
Automorphic properties of low energy string amplitudes in various dimensions

Michael B. Green*

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA,
United Kingdom

Jorge G. Russo†
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This paper explores the moduli-dependent coefficients of higher-derivative interactions that appear in

the low-energy expansion of the four-supergraviton amplitude of maximally supersymmetric string theory

compactified on a d torus. These automorphic functions are determined for terms up to order @6R4 and

various values of d by imposing a variety of consistency conditions. They satisfy Laplace eigenvalue

equations with or without source terms, whose solutions are given in terms of Eisenstein series, or more

general automorphic functions, for certain parabolic subgroups of the relevant U-duality groups. The

ultraviolet divergences of the corresponding supergravity field theory limits are encoded in various

logarithms, although the string theory expressions are finite. This analysis includes intriguing representa-

tions of SLðdÞ and SOðd; dÞ Eisenstein series in terms of toroidally compactified one and two-loop string

and supergravity amplitudes.
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I. INTRODUCTION

In this paper we will pursue a program of elucidating
exact properties of the four-supergraviton scattering am-
plitude1 in the low-energy expansion of string theory com-
pactified from 10 to D ¼ 10� d dimensions on a d torus,
T d. Although this is a very small corner of M theory, it is
one in which precise statements can be made. In particular,
the combination of maximal supersymmetry and U duality
is very constraining [2]. The low-energy expansion of the
scattering amplitude in D-dimensional space-time has the
general form

ADðs; t; uÞ ¼ A
analytic
D ðs; t; uÞ þ Anonan

D ðs; t; uÞ; (1.1)

where we have separated analytic and nonanalytic func-
tions of theMandelstam invariants, s, t, and u [s ¼ �ðk1 þ
k2Þ2, t ¼ �ðk1 þ k4Þ2, u ¼ �ðk1 þ k3Þ2, and sþ tþ u ¼
0]. Although it is not obvious that such a separation can be
made in a useful manner to all orders in the low-energy
expansion, it is sensible and useful at the orders to be
considered in this paper. The analytic part of the amplitude

has the expansion (in the Einstein frame)

Aanalytic
D ¼ EðDÞ

ð0;�1ÞðMKnGÞR
4

�3

þ X1
p¼0

X1
q¼0

EðDÞ
ðp;qÞðMKnGÞ�p

2�
q
3R

4; (1.2)

which is the general symmetric polynomial in the
Mandelstam invariants, which enter in the dimensionless
combinations

�n ¼ ðsn þ tn þ unÞ ‘
2n
D

4n
; (1.3)

where ‘D is the Planck length in D dimensions. The factor
of R4 in (1.2) indicates the contraction of four powers of
the Riemann curvature tensors linearized around flat space
and contracted with a standard 16-index tensor, t8t8 [3].
The coefficient functions are necessarily automorphic
functions that are invariant under the D-dimensional dual-
ity group, GdðZÞ, appropriate to compactification on a d ¼
ð10�DÞ torus. These groups are listed in Table I. They are
functions of the symmetric space, MKnG, defined by the

moduli, or the scalar fields, of the coset space KnG. It is
often convenient to express the analytic part of the ampli-
tude in terms of a local one-particle irreducible effective
action.
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1The term ‘‘supergraviton’’ refers to the supermultiplet of 256

massless states. The dependence on the helicities of these states
arises in the amplitude through a generalized curvature, R [1].
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Although this paper will be concerned almost entirely
with the analytic part of (1.1), Aanalytic, it is important to
consider its relationship to the nonanalytic part, Anonan.
This part of the amplitude contains the information about
the massless thresholds that arise in perturbation theory
and contribute to the nonlocal part of the effective action.
Such contributions include the threshold structure of su-
pergravity scattering amplitudes, and depend on the space-
time dimension, D, in a sensitive manner. At sufficiently
high values of D, an L-loop perturbative contribution in
supergravity has ultraviolet divergences that are power
behaved in a momentum cutoff, �. Such divergences are
absent in string theory, and the dependence on a power of
� is replaced by a finite analytic term with a corresponding
power of ‘�1

s , where ‘s is the string length scale. As D is
decreased, it reaches a critical value at which supergravity
develops a logarithmic ultraviolet divergence. Introducing
a momentum cutoff now produces a nonanalytic factor of
the schematic form Anonan

D �R4sk logð�s=�2Þ, which is
replaced in string theory by

Anonan
D �R4sk logð�‘2s�sÞ; (1.4)

where � is a dimensionless scale, which is independent of
the moduli and may be determined by a detailed string loop
calculation. This expression is merely illustrative—the de-
tailed dependence on the Mandelstam variables and pattern
of logarithms is more complicated. For a discussion of such
effects in the expansion of the genus-one contribution, see
[4]. Of course, there is some ambiguity in how such
constant terms are assigned to the analytic and nonanalytic
pieces since � may be changed to �= ~� by adding
R4sk log ~� to the analytic term. In the subsequent discus-
sions in this paper our convention will be to associate all
such moduli-independent logarithms with the scale of non-
analytic sk logð�‘2s�= ~�sÞ contributions to the amplitude.
Furthermore, we will not discuss the precise values of the
constant scales such as �, which can be determined by
explicit string perturbation theory computations, such as

that carried out at genus one in [4]. As D is decreased to
values D<Dc, the nonanalytic terms are proportional to
inverse powers of s, t, and u. For D � 4, the four-
supergraviton amplitude possesses the standard infrared
divergences of a perturbative gravitational theory, which
will not be discussed here.
The first term in the expansion (1.2) (p ¼ 0, q ¼ �1)

has coefficient EðDÞ
ð0;�1Þ ¼ 3 and is the classical supergravity

tree-level term, with poles in s, t, u, and is determined by
the Einstein-Hilbert action. This has trivial dependence on
the moduli. The subsequent terms have a rich dependence
on M that encodes both perturbative and nonperturbative
information. This contrasts with supergravity, in which the
continuous GdðRÞ duality symmetry is unbroken, and am-
plitudes are independent of the moduli. The simplest non-
trivial examples of automorphic functions arise in the ten-
dimensional IIB theory, where the coset is SOð2ÞnSLð2Þ,
so there is a single complex modulus,� ¼ �1 þ i�2, and
the duality group is SLð2;ZÞ. In this case the first two terms
in the expansion beyond the classical term are given by
particular examples of nonholomorphic Eisenstein series
for SLð2;ZÞ

E sð�Þ ¼ X
ðm;nÞ�ð0;0Þ

�s
2

jmþ n�j2s ; (1.5)

which satisfies the Laplace equation

��Esð�Þ � �2
2ð@2�1

þ @2�2
ÞEsð�Þ ¼ sðs� 1ÞEsð�Þ;

