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We study the consequences of some possible modifications of the phase space structure of general

relativity imposed by breaking, in the simplest manner, the full diffeomorphism invariance but retaining

the time foliation preserving diffeomorphisms. We examine the different sectors in phase space that satisfy

the new structure of constraints. For some sectors we find an infinite tower of constraints. In spite of that,

we also show that these sectors allow for solutions, among them some well-known families of black hole

and cosmologies which fulfill all the constraints. We raise some physical concerns on the consequences of

an absolute Galilean time, on the thermodynamical pathologies of such models, and on their unusual

vacuum structure.
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I. MOTIVATION, OUTLOOK, AND CONCLUSIONS

There has been recently a considerably huge activity
regarding different aspects of an eventually renormalizable
gravitational theory [1]. Despite the immense amount of
work that the subject has triggered, only a few authors have
dealt in detail with the consistency of the initial proposal
[2–5] while the vast majority of them deal with applica-
tions in cosmology [6,7] and with the obtention of some
solutions, typically applicable to black hole physics [8].

It is our aim to tidy up some dangling issues and fill
technical details of the constrained system originated from
the simplest version contained in the spirit of the initial
proposal [1]. Based on those findings we will construct a
sample of explicit cosmological vacuum models consistent
with the new dynamics. Our final goal is to show in a
crystal clear way that giving up full diffeomorphism in-
variance, in a very specific way, implies some bizarre and
so far unexplored consequences at the most fundamental
level.

We will always compare our outputs in the deep infrared
with general relativity (GR)—with cosmological con-
stant—[9],

L GR ¼ ffiffiffiffi
�

p
Nðð3ÞRþ KijK

ij � K2 � 2�Þ; (1)

where there is full 4-diffeomorphism invariance x� !
x� � ��, with �� an arbitrary infinitesimal function of
the coordinates as well as of the fields. The simplest setting
one can find in the literature that mimics the partial break-
ing of the symmetry of time diffeomorphisms is just a
small modification in the kinetic term of (1); see Sec. II.1

Notice, however, that even such a slight modification dra-

matically modifies the constraint’s structure of the theory
in phase space and makes it inconsistent in most classical
settings of the initial conditions, with the sure exception of
some symmetric, protected cases and, of course, by dimen-
sionally reducing it to a one-dimensional mechanical
model; this shows how finely tuned is GR for it to be
dynamically consistent.
A general consequence of the modification of (1)—or

the more general modifications discussed in the litera-
ture—is that, due to the reduction of diffeomorphism in-
variance, the foliation of the spacetime in equal-time
surfaces is fixed and acquires a direct physical meaning:
there is an absolute concept of simultaneity of events. In
this sense the time in these modified theories of gravity is a
Galilean time.
As other consequences of this partial breaking of diffeo-

morphism invariance we may list some of our findings (see
Sec. IV):
(1) Because of the impossibility to perform time diffeo-

morphism with spatial dependences, one cannot
construct a Rindler causal horizon through each
spacetime point and hence nor can a Unruh radiation
be defined.

(2) Whereas the de Sitter solution in pure GR with
cosmological constant accepts several types of
time foliations (open, closed, and flat 3-slices) but
the physics remains always the same, we find that in
the modified theory of gravity, every type of folia-
tion corresponds to a different physical vacuum.
Hence the vacuum is degenerate.

(3) Some specific solutions of GR are easily seen to be
solutions of the new dynamics as well, but one
should be aware that this is not a coordinate inde-
pendent statement. We will give examples of back-
ground configurations of GR that in some
coordinate incarnation are indeed solutions of the
minimally modified dynamics, whereas they are no
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1There are more general settings to achieve the partial break-

ing of full diffeomorphism invariance, many of them explored in
the context of the proposal of [1].
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longer so when written in other systems of
coordinates.

(4) Contrary to some remarks in the literature, the im-
plementation of the projectability conditions—i.e.,
that the lapse depends only on the time coordinate—
has no effect whatsoever on the Hamiltonian con-
straint, if one sticks to the rules of deriving the
dynamics from the action principle. In fact, one
can interpret the projectability condition in two
different ways. The natural way, which we advocate
here, is to understand it as a restriction of the class of
solutions to be considered. We may call it the soft
projectability condition. Another view, the hard
projectability condition, assumes a modification of
the original action, in that it already contains the
restriction that the lapse depends only on time. We
believe that this second point of view, though legiti-
mate, is less natural than the first one. We will be
back to this issue in Secs. II B and III C. In general
the projectable case is plagued with several prob-
lems in the infrared because of the presence of a
strongly interacting scalar [10].

Our analysis will be roughly split into two main venues
(see Sec. III):

(i) In the generic case the constraint analysis can be
performed to its end, and one obtains as a result a
tertiary constraint and a partial determination of the
Lagrange multiplier �0 in the Dirac Hamiltonian.
But one must be aware that other restrictions, com-
ing from boundary conditions, may produce a col-
lapse of the dynamics, in the sense, for instance, of
the compulsory vanishing of the lapse [5].

(ii) In nongeneric cases, we show that the typical situ-
ation is that of an indefinite chain of tertiary, quar-
tiary, etc., constraints which seem to set notable
limitations to the allowed initial conditions. Even if
we show some settings that allow for solutions, it is
quite likely that there is inconsistency for a large
class of initial conditions, much beyond the situation
in GR.

In addition to the mentioned bizarre consequences de-
rived from partial diffeomorphism breaking and the in-
creasing experimental evidence on the correctness of GR
in the deep infrared [11], it is fair to mention that although
in principle appealing, a weakness of the proposal is that
there seems to be no clear mechanism guarantying that the
low energy limit of this modified theory is going to restore
full fledged GR.

