h0
=s;M2

A0=sÞ is a dimensionless form factor that

accounts for the complete one-loop amplitude. Taking into
account that the unitarity bounds allow the 3H self-
couplings to reach values as high as �3H=MW ’ j�5j=e ’
30, the maximum relative size of the quantum corrections
is expected to be

�r ¼ �ð0þ1Þ � �ð0Þ

�ð0Þ

¼ h2<eMð0ÞMð1Þ þ jMð1Þj2i
hjMð0Þj2i

� 2
j�3Hj2
16�2s

fðM2
h0
=s;M2

A0=sÞ
��������’ 50%; (69)

where h. . .i stands for the various operations of averaging
and integration of the squared amplitudes. In the above
equation, we have neglected the square of the one-loop
amplitude (see, however, just below) and set f� 1, which
is a reasonable assumption since the current value of the
center-of-mass energy,

ffiffiffi
s

p ¼ 500 GeV, is far from the
range in which the one-loop corrections are negligible.
The result of Eq. (69) falls correctly in the ballpark of
the optimal values for �r that we have obtained from our
exact numerical analysis—for Higgs boson masses of the
order of a few hundred GeV and maximum allowed j�5j
values (so as to push �3H close to the unitarity border). By
means of the same formula we can also estimate the con-
tribution to �r arising from the squared of the one-loop
amplitude, which we have neglected before. We find

�ð2Þ
r ¼ hjM1j2i

hjM0j2i �
�
�2
3H

16�2s

�
2
�������� ffiffi

s
p ¼500

’ 5%; (70)

thus roughly 10% of the one-loop leading effect. It turns
out that this is again in good agreement with the numerical
calculation. 9 All in all we conclude that, as long as 3H
couplings are sizable, quantum effects will be manifest—
and potentially very large.
Of great relevance is the study of the behavior of

�ðeþe� ! h0A0Þ as a function of the Higgs boson masses.
We present these results conveniently in Fig. 10, where
again we superimpose both the tree-level and the loop-
corrected cross sections for the process eþe� ! h0A0. The
dependence with Mh0 is indicated on the left panels and
that withMA0 on the right panels. The numerical results are
shown for the Sets II and IV and have been obtained, once

TABLE VII. Relative contribution to the total cross section �r;i ¼ ð�ð0þiÞ � �ð0ÞÞ=�ð0Þ from each topology of one-loop diagrams
normalized to the tree-level rate. The results are derived at fixed

ffiffiffi
s

p ¼ 500 GeV for tan� ¼ 1, � ¼ � and choosing the value of �5

that optimizes the quantum corrections for each mass regime, see Table VI.

Z0=�� Z0 [%] box [%] A0h0Z0 [%] �h0A0 [%] eþe�Z0 [%] WF [%]

Set I 0.82 �10:09 16.56 0.11 7.60 �7:00
Set II 0.77 �9:84 44.95 0.04 7.64 �7:69
Set III 0.71 �6:14 35.15 �0:23 7.40 �0:57
Set IV 0.70 �7:37 20.21 �0:30 7.59 �5:79
Set V 0.68 �7:12 26.32 �0:30 7.62 �3:49
Set VI 0.66 �6:26 15.06 �0:20 7.69 2.64

9We will further dwell on the potential relevance of such
Oð�4

ewÞ effects in Section VII.
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more, by setting tan� ¼ 1, � ¼ �, and making allowance
for j�5j to take on the highest permissible value in each set
(see Table VI). The center-of-mass energy is settled at the
fiducial value

ffiffiffi
s

p ¼ 500 GeV.
The plots under consideration evince that the raise of the

Higgs boson masses exerts a twofold effect on �, one
kinematical and the other dynamical. The former simply
means that owing to the reduction of the available phase
space the cross section obviously falls down. We can check

it in the figures, where we see that both the tree-level �ð0Þ

and the loop-corrected �ð0þ1Þ indeed decrease monotoni-
cally with growing Mh0 and MA0 . As far as the quantum
corrections themselves are concerned, the situation is a bit
more subtle. Although heavier Higgs bosons imply larger
propagator suppressions of the Higgs-mediated one-loop
diagrams, as we have just described in the previous para-
graph, the 3H self-couplings can partially offset this situ-
ation since they get invigorated in such circumstances.
This counterbalance feature is manifest in the explicit
expressions for the 3H couplings in Table II—the uttermost
limitation to their growing being the unitarity constraints.
In particular, 3H couplings involving neutral fields (which
can be shown to carry the dominant effect on eþe� !
h0A0) turn out to grow either with Mh0 or MA0 . Although
both effects partially balance each other, we are ultimately
left with the expected decoupling behavior in the limit of

large Higgs boson masses, with the proviso that such
decoupling takes place in a softer way than that of the
Born-level cross section. In fact, in Fig. 10 we can verify
that the one-loop-corrected cross section remains most of
the time on top of the tree-level result when we increase the
Higgs boson masses, and moreover the slope of the former
is clearly milder, particularly for Mh0 & 200 GeV. This
translates into a growing trend of �r up to values of Mh0 ’
275 GeV. Let us also mention in passing that the sudden
spike in the �rðMA0Þ curve at MA0 ’ 340 GeV (which is
also barely visible for�) corresponds to the �tt pseudothres-
hold in the one-loop vertex amplitude (cf. the first row of
diagrams in Fig. 5). The shaded regions in the plot corre-
spond to mass ranges already excluded by experimental
measurements of the �� parameter (cf. Sec. III).