(1.6)

and where s is a (generally complex) index. Some impor-
tant properties of these functions are reviewed in
Appendix B 3. The Fourier expansion of Es in (B38) has
a zero mode or ‘‘constant term’’ that consists of the sum of
two powers,Z 1=2

�ð1=2Þ
d�1Es ¼ 2�ð2sÞ�s

2

þ 2
ffiffiffiffi
�

p �ðs� 1
2Þ

�ðsÞ �ð2s� 1Þ�1�s
2 ; (1.7)

which correspond to a tree-level and genus-(s� 1=2) con-
tribution to the interaction in string perturbation theory.
The nonzero modes correspond to exponentially sup-
pressed D-instanton contributions to the interaction. The
first term of this type is the lowest order term beyond the
Einstein-Hilbert term, which is the R4 interaction for

which p ¼ q ¼ 0 and the coefficient is Eð10Þ
ð0;0Þð�Þ ¼

E3=2ð�Þ that has tree-level and one-loop perturbative con-

tributions [5,6]. The next term in (1.2), with p ¼ 1, q ¼ 0,
corresponds to a @4R4 interaction in the effective action,

with a coefficient Eð10Þ
ð1;0Þð�Þ ¼ 1=2E5=2ð�Þ that has tree-

level and two-loop contributions [7]. Both the R4 and
@4R4 interaction coefficients can be determined by impos-
ing constraints implied by modified supersymmetry trans-

TABLE I. The duality groups of maximal supergravity in D ¼
10� d � 10 dimensions. The groups GdðRÞ ¼ EdðdÞðRÞ are the

real split forms of rank dþ 1 and K are the maximal compact
subgroups. In string theory these groups are broken to the
discrete subgroups, GdðZÞ, as indicated in the last column.

D GdðRÞ ¼ Edþ1ðdþ1ÞðRÞ K GdðZÞ
10A GLð1;RÞ 1 1

10B SLð2;RÞ SOð2Þ SLð2;ZÞ
9 GLð2;RÞ SOð2Þ SLð2;ZÞ
8 SLð3;RÞ � SLð2;RÞ SOð3Þ � SOð2Þ SLð3;ZÞ � SLð2;ZÞ
7 SLð5;RÞ SOð5Þ SLð5;ZÞ
6 SOð5; 5;RÞ SOð5Þ � SOð5Þ SOð5; 5;ZÞ
5 E6ð6ÞðRÞ USpð8Þ E6ð6ÞðZÞ
4 E7ð7ÞðRÞ SUð8Þ=Z2 E7ð7ÞðZÞ
3 E8ð8ÞðRÞ SOð16Þ E8ð8ÞðZÞ

MICHAEL B. GREEN, JORGE G. RUSSO, AND PIERRE VANHOVE PHYSICAL REVIEW D 81, 086008 (2010)

086008-2



formations that incorporate higher-derivative contributions
[8,9].

The next term has p ¼ 0, q ¼ 1 and corresponds to the

@6R4 interaction. Its coefficient Eð10Þ
ð0;1Þð�Þ is not an

Eisenstein series [10], but satisfies the interesting inhomo-
geneous Laplace eigenvalue equation,2

ð�� � 12ÞEð10Þ
ð0;1Þð�Þ ¼ �ðEð10Þ

ð0;0Þð�ÞÞ2; (1.8)

where the right-hand side is a source term proportional to
the square of the coefficient of the R4 interaction. In this
case the constant term has power-behaved terms corre-
sponding to perturbative string theory contributions at
genus 0, 1, 2, 3, as well as exponentially suppressed
contributions corresponding to an infinite set of
D-instanton/anti–D-instanton pairs.

There is a certain amount of information about terms of
order @8R4 and higher, but these terms raise issues that go
beyond the scope of this paper and will not be discussed
here (see [1] for particular examples). Our main aim will be
to extend the results up to order @6R4 to the higher-rank
duality groups that arise upon compactification to D di-
mensions on a d ¼ ð10�DÞ torus. There has been some
work in this direction for the R4 term in [6,10,11] and for
the @4R4 and @6R4 terms in [12,13]. Here wewill not only
amend these and extend their scope, but more importantly,
set it in the general framework of automorphic functions
for higher-rank groups. Some of our ideas overlap with
suggestions in [11,14,15] and related papers [16,17], but
they differ in important respects.

Our procedure, outlined in Sec. II, will be to constrain
the expressions for the automorphic coefficient functions
by requiring them to reproduce the correct expressions in
three distinct degeneration limits:

(i) The decompactification limit from D to Dþ 1 di-
mensions. When the radius rd of one compact di-
mension becomes large, the part of the
D ¼ ð10� dÞ-dimensional coefficient function,

EðDÞ
ðp;qÞ, that leads to a finite term in the rd ! 1 limit

is required to reproduce the (Dþ 1)-dimensional

coefficient function, EðDþ1Þ
ðp;qÞ . In addition, there are

suppressed terms with powers of r�ni
d (where the

values of ni > 0 depend on D) multiplying EðDþ1Þ
ðp0;q0Þ ,

where 2p0 þ 3q0 < 2pþ 3q. There are also specific
terms with positive powers of sr2d that are necessary
to account for the nonanalytic thresholds in (Dþ 1)
dimensions (see the discussion in [18] for more de-
tails). The remaining terms are exponentially sup-
pressed in rd and will not be constrained in any direct
fashion.

(ii) Perturbative string theory limit. In the limit in
which the D-dimensional string coupling constant

becomes small, the expansion of EðDÞ
ðp;qÞ in powers of

the D-dimensional string coupling, yD, is required
to reproduce the known perturbative string theory
results. In order to make this comparison, the con-
tributions from genus-one string theory are derived
in Appendix D using the methods of [4]. Fur-
thermore, the leading low-energy contribution to
@4R4 from the genus-two string theory amplitude
compactified on T 2 is derived in Appendix E.

(iii) The semiclassical M-theory limit. In the limit of
decompactification to 11-dimensional supergravity
on T dþ1, the part of the modular function that
depends on the geometric moduli of the torus,
which parametrize the coset space SOðdþ
1ÞnSLðdþ 1Þ, should be reproduced. This will
give the part of the coefficient function that trans-
forms under SLðdþ 1;ZÞ. This is the limit in
which the effects of wrapped p-branes are sup-
pressed and the Feynman diagrams of compactified
11-dimensional quantum supergravity should give
a valid expansion in powers of the inverse volume
of the torus, V dþ1 [1,6,7,10]. The analysis of one-
loop and two-loop expressions is reviewed in
Appendix G.

