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We present new lattice results of the K ! �‘� semileptonic form factors obtained from simulations

with two flavors of dynamical twisted-mass fermions, using pion masses as light as 260 MeV. Our main

result is fþð0Þ ¼ 0:9560ð84Þ, which, combined with the latest experimental data for K‘3 decays, leads to

jVusj ¼ 0:2267ð5Þexpð20Þfþð0Þ. Using the PDG(2008) determinations of jVudj and jVubj our result implies

for the unitarity relation jVudj2 þ jVusj2 þ jVubj2 ¼ 1:0004ð15Þ. For the Oðp6Þ term of the chiral

expansion of fþð0Þ we get �f � fþð0Þ � 1� f2 ¼ �0:0214ð84Þ.
DOI: 10.1103/PhysRevD.80.111502 PACS numbers: 11.15.Ha, 12.15.Hh, 12.38.Gc

The Cabibbo’s angle, or equivalently the CKM matrix
element jVusj [1], is one of the fundamental parameters of
the standard model. The most precise determination of
jVusj comes from K ! �‘� (K‘3) decay. The PDG(2008)
quotes jVusj ¼ 0:2255ð19Þ [2]. It is based on the new, very
accurate experimental determination of the product
jVusjfþð0Þ ¼ 0:216 68ð45Þ [2,3] and on the old estimate
of the vector form factor at zero-momentum transfer
fþð0Þ ¼ 0:961ð8Þ given in Ref. [4].

The determination of fþð0Þ using lattice QCD started
only recently with the quenched calculation of Ref. [5],
where it was shown how fþð0Þ can be determined at the
physical point with a ’ 1% accuracy. The findings of
Ref. [5] triggered various unquenched calculations of
fþð0Þ, namely, those of Refs. [6–8] with Nf ¼ 2 and

pion masses above ’ 500 MeV and the recent one of
Ref. [9] with Nf ¼ 2þ 1 and pion masses starting from

330 MeV.
In this paper we present a new lattice result for fþð0Þ

obtained from simulations with two flavors of dynamical
twisted-mass quarks, using pion masses from 260 MeV up
to 580 MeV. Our determination of fþð0Þ includes the
estimates of all sources of systematic errors: discretization,
finite size effects (FSEs), q2 dependence, chiral extrapola-
tion, and the effects of quenching the strange quark.

The chiral extrapolation and the related uncertainty
are investigated using both SU(3) and, for the first time,
SU(2) chiral perturbation theory (ChPT). In both cases,
we consider the complete chiral expansion of the
vector form factor up to the next-to-leading order (NLO)
and a subset of terms entering at next-to-next-to-leading
order (NNLO). Within SU(3) ChPT, one can perform a
systematic expansion of fþð0Þ of the type fþð0Þ ¼ 1þ
f2 þ f4 þ . . . , where fn ¼ O½Mn

K;�=ð4�f�Þn� and the first
term is equal to unity due to the current conservation in the
SU(3) limit. Because of the Ademollo-Gatto (AG) theorem

[10], the first correction f2 does not receive contributions
from the local operators of the effective theory and can be
computed unambiguously in terms of the kaon and pion
masses (MK and M�) and the pion decay constant f�. It
takes the value f2 ¼ �0:0226 at the physical point [4]. The
task is thus reduced to the problem of finding a prediction
for

�f � f4 þ f6 þ . . . ¼ fþð0Þ � ð1þ f2Þ: (1)

Recently, SU(2) ChPT at the NLO has been applied to
study the quark-mass dependence of fþð0Þ [11]. In SU(2)
ChPT the strange quark field does not satisfy chiral sym-
metry and the dependence on the strange quark mass,ms, is
absorbed into the low-energy constants of the effective
theory. The convergence of SU(2) ChPT is expected to
be good when the u=d quark mass is significantly smaller
than ms. In the case of fþð0Þ one gets the NLO result [11]

fþð0Þ ¼ Fþ � 3

4

M2
�

ð4�f�Þ2
log

�
M2

�

�2

�
þ cþM2

� þOðM4
�Þ;
(2)