II. SETUP: MINIMAL DEVIATION FROM
GENERAL RELATIVITY

In order to make our point clearer we will follow the
approach of [12] which in some sense is based in some sort
of effective theory construction. Such approach is theoreti-
cally robust, and it is suitable from the phenomenological

point of view. In doing so we will encounter two problems
that we will refer to below. The construction goes as
follows: one introduces an anisotropic scaling at the ultra-
violet fixed point from which one constructs a power-
counting renormalizable theory organized in terms of a
placeholder symbol �, which allows for a kind of weighted
scaling dimensional analysis,

½dx� ¼ ½���1; ½dt� ¼ ½���3; ½N� ¼ ½��0;
½Ni� ¼ ½��2; ½�ij� ¼ ½��0: (2)

At high energy this scaling modifies the kinetic part of
(1) with the presence of a new parameter and simulta-
neously introduce a plethora of new relevant operators in
the potential term. Most of these terms become irrelevant
in the infrared. In most applications one assumes that a
naive power counting in derivatives holds, and then one
can discard the contribution of the tower of operators
present in the potential in the infrared. Unfortunately their
coefficients have a logarithmic running spoiling this be-
havior unless its ultraviolet value is unnaturally small [4];
this is the first of the problems referred to above. The
second one, already stressed in [2], is that the inclusion
of the Lorentz violation term in the kinetic part of the
Lagrangian leads to an extra scalar mode for the graviton
at all momenta, and thus if one does not make corrections
for these extra degrees of freedom, one will never recover
GR in the infrared. A proposal, which seems to be for the
moment a consistent setup, has been made in [13] to amend
such behavior, by considering the introduction of a new
potential term obtained for a nonprojectable lapse.
To avoid the first of these problems we will only focus

on the possible deviations of GR near the infrared; thus in
some sense we will give up issues concerning the ultravio-
let completion of the theory. With respect to the second
problem we will not be concerned with it and explore only
a minimal deviation from GR in the spirit of the original
proposal [1]. Given the previous line of reasoning, the
starting point (4) (see below) is the simplest of the settings
discussed in [12] and corresponds to a setup where only
relevant, dimension four operators in the infrared are kept.
The kinetic term will contain a slight difference with
respect to GR while the potential term will remain the
same.
Let us remind the reader of the four-dimensional metric

decomposition in terms of the three-dimensional metric
and the lapse and shift fields

g�� ¼ �N2 þ NiNi Ni

Ni �ij

 !
; (3)

which implies
ffiffiffiffiffiffiffi�g

p ¼ ffiffiffiffi
�

p
N. Spatial indices are raised and

lowered with �ij and its inverse �ij, respectively. The

Lagrangian takes the form

L ¼ ffiffiffiffi
�

p
Nðð3ÞRþ KijK

ij � �K2 � 2�Þ; (4)
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where ð3ÞR is the scalar curvature for the 3-metric �ij,

written henceforth simply as R, and Kij is the extrinsic

curvature of the equal-time surfaces,

Kij ¼ 1

2N
ð _�ij �riNj �rjNiÞ; (5)

with K as its trace, K ¼ Kij�ij. Notice that for the value

� ¼ 1 we recover the standard Arnowitt-Deser-Misner
(ADM) Lagrangian (1) with all its virtues and properties.
Thus the initial assumption in [1] is that as one goes to the
infrared and recovers full diffeomorphism invariance the
parameter � must run exactly to one. For � � 1 the invari-
ance is reduced to the subgroup of foliation preserving
diffeomorphisms, for which the time diffeomorphism
variation �x0 ¼: ��0 depends only on the time coordinate
x0. From the phenomenological point of view the value of
� is restricted to lie very near the GR value [14]. In this
sense we will take � as a varying parameter that only in the
deep infrared matches the GR value. For the sake of
completeness we will explore also the region where �
differs significantly from 1.

In order to obtain the Hamiltonian dynamics we define
first the variables in phase space. Since the Lagrangian (4)
does not depend on the time derivatives of the lapse and
shift, we identify the momenta P� conjugate to the lapse

N ¼: N0 and shiftNi as primary constraints in phase space

P� ’ 0: (6)

The Lagrangian definition of the momenta�ij conjugate to
�ij gives

�ij ¼ @L
@ _�ij ¼

ffiffiffiffi
�

p ðKij � �K�ijÞ: (7)

Note that �ij is a tensor density of weight 1 with respect to
3-diffeomorphisms. To prepare for the construction of the
canonical Hamiltonian, we trade the canonical variables
�ij for Kij. The trace of (7) is (� :¼ �ij�ij)

� ¼ ffiffiffiffi
�

p ð1� 3�ÞK: (8)

At this point we notice that a special behavior takes place at
� ¼ 1

3 . In this case a new primary constraint appears, � ’
0. What happens is that, for this value of �, the gauge
symmetry of the theory is enhanced: this is the anisotropic
Weyl invariance. It is obvious that with a new gauge
invariance there should be associated new first class con-
straints, as the eventual generators. We will leave aside
momentarily this particular case and come back to it in
Sec. V.

Using (7) and (8) we can isolate Kij in terms of the
canonical variables,

Kij ¼ 1ffiffiffiffi
�

p
�
�ij þ �

1� 3�
��ij

�
: (9)

With all the previous inputs, we can rewrite the system
(4) in the Hamiltonian formalism. This will allow us to
handle the stabilization—i.e. time preservation—of the
constraints in phase space. The canonical Hamiltonian is
defined by the spatial integrationH ¼ R

dxH , withH ¼
�ij _�ij �L. We obtain, up to boundary terms,

H ¼ ffiffiffiffi
�

p
N

�
�Rþ ��1�ij�ij þ �

1� 3�
��1�2 þ 2�

�
� 2Nirj�

ij: (10)

Defining 	 :¼ 1��
2ð1�3�Þ , the Hamiltonian density can be cast

as

H ¼ H ðADMÞ þ 	
Nffiffiffiffi
�

p �2; (11)

which for 	 ¼ 0 reduces to the standard ADM formulation
including the cosmological constant term.

A. The secondary constraints

The secondary constraints are obtained under the re-
quirement that the primary ones, P�, are preserved under

the time evolution. By varying the action with respect to
the lapse we obtain the Hamiltonian constraint

H 0 ¼ ffiffiffiffi
�

p �
�Rþ ��1�ij�ij þ �

1� 3�
��1�2 þ 2�

�
;

(12)

while the variation with respect to the shift leads to the
momentum constraints

H j ¼ �2ri�
i
j: (13)

Notice that the only difference with respect to the ADM
formulation lies solely in H 0. All in all we have

H 0 ¼ H ðADMÞ
0 þ 	

�2ffiffiffiffi
�

p ; H j ¼ H ðADMÞ
j ; (14)

where 	 parametrizes the deviation with respect to GR.
The Dirac Hamiltonian can be expressed as

HD ¼
Z

dxðN�H � þ ��P�Þ; (15)

with the Lagrange multipliers �� being—as of now—
arbitrary functions.