C. eþe� ! A0H0

On general grounds, the basic phenomenological fea-
tures are common to both channels A0h0 and A0H0. The
final cross sections are comparable and reach up to a few
dozen fb. In Table VIII we collect, in a nutshell, the
essential results from a dedicated numerical analysis of
�ðeþe� ! H0A0Þ for all sets of Higgs boson masses
(cf. Table III) and different values of the tree-level
A0H0Z0 coupling, again at fixed tan� ¼ 1 and using the
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FIG. 10 (color online). Total cross section �ðeþe� ! A0h0Þ (upper panels) at fixed ffiffiffi
s

p ¼ 500 GeV, given as a function ofMh0 (left)
and MA0 (right) for Set II and IV of Higgs boson masses, cf. Table III; tan� ¼ 1, � ¼ � and three different values of �5.
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largest permissible value of j�5j in each set (see Table VI).
The relative size of the quantum corrections �r is also
included in Table VIII. As in the previous channel, we
have used fiducial center-of-mass energies

ffiffiffi
s

p ¼ 500,
1000 GeV, respectively. The maximum production rates
at

ffiffiffi
s

p ¼ 500 GeV are achieved for relatively light Higgs
boson masses (Set I) and for � ¼ �� �=2, in which case
the tree-level A0H0Z0 interaction is not suppressed, see

Eq. (50). Within this setup, one is left with �ð0þ1Þ � 40 fb.
Indeed the production rates lie at the Oð10 fbÞ level in a
broad range around � ¼ �� �=2 for all the mass sets
under analysis. If we nevertheless consider � ¼ �� �=6,
when the tree-level coupling gets suppressed by sinð��
�Þ ¼ 1=2, the resulting cross sections are still at the level
of a few fb—each femtobarn rending 500 events per
500 fb�1 of integrated luminosity.

TABLE VIII. Maximum total cross section �ð0þ1Þðeþe� ! A0H0Þ at ffiffiffi
s

p ¼ 500 GeV and
ffiffiffi
s

p ¼ 1 TeV, together with the relative
size �r of the radiative corrections, for the different sets of Higgs bosons masses quoted in Table III. The results are obtained at fixed
tan� ¼ 1 and different values of �, with j�5j at its largest attainable value, cf. Table VI.ffiffiffi

s
p ¼ 500 GeV

ffiffiffi
s

p ¼ 1 TeV
� ¼ �� �=2 � ¼ �� �=3 � ¼ �� �=6 � ¼ 0 � ¼ �� �=2 � ¼ �� �=3 � ¼ �� �=6 � ¼ 0

Set I �max½fb� 40.54 20.33 2.29 8.82 2.51 1.30 0.16 0.59

�r [%] 51.83 1.50 �65:72 �33:96 �75:59 �83:10 �93:62 �88:50
Set II �max½fb� 26.32 17.53 4.39 10.29 3.59 2.52 0.69 1.55

�r [%] 48.45 31.82 �1:03 16.10 �62:62 �65:09 �71:39 �67:75
Set III �max½fb� 5.00 3.28 0.87 1.95 5.17 3.98 1.41 2.75

�r [%] 71.81 50.22 19.75 34.15 �36:80 �35:14 �30:77 �32:80
Set IV �max½fb� 20.20 10.78 1.98 3.77 3.23 4.32 1.14 2.16

�r [%] 102.73 44.21 �20:53 �24:43 �64:02 �35:78 �49:13 �51:97
Set V �max½fb� 11.42 3.75 0.98 2.13 4.03 1.69 1.04 1.82

�r [%] 115.61 �5:53 �26:13 �19:69 �52:56 �73:46 �51:19 �57:22
Set VI �max½fb� below 4.76 4.12 1.44 2.61

�r [%] threshold �26:91 �15:71 �11:69 �19:95
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FIG. 11 (color online). Total cross section �ðeþe� ! A0H0Þ (upper panels) and relative one-loop correction �r (lower panels) as a
function of

ffiffiffi
s

p
for Set II of Higgs boson masses, cf. Table III. Shown are the results obtained within three different values of �5, at

tan� ¼ 1 and for � ¼ �� �=2 (left) and � ¼ 0 (right)—the latter defining the so-called fermiophobic limit for the H0 boson (for
type-I 2HDM).
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Radiative corrections thus may leave a solid imprint into