where Fþ and cþ are low-energy constants functions of
ms, and cþ depends also on the renormalization scale � in
such a way that the whole NLO result (2) is independent on
�.
For the extrapolation of our lattice data to the physical

point we apply both SU(2) and SU(3) ChPT obtaining
consistent results, which help in constraining the uncer-
tainty of the chiral extrapolation.
We perform simulations with Nf ¼ 2 flavors of dynami-

cal twisted-mass quarks [12] generated with the tree-level
Symanzik improved gauge action at a lattice spacing a ¼
0:0883ð6Þ fm [13,14] (� ¼ 3:9), for six values of the (bare)
sea quark mass, namely, amsea ¼ 0:0030, 0.0040, 0.0064,
0.0085, 0.0100, 0.0150 (see Ref. [15]). The valence light-
quark mass is always kept equal to the sea quark mass
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(unitary pions) and the simulated pion masses goes from
’ 260 to ’ 575 MeV. For each pion mass we use three
values of the (bare) strange quark mass, namely, ams ¼
0:015, 0.022, 0.027, to allow for a smooth, local interpola-
tion of our results to the physical strange quark mass

(amphys
s ’ 0:021).

At the two lowest pion masses the lattice volume is L3 �
T ¼ 323 � 64 in lattice units, while at the higher ones it is
243 � 48 in order to guarantee that M�L * 3:7.

We perform three additional simulations: the first one at
M� ’ 300 MeV using the smaller volume and the others at
M� ’ 470 MeV using a finer lattice spacing a ’ 0:069 fm
(� ¼ 4:05) and a coarser one a ’ 0:103 fm (� ¼ 3:8) in
order to check FSEs and discretization errors, respectively.

The 2- and 3-point correlation functions relevant in this
work are calculated using all-to-all quark propagators
evaluated with the ‘‘one-end-trick’’ stochastic procedure.
All the necessary formulae can be easily inferred from
Ref. [13], where the degenerate case of the pion form
factor is illustrated in details. At each value of the pion
mass the statistical errors are evaluated with the jackknife
procedure, while a bootstrap sampling is applied in order to
combine the jackknives for different pion masses.

The matrix element of the weak vector current V� can be

written as

h�ðp0ÞjV�jKðpÞi ¼ P�fþðq2Þ þ q�f�ðq2Þ; (3)

where P� ¼ p� þ p0
� and q� ¼ p� � p0

�, and the scalar

form factor f0ðq2Þ is defined as

f0ðq2Þ ¼ fþðq2Þ þ q2

M2
K �M2

�

f�ðq2Þ: (4)

Following Ref. [5] the scalar form factor at q2 ¼ q2max �
ðMK �M�Þ2 can be calculated on the lattice with very high
statistical precision using a suitable double ratio of 3-point
correlation functions. In the present simulations we get a
precision better than ’ 0:2% (see Table I).

At each pion and kaon masses we determine both the
vector fþðq2Þ and the scalar f0ðq2Þ form factors for several
values of q2 < q2max in order to interpolate at q2 ¼ 0. We
take advantage of the twisted boundary conditions (see
Ref. [13] for details) to achieve values of q2 quite close
to q2 ¼ 0. The momentum dependencies of both form

factors are nicely fitted either by a pole behavior

fþ;0ðq2Þ ¼ fþð0Þ=ð1� sþ;0q
2Þ (5)

or by a quadratic dependence on q2

fþ;0ðq2Þ ¼ fþð0Þ � ð1þ �sþ;0q
2 þ �cþ;0q

4Þ; (6)

where the condition f0ð0Þ ¼ fþð0Þ is understood. The
quality of the two fits is illustrated in Fig. 1.
The values obtained for fþð0Þ depend on both the pion

and kaon masses. The dependence on the latter is shown in
Fig. 2 at M� ’ 435 MeV, and it appears to be quite
smooth, so that an interpolation at the physical strange
quark mass can be easily performed using quadratic
splines. This is obtained by fixing the combination (2M2