B. The tertiary constraint

Now we must look for tertiary constraints, as the con-
sequence of the stabilization of the secondary ones (14),
H �. This computation has been properly addressed in [3]
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within the Lagrangian framework in the tangent bundle.2

Instead, we will reobtain the tertiary constraint working
within the canonical formalism.

The stabilization of the secondary constraints takes the
form of the requirement

fH �;HDg ¼ fH �;
Z

dx0N�H �ðx0Þg ’ 0: (16)

Using (15) we can display the different terms that contrib-
ute to (16). Two relevant pieces of information help to
calculate (16). They are as follows: (i) Notice first of all
that due to the standard behavior of a scalar density under
3-diffeomorphisms one has�

H 0;
Z

dx0NiH iðx0Þ
�
¼ @iðNiH 0Þ; (17)

which vanishes in the primary and secondary constraints’
surface. (ii) On the other hand, the algebra of the gener-
ators of 3-diffeomorphisms closes in the standard way
because they coincide with those of the ADM case. This
in turn guaranties that the stabilization of the constraints
H i does not introduce new constraints. Using these two
facts the only relevant term in the computation becomes

tertiary constraint ¼
�
H 0ðxÞ;

Z
dx0NH 0ðx0Þ

�
: (18)

The computation of (18) is facilitated by the smearing of
the constraint H 0 by means of an arbitrary function 
,
which we take of compact support. So our task is reduced
to the computation ofZ

dx
ðtertiary c:Þ ¼
�Z

dx
H 0ðxÞ;
Z

dx0NH 0ðx0Þ
�
:

(19)

Using (14), we expand the right-hand side (rhs) of (19) asZ
dx
ðtertiary c:Þ ¼ Oð	0Þ þOð	Þ þOð	2Þ: (20)

The Oð	0Þ term in the above expression is proportional to
the momentum constraints and plays no role. The Oð	2Þ
term vanishes because no derivatives of the fields are
involved. Thus the tertiary constraint stems only from the
terms Oð	Þ.
Z

dx
ðtertiary c:Þ ¼ 	

��Z
dx


�2ffiffiffiffi
�

p ;
Z

dx0NH ðADMÞ
0

�

�
�Z

dxN
�2ffiffiffiffi
�

p ;
Z

dx0
H ðADMÞ
0

��
:

(21)

Consider the first term in the rhs of (21). Getting rid
momentarily of the smearing, we realize that it corresponds

to the time derivative of �2ffiffiffi
�

p under the evolution provided by

the ADM Hamiltonian in the gauge Ni ¼ 0,�
�2ffiffiffiffi
�

p ;
Z

dx0NH ðADMÞ
0

�
: (22)

Thus we can compute it with standard formulas—see, for
instance, [9,15]—for the time derivative of the components
of the 3-metric and their conjugate momenta. We notice
then the crucial fact that, when smearing with 
, all terms
in (22) that have no derivatives of the fields will cancel
against the second contribution to (21). It turns out that�

�2ffiffiffiffi
�

p
�� ¼ irrelevant terms� 4�4 N; (23)

where 4N stands for the Laplacian �ijrirjN. The rele-

vant contribution in (23) arises entirely from the _� term.
All in all, the contribution to (21) becomesZ

dx
ðtertiary c:Þ ¼ �4	
Z

dxð
�4 N � N�4 
Þ

¼ 4	
Z

dx
ð2ri�@
iN þ N 4 �Þ;

(24)

where in the last equality we have used part integration and
the fact that the function 
 is of compact support. From the
above expression the tertiary constraint is identified as

2ri�@
iN þ N 4 � ’ 0: (25)

This equation, (25), has first been obtained in [16]. It has
also been considered in [5], although not really interpreted
as a constraint because the momenta P� canonically con-

jugate to N� are eliminated in [5] and the lapse and shift
variables take over the role of Lagrange multipliers. We
prefer for now to keep all the variables of the formalism
and the Hamiltonian (15).
At this point it is worth noticing that from the perspec-

tive of the hard projectability condition, there is no tertiary
constraint at all, because in such a case one must stabilizeR
dxH 0, which is like redoing (24) with 
 ¼ 1; then the

computation in the first equality of (24) gives a vanishing
result: 
�4 N � N�4 
 ¼ 0. In conclusion, there is no
tertiary constraint for the hard projectability condition
implemented in the Lagrangian (4).

III. STABILIZATION OF THE TERTIARY
CONSTRAINT

The stabilization of (25) under the time evolution will
produce the appearance of _N, which, according to the
dynamics, is the multiplier �0 in the Dirac Hamiltonian
(15). Thus the stabilization of (25) has the form

2Actually, from the Lagrangian point of view this will be a
secondary constraint, because a n-ary constraint in phase space
has a corresponding (n� 1)-ary constraint—through the pull-
back operation—in the tangent bundle. Primary constraints in
phase space correspond to identities in the tangent bundle.
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4 ��0 þ 2ri�@
i�0 þ ðterms with no�0Þ ¼ 0; (26)

where we have taken the equality to zero as an ordinary
equality because it is legitimate to make the determination
of the multipliers �� on shell. Note that there are several
possible choices in the space of field configurations that
lead to the fulfillment of (25) and (26). For instance, if we
consider a configuration satisfying ri� ¼ 0, then (25)
holds and (26) is independent of the value of �0, but not
void.

In this section we will consider different consistent ways
for which the tertiary constraint is enforced by restricting
the field configurations in a way that guaranties (25).

A. The generic case: 4� � 0

As a first trial let us consider a generic case with 4� �
0. Notice that if (i) the initial conditions for the fields at,
say, t ¼ 0, satisfy all the constraints, including (25), and if
(ii) the multiplier �0 in the Dirac Hamiltonian (15) is
chosen so that it satisfies (26), then it is guaranteed that
all constraints will be satisfied at any time, which means
that the constraint analysis is finished. Notice though that
the analysis made here is based on local requirements.
What may remain to be explored is the adequacy of these
results for certain boundary conditions. Some concerns in
this respect will be drawn below.