As we will emphasize, our analysis of these three limits
makes contact with properties of the ‘‘constant terms’’ of
the generalized Eisenstein series associated with various
parabolic subgroups of the U-duality groups [19]. This
viewpoint indicates the extent of the very powerful sym-
metries that relate these three limits for any value of n.
Furthermore, it gives a unified view of the relation between
the theory in different dimensions by considering a nested
set of (maximal) parabolic subgroups3

E8ð8Þ � E7ð7Þ . . . � E1ð1Þ ¼ SLð2Þ; (1.9)

where the sequence corresponds to successive decompac-
tifications, as outlined in point (i) above. We are here using
the usual economic notation for the duality groups in
Table I in which Gd ¼ Edþ1ðdþ1Þ refers to the real split

form of the classical group of rank dþ 1 (and so is related
to the coset for string theory compactified on a d torus).
In other words, we will use the explicit properties of

string/M theory in higher dimensions to constrain the
particular automorphic functions that arise as coefficients
in lower dimensions. We will therefore be focussing on
very special cases of the general Eisenstein series. We will
see that these particular cases have many interesting
properties.

2We have rescaled this interaction by a factor of 6 compared to
[10].

3We here restrict our attention to the classical Lie groups
relevant to supergravity theories in D � 3, although there are
likely to be interesting extensions to affine and hyperbolic cases
[20,21].
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This analysis of the coefficients in various dimensions is
somewhat complicated, as well as repetitive, so the casual
reader could choose to skip the details in the bulk of the
paper and read the brief summary in Sec. VI.

The main arguments will begin in Sec. III, where we will
describe the results for the R4 interaction. The explicit

EðDÞ
ð0;0Þ coefficients in dimensions D � 6 will be obtained in

terms of Eisenstein series that satisfy Laplace eigenvalue
equations on moduli space space, building on the work of
[6,10,11,15]. The D ¼ 8 case is of interest because it
contains the logarithmic dependence that encodes the
one-loop logarithmic ultraviolet divergence of maximal
supergravity. The fact that string theory is finite is man-
ifested by the cancellation of an apparent divergence, sub-

ject to suitable regularization. This arises because Eð8Þ
ð0;0Þ is

the sum of two Eisenstein series that each have poles in the
parameter s at appropriate values of s. A suitable analytic
continuation leads to a cancellation of the poles in these
two terms, leaving a logarithmic dependence on a modulus
that can be identified with the logarithm that arises in the
low-energy supergravity limit. Formally, these considera-
tions extend to lower dimensions D � 3, in which the
duality groups are those in the Edþ1ðdþ1Þ sequence, where
d ¼ 10�D. In all cases these series are finite, despite
apparent poles, which cancel leaving crucial logarithmic
dependence on moduli that are also expected for a consis-
tent string theory interpretation.

In Sec. IV this analysis will be extended to the @4R4

interaction, for which the coefficients are EðDÞ
ð1;0Þ. Building

on the analyses in [10,12], we will first discuss the D ¼ 9,
8 cases. The D ¼ 7 expression will then be analyzed. This
is particularly interesting since it reproduces the two-loop
logarithm characteristic of the ultraviolet divergence of
maximal supergravity [22]. In order to satisfy the condi-
tions (i)–(iii), we are led to a specific combination of two
Eisenstein series for SLð5Þ. As before, the precise combi-
nation of Eisenstein series is one for which the divergent
pole terms cancel, reflecting the absence of ultraviolet
divergences in string theory. The analysis of the D ¼ 6
case with duality group SOð5; 5Þ will be left for the dis-
cussion in Sec. VI, since our analysis is incomplete. In this
case we make strong use of results for constant terms of
Eisenstein series by StephenMiller4 and is not as complete.
There is no obvious obstacle to the extension to D< 6
higher-rank duality groups, although this will not be dis-
cussed in this paper.

Section V concerns the @6R4 interaction in D ¼ 9, 8,
and 7 dimensions. To some extent the D ¼ 8, 9 cases
overlap with the analysis in [13], demonstrating how the
Laplace equation with a source term generalizes for the

larger duality groups. In each case the source term is the

square of the R4 coefficient, EðDÞ
ð0;0Þ. In D ¼ 8 this source

possesses both log and ðlogÞ2 terms that are required for the
solution to have requisite interpretation in the low-energy
limit of string theory. For example, maximal supergravity
has a two-loop logarithmic ultraviolet divergence multi-
plying @6R4, as well as a logarithmic contribution from
the one-loop D ¼ 8 counterterm, which are reproduced by
our modular coefficients.
Section VI will summarize our results and describe some

issues relating to the extension to higher-rank groups and
higher-derivative interactions. In particular, we will sum-
marize in a compact manner the set of homogeneous and
inhomogeneous Laplace eigenvalue equations satisfied by
the coefficient functions for values of D discussed in this
paper, but which we argue should be valid in any dimen-
sion in the range 3 � D � 10. We will also make com-
ments about the form of certain coefficients in D � 6
dimensions.
Technical details are given in several appendices.

II. DEGENERATION LIMITS AND EISENSTEIN
SERIES FOR PARABOLIC SUBGROUPS

The duality groups of maximally supersymmetric
closed-string theory are associated with the series of
Dynkin diagrams in Fig. 1 (i) that may be obtained from
the E8ð8Þ diagram by deleting the right nodes in a sequential

manner. This generates the diagrams for the EdðdÞ series. In
terms of string theory compactified on a d torus T d, the
deletion of a right node labeled �dþ1 corresponds to the
decompactification of a radius, rd ! 1 (d � 2). This is the
degeneration limit (i) of the previous section. The limit of
small string coupling, or string perturbation theory, corre-
sponds to deleting the left node labeled �1. This is the
degeneration limit (ii) and gives a series of terms with
symmetry SOðd; dÞ (where the right node is again �dþ1).
The T d compactification of string theory may be viewed
as theT dþ1 compactification of 11-dimensionalM theory.
The limit (iii) is one in which the M-theory volume of
T dþ1 becomes large, V dþ1 ! 1, in which semiclassical
11-dimensional geometry is a good approximation and the
duality symmetry reduces to SLðdÞ. This is the degenera-
tion limit in which the node �2 in Fig. 1 (i) is deleted.

