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We investigate the virialization of cosmic structures in the framework of flat Friedmann-Lemaitre-

Robertson-Walker cosmological models, in which the vacuum energy density evolves with time. In

particular, our analysis focuses on the study of spherical matter perturbations, as they decouple from the

background expansion, ‘‘turn around,’’ and finally collapse. We generalize the spherical collapse model in

the case when the vacuum energy is a running function of the Hubble rate,� ¼ �ðHÞ. A particularly well-

motivated model of this type is the so-called quantum field vacuum, in which�ðHÞ is a quadratic function,
�ðHÞ ¼ n0 þ n2H

2, with n0 � 0. This model was previously studied by our team using the latest high

quality cosmological data to constrain its free parameters, as well as the predicted cluster formation rate. It

turns out that the corresponding Hubble expansion history resembles that of the traditional �CDM

cosmology. We use this �ðtÞCDM framework to illustrate the fact that the properties of the spherical

collapse model (virial density, collapse factor, etc.) depend on the choice of the considered vacuum energy

(homogeneous or clustered). In particular, if the distribution of the vacuum energy is clustered, then, under

specific conditions, we can produce more concentrated structures with respect to the homogeneous

vacuum energy case.
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I. INTRODUCTION

Several cosmological observations (supernovae type Ia,
CMB, galaxy clustering, etc.) have converged to a para-
digm of a cosmic expansion history that involves a spa-
tially flat geometry and a recently initiated accelerated
expansion of the Universe (see [1–6] and references
therein). From a theoretical point of view, an easy way to
explain such expansion is to consider an additional energy
component, usually called dark energy (DE) with negative
pressure, that dominates the Universe at late times. The
simplest DE candidate corresponds to the cosmological
constant (see [7–9] for reviews). An elegant model that
accurately fits the current observational data is the spatially
flat concordance �CDM model, which includes cold dark
matter (DM) and a cosmological constant,�. However, the
�model suffers, among others [10], from two fundamental
problems: (a) The ‘‘old’’ cosmological constant problem
(or fine-tuning problem) i.e., the fact that the observed
value of the vacuum energy density (�� ¼ �c2=8�G ’
10�47 GeV4) is many orders of magnitude below the value
found using quantum field theory [7], and (b) the coinci-
dence problem [11] i.e., the fact that the matter energy
density and the vacuum energy density are of the same
order (just prior to the present epoch), despite the fact that
the former is a rapidly decreasing function of time while
the latter is stationary.

Many authors have attempted to solve the above prob-
lems (see [8,9,12] and references therein), the key ap-
proach being the replacement of the constant vacuum

energy either with a time evolving DE (quintessence and
the like [8]), or alternatively with a time varying vacuum
energy density, ��ðtÞ [13–18]. In the original scalar field
models [19] and later in the quintessence context, one can
ad hoc introduce an adjusting or tracker scalar field � [20]
[different from the usual standard model Higgs field], roll-
ing down the potential energy Vð�Þ, which could mimic
the DE [8,9,21–24]. However, it was realized that the idea
of a scalar field rolling down some suitable potential does
not really solve the problem because� has to be some high
energy field of a grand unified theory (GUT), and this leads
to an unnaturally small value of its mass, namely, one
which is beyond all conceivable standards in particle phys-
ics. As an example, utilizing the simplest form for the
potential of the scalar field, Vð�Þ ¼ m2

��
2=2, the present

value of the associated vacuum energy density is �� ¼
hVð�Þi � 10�11 eV4, so for h�i of order of a typical GUT
scale near the Planck mass, MP � 1019 GeV, the corre-
sponding mass of � is expected in the ballpark of
m� �H0 � 10�33 eV.

Notice that the presence of such a tiny mass scale in scalar
field models of DE is generally expected also on the basis of
structure formation arguments [25,26], namely, from the fact
that the DE perturbations seem to play an insignificant role
in structure formation for scales well below the sound
horizon. The main reason for this homogeneity of the DE
is the flatness of the potential, which is necessary to produce
a cosmic acceleration. Being the mass associated with the
scalar field fluctuation, proportional to the second derivative
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of the potential itself, it follows that m� will be very small

and one expects that the magnitude of DE fluctuations
induced by � should be appreciable only on length scales
of the order of the horizon. Thus, equating the spatial scale
of these fluctuations to the Compton wavelength of� (hence
to the inverse of its mass) it follows once more that m� &

H0 � 10�33 eV. All in all, it appears that the problem that
one is creating along with the introduction of � is far more
worrisome than the problem one is intending to solve, for
one is postulating a mass scale which is 30 orders of magni-
tude below the mass scale associated with the value of the

vacuum energy density (m� � �1=4
� � 2:3� 10�3 eV).

The analysis of the recent cosmological observations
indicates that the DE equation of state (EOS) parameter
wð� PDE=�DEÞ is close to �1 to within �10%, if it is
assumed to be constant [1–6], while it is much more poorly
constrained if it varies with time [3]. More than two
decades ago, Ozer and Taha [27] proposed a time varying
� as a possible candidate to solve the two fundamental
cosmological puzzles; see also [28,29] and references
therein. In this cosmological paradigm, the dark energy
EOS parameter w is strictly equal to �1, but the vacuum
energy density (or�) does evolve with time. Of course, the
weak point in this approach is the unknown functional
form of �ðtÞ, which is however also the case for the vast
majority of the DE models. Indeed, in the aforementioned
�ðtÞmodels, the evolution law is purely phenomenological
[30], without a concrete link to fundamental physics, such
as the quantum field theory (QFT) in curved space-time
[31]. As emphasized in [32], a completely consistent for-
mulation along these lines should eventually be developed,
and such investigations could well be at the heart of one of
the most important endeavors of theoretical cosmology in
the years to come. Therefore, the study of cosmic pertur-
bations in these models is very important [33,34] as they
might reveal surprises not foreseen in the context of the
scalar field models. The new effects may have impact both
on the cosmological and the astrophysical domains. While
we recently analyzed the potential implications on the
former [35], here we focus on the latter domain.

A pioneering QFT fundamental approach to variable �
models was actually proposed long ago within the context
of the renormalization group (hereafter RG) in [36,37].
Later on, the RG-running framework was further explored
from different points of view in [13–15], and a more
systematic presentation from the viewpoint of QFT in
curved space-time by employing the standard perturbation
RG techniques of particle physics appeared in [14,16].
Subsequent elaborations, and comparison with the obser-
vational tests, confirmed the phenomenological viability of
this approach [38–44].