In this generic case one can obtain, at least formally, the
partial determination of the multiplier �0 as follows: First
factorize out4� from (26) and obtain an expression of the
form

�0 ¼ ~V�0 þU; (27)

with ~V the differential operator ~V ¼ �2 ri�
4� @i and U the

remaining quantity. The solution to (27) will be the sum of
a particular solution plus an arbitrary solution of the asso-

ciated homogeneous equation. As long as the vector field ~V
is different from zero—which must be, because we are in a

generic configuration and so ~r� � 0—one can locally

change to a spatial coordinates system such that ~V ¼ @z.
Then the general solution of (27) is

�0ðx; y; z; tÞ ¼ �
Z z

dz0ez�z0Uððx; y; z0; tÞÞ þ ezfðx; y; tÞ:
(28)

As already mentioned, our determination of �0 is only of
local validity and one may ask on the global behavior of the
function �0, which is an issue not addressed here and
which essentially depends on the specifics of the boundary
conditions that are imposed. This behavior will affect that
of N, since _N ¼ �0. Within the very same generic case and
by assuming an asymptotically flat space the behavior of N
has been studied directly from the analysis of (25) in [5].
The outcome of the analysis is that to prevent the lapse
function from being divergent at the boundary, the only
acceptable solution is N ¼ 0.

The cases to be considered in the following subsections
are nongeneric; that is, they satisfy 4� ¼ 0.

B. Preserving the first class condition

Let us consider a second trial set for the fulfillment of the
tertiary constraint (25). Since the consistency of the whole
picture requires that N � 0, otherwise the Lagrangian
vanishes and the dynamics disappears, we can take the
tertiary constraint in the form

� :¼ 2ri�
@iN

N
þ4� ’ 0; (29)

which is more suited for our present purposes. Note that
except for some special circumstances, this constraint will
make the primary constraint P0 :¼ P second class,

fPðxÞ;�ðyÞg ¼ ri�

N
ðyÞ
�
@iN

N
ðyÞ�ðx� yÞ

� 2ry
i �ðx� yÞ

�
� 0; (30)

even in the case when the projectability condition holds3

unlessri� vanishes on shell. This last situation amounts to
impose the new set of constraints

ri� ’ 0; (31)

which already imply (29). As a matter of fact, there is
another reason for analyzing this case: if wewere to require
that (25) introduces no restriction upon the lapse, then we
should impose (31). Since the partial spatial derivatives
commute with the dynamics, it is more convenient to use
the form

@i

�
�ffiffiffiffi
�

p
�
’ 0; (32)

in order to explore the stabilization of (31). After using the
Hamiltonian constraint to eliminate terms with �kl�kl, the
new constraints originated from the stabilization of (32)
become

@i

�
N

�
2R� 1

1� 3�

�2

�
� 6�

�
� 24 N

�
’ 0; (33)

or, since @ið�2

� Þ vanishes on shell by virtue of (32),

@iN

N

�
R� 1

2ð1� 3�Þ
�2

�
� 3�

�
þ @iR� @i 4 N

N
’ 0;

(34)

thus showing that the stabilization of (31) has introduced a
new constraint (34). Note that the initial goal to prevent the

3Notice, however, that being second class in field theory is
trickier than in the mechanical case. Indeed, if we were in
mechanics, a second class condition for P will undoubtedly
determine the multiplier �0. As we have just seen, this is not
the case in field theory.

REMARKS ON THE CONSISTENCY OF MINIMAL . . . PHYSICAL REVIEW D 82, 044011 (2010)

044011-5



constraint P0 from becomng second class faces new chal-
lenges. It seems that the simplest setting aimed at this
contains as an ingredient the projectability condition; i.e.
the lapse depends only on the time coordinate, together
with the requirement that the 3-surfaces—labeled by the
time coordinate—of the foliation of the spacetime must be
surfaces of constant curvature, that is,

@iN ’ 0; @iR ’ 0: (35)

But we are not over yet, because, again, stability must be
required for these constraints. In this new analysis we must
consider the following: (i) The stabilization of the project-
ability condition in (35) results in the multiplier �0 satisfy-
ing @i�

0 ¼ 0 on shell, which is just fine because the only
time diffeomorphisms permitted are those of the type
x� ! x� � �

�
0 �

0ðx0Þ. (ii) As regards the stability of @iR ’
0, notice that since R is a 3-scalar, we know that
fR;RNiH ig ¼ Ni@iR, which already vanishes on shell

by virtue of (35). Thus we need to compute only
f@iR;

R
NH 0g. This results in the new set of constraints

@i

�
Rkl�klffiffiffiffi

�
p

�
’ 0: (36)

Other constraints will follow from the stabilization of (36).
We will not pursue this route any further, but make a
general comment. There seems to be no obstacle for the
stabilization mechanism originated from (32) to go on
indefinitely, giving at every stage new constraints of the
form of the gradient of a scalar. Notice that this scalar will
involve more derivatives the more we advance in the
process.

C. The projectability condition

The third and last scenario we will focus on for the
fulfillment of the tertiary constraint (25) assumes that the
projectability condition is satisfied. In this case, as long as
we keep N � 0, a new constraint is compulsory, namely,

4 � ’ 0: (37)

The stabilization of the projectability condition goes along
the very same lines as in the previous case, Sec. III B. As
regards (37), the easiest way to satisfy it is to assume the
stronger condition (32), in which case we will end up with
the scenario discussed in III B. Going back to the stabili-
zation of (37), and following the same argument as with
(32), we will stabilize

ffiffiffiffi
�

p 4
�
�ffiffiffiffi
�

p
�
’ 0: (38)

Since 4ð �ffiffiffi�p Þ is a 3-scalar, we already know that f ffiffiffiffi
�

p 4
ð �ffiffiffi�p Þ;RNiH ig ¼ @iðNi 4 ð �ffiffiffi�p ÞÞ ’ 0, and we must compute

only f ffiffiffiffi
�

p 4 ð �ffiffiffi�p Þ;RNH 0g. Keeping N � 0 the final result

is

� ffiffiffiffi
�

p 4
�
�ffiffiffiffi
�

p
��� ’ 2N

� ffiffiffiffi
�

p 4 R� @i

�
�ij@j

�
�ffiffiffiffi
�

p
���

;