the final predicted �ð0þ1Þ of the current process. In particu-
lar, for � ¼ �� �=2 quantum effects rubber-stamp a
characteristic 50%–100% boost upon the tree-level cross
section, which could hardly be missed. Other choices of �
amount to negative one-loop contributions in which
A0H0Z0 is dramatically suppressed. For instance, in the
case of Set I for � ¼ �� �=6, it renders �r ��65%. For
center-of-mass energies from around

ffiffiffi
s

p ¼ 1 TeV on-
wards, a powerful destructive interference is seen to be
under way between the Born and the one-loop amplitudes.
This translates into large (negative) quantum corrections
which may well reach �r ��50%–100%, thus literally
stamping out the signal and pulling it down barely at the
� fb level or even below. To better illustrate this feature, in
Figs. 11 and 12 we plot the behavior of �ðeþe� ! A0H0Þ
(top panels) and �r (bottom panels) as a function of

ffiffiffi
s

p
for

the representative Sets II and IVof Higgs boson masses of
Table III and for different values of the tree-level coupling;
viz. � ¼ �� �=2 (left panels), which corresponds to the
maximum of the tree-level A0H0Z0 coupling, and sin� ¼
0 (right panels), corresponding to the fermiophobic limit
for H0 boson within type-I 2HDM (cf. Table I). Again we
fix tan� ¼ 1 and we vary �5 within the range allowed by
unitarity and vacuum stability restrictions. As it was al-
ready observed in the analysis of the h0A0 channel, heavier
Higgs boson spectra furnish smaller production rates. We
refrain from extending the discussion, which is entirely
similar to that of eþe� ! h0A0.

To our knowledge, no preexisting study of the one-loop
effects on the neutral Higgs boson channels (eþe� !
h0A0=H0A0) can be found in the literature. Let us, how-
ever, briefly comment on the prospects for the charged
Higgs-pair channel, eþe� ! HþH�. This was considered
some time ago in references [42–44]. These old studies
were devoted to the computation of �ðeþe� ! HþH�Þ at
one-loop in both the MSSM and the 2HDM. In the latter
case, they also uncover very large quantum effects (of
order 100% or even higher10) which are attributed to
enhanced 3H self-interactions involving charged Higgs
bosons. Such quantum effects may lie well above the
typical MSSM counterparts, which are found to render
up to j�rj � 20%, and mostly negative. Let us, however,
remark that the eþe� ! HþH� channel could operate at
sizable cross sections levels only for type-I models since
the type-II models require a rather heavy mass spectrum.
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FIG. 12 (color online). As in Fig. 11, but for Set IV of Higgs boson masses, cf. Table III.

10We should nevertheless put a note of caution here in that the
unitarity constraints that were employed in Refs. [42–44] are
substantially less restrictive than those considered throughout
our work. In this regard, an upgraded calculation of �ðeþe� !
HþH�Þ is mandatory before we can judiciously compare with
the results that we have presented here for the neutral Higgs
boson channels. However, due to the increase of the charged
Higgs boson mass bounds in the last few years, the maximum
cross-section rates should correspondingly fall down, thereby
making this process less competitive.
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VII. DISCUSSION AND CONCLUSIONS

In this work, we have undertaken a thorough investiga-
tion of the pairwise production of neutral Higgs-bosons
within the context of the general two-Higgs-doublet model
(2HDM) at the ILC/CLIC linear colliders (linac) through
the basic processes eþe� ! h0A0=H0A0. To the best of our
knowledge, this study is the first one existing in the litera-
ture which addresses these important processes at the one-
loop level. To sum up the main objectives of our work, we
can assert that we have concentrated on the following three
tasks: (i) we have, on the one hand, singled out the most
favorable regimes for the Higgs-pair production processes
once the radiative corrections are taken into account, spe-
cifically within the framework of the on-shell renormaliza-
tion scheme with an appropriate definition of tan� and of
the CP -even mixing angle� at the quantum level; (ii) next,
we have carefully quantified the importance of the leading
quantum corrections, and not only so, we have pinpointed
also the origin and relative weight of the various sources;
and, finally, (iii) we have correlated the most powerful
source of quantum effects with the strength of the Higgs
boson self-interactions (essentially the triple Higgs boson
self-couplings �3H), to which the processes eþe� !
h0A0=H0A0 are highly sensitive through Higgs-mediated
one-loop diagrams. With these aims in mind, we have
systematically searched over the 2HDM parameter space
by considering different Higgs boson mass scenarios and
different values of the tree-level A0h0Z0 and A0H0Z0

couplings. At the same time, we have carefully explored
the very frontiers of the generic 2HDM parameter space,
specially the limits that cannot be trespassed by the
strengths of the various 3H self-couplings.