In the class of RG models we shall focus on, the vacuum
energy density is expected to vary with time according to
the law [14,38–41]: � ¼ n0 þ n2H

2 (hereafter called the
�RG model or quantum field vacuum model). As already

mentioned, in Ref. [35] we have investigated thoroughly
the global dynamics of this cosmological model [together
with various alternative �ðtÞ models], in light of the most
recent cosmological data. However, a serious issue here is
how the main features of the largest collapsed cosmic
structures, i.e., galaxy clusters, are affected by a running
vacuum energy density. We have argued above that this
problem can be addressed in scalar field models of the DE,
but only at the expense of admitting extremely tiny mass
scales which are uncommon in particle physics. In this
paper, we wish to further explore the alternative option in
which the DE component is a time evolving cosmological
term � ¼ �ðtÞ, and in this way to assess if the clustering
properties of the vacuum energy can shed some light on the
fundamental issue of structure formation.
The so-called spherical collapse model [45], which has a

long history in cosmology, is a simple but still a funda-
mental tool used to describe the growth of bound systems
in the Universe via gravitation instability [46]. In the last
decade many authors have studied the small scale dynam-
ics using this model and found that the main features of the
cosmic structures (collapse factor, virial density, etc.) can
potentially be affected by the presence of dark energy
[25,26,47–66]. The aim of the present work is to generalize
the spherical collapse model within the variable �RG cos-
mological model, in order to understand nonlinear struc-
ture formation in such cosmologies and investigate the
differences with respect to the expectations of the con-
cordance �CDM cosmology.
The structure of the paper is as follows. The basic theo-

retical elements of the problem are presented in Sec. II,
where we introduce [for a spatially flat Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) geometry] the basic
cosmological equations. In Sec. III we generalize the virial
theorem in the case of the QFT �ðtÞ cosmological model.
Section IV outlines the theoretical analysis of the spherical
collapse model in which the vacuum energy density varies
with the cosmic time, and in Sec. V we compare the corre-
sponding theoretical predictions of the different models and
present a first attempt to use observational data to constrain
the different models. We draw our conclusions in Sec. VI. In
Appendix Awe remind the reader of some basic elements of
the concordance �CDM model in order to appreciate the
fact that the �RG cosmology is an interesting extension of
the standard model. Finally, in Appendix B we provide some
basic mathematical formulas, while in Appendix C we
provide accurate fitting formulas for a few important pa-
rameters, i.e., the density contrast at the turnaround redshift
and at the epoch of virialization, which do not have a simple
fully analytical form.

II. COSMOLOGY WITH A
TIME-DEPENDENT VACUUM

The cosmological constant contribution to the curvature
of space-time is represented by the �g�� term on the
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left-hand side of Einstein’s equations. The latter can be
absorbed on the right-hand side of these equations

R�� � 1
2g��R ¼ 8�G ~T��; (1)

where the modified ~T�� is given by ~T�� � T�� þ g����.

Here �� ¼ �=ð8�GÞ is the vacuum energy density asso-
ciated with the presence of � (with pressure P� ¼ ���),
and T�� is the ordinary energy-momentum tensor of iso-

tropic matter and radiation. Modeling the expanding
Universe as a perfect fluid with velocity 4-vector field
U�, we have T�� ¼ �Pmg�� þ ð�m þ PmÞU�U�, where

�m is the proper isotropic pressure of matter radiation and
Pm is the corresponding pressure. Clearly the modified ~T��

defined above takes the same form as T�� with ~� ¼ �m þ
�� and ~p ¼ Pm þ P� ¼ Pm � ��, that is ~T�� ¼
�~pg�� þ ð~�þ ~pÞU�U�. Explicitly,

~T �� ¼ ð�� � PmÞg�� þ ð�m þ PmÞU�U�: (2)

With this generalized energy-momentum tensor, and in the
spatially flat FLRW metric ds2 ¼ dt2 � a2ðtÞd~x2, the
gravitational field equations boil down to Friedmann’s
equation

H2 �
�
_a

a

�
2 ¼ 8�G

3
~� ¼ 8�G

3
ð�m þ ��Þ; (3)

and the dynamical field equation for the scale factor:

€a

a
¼ � 4�G

3
ð~�þ 3~pÞ ¼ � 4�G

3
ð�m þ 3Pm � 2��Þ:

(4)

Let us next contemplate the possibility that �� ¼ ��ðtÞ is
a function of the cosmic time. This is allowed by the
cosmological principle embodied in the FLRW metric.
The Bianchi identities (which ensure the covariance of
the theory) then imply r� ~T�� ¼ 0. With the help of the

FLRWmetric, the previous identity amounts to the follow-
ing generalized local conservation law:

_�m þ _�� þ 3Hð�m þ Pm þ �� þ P�Þ ¼ 0; (5)

where the overdot denotes derivative with respect to the
cosmic time. The above equation can also be derived by
combining Eqs. (3) and (4) since it is a first integral of the
equations of motion. Notice that we keep G strictly con-
stant, and therefore the assumption _�� � 0 necessarily
requires some energy exchange between matter and vac-
uum, e.g. through vacuum decay into matter, or vice versa.1

This possibility was first considered by Bronstein in a
rather early paper [68].

Let us remark that the EOS of the vacuum energy
density maintains the usual form P�ðtÞ ¼ ���ðtÞ ¼
��ðtÞ=8�G despite the fact that �ðtÞ evolves with time.
In the matter dominated epoch (Pm ¼ 0), Eq. (5) leads to
the following energy exchanging balance between matter
and vacuum:

_�m þ 3H�m ¼ � _��: (6)

The second Friedmann’s equation (4) is formally un-
changed by the presence of a time-variable vacuum energy,
and in the matter epoch simply reads

€a

a
¼ � 4�G

3
ð�m � 2��Þ: (7)

At this point it is worth noticing that the effect of having a
variable cosmological term �� ¼ ��ðtÞ cannot, in general,
be described by the simple parametrizations usually em-
ployed for the effective EOS w ¼ wðtÞ of the DE, in which
w depends on two parameters ðw0; w1Þ that can be con-
strained using observations [21,69]. The effective EOS of a
variable vacuum model is in general more complicated.
This is shown in detail, with specific examples, in
Ref. [40]. In particular, the vacuum models that we are
going to consider cannot be described with these simple
parametrizations. Therefore, the variable vacuum models
must be studied on their own and constitute an independent
class of DE models.
Combining Eqs. (3) and (6), we find

_H þ 3

2
H2 ¼ 4�G�� ¼ �

2
: (8)

If the vacuum term is negligible, � ! 0, then the solution
of Eq. (8) reduces to that of the Einstein–de Sitter model,
HðtÞ ¼ 2=3t, as it should. Similarly, the traditional � ¼
const cosmology (or �CDM concordance model) also
follows directly by integrating Eq. (8) (see Appendix A).
Finally, this same equation is also valid for� ¼ �ðtÞwhen
matter and vacuum become coupled, and in this case a
supplementary equation for the time evolution of � is
needed in order to unveil the dynamics of this model. It
is interesting to mention here that the link in Eq. (6)

between _�m and _� is important because interactions be-
tween DM and DE could provide possible solutions to the
cosmological coincidence problem. This is the reason for
which several papers have been published recently in this
area [17,18,70], proposing either that the DE has various
interacting components or that the DE and DM could be
coupled. In the following sections, we briefly introduce
(for more details see [35]) the cosmological models used in
this study.