K �
M2

�) at its physical value, which at each pion mass defines a
reference kaon mass Mref

K :

2½Mref
K �2 �M2

� ¼ 2½Mphys
K �2 � ½Mphys

� �2 (7)

with Mphys
� ¼ 135:0 MeV and Mphys

K ¼ 494:4 MeV.
Note that at the SU(3)-symmetric point MK ¼ M� the

absolute normalization fþð0Þ ¼ 1 is imposed automati-
cally by the double ratio method of Ref. [5].
The results for fþð0Þ, obtained using the pole domi-

nance (5) or the quadratic fit (6), and interpolated at the
reference kaon mass (7), are given in Table I for each pion
mass. It can be seen that the values of fþð0Þ corresponding

TABLE I. Results for f0ðq2maxÞ and fþð0Þ, obtained at the lattice spacing of the main
simulations (a ’ 0:088 fm) using the pole (5) or quadratic (6) fits and interpolated at the
reference kaon mass (7) for each simulated pion mass.

M� (MeV) Mref
K (MeV) f0ðq2maxÞ fþð0Þ (pole) fþð0Þ (quadratic)

260 520 1.030 97(224) 0.975 19 (499) 0.973 74 (505)

300 530 1.019 23 (121) 0.980 52 (440) 0.979 50 (390)

375 555 1.009 61 (123) 0.989 16 (264) 0.988 13 (248)

435 575 1.004 16 (43) 0.993 43 (130) 0.992 73 (131)

470 590 1.002 72 (34) 0.994 21 (79) 0.994 13 (85)

575 635 1.000 16 (6) 0.998 23 (15) 0.998 27 (19)

FIG. 1 (color online). Scalar f0ðq2Þ and vector fþðq2Þ form
factors obtained at M� ’ 300 MeV and MK ’ 580 MeV versus
q2 in physical units. The solid and dashed lines are the results of
the fits based on Eqs. (5) and (6), respectively.
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to different q2 dependencies of the form factors differ by
less than half of the statistical errors.

The SU(3) chiral analysis of fþð0Þ starts by considering
the NLO term f2, using the exact expression f

PQ
2 evaluated

for our partially quenched (PQ) setup in Ref. [16],

fPQ2 ¼ � 2M2
K þM2

�

32�2f2�
� 3M2

KM
2
� logðM2

�=M
2
KÞ

64�2f2�ðM2
K �M2

�Þ

þM2
Kð4M2

K �M2
�Þ logð2�M2

�=M
2
KÞ

64�2f2�ðM2
K �M2

�Þ
; (8)

and by constructing the quantity �f from Eq. (1). We then
carry out the extrapolation to the physical point using a
simple phenomenological ansatz in terms of M2

�:

�f ¼ �0 þ�1M
2
� þ�2M

4
� þ �3M

2
� logðM2

�Þ; (9)

where �0;1;2;3 are fitting parameters. Since the strange

quark mass has been already interpolated to its physical
value in this fit, the dependence of the coefficients �0;1;2;3

on the strange mass is left implicit. It is understood, how-
ever, that this dependence is such that all terms in Eq. (9)
are at least of NNLO in the chiral expansion.

The results obtained for fþð0Þ using two fits for �f,
one with �3 ¼ 0 and the other with �2 ¼ 0, are shown in
Fig. 3(a). It can be seen that: i) the (absolute) size of �f,
whose chiral expansion starts from the NNLO term f4, is

even larger than the one of the leading NLO term fPQ2 at all

pion masses, and ii) the impact of the logarithmic term at
NNLO is quite small.

A relevant check on our fits (9) is that they turn out to be
consistent with zero (within the statistical errors) at the
point M� ¼ Mref

K , as required by the AG theorem.
At the physical point we get

fþð0ÞjPQSUð3Þ ¼ 0:9599ð61Þð32Þ; (10)

where the first error is statistical and the second one is
systematic coming from the uncertainties of the mass
extrapolation and the q2 dependence of the form factors.