A. Parabolic subgroups

Parabolic subalgebras of a semisimple Lie algebra g ¼
LieðGÞ with h a Cartan subalgebra are defined as follows
[23,24]. If � is the set of simple roots (a basis of roots) and
Rþ the set of positive roots spanned by �, then b ¼ hþ
��2Rþg�, where g� is the root space associated with the
root, and � is the associated Borel subalgebra. Consider a
partition of the positive root space � into disjoint sets �1

and �2 so � ¼ �1 t�2. We define, R1 the set of positive
roots spanned by �1 and R2 the set of positive roots

4We are very indebted to Stephen Miller for many illuminating
discussions concerning the general structure of Eisenstein series
and their specific form for the cases of interest to us.
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spanned by �2. Define

p�2
¼ hþ M

�2Rþ[ð�R1Þ
g�;

l�2
¼ hþ M

�2R1[ð�R1Þ
g�;

n�2
¼ M

�2R2

g�:

(2.1)

This defines the parabolic subalgebra p�2
associated with

the set of positive roots R1; l�2
is its Levi factor and n�2

the

unipotent radical. Clearly if �2 	 �̂2, then p�̂2
	 p�2

.

(i) When p� ¼ b, R2 is the set of all the positive roots
(and R1 ¼ ;); the associated parabolic is the mini-
mal parabolic subalgebra.

(ii) When p; ¼ g (equivalently when R2 ¼ ;), R1 is
the set of all the positive roots; the associated para-
bolic subalgebra is the Lie algebra g.

(iii) Maximal parabolic subalgebras different from g
are defined by singling out one simple root �i and
taking �2 ¼ f�ig. We denote the maximal para-
bolic subgroup by P�i

, with rankP�i
¼ rank ðGÞ �

1.
(iv) The (standard) parabolic subgroup of GLðnÞ is

defined as the group of matrices of the form, for
n ¼ n1 þ 
 
 
 þ nq,

Pðn1; . . . ; nqÞ ¼
U1 � �
0 . .

. �
0 0 Uq

0
BB@

1
CCA;

where Ui 2 GLðniÞ;

(2.2)

which can be factored in the form

Pðn1; . . . ; nqÞ ¼ Lðn1; . . . ; nqÞNðn1; . . . ; nqÞ: (2.3)

Here,

Nðn1; . . . ; nqÞ ¼
In1 � �
0 . .

. �
0 0 Inq

0
BB@

1
CCA;

where In ¼ diagð1; . . . ; 1Þ

(2.4)

is the unipotent radical and

Lðn1; . . . ; nqÞ ¼
U1 0 0

0 . .
.

0
0 0 Uq

0
BB@

1
CCA (2.5)

is the Levi component. The minimal parabolic subgroup is
given by Pð1; . . . ; 1Þ. A given maximal parabolic subgroup
has a characteristic pattern of zeroes in the upper off-
diagonal elements of N. For example, the SLð3;RÞ maxi-
mal parabolic subgroup [25],

Pð1; 2Þ ¼
� � �
0 � �
0 � �

0
@

1
A (2.6)

has a unipotent radical of the form

Nð1; 2Þ ¼
1 �1 �2

0 1 0
0 0 1

0
@

1
A; (2.7)

where �1 and �2 are real angular variables.

FIG. 1. The Dynkin diagrams relevant to: (i) the EdðdÞ (d � 8) type II duality groups of type II string theory compactified to D ¼
11� d dimensions on a (d� 1) torus. Successive decompactifications to higher dimensions are obtained by deleting the nodes �d,
�d�1 . . . in (i); (ii) The T-duality groups SOð10�D; 10�DÞ obtained by deleting the left node �1 of (i) are the symmetries of string
perturbation theory in D dimensions; (iii) The SLð11�DÞ groups obtained by deleting node �2 in (i) are associated with the
geometric compactification of 11-dimensional supergravity on a (11�D) torus.

TABLE II. Maximal Parabolic subgroups of EdðdÞ arising in
string theory are of the form GLð1Þ � Xd�1, where the rank-
(d� 1) subgroups are listed. We use the notation Ad ¼ SLðdþ
1Þ, Dd ¼ SOðd; dÞ. Each parabolic subgroup can be decomposed
as the product P� ¼ N�L� of a unipotent radical N� and a Levi
factor L�. The Levi factors determine the Lie groups generated
by the remaining nodes of the Dynkin diagram, which are listed
in the table.

deleted node E8 E7 E6 E5 ¼ D5 E4 ¼ A4 E3 ¼ A2A1

left D7 D6 D5 D4 D3 D2

upper A7 A6 A5 A4 A3 A2

right E7 E6 D5 A4 A2A1 A1A1
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Three cases will be of particular interest in this paper.
These concern the maximal parabolic subgroups given in
the Table II, which are obtained by deleting the left node,
the right node, and the upper node of the Dynkin diagrams
shown in Fig. 1.

There are several interesting coincidences.
(i) In D ¼ 7, where the U-duality group is E4ð4Þ ¼

SLð5Þ, the symmetry group of string perturbation
theory is SLð4Þ ¼ SOð3; 3Þ, which is also the sym-
metry of M theory on T 4 in the decompactification
to 11 dimensions.

(ii) E5ð5Þ ¼ SOð5; 5Þ arises in the D ¼ 6 theory, for

which the group SLð5Þ arises both as the symmetry
ofM theory on T 5 limit and as the U-duality group
upon decompactification to D ¼ 7.

(iii) SOð5; 5Þ arises both as the symmetry of string
perturbation theory in the D ¼ 5 theory and as
the decompactification limit to the D ¼ 5 theory,
which has duality group E5ð5Þ.

(iv) E6ð6Þ arises as the U-duality group in D ¼ 5 and is

symmetric under the interchange of nodes 1 and 6.
This symmetry interchanges the limit of decom-
pactification to D ¼ 6 with the perturbative string
theory limit.

B. Eisenstein series for maximal parabolic subgroups
and their constant terms.

The general Eisenstein series are automorphic functions
of d complex parameters, si (i ¼ 1; . . . ; d) associated with
different parabolic subgroups of the EdðdÞ groups. Their
definitions may be found in [19,26] and are briefly re-
viewed in Appendix B. The construction of the minimal
parabolic SLðdÞ series, is also described in Appendix B,
based closely on notes by Stephen Miller and extensions of
[25].