A. The �ðtÞ model from quantum field theory

In this scenario, we use the vacuum solution proposed in
[14,38–41] using the RG in quantum field theory (hereafter
�RG model). The model is characterized by the evolution

1There exists also the possibility that the vacuum is time
evolving and nevertheless noninteracting with matter. In this
case, however, either the DE has another component apart from
�—see the �XCDM framework of [17]—or Newton’s coupling
is also time varying, i.e. _G � 0 [34,39,41,67].
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law �ðHÞ ¼ n0 þ n2H
2, in which both coefficients n0 and

n2 are nonvanishing. An equivalent and more convenient
parametrization is

�ðHÞ ¼ �0 þ 3�ðH2 �H2
0Þ; (9)

where � is a constant, which can be positive or negative but
small: j�j � 1=12� [35]. It determines the amount of
running of �ðtÞ. Note that the form (9) is convenient
because the vacuum energy density is normalized to the
present value �0 � �ðH0Þ ¼ 3��H

2
0 . As we will see, all

the equations and conditions derived below are equivalent
to those of the concordance �CDM cosmology
(cf. Appendix A) and reduce exactly to them for � ¼ 0.

From Eqs. (8) and (9) we can easily derive the corre-
sponding Hubble flow as a function of time [35]:

HðtÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� � �

1� �

s
coth

�
3

2
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� � �Þð1� �Þ

q
t

�
:

(10)

The scale factor of the Universe, aðtÞ, evolves as

aðtÞ ¼ a1sinh
2=3ð1��Þ½32H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� � �Þð1� �Þ

q
t�; (11)

where

a1 ¼
�

�m

�� � �

�
1=3ð1��Þ

: (12)

Inverting Eq. (11) we determine the cosmic time as a
function of the scale factor:

tðaÞ ¼ 2

3 ~�1=2
� ð1� �ÞH0

sinh�1

� ffiffiffiffiffiffiffiffi
~��

~�m

vuut a3ð1��Þ=2
�
; (13)

where we have introduced

~� m ¼ �m

1� �
; ~�� ¼ �� � �

1� �
: (14)

Let us define the Hubble rate normalized to its current
value, EðaÞ ¼ HðaÞ=H0. Eliminating the cosmic time from
Eqs. (10) and (11), one can prove that

E2ðaÞ ¼ �� � �

1� �
þ �m

1� �
a�3ð1��Þ

¼ 1þ�m

a�3ð1��Þ � 1

1� �
; (15)

or

E2ðaÞ ¼ ~�� þ ~�ma
�3ð1��Þ: (16)

Notice that both sets of cosmological parameters satisfy
the standard cosmic sum rule:

~� m þ ~�� ¼ 1 ¼ �m þ��: (17)

Let us also consider the evolution of the matter
and vacuum energy densities in this model. Starting
from the conservation law [see Eq. (6)] and utilizing
Eqs. (3) and (9), we arrive at a simple differential equation
for the matter density,

_�m þ 3H�m ¼ 3�H�m: (18)

Using _�m ¼ aHd�m=da, we can trivially integrate the
previous equation in the scale factor variable, yielding

�mðaÞ ¼ �m0a
�3ð1��Þ; (19)

where �m0 denotes the matter density at the present time
(a ¼ 1), and therefore �m ¼ �m0=�c0, where �c0 ¼
3H2

0=ð8�GÞ is the current critical density. The previous

equation can also be rewritten by considering the instan-
taneous critical density �cðaÞ when the scale factor is
a ¼ aðtÞ, i.e. �cðaÞ � 3H2ðaÞ=ð8�GÞ. In fact, defining
�mðaÞ � �mðaÞ=�cðaÞ it is easy to see, with the help of
(19) and the definition of EðaÞ, that

�mðaÞ ¼ �ma
�3ð1��Þ

E2ðaÞ : (20)

Finally, upon inserting (19) in (6) and integrating once
more in the scale factor variable, we arrive at the explicit
expression for the evolution of the vacuum energy density:

�ðaÞ ¼ �0 þ 8�G
��m0

1� �
½a�3ð1��Þ � 1�: (21)

It is important to emphasize from Eq. (19) that the matter
density no longer evolves as �mðaÞ ¼ �m0a

�3, as it
presents a correction in the exponent. This is due to the
fact that matter is exchanging energy with the vacuum and
this is reflected in the corresponding behavior of �ðaÞ in
Eq. (21). As expected, for � ! 0 ( ~�m ��m,

~�� ���)
all the above equations reduce to the canonical form within
the concordance model (for more details, see Appendix A).
Clearly, the usual � cosmology is a particular solution of
the �RG model with � strictly equal to 0. Throughout the
rest of the paper we shall employ the statistical results for
this model obtained in [35] from a simultaneous fit to the
latest SNIaþ BAOþ CMB data, namely �m ¼ 0:28þ0:02

�0:01

(or ~�m ’ 0:281) and � ¼ 0:002� 0:001.

III. GENERALIZATION OF THE
VIRIAL THEOREM

Recall that for systems with potential energy of the form
U / Rn the contribution to the virial condition is 2T �
nU ¼ 0, where T is the kinetic energy. For gravity,
n ¼ �1, whereas for constant vacuum energy n ¼ 2.
Indeed, from Newton’s limit of Einstein’s equations in
the presence of a � term, i.e. Poisson equation r2� ¼
4�Gð�m � 2��Þ, it follows that the potential associated
with a constant� is�� ¼ �ð1=6Þ�R2. Thus, the nominal
virial condition when there is a constant vacuum energy
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reads 2T þUG � 2U� ¼ 0, where UG and U� are the
potential energy and the vacuum potential energy, respec-
tively, for an isolated system. However, for nonconstant �
this recipe may not hold anymore. Therefore, the link
between the time-dependent vacuum and matter is ex-
pected to modify nontrivially the previous form of the
virial theorem.

In this section, we generalize the virial theorem by
taking into account the presence of the coupling between
the vacuum and the matter energy densities, which leads to
a variable �ðtÞ. In particular, we have to modify the well-
known Layzer-Irvine equation, which describes the flow to
virialization [46]. As we have already stated in Sec. II A
[see Eq. (6)], the matter is exchanging energy with the
vacuum and this is reflected in the corresponding matter
continuity equation (18). Of course, the continuity equa-
tion holds for the total cosmic fluid. Since we are interested
in cosmic structures which live in high density environ-
ments, it is fair to consider that the corresponding inho-
mogeneous density nm is far from the background
homogeneous density, �m.