We now discuss the analysis based on SU(2) ChPT. First
we note that Eq. (2) holds for full QCD [11] as well as for
the PQ theory with Nf ¼ 2. In the latter case it can be

verified by expanding fPQ2 [see Eq. (8)] in powers of

M2
�=M

2
K. Thus we consider a SU(2) fit of the form (2)

treating Fþ and cþ as fitting parameters, and we apply it to
our data with M� & 0:4 GeV. Alternatively we add to
Eq. (2) a NNLO correction proportional to M4

� and apply
the new fit to all lattice points. The results are shown in
Fig. 3(b). It can be seen that the impact of the SU(2) NNLO
correction is quite small up to M� � 0:5 GeV at variance
with the corresponding SU(3) result shown in Fig. 3(a).
This finding signals a better convergence of SU(2) ChPT
with respect to SU(3) for fþð0Þ.
At the physical point we get

fþð0ÞjPQSUð2Þ ¼ 0:9563ð53Þð13Þ: (11)

The application of SU(2) and SU(3) ChPT yields results
for fþð0Þ, Eqs. (10) and (11), which are consistent within
the uncertainties. By averaging the two results and adding
the systematic errors in quadrature we get

fPQþ ð0Þ ¼ 0:9581� 0:0057stat � 0:0035syst: (12)

FIG. 2 (color online). Results for fþð0Þ versus M2
K at M� ’

435 MeV. The square corresponds to the value of fþð0Þ obtained
by local interpolation via quadratic splines (dotted line) at the
reference kaon mass Mref

K ’ 575 MeV from Eq. (7).

FIG. 3 (color online). Results for fþð0Þ, obtained using the
pole fit (5), versus M2

� at MK ¼ Mref
K analyzed using SU(3) (a)

and SU(2) (b) ChPT. In (a) the SU(3) LOþ NLO term, 1þ fPQ2 ,

is shown by the dashed line. The solid and dot-dashed lines are
the results of the fit (9) for �f with �3 ¼ 0 and �2 ¼ 0,
respectively. In (b) the dashed line is the SU(2) LOþ NLO fit
(2) applied to our data with M� & 0:4 GeV, while the solid line
corresponds to the result of fitting all lattice points adding to
Eq. (2) a NNLO term proportional to M4

�. The vertical line

corresponds to M
phys
� ¼ 135:0 MeV.
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We now present our estimates of the remaining sources
of systematic effects.

Finite size. We have performed a simulation at M� ¼
300 MeV using the volume 243 � 48, which corresponds to
M�L ’ 3:2. We get fþð0Þ ¼ 0:986 33ð362Þ using the pole-
dominance fit (5) and fþð0Þ ¼ 0:985 97ð337Þ using the
quadratic fit (6). We combine these values with the results
shown in the second row of Table I, corresponding to the
volume 323 � 64 withM�L ’ 4:2. The results are shown in
Fig. 4(a) versus the lattice size L=a. For matrix elements
like the ones in Eq. (3), involving only one particle in the
final states, FSEs are known to be exponentially sup-

pressed. Assuming a volume dependence of the form Aþ
Be�M�L=L3=2 we obtain a residual FSE, corresponding to
the difference between the value at infinite volume and the
one calculated at the largest lattice volume, equal to
0.0018, which we add (in quadrature) to the systematic
error of Eq. (12).

Discretization.We have performed simulations atM� ’
470 MeV using both a finer (a ’ 0:069 fm) and a coarser
(a ’ 0:103 fm) lattice. The results for fþð0Þ, shown in

Fig. 4(b), exhibits a clear, linear (in a2) increase toward
the continuum limit, consistent with the automatic
OðaÞ-improvement at maximal twist [17]. The difference
between the value in the continuum limit and the one at a ’
0:088 fm is equal to 0.0037, which we add both to the
central value and (in quadrature) to the systematic error of
Eq. (12). Clearly a more detailed study of the scaling
property of fþð0Þ at various pion masses would be bene-
ficial in order to estimate better and to reduce further the
discretization error.
Quenching of the strange quark. The effect of our PQ