Among the various subtle triggers that control the size of
these important couplings, one of them stands out with
overwhelming supremacy over the others, and this is the �5

coupling. This is the only one parameter in the list of seven
free parameters—cf. Eq. (9)—conforming the structure of
the general (CP -invariant) Higgs potential of the 2HDM
that cannot be ultimately traded for a physical mass or a
mixing angle. This parameter is, in addition, the only
Higgs self-coupling that need not be renormalized at one-
loop in the current framework. Despite its special status of
being apparently unfettered and without obvious physical
connotations, one quickly discovers that it becomes se-
verely restrained by subtle bounds connected with the
quantum field theoretical consistency of the model,
namely, the stringent constraints imposed by tree-level
unitarity and vacuum stability conditions. These restric-
tions, together with the limitations dictated by custodial
symmetry, and of course also those emerging in the light of
the direct collider bounds on the masses of generic Higgs
boson models, not to mention the indirect phenomenologi-
cal restraints (in particular, the upper bound on the charged
Higgs mass in type-II models ensuing from radiative
B-meson decays), do indeed eventually determine a fairly

compact region of parameter space. In particular, �5 is
compelled to be mostly negative and in the range j�5j &
Oð10Þ. At the same time, tan� cannot be large when j�5j is
also large without violating the constraints. The bottom
line is that the value that maximizes the processes under
consideration is a rather equitable one: tan� ’ 1.
Notwithstanding the sharp limits placed upon the physi-

cal region of the parameter space, our explicit calculation
of radiative corrections has shown—and we feel it is truly
remarkable—that the general 2HDM models are still able
to unleash a good deal of their ‘‘repressed’’ power. If only
we could catch a smoking gun of this stupendous potential
through the accurate measurements that a linear collider
should be able to render on fundamental processes like
eþe� ! h0A0=H0A0, we might be on the verge of experi-
encing an intense episode of Higgs boson physics beyond
the SM. In the following, we describe the basic results and
strategies that we could follow to this effect.
We have identified three main scenarios of potential

phenomenological interest in the corresponding parameter
space. In all of them we observe no remarkable depen-
dence either on the details of the Higgs mass spectrum nor
on the pattern of Higgs-fermion Yukawa couplings (either
for type-I or type-II 2HDM), not even on the particular
channel h0A0=H0A0 under study. In what follows we de-
scribe each one of these scenarios and spell out clearly
their differences, in particular, we provide the character-
istic potential size of the relative quantum correction �r—
cf. Eq. (66)—typically associated to them (cf. Figs 6 and
7):
(i) Scenario 1. To start with, regions of tan� * 1 and

large j�5j (specifically, �5 < 0, j�5j ’ 5� 10) sup-
port the bulk of the radiative corrections. They may
well reach �r ¼ �ð50–100Þ% at the largest attain-
able values of j�5j. Furthermore, these effects criti-
cally depend on the actual size of j�5j and on the
center-of-mass energy

ffiffiffi
s

p
(cf. Figures 8 and 9), to

wit: �r is positive at low center-of-mass energies
around

ffiffiffi
s

p ¼ 500� 100 GeV, while it is negative
for

ffiffiffi
s

p
> 600 GeV and certainly also in the upper-

most foreseeable energy segments
ffiffiffi
s

p ¼ 1–3 TeV,
usually reserved for an upgraded ILC and specially
for CLIC. Thus, interestingly enough, quantum cor-
rections turn out to drastically invigorate the cross
section of the basic processes eþe� ! h0A0=H0A0

near the standard booting energy of the ILC, while
they tend to suppress the two-body Higgs boson
signal for a center-of-mass energy some 20–30%
beyond this initial regime—and of course for the
TeV range and above—as a result of constructive/
destructive interference effects, respectively, be-
tween the tree-level and the one-loop amplitudes.
Incidentally, we clarify that this optimal scenario
cannot be iterated for large and positive values of
�5 because the combined set of constraints (mainly
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the vacuum stability bounds, in this case) preclude
most of the region �5 > 0;

(ii) Scenario 2. On the other hand, we find a tail of
subleading effects within a band of the ðtan�; �5Þ
subspace at moderate tan� ¼ 1:5–5 and j�5j & 2
wherein the maximum radiative corrections turn out
to stagnate and remain barely at the level of �10%
or less. Should the parameters of the model inhabit
this region, the practical possibilities to detect these
effects would obviously become thinner than in the
previous case. Still, 5%–10% effects are not that
alien to the high precision standards planned for a
linac collider, and hence it should not deter us from
the searching task. At this point, the detection strat-
egies associated to the Higgs boson decay patterns
could be essential (see below);

(iii) Scenario 3. Finally, there is the region of parameter
space where the coupling �5 is very small or it just
vanishes. Here the quantum corrections can still
have a chance provided tan�< 1, and indeed we
have found domains of this kind preserving all the
basic constraints. While this region is not the most
favored, neither from the theoretical point of view
nor from the experimental data, specially if
tan� � 1, we should keep it in mind as a possi-
bility. Even for moderately small tan�, say for
tan� * 0:2, it can be the source of sizeable quan-
tum effects of order 10%–30% (and positive),
which are larger than those in Scenario 2 and, in
some cases, even comparable to those in Scenario
1. It is worth noticing that, in this region, there is an
interesting collaborative interplay between the
Higgs boson trilinear self-couplings and the top
quark Yukawa coupling (which is the same in
type I or type II 2HDM’s). Only in this scenario a
Yukawa coupling could play a significant quantita-
tive role on equal footing with the trilinear Higgs
boson self-couplings.