The total velocity of the fluid elements, v, is given by
r � ðnmvÞ ¼ 3Hnm þr � ðnmuÞ, where u is the peculiar
velocity. Note that v is the sum of the global Hubble
expansion plus the line of sight peculiar velocity, u. The
continuity equation for nm, in the presence of a running
vacuum energy (� � 0), can now be modified as follows:

_n m þ 3Hnm þr � ðnmuÞ ¼ 3�Hnm: (22)

Notice that if the background would not be expanding
(H ¼ 0), then Eq. (22) boils down to the standard non-
relativistic continuity equation for a fluid of particles flow-
ing with a velocity distribution u. Based on a Newtonian
formulation, the acceleration due to gravity in comoving
coordinates is

dðauÞ
dt

¼ �ar�; (23)

where� is the gravitational potential. Multiplying Eq. (23)
by the quantity anmu and using the continuity equation
(22) together with the overall Poisson equation [46]
r2� ¼ 4�Gðnm � 2��Þ, we can integrate over the vol-
ume in order to define the generalized Layzer-Irvine equa-
tion. After some calculations we arrive at

dða2TÞ
dt

� 3�a2HT ¼ �a2
�
dU
dt

þHU
�
þ 6�a2HU;

(24)

where U ¼ UG � 2U�,

T ¼ 1

2

Z
u2nmdV; (25)

UG ¼ � 1

2
G
ZZ nmðxÞnmðx0Þ

jx� x0j dVdV 0; (26)

and

U� ¼ � 1

2
G
ZZ nmðxÞ��ðx0Þ

jx� x0j dVdV0: (27)

For a spherical mass fluctuation M ¼ 4�nmR
3=3, one can

show that the above potential energies become

UG ¼ � 16�2G

3

Z R

0
x4n2mðxÞdx ¼ � 3GM2

5R
(28)

and

U� ¼ � 16�2G

3

Z R

0
x4��ðxÞnmðxÞdx ¼ ��M

10
R2; (29)

where the last equality holds for a homogeneous vacuum
energy � ¼ �ðaÞ (see [56,58] and Sec. V).
Now, for a system that reaches the equilibrium (virial

regime, and _U ¼ _T ¼ 0) we derive the condition

ð2� 3�ÞT þ ð1� 6�ÞðUG � 2U�Þ ¼ 0 (30)

or

UG � 2U�

T
¼ �2

1� 3�=2

1� 6�
¼ �2� 9�þOð�2Þ; (31)

where the last equality is valid for small values of �. For
� strictly equal to zero we obviously recover the
nominal virial theorem in the concordance cosmology

( UG�2U�

T ¼ �2) as it should. In the case of � ’ 1=12�

[35], which corresponds to receiving quantum effects on
the � running from fields just at the Planck scale [14,38],
the above ratio in the �ðtÞ cosmology deviates by �12%
with respect to that of the � cosmology. In practice, how-
ever, � ’ 1=12� is excluded by the latest fit to the com-
bined data, which yields a quite smaller value � ’ 0:002
[35]. This value corresponds to quantum effects from GUT
fields just 1 order of magnitude belowMP. In this case, the
deviation from the nominal virial condition is only �1%.

IV. THE SPHERICAL COLLAPSE MODEL

Despite its simplicity, the spherical collapse model [45]
is still a powerful tool for understanding how a small
spherical patch of homogeneous overdensity forms a
bound system via gravitation instability; for a review, see
e.g. [71]. Technically speaking, the basic dynamical cos-
mological equation (7) is valid both for the entire Universe
and also for a homogeneous spherical perturbation. In the
last case, we just replace the scale factor aðtÞ with the
radius RðtÞ, and we obtain the so-called Raychaudhuri
equation:

€R

R
¼ � 4�G

3
½�ms � 2��s�; (32)

where �ms and ��s refer to the corresponding values of the
matter and vacuum energy densities in the spherical patch
susceptible of ulterior collapse.
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In order to address the issue of how the time varying
vacuum energy itself affects the gravitationally bound
systems (clusters of galaxies), one has to deal in general
with the following three distinct scenarios, which have
been considered within different approaches in the litera-
ture [25,26,47–66]: (i) the situation in which the vacuum
energy remains homogeneous and only the corresponding
matter virializes; (ii) the case with clustered vacuum en-
ergy, but now assuming that only the matter virializes; and,
finally, (iii) the case with clustered vacuum energy, con-
sidering that the whole system virializes (both matter and
vacuum components). In this paper, we are going to focus
on scenarios (i) and (iii) within the framework of time
varying vacuum energy density.

From now on, we will call at the value of the scale factor
of the Universe where the spherical overdensity reaches its
maximum expansion (i.e. when _R ¼ 0) and ac the scale
factor when the sphere virializes, implying that a cosmic
structure has formed. Similarly, Rt and Rc stand for the
corresponding radii of the spherical overdensity, the former
being the turnaround (or ‘‘top hat’’) value at the point of
maximum size, and the latter refers to the eventual situ-
ation when the sphere has already collapsed and virialized.
Note that due to the coupling between the time-dependent
vacuum and the matter component one would expect that
the matter density in the spherical region should obey

the same power law as the background matter �mðaÞ /
a�3ð1��Þ [see Eq. (19)]. Thus, �ms / R�3ð1��Þ denotes the
matter density in the spherical patch. Analogously, the
vacuum energy density in the spherical region, ��s will
take the form (21) with appropriate replacement of the
scale factor with R; see further below.

From the theoretical point of view, the time needed for a
spherical shell to recollapse is twice the turnaround time,
tf ’ 2tt, which implies that [see Eq. (13)]

sinh�1½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r0a

3ð1��Þ
c

q
� ’ 2sinh�1½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r0a

3ð1��Þ
t

q
�; (33)

where ~r0 ¼ ~��= ~�m.
In the main panel of Fig. 1, we present the turnaround

redshift, zt ¼ ð1� atÞ=at, as a function of the virial red-
shift zc ¼ ð1� acÞ=ac for our �RG model with � ¼ 0:002
(continuous line), � ¼ 1=12� and � ¼ �1=12� (long and
short dashed lines, respectively). The concordance � cos-
mology is indicated by empty points. The relative frac-
tional differences between the �RG models and the
concordance � model are extremely small, a fact which
can be appreciated in the inset panel of Fig. 1.