(39)

and thus the new constraint, by-product of the stabilization
of (38), is

ffiffiffiffi
�

p 4 R� @i

�
�ij@j

�
�ffiffiffiffi
�

p
��

’ 0: (40)

As in the previous case the stabilization mechanism goes
on indefinitely, and an infinite tower of new constraints,
with more and more derivatives involved, appears as we
advance in the algorithmic procedure.
In some versions of the original model one implements

the projectability condition from the very beginning. It is
claimed that within this proviso the Hamiltonian constraint
is not a local equation satisfied at each spatial point but an
equation integrated over a whole space. This observation is
misleading in one respect: when one implements the proj-
ectability conditions within the action itself, one may lose
information on the constraint structure of the theory in a
way similar to what happens when plugging a partial gauge
fixing into the Lagrangian [17]. This information must be
restored by hand, and the one lost in this case is precisely
the local structure of the Hamiltonian constraint. Of
course, one can always change the theory and consider
that the projectability condition is a direct ingredient of the
action principle, in which case the nonlocal Hamiltonian
constraint appears, but this runs against the spirit of writing
a Lagrangian with no preconceptions as to whether its
dynamical consequences could be. Sticking to an action
principle with no further preconceptions, one can introduce
the projectability conditions as done above, but it does not
have consequences regarding the locality of the
Hamiltonian constraint.
Before closing this section, let us make three relevant

remarks concerning the previous two subsections, III B and
III C. First of all, both outcomes are similar to that encoun-
tered by [18], where it is argued that an infinite set of
constraints appears in the theory, but whereas in [18] the
focus is in the potential term and � is kept to its GR value,
our analysis is for � � 1. In spite of the existence of an
infinite chain of constraints, particular configurations com-
patible with the full set of constraints exist, as shown in
Secs. IVA and IVB below.
The second remark, concerning a possible way out of

this infinite string of constraints, is the extreme, but con-
sistent, setting of requiring that the variables �ij, �

ij, N,

and Ni be only time dependent. This outcome is nothing
but the dimensional reduction of (4) to a mechanical model
with only one coordinate—the time. The reduction is
anticipated to be consistent because it is made under the
Abelian group generated by the Killing vectors @i. The
only gauge freedom left is that of time reparametrizations.
Though consistent, this extremely restrictive framework
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seems of very limited interest, at least for what regards its
classical field theory content. Obviously, for 	 ! 0 we do
not recover GR.

Finally, the last remark concerns the issue of consis-
tency. We expect that the addition of higher order terms to
the minimal setting discussed here, (4), does not change
any of our conclusions. In fact, it will just add further
complications to the constraint analysis, which will appear
even more restrictive.

IV. SOME WELL-KNOWN SOLUTIONS
SATISFYING THE CONSTRAINTS

To complete our findings we give some explicit ex-
amples of solutions. As such, they fulfill the condition
(25) and as a consequence any possible chain of constraints
derived from its stabilization. We choose two different
setups, Secs. IVA and IVB: the first one does not imply
the projectability condition, whereas the last one does.

As regards the backgrounds shown below, it is not clear
to us which perturbations they can undergo in order to be
compatible with the preservation of the constraint’s struc-
tures discussed in Sec. III.

A. Black hole solutions

An obvious setting which guaranties (25) is to require
the vanishing of �ij which in turns implies, recalling the

Hamiltonian constraint (12),

R ’ 2�: (41)

Notice that �ij ’ 0 directly implies Kij ’ 0, and hence the
parameter � in (4) and in the equations of motion (eom)
(A1) and (A2) plays no role at all, as it is directly seen in
the Hamiltonian (10).

1. Schwarzschild black hole

By direct inspection of (5) we can conclude that Kij ’ 0
is satisfied by any stationary solution with vanishing shift
Ni. In such a case we need to explore the stabilization of
the new constraints

Ni ’ 0; �ij ’ 0: (42)

Preservation in time of the vanishing of the shift trivially
determines the arbitrary functions �i ¼ 0 in the Dirac
Hamiltonian, while the stabilization of �ij ’ 0 gives the
new constraint

NRij � ðrirjN � �ij 4 NÞ ’ 0: (43)

The trace of (43) implies, using (41), the following con-
straint on N:

4 N þ N� ’ 0; (44)

which is no longer compatible with the projectability con-
dition, as long as we keep N � 0 and � � 0. Finally,
inserting (44) in (43), the new constraint is

NRij �rirjN ��N�ij ’ 0; (45)

which already implies (44), if one takes into account (41).
The stabilization of (45) yields a partial determination of
the arbitrary function �0 in the Dirac Hamiltonian but (45)
can also be seen as a partial determination of the lapse.
Intepreting Eq. (45) as an equation for the lapse, Rij

must satisfy some projectability conditions. Let us find
them. Computing the divergence of (45) and using the
result rjrirjN ¼ @i 4 N þ RijrjN one obtains the

equation

NrjRij � @ið4N þ N�Þ ’ 0: (46)

The last piece vanishes using the constraint itself, since
(41) and (45) imply (44). Factorizing the lapse, which we
assume is a nonvanishing function, we arrive at the inte-
grability condition for (45),

rjRij ’ 0: (47)

Using the contracted Bianchi identity, this condition is
equivalent to riR ’ 0, which is satisfied because of (41).
Thus the integrability condition is satisfied, showing the
consistency of our procedure.
As an application of this setting, consider the static,

spherically symmetric ansatz

ds2 ¼ �AðrÞdt2 þ BðrÞdr2 þ r2d�2
2: (48)

This ansatz has already been considered in [8] but under
the detailed balance condition. Equation (48) is, in fact, a
consistent reduction, which sets the shift vectors to zero as
well as eliminates other metric components. The solution
fulfilling the eom and the constraints (41) and (45) boils
down to just Schwarzschild, either de Sitter or anti–
de Sitter,

AðrÞ ¼ B�1ðrÞ ¼ 1� r2�

3
þ a

r
: (49)