Obviously, the success of the whole Higgs boson search
endeavor will also depend on the pattern of distinctive
signatures available to these particles in the final state.
For instance, for Mh < 2MV & 180 GeV, we should basi-
cally expect back-to-back pairs of highly energetic
(roughly E� ffiffiffi

s
p

=4 * 100 GeV) and collimated b-quark
and/or 
-lepton jets from A0, h0 ! b �b=
þ
� which, in
contrast to the LHC, should not be overshadowed by the
large QCD background which is inherent in hadronic
machines. And of course similarly with the A0H0 final
state. This much clearer environment notwithstanding,
we should be aware of the fact that other characteristic
processes of linac physics, such as the four-jet cross sec-
tion, might be large enough to partially obscure the Higgs-
pair production signal. However, the precise analysis of the
corresponding signal distributions, which would be re-
quired in order to completely assess the real experimental

possibilities, is beyond the scope of the present study. For
Mh > 2MV , on the other hand, signatures from h0, H0 !
VV and A0 ! b �b=
þ
� could also play a role (depending
on the particular choice of � and tan�). They could ulti-
mately lead to signatures with two (up to four) charged
leptons against a b �b or 
þ
� pair in the final state (from
W� ! ‘� þmissing energy and, specially, from Z !
‘þ‘�). Even if the branching ratios of gauge bosons into
leptons are very small (BðV ! llÞ � 0:03), the predicted
number of Higgs-pair events is large enough so that, in the
most favorable scenarios, one could collect Oð102Þ events
for these complementary signatures, which could be in-
strumental for a final tagging and identification of the
Higgs bosons. Notice that we use the fact that the
CP -odd A0 ‘‘always’’ decays into b �b or, to a lesser extent,
to 
þ
� (even for tan� ¼ 1) as it cannot couple to gauge
bosons. So the patterns of signatures are rather character-
istic and could not be missed in normal circumstances.
In the most favorable regimes (scenario 1), the experi-

mental chances could be spectacular, especially in the case
of relatively light Higgs boson mass spectrum and a large
(negative) value of �5, for which the predicted one-loop

cross sections �ð0þ1Þðeþe� ! h0A0=H0A0Þ at
ffiffiffi
s

p ¼
500 GeV may border the Oð100 fbÞ level. This would
translate into barely 5� 104 events per 500 fb�1 of inte-
grated luminosity at the linac. While the former situation
describes perhaps the most optimistic possibility, cross
sections of Oð10 fbÞ at

ffiffiffi
s

p ¼ 500 GeV should be quite
common in a wide patch of the 2HDM parameter space,
and correspondingly of Oð1 fbÞ at

ffiffiffi
s

p ¼ 1 TeV (see
Table III), thus delivering rates that range from a few
hundred to a few thousand events, respectively. With this
level of statistics (plus a comparable number of events
from the H0A0 channel) it should be perfectly possible to
insure a comfortable tagging of the Higgs bosons in the
clean environment of a linac machine.
Most important, we have been able to demonstrate that

the dominant quantum effects are, as we expected, primar-
ily nurtured by the Higgs-mediated one-loop corrections to
the A0h0Z0=A0H0Z0 vertices, and can be ultimately traced
back to the potentially enhanced 3H self-interactions �3H

(cf. Table II). This is indeed a trademark feature of the
2HDM, with no counterpart in the MSSM—in which
SUSY invariance highly curtails the structure of the
Higgs boson self-interactions and compels them to be
purely gaugelike. Obviously, probing the structure of
Higgs boson self-interactions—in the present case through
the analysis of radiative corrections on direct production
processes—is a most useful strategy to disentangle SUSY
and non-SUSY Higgs physics scenarios.
To be specific, for the analysis of the eþe� ! 2H cross

sections we have faced the computation of the full set of
Oð�3

ewÞ quantum effects, among them the subset of
Oð�2

ew�
2
3HÞ corrections, and supplemented them with the

leading Oð�4
ewÞ pieces arising from the square of the one-
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loop diagrams involving Higgs boson self-couplings.
These (finer) corrections are of Oð�2

ew�
4
3HÞ (see, however,

below). Their inclusion is actually a must at large center-
of-mass energies (i.e. once

ffiffiffi
s

p
has left behind the startup

situation, and of course also in the 1 TeV regime). The
reason is that the tree-level Oð�2

ewÞ and the one-loop
Oð�3

ewÞ amplitudes virtually cancel out each other at high
energies, owing to the characteristic large and negative
quantum effects in this regime. We can convince ourselves
of this fact from the severe depletion exhibited by the one-
loop curves—see e.g. Figs. 8 and 9—as compared to the
tree-level ones. Typically, the effect appears after we in-
crease the center-of-mass energy by 100 GeV beyond the
initial

ffiffiffi
s

p ¼ 500 GeV, and persists till 1 TeV and after-
wards. At large energies, the inclusion of the Oð�2

ew�
4
3HÞ

effects is a consistency requirement as it prevents the cross
section from becoming negative. These terms can actually
be relevant also at the initial energy interval

ffiffiffi
s

p ¼
500–600 GeV at which the linac will first operate;,, for
example, for the scenarios with maximally enhanced 3H
self-couplings, they may lead to an additional �20% con-
tribution to �r, hence pushing the overall quantum correc-
tion even higher. In this respect, we note that our earlier
estimate of these higher order terms, Eq. (70), was able to
hit the right order of magnitude, although it actually under-
estimates the maximum size revealed by the exact numeri-
cal analysis—not too surprising from such a rough attempt
at guessing their bulk size.