As it is evident there is a tight correlation between the
two redshifts, which for our �RG model (� ¼ 0:002) it is
given by

zt ’ 1:532zc þ 0:751: (34)

As an example, assuming that galaxy clusters have
virialized at the present time, zc ’ 0, the turnaround epoch
takes place at zt ’ 0:75 (or at � 0:57). On the other hand,

considering that clusters have formed prior to the epoch of
zc � 1:6 (ac � 0:38), in which the most distant cluster has
been found [72], the turnaround epoch is not really affected
by the vacuum energy component, i.e. zt � 3:2 (or at �
0:24). This is to be expected, due to the fact that at large
redshifts matter dominates the Hubble expansion. It is
worth noting that, at high redshifts, the ratio between the

scale factors approaches the Einstein–de Sitter ( ~�m ¼
�m ¼ 1) value ac=at ¼ ð1þ ztÞ=ð1þ zcÞ ¼ 22=3.
Performing the convenient transformations into dimen-

sionless variables

x ¼ a

at
and y ¼ R

Rt

; (35)

the evolution of the scale factor of the background and of
the perturbation [see Eqs. (3), (16), and (32)] are governed,
respectively, by the following two equations:�

_x

x

�
2 ¼ H2

t�m;t

�
x�3ð1��Þ þ ��

�m;t

�
(36)

and

€y

y
¼ �H2

t�m;t

2

�
�

y3ð1��Þ � 2
��s

�m;t

�
; (37)

where H2
t�m;t ¼ 8�G

3 �m;t, �m;t is the matter density pa-

rameter at the turnaround epoch [see Eq. (20)].2 Note that

FIG. 1 (color online). The turnaround redshift as a function of
the virial redshift; see Eq. (34). The solid, long dashed, and short
dashed lines represent the �RG model, for � ¼ 0:002, 1=12�,
and �1=12�, respectively. The solid points correspond to the
concordance �CDM cosmology. Inset: The relative fractional
difference between the three �RG models and the concordance
model.

2We set �m;t � �mðatÞ, with �mðaÞ given by Eq. (20).
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we have parametrized the matter density in the spherical
region at the turnaround time �ms;t ¼ ��m;t, with respect to

the background matter density at the same epoch �m;t. The

parameter � is referred to as the density contrast at the
turnaround point. In replacing the quantity �ms in Eq. (32)
we have utilized the following relation:

�ms ¼ �ms;t

�
R

Rt

��3ð1��Þ ¼ ��m;t

y3ð1��Þ : (38)

Therefore, using Eqs. (14) and (21), we find that

��

��;t
¼ IðxÞ ¼ 1þ �~r0a

�3ð1��Þ
t x�3ð1��Þ

1þ �~r0a
�3ð1��Þ
t

; (39)

with ��;t being the vacuum energy density at the turn-

around epoch and��;t ¼ 1��m;t is the effective vacuum

density parameter at the same time [for definition see
Eq. (20)]. Inserting now Eq. (39) into Eq. (36), we finally
obtain

_x 2 ¼ H2
t�m;t½x�1þ3� þ rx2IðxÞ�; (40)

where

r ¼ ��;t

�m;t

¼ ��

�m

a3ð1��Þ
t þ �

1� �
½1� a3ð1��Þ

t � (41)

[to derive the latter equality we have used Eqs. (17), (19),
and (21)].

Of course for the Einstein–de Sitter case ( ~�m ¼ �m ¼
1 and � ¼ 0) the solution of the system formed by
Eqs. (36) and (37) reduces to the well-known value of the
density contrast at the turnaround point, � ¼ ð3�4 Þ2, as it

should. Within this framework, utilizing both the virial
theorem [see Eq. (30)] and the energy conservation (Tc þ
UG;c þU�;c ¼ UG;t þU�;t) at the collapse time and at the

turnaround epoch, respectively, we derive the following
useful relation:

q1UG;c þ q2U�;c ¼ UG;t þU�;t; (42)

where

q1ð�Þ ¼ 1þ 3�

2� 3�
; q2ð�Þ ¼ 4� 15�

2� 3�
: (43)

A. Homogeneous vacuum energy

In this section, we consider that the vacuum energy
component of the scale of galaxy clusters can be treated
as being homogeneous: ��sðaÞ ¼ ��ðaÞ ¼ �ðaÞ=8�G
(hereafter the �RGH model). Therefore, inserting Eq. (39)
into Eq. (37), we obtain

€y ¼ �H2
t�m;t

2

�
�

y2�3�
� 2ryIðxÞ

�
: (44)

The numerical solution for the � parameter is provided
by integrating the main system of differential equations
[Eqs. (40) and (44)], using the boundary conditions

ðdy=dxÞ ¼ 0 and y ¼ 1 at x ¼ 1. Following the method-
ology of [48,65] we provide in Appendix C a reasonably
accurate fitting formula for � , as a function of the main
cosmological parameters.
Using now, the combined equation (42) for the potential

energies [see Eqs. (28) and (29)],3 we obtain a cubic
equation that relates the ratio between the virial (Rc) to
the turnaround outer radius (Rt), the so-called collapse
factor (� ¼ Rc=Rt):

q2ð�Þnc�3 � ð2þ ntÞ�þ 2q1ð�Þ ¼ 0; (45)

where

nc ¼ �ðacÞ
4�G�m;t�

¼ n0 þ 2�a3ð1��Þ
t

�ð1� �Þ ½a
�3ð1��Þ
c � 1� (46)

and

nt ¼ �ðatÞ
4�G�m;t�

¼ n0 þ 2�a3ð1��Þ
t

�ð1� �Þ ½a
�3ð1��Þ
t � 1� (47)

with

n0 ¼ 2��a
3ð1��Þ
t

�m�
: (48)

Finally, solving the cubic Eq. (45), we calculate the col-
lapse factor (see Appendix B). In the case of � ¼ 0 (nc ¼
nt ¼ n0), the above expressions take the usual form of the
� cosmology (see [47,53]), as expected. Obviously, for the
Einstein–de Sitter model (�m ¼ 1, � ¼ 0) we have
�� ¼ 0 and all coefficients vanish nc ¼ nt ¼ n0 ¼ 0, so
that Eq. (45) boils down to � ¼ q1ð0Þ ¼ 1=2; see Eq. (43).
In this framework, the density contrast at the virializa-

tion epoch is given by

�vir ¼ �ms;c

�m;c

¼ �

�3

�
ac
at

�
3
; (49)

where �ms;c is the matter density in the virialized structure

and �m;c is the background matter density at the same

epoch. Following the notations of [54,73,74], we again
provide in Appendix C a fitting formula for �vir (within
a physical range of cosmological parameters 0 � � �
0:01). Notice that the Einstein–de Sitter value for �vir is
precisely 18�2, and was factorized in (C3).4

3In view of the fact that U� ¼ ��ðaÞMR2=10, the time
dependence of the vacuum energy density seems to create a
problem since the total energy of the bound system is not
conserved. However, one can show that if the value of j�j is
less that 0.01 then the problem of energy conservation does not
really affect the virialization process and thus Eq. (42) remains a
good approximation.