However, we are here primarily interested in very spe-
cial cases corresponding to Eisenstein series for maximal
parabolic subgroups, defined with respect to one particular
node associated with the simple root �u. Such a series may
be obtained by taking residues of the minimal parabolic
series on the poles at si ¼ 0 for all i except i ¼ u, so the
series depends on only one parameter, s � su. The series
can be indexed by the Dynkin label [0u�1; 1; 0d�u], where
the 1 is in the uth position. The particular values of u of
interest to us will be determined on a case by case basis.
Such a series for a maximal parabolic subgroup of the
group G will be denoted EG

½0u�1;1;0d�u�;s.
The simplest example is provided by the SLðdÞ series

with u ¼ 1 (the Epstein zeta function), which can be ex-
pressed as a sum over a single integer-valued d-component
vector,

E SLðdÞ
½1;0d�2�;s ¼

X
mi2Zdnf0g

ðmigijm
jÞ�s; (2.8)

where the sum is over all values of mi with the value m1 ¼
m2 ¼ . . . ¼ 0 omitted. The metric gij is the metric on

SOðdÞnSLðdÞ. Our conventions for labeling the SLðdÞ
Dynkin diagrams are shown in Fig. 1 (iii). A less trivial
case that we will also need to consider is the SLðdÞ
Eisenstein series with u ¼ 2, which is given by

E SLðdÞ
½0;1;0d�3�;s ¼

X0

mi;ni2Zd

ðm½inj�gikgjlm½knl�Þ�s; (2.9)

where
P0

here indicates the sum is over integers subject to

the constraint that at least one minor �½ij� ¼ m½inj� is non-
zero. For SLð3Þ, this series is proportional to the Epstein
series, (2.8) with a shifted value of s, as we show in

Appendix B 4. More generally, the SLðdÞ series ESLðdÞ
½0d�2;1�;s

is proportional to the Epstein series with a shifted value of
s, a simple consequence of the symmetry under s ! d=2�
s, which follows from the Weyl symmetry of the weight
lattice of SLðdÞ. Some relevant properties of the SLðdÞ
series are deduced in Appendix B.
The other cases that will be considered explicitly in this

paper are particular cases of Eisenstein series for SOðd; dÞ.
In particular, these symmetries arise as T-duality groups of
string perturbation theory in 10� d dimensions, and
SOð5; 5Þ is the full U-duality group for D ¼ 6. We will
discuss the maximal parabolic Eisenstein series of the form

ESOðd;dÞ
½1;0d�1�;s, where the distinguished node is the one on the

left in Fig. 1 (ii)—i.e., associated with the vector represen-
tation. A number of properties of these series are obtained
in Appendix C based on a novel representation motivated
by compactified two-loop Feynman diagrams. Although
the series with more general Dynkin indices are relevant,
we will not discuss them in this paper.

Constant terms

The three degeneration limits (i), (ii), and (iii) that we
are interested in correspond to decompositions of the
Eisenstein series, EG

½0u�1;1;0d�u�;s, with respect to parabolic

subgroups of the form, Pv � GLð1Þ �Gv, associated with
one of three distinct nodes, �v, of the Dynkin diagram, as
described earlier. The GLð1Þ factor is parametrized by a
real parameter r, which corresponds in limit (i) (v ¼ d) to
the radius of the compact dimension rd, in limit (ii) (v ¼
1) to the string coupling in D dimensions yD, and in limit
(iii) (v ¼ 2) to the volume of the M-theory torus, V 11�D.
In considering these limits, we will retain all the terms that
are power behaved in r. These are contained in the constant
terms obtained by taking the zero Fourier mode with
respect to the components of the unipotent radical, Nv,
associated with the parabolic subgroup P�v

(defined in

Sec. II A). This is an integral over the entries, �i, in the
upper triangular matrix, Nv

AG
s ðu; v; gÞ ¼

Z
Nv=GðZÞ\Nv

dnEG
½0u�1;1;0d�u�;sðgnÞ; (2.10)
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where dn ¼ Q
id�i is the Haar measure on Nv. In order to

avoid complicated notation, we will replace
R
Nv=GðZÞ\Nv

dn

by
R
Pv

so that

AG
s ðu; v; gÞ �

Z
Pv

EG
½0u�1;1;0d�u�;s: (2.11)

The angular integral (2.10) generalizes the SLð2;ZÞ case of
(1.7). The constant terms are expansions in powers of r
with coefficients that are Eisenstein series (or products of
Eisenstein series, in the nonsimple case) of the schematic
form

AG
s ðu; v; gÞ ¼

X
i

ciuvr
piEGv

½...�i;si ; (2.12)

where the values of the parameters si, pi depend on u and
v, and r is a scale factor associated with the GLð1Þ sub-
group. This integration projects out the nonzero modes of
the Eisenstein series, which are nonperturbative in r and
exponentially suppressed in the appropriate degeneration

limit. The coefficients EðDÞ
ð0;1Þ of @

6R4 are not Eisenstein

series and their constant terms do contain exponentially
suppressed pieces corresponding to instanton–anti-
instanton pairs.

The Eisenstein series for other maximal parabolic
SOðd; dÞ series, as well as those for the higher-rank EdðdÞ
groups, are much more difficult to construct in terms of
explicit sums over integers but their explicit properties can
be obtained from their basic definition given in (B1).
Starting from that definition, the constant terms of their
parabolic subgroups have been derived in [27], which is
likely to be of use in developing these ideas further.

C. The expansion parameters

In consideringM theory on a (dþ 1)-dimensional torus,
T dþ1, length scales are measured in units of the 11-
dimensional Planck length, ‘11; whereas for string theory
compactified on a d-dimension torus, T d, scales are mea-
sured in units of the string length, ‘s, or the ten-
dimensional Planck length scales of the IIA and IIB theo-
ries, ‘A10, ‘

B
10. These length scales are related by the well-

known relations,

‘11 ¼ g1=3A ‘s; ‘A10 ¼ g1=4A ‘s;

‘B10 ¼ g1=4B ‘s; R11 ¼ gA‘s;
(2.13)

where gA and gB are the type IIA and type IIB coupling
constants, and R11 is the radius of the extra M-theory
circle.