Let us clarify that the two-loop diagrams involving the
Higgs boson-mediated A0h0Z0=A0H0Z0 vertex correc-
tions, lead of course also to amplitudes of order
Oð�2

ew�
4
3HÞ. These are actually finite, and originate from

the interference of the tree-level amplitude with the two-
loop one. An obvious concern is then the following: can we
safely neglect them? Upon inspection of the Higgs-
mediated two-loop diagrams, and taking into account
power counting and dynamical considerations, one can
show that they are actually suppressed, and particularly

so for those scenarios where �ð0þ1Þðeþe� ! 2HÞ is opti-
mized. But, most significantly, there is a deeper observa-
tion to be adduced at this point, which is well in the spirit of
the effective field theory approach to QFT. The (finite) two-
loop effects induced by the enhanced Higgs boson self-
couplings can be conveniently reabsorbed in the form of
one-loop corrections to the bare Higgs self-couplings,
which first appear at the one-loop level in the process under
consideration. We can iterate this algorithm at any order in
perturbation theory by further reabsorbing the higher order
Higgs mediated loops into the triple and quartic Higgs self-
couplings introduced at one-loop order. In this way we can
define a collection of effective 3H and 4H self-couplings
that encapsulate all these higher order effects.

The above remark is an interesting one, as it tells us that
the application of the stringent tree-level unitarity relations
that we have used can be directly reiterated for these

effective couplings. Therefore, no matter how big are the
quantum corrections induced by the 3H self-couplings in
subsequent orders of perturbation theory, their overall
effect is constrained by the same set of formal unitarity
relations. If expressed in terms of the original couplings,
these relations will be equally stringent so that, on balance,
the maximum enhancement capabilities of the 3H self-
couplings are basically the same at any order of perturba-
tion theory. This is the procedure adopted in the present
work, and we believe it is perfectly consistent, in the sense
that we have retained the contributions to the eþe� ! 2H
amplitudes at leading order in the 3H self-couplings while
employing the unitarity constraints of Refs. [67–69], also
derived at leading order in �3H.
How do our results compare with the expectations in the

MSSM? As we have stressed in Sec. II, a lot of work on
Higgs boson production in eþe� colliders has been re-
ported in the literature thus far, but mainly within the
context of the MSSM. In particular, supersymmetric radia-
tive corrections to �ðeþe� ! h0A0Þ have been considered
in detail, although mostly in the context of LEP and
including sometimes a more or less timid incursion into
the TeV-class colliders, cf. Refs. [26,27,36,38,39,41]. Let
us try to see how some of these results compare with ours.
For the sake of definiteness, let us concentrate on the
particular case of Ref. [38], in which �ðeþe� ! A0h0Þ is
analyzed in the MSSM for a linear collider operating at
LEP 2 energy and further extended up to

ffiffiffi
s

p ¼ 500 GeV.
In the most favorable regimes, the loop-corrected cross
sections may reach up to barely 30 fb at

ffiffiffi
s

p ¼ 500 GeV,
which falls in the ballpark of the results that we have
obtained here within the 2HDM. This is not surprising
because in both cases the leading amplitude (i.e. the lowest
order one) is purely gauge and hence the order of magni-
tude of the cross section is independent of whether we
compute it in the MSSM or in a generic 2HDM.
Quantum effects can be fairly efficient in the MSSM too,

and they may also boost the tree-level predictions substan-
tially (� 20%). However, their size is never as big as the
maximal 2HDM contributions; and, no less important for
our conceptual understanding, the fundamental origin of
these quantum effects is completely different from that of
the 2HDM. As already mentioned in the introduction, the
leading quantum effects in the MSSM are due to the
genuine Higgs-quark, Higgs-squark and quark-squark-
chargino/neutralino Yukawa-like supersymmetric cou-
plings, whose contributions carry enhancement factors of
the fashion �mb tan�=MW , �mtðAt �= tan�Þ=M2