4This value ensues from the Einstein–de Sitter value of � ¼
ð3�=4Þ2 multiplied by 25. Indeed, the sphere contracts a factor of
2 from the turnaround point to virialization, and the background
scale factor increases ac=at ¼ 22=3, thus ð2� 22=3Þ3 ¼ 25.
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B. Clustered vacuum energy

In this section we consider a scenario in which the
vacuum energy density on the scale of galaxy clusters is
clustered: ��sðRÞ ¼ �sðRÞ=8�G. In such a scenario it
could be possible, on nonlinear scales, to have an interac-
tion between dark matter and dark energy with a different
� than the background value. In the overdensity rest frame
and in the homogeneous case (described before), the dark
energy component flows progressively out of the overden-
sity [58,62], and hence energy conservation cannot be
applied (especially for large values of �’s) in order to
determine the collapse factor � (along with the virial
theorem). To simplify the inhomogeneous case formalism,
we consider the extreme situation in which the vacuum
energy fully clusters along with the dark matter, avoiding
energy nonconservation which was examined in [58].

Within this framework, we also assume that the general
functional form that describes the behavior of the vacuum
energy density inside the spherical perturbation obeys a
similar equation as that of Eq. (21):

�sðRÞ ¼ �0 þ 8�G
�s�ms;t

1� �s

��
R

Rt

��3ð1��sÞ � 1

�
(50)

or else,

�sðyÞ ¼ �0 þ 8�G
�s��m;t

1� �s

½y�3ð1��sÞ � 1�; (51)

where the slope �s is not necessarily equal to the back-
ground �. It is worth noting that if we leave �s to take also
negative values then there is a critical radius R?, of the
spherical overdensity, in which, for R< R?, the inhomo-
geneous vacuum energy density becomes negative�s < 0.
Thus, the extra positive pressure (P�s

> 0) inside the

spherical perturbation implies compression (similar to
gravity) rather than tension (while the opposite is true
for R> R?). With the aid Eq. (51), this critical radius is
given by

R? ¼ Rt

�
1� n0ð1� �sÞ

2�s

��1=3ð1��sÞ
: (52)

In the previous equation, we borrowed the definition of n0
given in (48), where �ms;t ¼ �m;t� ¼ �m0a

3ð1��Þ
t � is used,

in which � (not �s) is involved because it refers to the
evolution of the background matter density.

On the other hand, if �s 	 0 then �s > 0 (or P�s
< 0)

for all values of 0< y � 1. In this paper we use 2 different
versions of �s, namely �s ¼ � ¼ 0:002 (hereafter �RGC1)
and �s ¼ �0:002 (hereafter �RGC2). Of course, for the
basic cosmological functions [�mðaÞ, EðaÞ, and DðaÞ]
which enter in this vacuum pattern, we utilize the back-
ground � ¼ 0:002.

Inserting Eq. (51) into Eq. (37), we obtain

€y ¼ �H2
t�m;t

2

� ð1� 3�sÞ�
ð1� �sÞy2�3�s

� 2

�
r� �s�

1� �s

�
y

�
:

(53)

In contrast to the homogeneous case, the novelty of the
current approach is that the above differential equation can
be solved analytically. Indeed, due to the fact that the
differential Eq. (53) is a function only of y we can perform
easily the integration

_y 2 ¼ H2
t�m;t½Pðy; �Þ þ C�; (54)

where C is the integration constant and

Pðy; �Þ ¼ �

ð1� �sÞy1�3�s
þ

�
r� �s�

1� �s

�
y2: (55)

Using now Eq. (40) we can provide the basic differential
equation for the evolution of the overdensity perturbations�

dy

dx

�
2 ¼ Pðy; �Þ þ C

x�1þ3� þ rx2IðxÞ ; (56)

where the boundary conditions, ðdy=dxÞ ¼ 0 and y ¼ 1 at
x ¼ 1, imply that C ¼ �Pð1; �Þ. Therefore, the general
integral equation which governs the behavior of the density
contrast � at the turnaround epoch, for the RG vacuum
models isZ 1

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðy; �Þ þ C

p ¼
Z 1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�1þ3� þ rx2IðxÞp : (57)

Of course, the usual �CDM cosmology is fully recovered
from this model in the limit � ¼ �s ¼ 0.
Similarly, as in Sec. IVA, we again provide a useful

fitting formula for � as well as for �vir, as a function of the
cosmological parameters (for more details see
Appendix C).
Now with the aid of Eq. (50), we can integrate Eq. (29)

in order to derive the potential energy associated with the
vacuum energy inside the spherical overdensity. In particu-
lar, we show here that U� can be written as a sum of three
components that contribute to the local dynamics

U� ¼ �M�0

10
R2 þ 4�G

�sM�ms;t

5ð1� �sÞR
2

� 4�G
�sM�ms;t

ð1� �sÞð2þ 3�sÞR�3ð1��Þ
t

R�1þ3�s ; (58)

where �ms;t ¼ ��m;t (see Sec. IV). In this case, the alge-

braic equation which defines the collapse factor is found
from the combination of equations (28), (42), and (58) as
follows:

q2ð�sÞ½n0�fð�sÞ��3�Aðn0;�sÞ�þgð�sÞ�3�s

þ2q1ð�sÞ¼0; (59)

where n0 is defined in Eq. (48), with
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fð�sÞ ¼ 2�s

1� �s

; gð�sÞ ¼ 10�sq2ð�sÞ
ð1� �sÞð2� 3�sÞ

and

Aðn0; �sÞ ¼ 2þ n0 � fð�sÞ þ gð�sÞ
q2ð�sÞ :

Finally, solving Eq. (57) [or using Eq. (C1)] and (59),
we can estimate the density contrast at virialization from
Eq. (49).

V. COMPARISON AMONG DIFFERENT
TYPES OF VACUUM

In this section, we investigate in more detail and com-
pare the spherical collapse model, using different versions
of the�ðtÞmodel (homogeneous or clustered), with that of
the traditional� cosmology (see Appendix A). In Fig. 2 we
present the density contrast at the turnaround point, � , as a
function of the turnaround redshift, zt, for the constant
vacuum � (solid points), homogeneous vacuum �RGH

(solid line), clustered vacuum �RGC1 (dotted line), and
clustered vacuum �RGC2 (dashed line). It is obvious that
the� and�RGH models are almost indistinguishable, while
� appears to be somewhat lower in the inhomogeneous
(clustered) case. Indeed, we find that �cl=�h 
 �=3 at large
redshifts.

Solving now Eqs. (45) and (59) we calculate the collapse
factor and we find that it lies, in general, in the range
0:46 � � � 0:52, in agreement with previous studies
[25,53,56,58–60,63]. In the upper panel of Fig. 3 we plot
the deviation, ð1� �=��Þ%, of the collapse factors, �ðzcÞ,
for the current vacuum models with respect to the �
solution, ��ðzcÞ. It becomes evident that the size of the
cosmic structures which are produced in the �RGH model
(solid line) is remarkably close to that predicted by the
usual � cosmology, and therefore the impact of the vac-
uum energy on the spherical collapse is very small in the
homogeneous case. This was to be expected.