2. Kerr black hole

One may wonder whether any solution in GR admits a
continuation to a solution in the modified theory (4). It is
clear that solutions to (4), which must fulfill the constraint
(25), yield in the limit � ! 1 solutions of GR. But pre-
cisely, because of the existence of the additional constraint
(25), the opposite is not true. Candidate GR solutions that,
in principle, may fail with the fulfillment of (25) are those
with nonvanishing momenta �ij. If the solution is station-
ary this means that the shift should be different from zero.
A natural candidate is therefore a rotating black hole, and a
possible choice inside GR is the Kerr black hole—we set
� ¼ 0 for simplicity. This solution will have a continu-
ation to a solution of (4) as long as (25) is satisfied. Let us
check whether this is the case. Writing the metric in the
dragging frame, the nonvanishing components of the 3-
metric are
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grr ¼ �2

�
; g�� ¼ �2;

g’’ ¼
�
ðr2 þ 2Þ þ rrs

2sin2�

�2

�
sin2�;

(50)

with rs the Schwarzschild radius and

¼ J

M
; �2 ¼ r2 þ2cos2�; �¼ r2 � rrs þ2:

(51)

Using (50) we can obtain the three-dimensional shift and
lapse fields

N2 ¼ �1þ rrs
�2

� r2r2s
2sin2�

�2ð�2ðr2 þ 2Þ þ rrs
2sin2�Þ ;

~N ¼ �
�
0; 0;

rrs
ðr2 þ 2Þ�2 þ rrs

2sin2�

�
:

(52)

One can check from (50) and (52) that�ij � 0, but its trace
vanishes, � ¼ 0. This means that (25) is still satisfied.
Since one can read from (A1) and (A2) that the difference
between the eom of GR and those of (4) lies solely in terms
that are proportional to �, we can immediately conclude
that the Kerr solution (50) is also the solution of (4) for any
value of �.

3. The Galilean nature of time for � � 1

In view of the previous two examples one may be
tempted to erroneously conclude that any solution to GR
with sufficient symmetry can always be deformed in the
�-parameter space to fulfill the new dynamics defined by
(4). In fact, for the theories defined with (4) with � � 1, the
restriction to foliation preserving diffeomorphisms has the
consequence that there is a preferred frame with Galilean
time, thus restoring the absolute concept of simultaneity.
The assertion that Schwarzschild, or Kerr, are solutions of
(4) must be qualified: they are solutions in the coordinate
frames that differ only in a foliation preserving diffeo-
morphism from the expressions given in the last subsec-
tions for such solutions. But if these solutions, as solutions
of GR, are presented in other frames, they are no longer
solutions of (4). Let us give the example of Schwarzschild
in—ingoing—Painlevé-Gullstrand coordinates,

ds2 ¼ �dt2 þ ðdrþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� AðrÞp

dtÞ2 þ r2d�2
2; (53)

where the 3-metric is simply flat, the lapse is trivial, and the

shift has the only component Nr ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� AðrÞp

. One can
immediately check that 4� � 0. This result, in view of
N ¼ 1, shows that the constraint (25) is not fulfilled and
therefore (53) is not a solution of (4). This result above is
not in contradiction with (48) being a solution of (4),
because the two types of coordinatization used in (48) and
(53) are not connected by a foliation preserving diffeo-
morphism, and therefore the backgrounds described with
these coordinatizations, though they lead to a single phys-

ics when we go to the GR limit, represent different physical
settings for the dynamics given by (4). Later we shall
complement these findings in terms of Rindler coordinates
and examine its immediate consequences for thermody-
namics, For the time being let us make the remark that one
can associate a Hawking radiation with both systems of
coordinates, and thus this emission is insensitive to the
partial time diffeomorphism breaking.

B. Vacuum cosmologies, generalities

A less restrictive nongeneric setting, still fulfilling (25),
is constructed by demanding

�ij ¼ bðtÞ ffiffiffiffi
�

p
�ij; (54)

in the gauge Ni ¼ 0. We will obtain time-dependent back-
grounds that will lead to a number of interesting conse-
quences for well-known cosmologies. As a matter of
notation, and since we are directly looking for solutions,
we write henceforth ordinary equalities when dealing with
the constraints.
First of all notice that the geometry of the 3-surfaces

implies that b in (54) is a 3-scalar, because �ij is a tensor
density; thus the assertion that b depends only on the time
coordinate is a covariant statement with respect to 3-
diffeomorphisms. And it is also so with respect to the
time foliation preserving diffeomorphisms.
Inserting (54) in the eom (A1) and solving for � one

obtains

�ijðx; tÞ ¼ exp

�
2N

1� 3�

Z t

0
bð�Þd�

�
�ijðx; 0Þ; (55)

that is, the evolution of the 3-metric in terms of expansion
factor, expð N

1�3�

R
t
0 bð�Þd�Þ, and the initial data. Notice

that this expansion is rigid in the sense that all points on
the surfaces evolve with the same factor. Three-
dimensional distances between them are affected only by
a global time-dependent factor.
In the following we will obtain the dynamical evolution

of bðtÞ for different cases. Let us stress nevertheless that
this is not the most efficient way of constructing time-
dependent metric spaces which are solutions of (4) should
one be interested in including matter.
Notice, first of all, that with the ansatz (54) the

Hamiltonian constraint (25) becomes

R ¼ 3

1� 3�
b2ðtÞ þ 2�; (56)

which enforces R to depend only on time. From the trace of
(54) we infer that the tertiary constraint (25) is satisfied
because ri� ¼ 0. Note that our ansatz complies with the
assumptions of subsection III B, including the projectabil-
ity condition of the lapse, to be obtained below.
There are two ways to compute the time derivative of

�ij: either we use (A2) or the rhs of the ansatz (54). Using
the former we obtain
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_� ij ¼ ffiffiffiffi
�

p
N

�
�Rij þ 1

2
R�ij � 1

2ð1� 3�Þb
2�ij ���ij

�
;

(57)

while the latter leads to

_� ij ¼ d

dt
ðb ffiffiffiffi

�
p

�ijÞ ¼
�
_bþ N

1� 3�
b2
� ffiffiffiffi

�
p

�ij: (58)

Equating both expressions, taking the trace, and using (56),
we obtain our fundamental equation

_bþ N

1� 3�
b2 þ 1

3
N� ¼ 0: (59)

We will explore the solutions to (59) later on. Note that
(59) enforces the projectability condition on the lapse and
it also indicates that _�ij is proportional to the metric �ij.
Applying this result to (57), and using (56) and (59), we
obtain