setup can be estimated within SU(3) ChPT. Because of the
AG theorem, valid also in both quenched Q [5] and PQ [16]
setups, the NLO term f2 can be computed unambiguously
in terms of MK, M� and f�. At the physical point it takes

the values: fQ2 ¼ þ0:022 in the quenched case Nf ¼ 0 [5],

fPQ2 ¼ �0:0168 for our PQ setup with Nf ¼ 2 [16] and

f2 ¼ �0:0226 for Nf ¼ 2þ 1 [4]. Thus, the effect of

quenching the strange quark is exactly known at NLO: at

the physical point f2 � fPQ2 ¼ �0:0058 ( ’ 26% of f2).
This correction is added to the central value of Eq. (12) and
it has no error. Note that the difference between the values
of f2 at Nf ¼ 2þ 1 and Nf ¼ 2 is almost an order of

magnitude less than the difference between those at Nf ¼
2þ 1 and Nf ¼ 0. In our opinion this should be traced

back to the facts that f2 is dominated by meson loops and
the pion contribution is the same in the Nf ¼ 2 and Nf ¼
2þ 1 theories.
The task is thus reduced to the problem of estimating the

quenching effect on the Oðp6Þ term �f. For this quantity
we have found evidence that the chiral logs, which are the
most sensitive to quenching effects, are small compared to
the contribution of the local terms (see Fig. 3(a)). We
estimate that the relative quenching effect on �f is at
most 50% of the same relative effect on f2. Thus we add
(in quadrature) the value 0.0028 (i.e., ’ 13% of �f) to the
systematic error of Eq. (12). Note that this value is of the
same size of the difference between our estimate of �f at
Nf ¼ 2 and the quenched one of Ref. [5]. Thus, we expect

our estimate of the quenching error to be a quite conserva-
tive one.
Our final result is

fþð0Þ ¼ 0:9560� 0:0057stat � 0:0062syst

¼ 0:9560� 0:0084; (13)
FIG. 4 (color online). Results for fþð0Þ versus the lattice size
in lattice units (a) and the squared lattice spacing (b). The full
dots and the open squares correspond to the values of fþð0Þ
obtained with the pole (5) or quadratic (6) fits, respectively. The
values of the pion mass are reported in the inset, while the kaon
mass is fixed at the corresponding reference values given by
Eq. (7). In (a) the dashed line is an exponentially suppressed fit
of the form Aþ Be�M�L=L3=2, while the dotted line is the value
fþð0Þ ¼ A ¼ 0:978 21ð381Þ in the limit of infinite volume. In (b)
the solid line is a linear fit in the squared lattice spacing, a2,
consistent with the automatic O(a)-improvement at maximal
twist [17].

TABLE II. Budget of the systematic error for fþð0Þ.

Source

Syst.

error

% of

[1� fþð0Þ]
q2 dependence and chiral extrapolation 0.0035 8

Finite size 0.0018 4

Discretization 0.0037 8

Quenching of the strange quark 0.0028 6

Total (in quadrature) 0.0062 14
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which corresponds to �f ¼ �0:0214ð84Þ. Our determina-
tion agrees very well with the Leutwyler-Roos result [4]
and with previous lattice calculations at Nf ¼ 0 [5], Nf ¼
2 [6–8] and Nf ¼ 2þ 1 [9].

The budget for the systematic error of the result (13) is
collected in Table II.

Using the latest experimental determination of the prod-
uct jVusjfþð0Þ ¼ 0:216 68ð45Þ [2,3] we get from (13)

jVusj ¼ 0:2267� 0:0005exp � 0:0020fþð0Þ: (14)

Combining this value with jVudj ¼ 0:974 18ð27Þ and
jVubj ¼ 0:003 93ð36Þ from PDG(2008) [2] the CKM uni-
tarity relation becomes

jVudj2 þ jVusj2 þ jVubj2 ¼ 1:0004� 0:0015: (15)

In conclusion we present our results for the slopes of the
scalar (s0) and vector (sþ) form factors. Their light-quark-
mass dependence is illustrated in Fig. 5 and it appears to be
quite mild. We have tried simple fitting functions of the
form

sj ¼ aj þ bjM
2
� þ cjM

4
� þ djM

2
� logðM2

�Þ; (16)

where aj, bj, cj and dj are fitting parameters and j ¼ þ, 0.