On the other hand, when considering the effect of the
clustered vacuum energy, the largest positive deviation of
the collapse factor occurs for the �RGC2 model (dotted
line), which implies that this model produces more bound
systems than the concordance �CDM model. Therefore,
within this vacuum pattern the corresponding cosmic struc-
tures should be located in larger density environments. The
opposite situation holds for the �RGC1 (dashed line) model
due to its negative deviations.

In Fig. 3 we plot the evolution of the density contrast at
virialization. At very large redshifts, it tends to the
Einstein–de Sitter value (�vir � 18�2), as it should.

In Table I we list, for the case of a cluster forming at
zc ’ 0 or at zc ’ 1:6, the following: (a) the cosmological
models and the value of the turnaround redshift; and (b) the
virial density �vir at the collapse time, as well as the

density excess of the matter density in the spherical over-
density, � , at the turnaround time.
We also verify that the density contrast decreases

with the formation (virialization) redshift zc. The �vir

FIG. 2. The density contrast at the turnaround epoch, � as a
function of the turnaround redshift. The lines represent the
following cosmological models: (a) �RGH (solid line),
(b) �RGC1 (dotted line, �s ¼ 0:002), and (c) �RGC2 (dashed
line, �s ¼ �0:002). The points represent the concordance
�CDM cosmology.

FIG. 3. Upper panel: The deviation ð1� �=��Þ% of the col-
lapse factor for various vacuum models with respect to the �
solution. Bottom panel: The density contrast at the virialization,
�vir, as a function of redshift. The lines represent the following
cosmological models: (a) �RGH (solid line), (b) �RGC1 (dotted
line), and (c) �RGC2 (dashed line). The points represent the
traditional � cosmology.
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differences among the different vacuum models enter
through �mðzÞ [see Eq. (C3)] as well as through the
assumption about the behavior of the vacuum inside the
spherical overdensity (homogeneous or not). This feature
points to the fact that perhaps the density contrast at
virialization can be used as an effective cosmological tool.

Although, we will investigate in detail such a possibility
in a forthcoming paper, we present here an idea of how to
use observational data to estimate �vir. Using existing
catalogs of clusters of galaxies, one should select those
clusters which appear to have a quasispherical projected
shape,5 which is the expected shape of a virialized cosmic
structure, and then derive their virial radius and mass. One
can then easily calculate the observational value of �vir of
a cluster at a redshift z, from

�vir ¼ 3Mvir

4��crit;0�m;0ð1þ zÞ3r3vir
(60)

and compare it with the model expectations. Now, the
cluster virial radius can be calculated from the projected
separations of the Nm galaxy members according to
(e.g., [75])

rvir ¼ �

2

NmðNm � 1ÞPNm�1
i¼1

PNm

j¼iþ1½dL tanð	
ijÞ��1
; (61)

where dL is the luminosity distance of the group and 	
ij is

the angular ði; jÞ-pair separation. Using the observed clus-
ter velocity dispersion, �v, and rvir one can estimate the
cluster’s virial mass using the virial theorem, according to

Mvir ¼ 3�2
vrvir
G

þ�r3vir
5G

: (62)

The second �-based term is negligible, �4:7�
1011��r

3
virM�, and therefore it does not affect signifi-

cantly the mass estimates of clusters of galaxies. Of course,
this approach is of a statistical nature, since there are
various observational systematics that enter in the individ-
ual cluster determination of �vir, as well as cosmic vari-
ance, which however can be minimized if one averages
over a suitable and relatively large sample of clusters at
each redshift interval.

We have applied this methodology to the 2MASS High
Density Contrast group catalog [76], which is a low-z
catalog based on the 2 �m infrared whole-sky survey
and which was constructed by a friends-of-friends algo-
rithm (e.g. [77]) such that the groups correspond to an
overdensity 	�=� 	 80. This catalog was carefully con-
structed, with respect to other catalogs, and it is less prone
to projection, interloper contamination, and contamination
by the large-scale structures from which galaxies are ac-

creted to the groups (see [78] for a relevant discussion). We
selected only those groups with projected axial ratio >0:8
and with at least 16 galaxy members (in order to have a
relatively accurate determination of their shape, velocity
dispersion, and thus Mvir) and we are thus left with 7
clusters at hzi ’ 0:015. We clip the lower and higher �vir

outliers, since we do expect systematic effects to be
present, and we derive a mean value of h�viri ¼ 348 and
a standard deviation of the distribution of �73 (if we use
Nm > 20 we are left with 6 clusters with h�viri ¼ 329�
69). Although, we have derived these �vir values using the
concordance �CDM cosmological model to estimate dL,
there would be no appreciable difference had we used any
of the other models, presented in Sec. II A (because of the
very small value of � and of the very low redshift of the
sample). Inspecting Table I it is evident that the previously
derived observational values are in good agreement with
the theoretical expectations although with the present level
of uncertainty we cannot distinguish among the models.
However, in the case of the clustered vacuum energy model

TABLE I. Numerical results: The 1st column indicates the
vacuum model used. Between columns two and four, we present
the main properties of the spherical collapse model
½�virðzcÞ; �ðztÞ�, assuming that galaxy clusters have collapsed
prior to the present time zc ’ 0 (zt ’ 0:75). In columns four and
five, we give the same quantities but considering that clusters
have formed (collapsed) prior to the epoch of zc ’ 1:6 (zt ’ 3:2),
in which the most distant cluster has been found.

Model �virð0Þ �ð0:75Þ �virð1:6Þ �ð3:2Þ
� 348.6 6.80 190.0 5.64

�RGH 339.0 6.79 184.3 5.62

�RGC1 317.6 6.66 168.6 5.40

�RGC2 368.8 6.62 195.2 5.38

FIG. 4. The present time virial density for the clustered vac-
uum energy model as a function of �s (open points). The inner
and outer dashed lines correspond to the 1 and 2�, observatio-
nally determined, virial density limits, respectively (202 �
�vir � 494), based on a subsample of the 2MASS High
Density Contrast group catalog.

5Not all apparently spherical clusters are truly spherical since
elongated clusters with their major axis oriented at small angles
along the line of sight will appear spherical in projection, a fact
which is a further source of noise.
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we can put some limits on the value of �s even with the
present level of accuracy. As an example, we compare in
Fig. 4, the predicted virial density, �vir, of the model at the
present time (open points), with the observationally de-
rived 2� range of values, based on the previously discussed
subsample of the 2MASS High Density Contrast group
catalog, and find a consistency for �0:009 & �s &
0:012. In the future we plan to further investigate the model
predictions, using a larger number of clusters spanning also
a range of different redshifts, in an attempt to put stringent
constraints on the value of �s.