Compactifying from 10 to D ¼ 10� d dimensions on
T d leads to the relations

‘D�2
D ¼ yD‘

D�2
s ; (2.14)

where the quantity yD is defined by the (10� d)-
dimensional T-duality invariant dilaton, which defines
the D-dimensional coupling,

y10�d � e2�D ¼ g2A‘
d
s

VA
d

¼ g2B‘
d
s

VB
d

; (2.15)

where VA
d is the volume of the d torus in IIA string units,

while VB
d is the volume in IIB units. Note further that he

relation between the Planck length in D dimensions and
Dþ 1 dimensions is

‘D�1
Dþ1 ¼ ‘D�2

D rd; (2.16)

where rd is the radius of the (d ¼ 10�D)th direction of
T d in IIB string units.
The parameters that we will use to define the three

degeneration limits will be the following.
(i) The decompactification of a single dimension is

given by the limit rd=‘s ! 1 in the string frame.
We will be interested in expressing the result in the
Einstein frame in (Dþ 1) dimensions at fixed cou-
pling, in which case we will need to consider
rd=‘Dþ1 ! 1 with yDþ1 fixed. It will also be useful
to introduce the U-duality invariant quantity defined
in terms of the dimensionless volume of the string
theory d torus,

��ð1=2Þ
d ¼ 1

‘d10
VB
d ; (2.17)

where we have set ‘B10 � ‘10 in this and all subse-

quent expressions since wewill not need to use ‘A10. It
is easy to deduce the useful relations

rd
‘Dþ1

¼ rd
‘s

y�ð1=D�1Þ
Dþ1 ¼ ��ð1=2Þ

d �D=ð2ðD�1ÞÞ
d�1 : (2.18)

(ii) String perturbation theory is an expansion in powers

of the D-dimensional string coupling, e�
B
D � y1=2D

when yD ! 0.
(iii) Decompactification to semiclassical 11-

dimensional supergravity arises in the limit of large
volume of the (dþ 1)-dimensionalM-theory torus.
This volume, V dþ1, is defined by

GMIJ ¼ V 2=ðdþ1Þ
dþ1

~GMIJ; (2.19)

where GMIJ (I; J ¼ 1; . . . ; d) is the M-theory met-

ric on T dþ1 and ~GIJ has unit determinant. The

dimensionless volume, V̂ dþ1, can be expressed as

V̂ dþ1 � 1

‘dþ1
11

V dþ1 ¼ 1

‘dþ1
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGMIJÞ

q

¼ gð2�dÞ=3
A

VA
d

‘ds
: (2.20)

This can be converted to type IIB units by compac-
tifying one dimension of radius rA so that VA

d ¼
rA � Vd�1 and introducing the volume VB

d ¼ rB �
Vd�1, where rB ¼ ‘2s=rA, giving
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V̂ dþ1 ¼ gð2�dÞ=3
A

VA
d

‘ds
¼ gð2�dÞ=3

B

�
rB
‘s

�ðd�8Þ=3 VB
d

‘ds

¼
�
rB
‘10

�ðd�8Þ=3 VB
d

‘d10
: (2.21)

The M-theory decompactification limit is given by

the limit V̂ dþ1 ! 1.

III. THE R4 INTERACTION

The first term in the low-energy expansion of the maxi-
mally supersymmetric string theory amplitude beyond the
tree-level term is the R4 term in (1.2), which is described
by a term in the effective action of the form

SR4 ¼ ‘8�D
D

Z
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Gð10Þ

p
EðDÞ
ð0;0ÞR

4: (3.1)

In D ¼ 10 dimensions the coefficient function is given
by [5]

E ð10Þ
ð0;0Þð�Þ ¼ ESLð2Þ

½1�;ð3=2Þð�Þ; (3.2)

which is the standard Eisenstein series for SLð2;ZÞ, that is
conventionally denoted E3=2ð�Þ5 and satisfies the Laplace

equation

�ð10ÞEð10Þ
ð0;0Þ ¼

3

4
Eð10Þ
ð0;0Þ; (3.3)

where �ð10Þ is the SOð2ÞnSLð2Þ Laplace operator,
�ð10Þ � �2

2ð@2�1
þ @2�2

Þ: (3.4)

The string frame expression for this interaction involves
the identification

1

‘210
Eð10Þ
ð0;0Þð�Þ ¼ 1

‘2s
�1=2

2 E3=2ð�Þ; (3.5)

using the relation between the ten-dimensional Planck

length and the string scale ‘s ¼ ‘10�
1=4
2 . The perturbative

expansion is associated with the constant term,

1

‘210

Z 1=2

�ð1=2Þ
d�1E

ð10Þ
ð0;0Þð�Þ ¼ 1

‘2s

�
2�ð3Þ
y10

þ 4�ð2Þ
�
; (3.6)

where y10 ¼ g2B. This exhibits a tree-level term and a one-
loop term.

Wewill here discuss the theory after compactification on
T d for d ¼ 1, 2, 3, 4. In each case, we will present a
candidate expression and verify that it has the correct
properties in the three degeneration limits described in
Sec. I. Several aspects of this discussion reproduce earlier
work, but our analysis will stress the framework that gen-
eralizes to other terms in the low-energy expansion and to
the larger U-duality groups.

A. Nine dimensions

The coefficient function in the nine-dimensional effec-
tive action (3.1) (withD ¼ 9) was determined in [5,6] to be

E ð9Þ
ð0;0Þ ¼ ��ð3=7Þ

1 E3=2ð�Þ þ 4�ð2Þ�4=7
1 ; (3.7)

with �1 ¼ ðrB=‘10Þ�2, which is invariant under the
U-duality group SLð2;ZÞ. This coefficient function can
straightforwardly be seen to satisfy the SOð2ÞnSLð2Þ �
Rþ Laplace eigenvalue equation�

�ð9Þ � 6

7

�
Eð9Þ
ð0;0Þ ¼ 0; (3.8)

where the Laplace operator for the nine-dimensional com-
pactification has the form given in (H6),

�ð9Þ � �� þ 7
4�1@�1

ð�1@�1
Þ þ 1

2�1@�1 : (3.9)

In order to see how the action behaves in various limits, we
write �1 in terms of the other parameters as

�1 ¼ V̂
3=2
2 ; (3.10)

or

�1 ¼ ��ð1=2Þ
2

�
‘s
rB

�
2 ¼ y1=49

�
‘s
rB

�
7=4

; (3.11)

where y9 ¼ ‘s=ð�2
2rBÞ, or

�1 ¼
�
‘9
‘10

�
14 ¼

�
rB
‘10

��2
: (3.12)

We will now review the manner in which the expression
(3.7) reproduces the expected expressions in the three
degeneration limits of interest.
(i) Decompactification to D ¼ 10

This limit is obtained by letting rB=‘10 ! 1 in (3.7):

1

‘9
Eð9Þ
ð0;0Þ ¼

rB
‘210

Eð10Þ
ð0;0Þ þ

4�ð2Þ
rB

: (3.13)

The term proportional to rB survives the limit to give
the D ¼ 10 expression (3.2).

(ii) D ¼ 9 perturbative string theory.
The perturbative expansion of (3.7) in the string
frame is given by evaluating the constant term

1

‘9

Z 1=2

�ð1=2Þ
d�1E

ð9Þ
ð0;0Þ ¼

1

‘s

�
2�ð3Þ
y9

þ 4�ð2Þ
�
r

‘s
þ ‘s

r

��
;

(3.14)

where y9 ¼ g2B‘s=rB ¼ g2A‘s=rA is invariant under
T duality and r ¼ rB or rA (where rB ¼ ‘2s=rA).
This expression is manifestly invariant under r !
‘2s=r, as expected at this order in string perturbation
theory.6 The coefficients are the same as those ob-

5We will follow the convention of writing ESLð2Þ
½1�;s as Es.