SUSY,

mbðAb � tan�Þ=M2
SUSY, none of them related to the

structure of the Higgs potential and hence none of them
associated to Higgs boson self-couplings.
In contradistinction to the MSSM, the 3H self-couplings

in the 2HDM embody the full potential for triggering
quantum effects in physical processes, and these effects
become then tied to the very structure of the Higgs poten-
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tial. Even if quantitatively similar in some scenarios, quan-
tum effects in SUSY and non-SUSY two-Higgs doublet
extensions of the SM are, therefore, prompted by intrinsi-
cally different mechanisms. However, in certain regions of
parameter space the number of events can be by itself a
direct signature of the sort of Higgs model that we have
behind. For example, in the MSSM, the tree-level coupling
CA0h0Z0 � cosð�� �Þ undergoes a severe suppression with
growing values of tan� and/orMA0—as � depends onMA0

in the MSSM. Thereby the predicted cross sections, either
at the Born or at the one-loop level, are dramatically
weakened as a function of MA0 . For instance,

�ð0þ1Þðeþe� ! h0A0Þ at
ffiffiffi
s

p ¼ 500 GeV and M ¼
300 GeV may end up as tiny as �0:01 fb (see e.g. Fig. 9
of Ref. [38]) while the 2HDM prediction is of order
Oð10 fbÞ, i.e. one thousand times bigger!

But there is more to say here. The identification strategy
can be highly facilitated through the interplay of further 2H
(and eventually 3H) channels, such as (1) and (2), which
are also highly distinctive in the 2HDM—see [28,30]. In
fact, for these channels the difference with the MSSM can
be apparent already at the lowest order of perturbation
theory. Let us be a bit more quantitative here. In
Table IX, we compare the numerical predictions on the
cross sections of these various processes in truly equitable
conditions, i.e. for different sets of common parameters for
all the processes, and for three realistic values of the

center-of-mass energy of the ILC/CLIC (the latter operat-
ing always at the highest edge of the energy band, although
it could nominally reach the 3 TeV end).
To be more precise, the cross sections that we are

comparing on equal footing in Table IX are the following:

(i) the one-loop corrected �ð0þ1Þðeþe� ! A0h0Þ; (ii) the
leading-orderOð�3

ewÞ cross sections of the two triple Higgs
production processes eþe� ! h0H0A0=H0HþH�; and
(iii) �ðeþe� ! V�V� ! h0h0 þ XÞ at leading-order
Oð�4

ewÞ. Notice that the bulk of the contribution from
processes (ii) and (iii) comes from the Oð�2

ew�
2
3HÞ and

Oð�3
ew�

2
3HÞ parts, respectively. In all cases we take tan� ¼

1, � ¼ � and the maximum allowed value of j�5j accord-
ing to Table VI, that is, the most favorable scenario for
h0A0 pair production.We use Sets I–III for the Higgs boson
masses. The resulting predictions for the different channels
turn out to be highly illustrative of the complementary
nature of such Higgs-boson production signatures.
In view of the foregoing considerations, the following

strategy for 2HDM Higgs boson searches at the linear
colliders is naturally suggested:
(i) Step 1. At the vicinity of the startup energy of the

ILC (approximately in the range
ffiffiffi
s

p ¼ 500�
100 GeV), the exclusive neutral double Higgs boson
channels eþe� ! A0h0=A0H0—Eq. (3)—prove to
be the dominant ones as compared to the triple
Higgs boson production processes eþe� ! 3H and
the inclusive double Higgs production ones eþe� !
2Hþ X, see Eqs. (1) and (2). Therefore, in this lower
energy band, the study of potential signatures of new
physics, and, in particular, the identification of the
nature of the produced Higgs bosons at the ILC, must
be conducted through the careful analysis of the
quantum corrections affecting the two-body chan-
nels eþe� ! 2H. Here is precisely where the de-
tailed results of the present work could be most
useful, and indeed should be the first analysis to be
implemented when the linear colliders are set to
work in the future;

(ii) Step 2. At higher energies, however, say for
ffiffiffi
s

p
>

600 GeV and, for that matter, in the entire TeV
range, the influence of the Z0-propagator stifles
dramatically the cross section of the exclusive neu-
tral double Higgs boson channels eþe� ! 2H.
Therefore, in these high energy domains, they can
no longer compete with the mechanisms providing
multiparticle final states, such as (1) and (2). The
latter process, eþe� ! V�V� ! hhþ X, becomes
indeed the most efficient one at the highest energies
since it is not crippled by the s-channel propagator;
quite on the contrary, its cross section increases
steadily with the energy (see Ref. [30] for details).
Therefore, in the upgraded phase of the ILC, and
certainly for the CLIC collider, one must concen-
trate all the search strategy power on looking for an

TABLE IX. Comparison of the predictions for the cross sec-
tions (in fb) corresponding to some of the Higgs boson produc-
tion processes (1)–(3). The results are obtained for the Sets I, II,
and III of Higgs boson masses (cf. Table III) tan� ¼ 1, � ¼ �,
and three different values of the center-of-mass energy. We
observe a great complementarity between the different channels
at different energies: the exclusive 2H channels (3) are dominant
at the ILC startup energy

ffiffiffi
s

p ¼ 0:5 TeV whereas the others
dominate at higher energies, specially the inclusive 2Hþ X one
(1)—which is triggered mainly by weak gauge-boson fusion.