VI. CONCLUSIONS

In this paper we have studied analytically and numeri-
cally the spherical collapse model in the case of a time
varying vacuum, with �ðHÞ ¼ n0 þ n2H

2, for a spatially
flat FLRW geometry. We find that the amplitude and the
shape of the virial density contrast is affected by the
considered status of the vacuum energy model (homoge-
neous or clustered). We verify that in the case where the
distribution of the vacuum energy is clustered the struc-
tures produced are more concentrated (under specific con-
ditions) with respect to the homogeneous dark energy case.
Finally, by comparing the predicted virial density contrast
at the present epoch with a preliminary analysis of a
suitable subsample of the 2MASS High Density Contrast
group catalog (at a mean redshift of hzi ’ 0:015), we find
that the inhomogeneous vacuum energy models can be
accommodated, at a 2� level, if the vacuum clustering
parameter is within the range �0:009 & �s & 0:012. The
latter result points to the direction that perhaps the �vir

parameter, once estimated accurately from observations,
could be used in order to determine the internal physical
properties of the vacuum energy.
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APPENDIX A: THE CONCORDANCE
� COSMOLOGY

In this Appendix we would like to give the reader the
opportunity to appreciate the fact that the �RG model can
be viewed as an extension of the concordance � cosmol-
ogy. In particular, the basic cosmological equations in the
�RG model reduce to those of the � cosmology for � ¼ 0.
Below, we present the main quantities of the� cosmology:

(i) Global dynamics: The basic cosmological equations
(see Sec. II A) take the following forms:

HðtÞ ¼ ffiffiffiffiffiffiffiffi
��

p
H0 coth

�
3H0

ffiffiffiffiffiffiffiffi
��

p
2

t

�
; (A1)

aðtÞ ¼
�
�m

��

�
1=3

sinh2=3
�
3H0

ffiffiffiffiffiffiffiffi
��

p
2

t

�
; (A2)

and

E2ðaÞ ¼ H2ðaÞ
H2

0

¼ �� þ�ma
�3: (A3)

(ii) The spherical model: The basic set of equations here
is

_x 2 ¼ H2
t�m;t½x�1 þ rx2IðxÞ�; (A4)

€y ¼ �H2
t�m;t

2

�
�

y2
� 2ryIðxÞ

�
; (A5)

where IðxÞ � 1 and

r ¼ ��;t

�m;t

¼ r0a
3
t ; (A6)

where r0 ¼ ��=�m. Therefore, the general inte-
gral equation which governs the behavior of the
density contrast � at the turnaround epoch is

Z 1

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðy; �Þ � Pð1; �Þp ¼ lnð ffiffiffiffiffiffiffiffiffiffiffiffi

1þ r
p þ ffiffiffi

r
p Þ2=3ffiffiffi

r
p ;

(A7)

where

Pðy; �Þ ¼ �

y
þ ry2: (A8)

Note that the time needed for a spherical shell to
collapse is twice the turnaround time, tf ’ 2tt. This

implies that

sinh�1ð
ffiffiffiffiffiffiffiffiffiffi
r0a

3
c

q
Þ ’ 2sinh�1ð

ffiffiffiffiffiffiffiffiffiffi
r0a

3
t

q
Þ: (A9)

(iii) Virial theorem: The virial theorem becomes

2T þUG � 2U� ¼ 0: (A10)

Using now also the energy conservation at the
turnaround and at the virial time we derive the
following relations:

1
2UG;c þ 2U�;c ¼ UG;t þU�;t; (A11)

2n0�
3 � ð2þ n0Þ�þ 1 ¼ 0; (A12)

where � ¼ Rc=Rt is the collapse factor and
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n0 ¼ 2��a
3
t

�m�
: (A13)

APPENDIX B: ROOTS OF A CUBIC POLYNOMIAL

We remind the reader of some basic elements of algebra
pertinent to our analysis. Given a cubic equation �3 þ
a1�

2 þ a2�þ a3 ¼ 0, let D be the discriminant:

D ¼ a21a
2
2 � 4a32 � 4a31a3 � 27a23 þ 18a1a2a3 (B1)

and

x1 ¼ �a31 þ
9

2
a1a2 � 27

2
a3; x2 ¼ � 3

ffiffiffiffiffiffiffiffi
3D

p
2

:

If D> 0, all roots are real (irreducible case). In that case
�1, �2, and �3 can be written:

�� ¼ �a1
3
� 2r1=3

3
cos

�

� ð�� 1Þ�

3

�
;

� ¼ 1; 2; 3;

(B2)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
and 
 ¼ cos�1ðx1=rÞ.

Now, we are ready to derive analytically the exact roots
of the basic cubic equation (45) having polynomial pa-
rameters a1 ¼ 0, a2 ¼ �ð2þ ntÞ=q2nc, and a3 ¼
2q1=q2nc. Then the discriminant becomes

D ðnt; ncÞ ¼ 4
ð2þ ntÞ3 � 27q21q2nc

q32n
3
c

: (B3)

Of course, in order to obtain physically acceptable solu-
tions we need to take nt, nc > 0, which gives Dðnt; ncÞ>
0. Therefore, all roots of the cubic equation are real (irre-
ducible case) but one of them 0 � �3 � 1 corresponds to
expanding shells. It is obvious that for nt, nc ! 0, the

above solution tends to the Einstein–de Sitter case (�3 !
0:50), as it should.

APPENDIX C: FITTING FORMULAS

We provide here accurate fitting formulas for the density
contrast at the turnaround redshift and at the epoch of
virialization, and which do not have a simple fully analyti-
cal form. These are

� ’
�
3�

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ As

p �
2
�

�!1þ!2�m;t�!3wðatÞ
m;t ; (C1)

where

wðaÞ ¼ �1� �a3�

a3� þ ~r0
; (C2)

and

�virðaÞ ’ 18�2½1þ ��bðaÞ�; (C3)

where �ðaÞ ¼ ��1
m ðaÞ � 1.

(i) Homogeneous vacuum: In this case we have As ¼ 0,
ð!1; !2; !3Þ ¼ ð0:79; 0:26; 0:06Þ and
� ¼ 0:40� 25�þ 500�2; b ¼ 0:94þ 50�:

(ii) Clustered vacuum: Here we find

As ¼
��24:25�s þ 2125�2

s 0 � �s � 0:01;
29:75�s þ 2375�2

s �0:01 � �s < 0;

(C4)

ð!1; !2; !3Þ ¼
� ð0:86; 0:36; 0Þ 0 � �s � 0:01;
ð0:74; 0:16; 0Þ �0:01 � �s < 0;

(C5)

b ¼
�
0:94þ 145�s þ 4:75� 104�2

s �0:002 � �s � 0:01;
0:94þ 55�s �0:01 � �s <�0:002;

(C6)

and

� ¼
�
0:40� 65�s � 1:25� 104�2

s �0:002 � �s � 0:01;
0:31� 86:25�s �0:01 � �s <�0:002:

(C7)
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[40] J. Solà and H. Štefančić, Phys. Lett. B 624, 147 (2005);
Mod. Phys. Lett. A 21, 479 (2006); J. Phys. A 39, 6753
(2006).
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