6The IIA and IIB four-graviton scattering amplitudes are
known to be equal up to at least genus four [28].
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tained directly from tree-level and one-loop string
scattering amplitudes.

(iii) Semiclassical M-theory limit
The coefficient (3.7) is expressed in 11-
dimensional M-theory units by

1

‘9
Eð9Þ
ð0;0Þ ¼

1

‘11

�
V̂

�ð1=2Þ
2 E3=2ð�Þ þ 4�ð2ÞV̂ 2

�
:

(3.15)

This expression coincides with that obtained by
evaluating the one-loop contribution of 11-
dimensional supergravity compactified on T 2 [6].
This calculation has a�3 divergent piece (where�
is a momentum cutoff) that is regularized by add-
ing a counterterm, cR4, where the value of c ¼
4�ð2Þ is determined by imposing the equality of the
IIA and IIB one-loop contributions [6].
Furthermore, there are no higher-loop corrections
to R4, so the result (3.7) is exactly given by the
supergravity expression.

B. Eight dimensions

The effective action of the form (3.1) with D ¼ 8 was
considered in [6,10] based on evaluation of the contribu-
tion of one-loop 11-dimensional supergravity compactified
on T 3. This takes into account the effect of super-
supergravitons winding around the torus and has a manifest
invariance under the modular group of the three torus,
SLð3;ZÞ. This was completed to the full duality group
E3ð3Þ ¼ SLð3Þ � SLð2Þ by extending the expression to in-

clude the effects of wrapped M2-branes, giving

E ð8Þ
ð0;0Þ ¼ ÊSLð3Þ

½10�;ð3=2Þ þ 2ÊSLð2Þ
½1�;1 ; (3.16)

which is the form presented in [11]. The expressions

ÊSLð2Þ
½1�;1 � Ê1 and Ê

SLð3Þ
½10�;ð3=2Þ are regularized Eisenstein series

(specifically, Epstein series) for the groups SLð2Þ and
SLð3Þ, respectively.7 Some properties of these series are
discussed in Appendix B and may be summarized as

follows. The series ESLð2Þ
½1�;s ¼ Es and ESLð3Þ

½10�;s have poles at

s ¼ 1 and s ¼ 3=2, respectively, which correspond to the
presence of logarithmic singularities in the one-loop gravi-
ton scattering amplitude in D ¼ 8 dimensions—which
may be expressed as poles in 	 in dimensional regulariza-
tion, where D ¼ 8þ 2	. The hat ^ indicates that the pole
part is subtracted, leaving only the finite part.

The Eisenstein series ESLð3Þ
½10�;s is a special case of the most

general minimal parabolic Eisenstein series for SLð3Þ and
is discussed in (B3). The general series has two parameters,
s1 and s2, corresponding to the noncompact Cartan direc-
tions of the quotient SOð3ÞnSLð3Þ, but the series of interest
here has s1 ¼ s, s2 ¼ 0. Appendix B 4 provides more

details concerning this series, which is defined by (B7) in

the case d ¼ 3. The expression for the series ESLð3Þ
½10�;s in

(B49) is written with an explicit parametrization of the
metric in terms of the U-duality invariant mass for D ¼ 8
[11],

ESLð3Þ
½10�;s ¼

X
ðm1;m2;m3Þ2Z3nf0g

��ðs=3Þ
2

�
�jm1 þm2�þ Bm3j2

�2

þm2
3

�2

��s
: (3.17)

The divergence at s ¼ 3=2 is regularized by setting s ¼
3=2þ 	 and subtracting the pole (see Appendix B 4 for
details),

E SLð3Þ
½10�;ð3=2Þþ	 ¼

2�

	
þ 4�ð
E � 1Þ þ ÊSLð3Þ

½10�;ð3=2Þ þOð	Þ;
(3.18)

where the regularized series ÊSLð3Þ
½10�;ð3=2Þ is derived in (B55)

and is given by

Ê
SLð3Þ
½10�;ð3=2Þ ¼ ��ð1=2Þ

2 E3=2ð�Þ þ 4�

3
logð�2Þ

þOðe��1=2
2

��ð1=2Þ
2 ; e�ð�2�2Þ�ð1=2Þ Þ: (3.19)

In type IIB variables, theU modulus is acted only by the
SLð2Þ factor of the U-duality group SLð3Þ � SLð2Þ. The
SLð2Þ Eisenstein series has a pole at s ¼ 1 as shown in
(B41),

E1þ	ðUÞ ¼ �

	
� � logðU2j�ðUÞj4Þ þ 2�ð
E � logð2ÞÞ

þOð	Þ; (3.20)

and the regularized series is obtained by subtracting the
pole,

Ê 1ðUÞ ¼ �� logðU2j�ðUÞj4Þ: (3.21)

So far we have discussed the singularities of the indi-

vidual Eisenstein series EsðUÞ and ESLð3Þ
½10�;s. However, the

coefficient Eð8Þ
ð0;0Þ (3.16) is a linear sum of these functions. A

crucial factor (not discussed in past work) is that the
singularities of the separate Eisenstein series should not
be regularized independently. In fact, the singularities in
(3.16) cancel each other when regularized in a manner
consistent with the considerations that follow later in this
paper. This implies that (3.16) should be written as

E ð8Þ
ð0;0Þ ¼ lim

	!0
ðESLð3Þ

½10�;ð3=2Þþ	 þ 2ESLð2Þ
½1�;1�	Þ � log�ð0;0Þ;

(3.22)

where the hats have been removed since this expression is
finite and log�ð0;0Þ ¼ 4�ð2
E � 1� logð2ÞÞ in order for

(3.22) to agree with (3.16). We will later obtain this result
from the decompactification limit for the coefficient of the7The series ÊSLð3Þ

½10�;s was denoted ÊSLð3Þ
3;s in [15].
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R4 coefficient in D ¼ 7 dimensions, which is finite and
reduces to (3.22) when r3 ! 1 to give the D ¼ 8 expres-
sion. This is the first of several cases in which divergences
in different contributions to a coefficient function cancel
with a suitable regularzation.