The results of two fits, one with dþ;0 ¼ 0 and the other

with cþ;0 ¼ 0, are shown in Fig. 5.

In terms of the dimensionless quantities �þ;0 � M2
�sþ;0

the extrapolation to the physical point and the evaluation of
the systematic uncertainties yield

�0 ¼ ð12:8� 2:2stat � 4:5systÞ � 10�3;

�þ ¼ ð23:7� 2:3stat � 2:1systÞ � 10�3;
(17)

where the large systematic error on �0 is dominated by
discretization effects. Our results for both �0 and �þ agree
very well with the latest experimental averages �

exp
0 ¼

ð13:4� 1:2Þ � 10�3 and �exp:
þ ¼ ð24:9� 1:1Þ � 10�3,

obtained in Ref. [3] using data from KLOE, KTeV,
ISTRA+, and NA48 experiments.

We thank all the ETMCmembers for fruitful discussions
and the apeNEXT computer centers in Rome and Zeuthen
for their invaluable technical help. This work has been
supported in part by EU ITN Contract No. MRTN-CT-
2006-035482, ‘‘FLAVIAnet.’’ One of us (F.M.) also ac-
knowledges the Consolider-Ingenio 2010 Program CPAN
(Contract No. CSD2007-00042).

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M.
Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652
(1973).

[2] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1
(2008).

[3] M. Antonelli et al. (FlaviaNet Working Group on Kaon
Decays), Nucl. Phys. B, Proc. Suppl. 181-182, 83
(2008).

[4] H. Leutwyler and M. Roos, Z. Phys. C 25, 91 (1984).
[5] D. Becirevic et al., Nucl. Phys. B705, 339 (2005).
[6] N. Tsutsui et al. (JLQCD Collaboration), Proc. Sci.

LAT2005 (2006) 357.
[7] C. Dawson, T. Izubuchi, T. Kaneko, S. Sasaki, and A.

Soni, Phys. Rev. D 74, 114502 (2006).
[8] D. Brommel et al. (The QCDSF collaboration), Proc. Sci.

LAT2007 (2007) 364.
[9] P. A. Boyle et al., Phys. Rev. Lett. 100, 141601 (2008).

[10] M. Ademollo and R. Gatto, Phys. Rev. Lett. 13, 264
(1964).

[11] J.M. Flynn and C. T. Sachrajda (RBC/UKQCD
Collaboration), Nucl. Phys. B812, 64 (2009).

[12] R. Frezzotti, P. A. Grassi, S. Sint, and P. Weisz (Alpha
collaboration), J. High Energy Phys. 08 (2001) 058.

[13] R. Frezzotti, V. Lubicz, and S. Simula, Phys. Rev. D 79,
074506 (2009).

[14] P. Dimopoulos et al. (ETM Collaboration), arXiv:
0810.2873.

[15] Ph. Boucaud et al. (ETM collaboration), Phys. Lett. B
650, 304 (2007); Comput. Phys. Commun. 179, 695
(2008).

[16] D. Becirevic, G. Martinelli, and G. Villadoro, Phys. Lett.
B 633, 84 (2006).

[17] R. Frezzotti and G. C. Rossi, J. High Energy Phys. 08
(2004) 007.

FIG. 5 (color online). Results for the slopes s0 (dots) and sþ
(squares), obtained at a lattice spacing equal to a ’ 0:088 fm
using the pole fit (5), versus M2

� at MK ¼ Mref
K . The solid

(dashed) line corresponds to the fit (16) with dþ;0 ¼ 0 (cþ;0 ¼
0). The vertical line corresponds to M

phys
� ¼ 135:0 MeV.

K ! �l� SEMILEPTONIC FORM FACTORS . . . PHYSICAL REVIEW D 80, 111502(R) (2009)

RAPID COMMUNICATIONS

111502-5