Rij ¼
�

b2

1� 3�
þ 2

3
�

�
�ij ¼ �

_b

N
�ij: (60)

We infer from Eq. (60) that the surfaces of the foliation are

Einstein spaces. The 3-curvature, R ¼ � 3 _b
N , has the oppo-

site sign to _b.
According to the signs of the cosmological constant �

and the coefficient 1� 3�, we will have four different
cases that we consider below. In all the following setups,
N is gauge fixed to

N ¼ j1� 3�j
2

; (61)

and  � 0 is defined as

1

2
:¼ 1

3
Nj�j: (62)

1. de Sitter–like space: 1� 3� < 0, �> 0

This case contains GR—with positive cosmological
constant—as a particular case and seems to be phenom-
enologically the most plausible scenario [14,19]. Then
Eq. (59) becomes

_b� 1

2
b2 þ 2

2
¼ 0: (63)

Its solutions are separated in three regimes, accordingly
with the initial conditions, given by the sign of 2

 � jbj.
Closed slicing. If the initial data fulfills the inequality

jbj< 2


; (64)

the solution to (63) is given by

bðtÞ ¼ � 2


tanh

�
t



�
; (65)

up to a rigid time translation. For this solution _b is negative.
The simplest way to realize the three-dimensional Einstein
space with positive curvature is the 3-sphere which has
Rij ¼ 2�ij. Using (55), the 4-metric becomes

ds2 ¼ �N2dt2 þ N2cosh2
�
t



�
d�2

3: (66)

Open slicing. If the initial condition is such that

jbj> 2


; (67)

the solution to (63) reads, up to a rigid time translation,

bðtÞ ¼ � 2


coth

�
t



�
; (68)

and now _b is positive. The simplest way to realize the
three-dimensional Einstein space with negative curvature
is the 3-hyperboloid, which has Rij ¼ �2�ij. With a pro-

cedure similar to the previous case, using (55), the 4-metric
becomes

ds2 ¼ �N2dt2 þ N2sinh2
�
t



�
dH2

3 : (69)

This case admits the limit  ! 1, where (69) becomes

ds2 ¼ �N2dt2 þ Nt2dH2
3 ; (70)

which, for � ¼ 1, reduces to the Milne universe, i.e. the
Friedmann-Robertson-Walker solution in the absence of
matter.
Flat slicing. As a last case we encounter the critical

situation

jbj ¼ 2


: (71)

This case has the trivial constant solutions

bðtÞ ¼ � 2


: (72)

The 3-curvature vanishes and we realize it with a spatial
flat Euclidean space. The 4-metrics are

ds2 ¼ �N2dt2 þ exp

�
� 2


t

�
ðdx2 þ dy2 þ dz2Þ: (73)

The solutions (66) and (69) are solutions of GR only for
� ¼ 1. Instead, (73) is a solution of GR for any � if one
rescales conveniently the cosmological constant. All the
above solutions (66), (69), and (73) boil down to the same
GR solution for � ¼ 1: de Sitter space. For � � 1 the
gauge group is reduced to foliation preserving diffeomor-
phisms, and as a consequence the three cases, open, closed,
and flat slicing, are indeed three different vacuums. This is
vacuum degeneracy. Taking this result at face value, if
nature had initially broken the 4-diffeomorphism group
in this region of the ð�; 1� 3�Þ plane, it would also
have had to undergo a spontaneous symmetry breaking
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[20] in order to conform with the present-day observatio-
nally allowed values of � and �. This mechanism of
spontaneous symmetry breaking is also present in other
models of Lorentz violation with an unconventional kinetic
term [21]. Although this picture is appealing, one should
bear in mind that the analysis made here is classical,
without including matter, and susceptible to quantum
corrections.

2. Anti–de Sitter–like space: 1� 3� < 0, �< 0

Equation (59) becomes

_b� 1

2
b2 � 2

2
¼ 0; (74)

which has as a solution

bðtÞ ¼ 2


tan

�
t



�
; (75)

up to a rigid time translation. Now _b is positive and the 4-
metric becomes

ds2 ¼ �N2dt2 þ N2cos2
�
t



�
dH2

3 : (76)

For � ¼ 1 this is just a partial covering of anti–de Sitter
spacetime with coordinate singularities located at cosð tÞ ¼
0.

Hitherto we have discussed cases that presume a mild
modification with respect to GR in the sense that the value
of j1� 3�j in the ð�; 1� 3�Þ plane lies in the same, lower
half part where GR resides. In that respect the remaining
two cases we will discuss can support deviations far from
GR because they lie in the upper half plane.

It is worth noticing that if bðtÞ solves (59) for some signs
of (1� 3�) and �, the change bðtÞ ! �bðtÞ produces a
solution of (59) with the opposite signs, whereas the ex-
pansion parameter in (55) does not change because of
compensating factor signs. This fact allows us to obtain
immediately the new solutions below from the previous
ones above.

3. 1� 3� > 0, �> 0

This case is parallel to that in IVB 2 but with the change
bðtÞ ! �bðtÞ. The 4-metric becomes

ds2 ¼ �N2dt2 þ N2cos2
�
t



�
d�2

3: (77)

4. 1� 3� > 0, �< 0

Now this case is just that of IVB 1 with the change
bðtÞ ! �bðtÞ. All previous considerations hold and we
end up with the 3-metrics.

ds2 ¼ �N2dt2 þ N2cosh2
�
t



�
dH2

3 ;

ds2 ¼ �N2dt2 þ N2sinh2
�
t



�
d�2

3;

ds2 ¼ �N2dt2 þ exp

�
� 2


t

�
ðdx2 þ dy2 þ dz2Þ:

(78)

The considerations in the above section concerning the
space of vacuum solutions can be summarized in Fig. 1.
Notice that while the transition between left $ right

half planes as a function of � is smooth this is not the
case for the top $ botton half planes as a function of 1�
3�. Notice also the existence of a ‘‘quasi-inversion’’ sym-
metry by which we send 1� 3� ! �ð1� 3�Þ and � !
�� and the spherical and hyperbolical three-dimensional
spaces are exchanged.