Process �ð ffiffiffi
s

p ¼ 0:5 TeVÞ fb �ð1:0 TeVÞ fb �ð1:5 TeVÞ fb
Set I

h0A0 34.13 2.89 0.70

h0H0A0 3.09 8.58 5.17

H0HþH� 6.75 19.65 12.27

h0h0 þ X 13.29 79.00 146.08

Set II

h0A0 26.71 4.07 1.27

h0H0A0 0.02 5.03 3.55

H0HþH� 0.17 11.93 8.39

h0h0 þ X 1.47 17.36 38.01

Set III

h0A0 11.63 6.11 2.52

h0H0A0 below threshold 1.25 1.33

H0HþH� below threshold 0.69 2.14

h0h0 þ X 0.92 9.72 23.40
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anomalously large number of inclusive Higgs boson
pairs of the type h0h0,H0H0, h0A0, andA0A0, which
should emerge mostly acollinear and dynamically
thrusted along the beam direction, rather than ap-
pearing in a simple back-to-back geometry charac-
teristic of the two-body process eþe� ! 2H. Notice
furthermore that, in contradistinction to the latter,
the fused pairs consist of identical Higgs bosons.
Unmistakably, the predicted numbers in Table IX
could not, by any means, be accounted for if they
were to be ascribed to a supersymmetric origin.
Finally, the cross-correlation of these higher energy
effects with the previous ones at lower energies,
which we could track very well while upgrading
the ILC collider from

ffiffiffi
s

p ¼ 0:5 TeV up toffiffiffi
s

p ¼ 1:5 TeV—and eventually till
ffiffiffi
s

p ¼ 3 TeV
(through CLIC)—should provide plenty of unam-
biguous evidence of nonsupersymmetric Higgs
physics.

Let us finally introduce a remark that hints at the poten-
tially far reaching implications of the 2HDM dynamics in
different sectors of particle physics. The triple Higgs boson
self-couplings could also have an indirect impact on the
best high precision observables at our disposal, even well
before the ILC/CLIC colliders are commissioned and put
effectively to work. For example, they could have a bearing
on the famous electroweak precision parameter �r—see
Eq. (11). Since our main aim here has been to exploit the
leading contributions from the Higgs boson self-couplings
in the arena of the direct production processes eþe� !
h0A0=H0A0, the �r part did not enter our quantum com-
putation; it would only enter at two-loop level. However,
we suspect [87] that the influence of the 3H self-couplings
on�rmight have a real interest per se, for it could induce a
correction to �� and ultimately trigger a shift in the W�
mass, and the result might well compete with the highly
accurate calculations that have been performed on this
observable within the alternative framework of the
MSSM [14].

To summarize, if the genuine enhancement properties of
the 2HDM effectively hold in the real world, the combined
analysis of the exclusive double Higgs production (2H)
processes at the startup energy of the ILC,

ffiffiffi
s

p ¼ 500 GeV,
and subsequently of the triple (3H) and inclusive double
Higgs production processes (2Hþ X) at the upgraded ILC/
CLIC (

ffiffiffi
s

p � 1 TeV), might reveal strong hints of Higgs
boson physics beyond the SM. The bottom line of our study
is that the physics of the linear colliders can be truly
instrumental to unveil the nature of the Higgs bosons.
These bosons may, or may not, have been discovered
during the LHC era while the linear colliders take the floor,
but the real issue at stake here is of highest priority and
should strengthen the need for such machines. High preci-
sion Higgs boson physics in a linac can indeed provide a
keen insight into the most sensitive building blocks of
modern gauge theories of weak and electromagnetic inter-
actions, viz. in the very core architecture of the electro-
weak symmetry breaking.
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Guasch, J. Solà, and W. Hollik, Phys. Lett. B 442, 326
(1998).

[20] E.W.N. Glover and J. J. van der Bij, Nucl. Phys. B309,
282 (1988); D. A. Dicus, C. Kao, and S. S. D. Willenbrock,
Phys. Lett. B 203, 457 (1988).

[21] A. Djouadi, M. Spira, and P.M. Zerwas, Phys. Lett. B 264,
440 (1991); M. Spira, A. Djouadi, D. Graudenz, and P.M.
Zerwas, Nucl. Phys. B453, 17 (1995); S. Dawson, C. Kao,
and Y. Wang, Phys. Rev. D 77, 113005 (2008); W. Hollik,
T. Plehn, M. Rauch, and H. Rzehak, Phys. Rev. Lett. 102,
091802 (2009).

[22] A. Djouadi, W. Kilian, M. Mühlleitner, and P.M. Zerwas,
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Eur. Phys. J. C 10, 27 (1999).

[27] P. Osland and P. N. Pandita, Phys. Rev. D 59, 055013
(1999); D. J. Miller and S. Moretti, Eur. Phys. J. C 13, 459
(2000); F. Boudjema and A. Semenov, Phys. Rev. D 66,

095007 (2002); W. Hollik and S. Peñaranda, Eur. Phys. J.
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