5. The Galilean nature of time, revisited

One of the disturbing outcomes of the model (4) is
Lorentz violation, expressed by the fact that only time
foliation preserving diffeomorphism are permitted. As
mentioned earlier in IVA3, this is connected with the
existence of a preferred time frame. Even if it has been
advocated in cosmology that there is no reason to refuse
the existence of that frame and furthermore that there exists
such a natural, preferred frame defined by the cosmic
microwave background [22], it is also true that, at least
in the case of GR, tight phenomenological constraints rule
out the existence of Lorentz violation operators of dimen-
sion � 6 [23]. Thus it seems that consistency with phe-
nomenological results does not leave too much room for
Lorentz violation, unless it comes in a very exotic manner.
Anyhow we will explore some of the possible consequen-

FIG. 1 (color online). Pictorial representation of the vacuum
solutions in the ð�; 1� 3�Þ plane. The horizontal (red) axis
represents the critical case � ¼ 1

3 . N stands for N ¼ j1�3�j
2 and

1
2 :¼ 1

3Nj�j.
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ces of Lorentz violation at the most fundamental level. Our
starting point is a solution of GR, the Milne universe, (76)
which covers the complementary wedge of Rindler space-
time in Minkowski spacetime. It is well known that, for t >
0, the following change of coordinates

R ¼ t sinhc ; T ¼ t coshc (79)

makes this solution to be written as

ds2 ¼ �dT2 þ dR2 þ R2ðd�2 þ sin2�d�2Þ; (80)

which is plainly just half of Minkowski spacetime, T > 0.
We have gone with such detail, in these trivial matters,
because of the points we want to make. Notice that for � �
1, we can no longer practice arbitrary reparametrizations,
but only foliation preserving diffeomorphisms. In particu-
lar, a change of coordinates of the type (79) is no longer
permitted. This difference with GR is crucial in two essen-
tial points with a common origin:

Cosmological time. In the GR case, the hyperboloid
nature of the 3-surfaces of the foliation in (69) was just
an artifact of the choice of coordinates for de Sitter space-
time. But in theories with � � 1 we are stuck with such a
foliation with hyperboloids, which are equal-time surfaces,
and the parameter t is already the physical time, except
perhaps for a reparametrization involving only this time
parameter itself. In other words, what for GR was just a
coordinate singularity for t ¼ 0 in (69) has become
for � � 1 theories a true background singularity, a big
bang for the solution with t > 0 or a big crunch for that
with t < 0.

In this spirit the three types of de Sitter–like spacetime
foliations can be interpreted as follows: Closed slicing (66)
describes a bounce. Open slicing (69) describes a big bang
or a big crunch with the singularity at finite time. The case
of Flat slicing (73) describes an infinite expansion or
contraction with the singularity at infinity.

Thermodynamics. Unlike the Hawking radiation effect,
the Unruh effect is tantamount to Lorentz symmetry: in the
absence of the latter the former does not exist [24]. The
algebraic proof, in the framework of axiomatic field theo-
ries, states that the Minkowski vacuum restricted to a
Rindler wedge is a thermal state with respect to the boost
parameter [25]. It is obvious that in the absence of boost
transformations of the Lorentzian type, we are not allowed
anymore to define a thermal state; i.e. one cannot even find
a horizon with a surface gravity from which to define the
temperature through Tolman’s law.

Notice that besides these discrepancies with GR, the
structure of the time diffeomorphism breaking allows the
preservation of the continuous self-similarity property on
the solutions of the modified dynamics.

V. THE CRITICAL CASE � ¼ 1
3

As anticipated in Sec. II, the critical case needs special
attention because of the appearance of a new primary
constraint, � ’ 0. This means, in particular, that all solu-
tions of (4), including the GR case � ¼ 1, that happen to
satisfy � ¼ 0, will be solutions for this critical case. And
vice versa: any solution of the critical case is a solution of
(4) for any �. The canonical Hamiltonian may be taken as
the same as in GR, because the � dependent term in (10)
vanishes for � ’ 0. In fact, this term is quadratic in the
constraint. The canonical Hamiltonian has always the am-
biguity of the addition of terms linear in the primary
constraints. The choice of the GR form for (12) is the
most convenient because of the closedness of the algebra
of the Hamiltonian and momentum constraints in this case.
This choice is legitimate because what is required for the
canonical Hamiltonian is that ðFL�pÞ _q� FL�H ¼ L,
where FL� is the pullback operation of the Legendre
map FL from the tangent bundle to the cotangent bundle,
and this condition is satisfied in the critical case for any
value of � in (10).
With this choice of the canonical Hamiltonian, the Dirac

Hamiltonian is now

HD ¼
Z

dxðN�H ðADMÞ
� þ ��P� þ ��Þ: (81)

Whereas the stabilization of the primary constraints P� ’
0 yields the usual Hamiltonian and momentum constraints
of GR, that of the new primary constraint � ’ 0 produces
the new secondary constraint

NðR� 3�Þ � 4N ’ 0; (82)

which translates in a partial determination of the lapse.
Finally, the stabilization of the Hamiltonian constraint
yields a partial determination of the arbitrary function �,

�ðR� 3�Þ � 4� ¼ 0: (83)

One can stabilize the constraint (82), giving a partial
determination of �0. Alternatively one could have elimi-
nated the momenta P� from the formalism and taken the

lapse and shift as the arbitrary functions of the dynamics
for the 3-metric.
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APPENDIX

In this short appendix we display for the sake of com-
pleteness the eom for the minimal dynamics (4). Let us
stress that dotted quantities in Secs. III B and III C stand for
the evolution under this minimally modified dynamics and
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they should not be confused with dotted quantities used in
Sec. II B, which meant evolution under the ADM dynamics
in the gauge Ni ¼ 0.

The eom for the dynamics (4) are just a minimal modi-
fication of that of GR [15],

_� ij ¼ 2Nffiffiffiffi
�

p
�
�ij þ �

1� 3�
��ij

�
þriNj þrjNi; (A1)

_�ij ¼ ffiffiffiffi
�

p
N

�
�Rij þ 1

2
R�ij þ 1

2�
�ij

�
�kl�kl

þ �

1� 3�
�2

�
� 2

�

�
�ik�kl�

lj þ �

1� 3�
��ij

�

���ij

�
þ ffiffiffiffi

�
p ðrirjN � �ijrkrkNÞ

þ rkðNk�ijÞ � �ikrkN
j � �jkrkN

i: (A2)
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