The SLð2Þ Eisenstein series at s ¼ 1 satisfies the
Laplace Eq. (B40)

�SOð2ÞnSLð2ÞÊ
SLð2Þ
½1�;1 ¼ �; (3.23)

while the SLð3Þ series satisfies
�SOð3ÞnSLð3ÞÊ

SLð3Þ
½10�;ð3=2Þ ¼ 4�; (3.24)

where the SOð3ÞnSLð3Þ Laplacian is given in (B50).
Therefore, applying the total SOð3ÞnSLð3Þ �
SOð2ÞnSLð2Þ Laplacian of the eight-dimensional theory
gives

�ð8ÞEð8Þ
ð0;0Þ ¼ �SOð3ÞnSLð3ÞÊ

SLð3Þ
½10�;ð3=2Þ þ 2�SOð2ÞnSLð2ÞÊ

SLð2Þ
½1�;1

¼ 6�: (3.25)

We will now verify that the expression (3.16) gives the
correct expression in each of the three degeneration limits
under consideration.

(i) Decompactification to D ¼ 9
The nine-dimensional limit is obtained by taking one
of the radii of the two torus to infinity, r2=‘9 ! 1.
This is seen by setting T2 ¼ r1r2=‘

2
s , U2 ¼ r2=r1,

and

��1
2 ¼ �2T

2
2 ¼ ��ð6=7Þ

1

�
r2
‘9

�
2
: (3.26)

Using the expansions for ESLð3Þ
½10�;s in (B52) and EsðUÞ

in (B38), and the general definition of constant terms
in (2.10), the constant term of the combination (3.16)
in the GLð1Þ � SLð2Þ subgroup has the formZ 1=2

�ð1=2Þ
dBRRdBNSE

ð8Þ
ð0;0Þ

¼ r2
‘9

Eð9Þ
ð0;0Þ �

14�

3
log

�
r2

‘9�8

�
; (3.27)

where the double integral is over the elements of the
unipotent radical corresponding to this subgroup. At
large r2 and fixed r1, the nonpertubative contribu-
tions are exponentially suppressed and only this
constant term survives. The term proportional to r2
gives the contribution to the D ¼ 9 action, in agree-
ment with those in (3.7) with r1 ¼ rB. The
logðr2=‘9Þ term in (3.27) is an important contribution
to the massless threshold behavior of the nonanalytic
term in the one-loop four-supergraviton amplitude in
eight dimensions, which has the form logð�‘2ssÞR4.
The logðr2=‘9Þ term in (3.27) combines with this
contribution into logð�r22sÞR4 which is part of the
infinite series ðr22sÞk logð�r22sÞR4 that resums into

the nine-dimensional massless threshold,
ffiffiffi
s

p
R4, as

analyzed in [4]. The term proportional to logð�8Þ is a
scale contribution.

(ii) D ¼ 8 perturbative string theory
The perturbative string expansion of the R4 coeffi-
cient in D ¼ 8 is obtained from the expansion of
(3.16) in powers of y�1

8 ¼ �2
2T2, which is associ-

ated with the constant term

Z 1=2

�ð1=2Þ
d�1dBRRE

ð8Þ
ð0;0Þ

¼ 2�ð3Þ
y8

þ 2ðÊ1ðTÞ þ Ê1ðUÞÞ þ 2�

3
logðy8= ~�8Þ;

(3.28)

after using the expansion of the regularized SLð3Þ
series ÊSLð3Þ

½10�;ð3=2Þ in (B56),

Ê
SLð3Þ
½10�;ð3=2Þ ¼

2�ð3Þ
y8

þ 2Ê1ðTÞ þ 2�

3
logðy8Þ

þOðe�ðy8T2Þ�ð1=2Þ
; e�T1=2

2
y�ð1=2Þ
8 Þ:

(3.29)

The first term is the correctly normalized tree-level
contribution and the one-loop contribution is given
by

lim
	!0

ðE1þ	ðTÞ þE1�	ðUÞÞ

¼ Ê1ðTÞ þ Ê1ðUÞ � 2�

3
logð ~�8Þ; (3.30)

where logð ~�8Þ is a constant scale determined in the
appendices. This expression matches the one de-
rived from the analytic part of the string amplitude
in (D18) obtained by decompactifying the genus-
one amplitude on a three torus. The presence of the
logy8 term is important. As explained earlier and in
[1], this logarithmic term arises from the Weyl
rescaling of aR4 logð�‘2ssÞ contribution in passing
from the string frame to the Einstein frame. This is
the nonlocal contribution of the massless states in
D ¼ 8 one-loop supergravity. More generally, the
presence of logarithms of moduli is characteristic of
the presence of infrared thresholds. This expression
can also be derived by making use of the regulari-
zation of [29].
As with the completeR4 coefficient, the genus-one
part, (3.28), is finite without the need to regularize
the divergent individual terms—the poles at s ¼ 1
cancel between the two terms. This follows directly
from an analysis of the string theory one-loop cal-
culation as sketched in Appendix D 1, and is a
symptom of the finiteness of perturbative super-
string amplitudes.
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(iii) Semiclassical M-theory limit
The one-loop four-supergraviton amplitude in 11-
dimensional supergravity compactified on T 3 was
considered in [6,30] (see Appendix G 1 for details).
This is expected to reproduce the SLð3Þ-dependent
part of the amplitude on a three torus. The zero
Kaluza-Klein mode contribution in the loop gives
rise to the nonanalytic logarithmic terms character-
istic of the onset of one-loop ultraviolet divergen-
ces in D ¼ 8 supergravity. Using dimensional
regularization by evaluating the amplitude in D ¼
8þ 2	 dimensions, and subtracting the 	 pole, this
has the symbolic form (which is reviewed in detail
in [7]),

Anonan
L¼1 ¼ �R4ðlogð�S‘211Þ þ logð�T‘211Þ

þ logð�U‘211Þ � 2 logð�8ÞÞ; (3.31)

where the Mandelstam invariants of the 11-
dimension theory are denoted by capital letters
(and the invariants T and U should not be confused
with the complex structure and the Kähler structure
of the two torus). Translating to eight-dimensional
units, this gives

Anonan
L¼1 ¼ �R4ðlogð�s‘28Þ þ logð�t‘28Þ

þ logð�u‘28ÞÞ þ �R4 logðV̂ 3=�
2
8Þ;
(3.32)

where ‘68 ¼ ‘611V̂
�1
3 .

The analytic part of the one-loop supergravity amplitude
is evaluated in Appendix G 1. In order to regularize the
ultraviolet divergence, this contribution is evaluated in
D ¼ 8þ 2	 dimensions and is given byZ 1=2

�ð1=2Þ
dU1E

ð8þ2	Þ
ð0;0Þ ¼ ESLð3Þ

½10�;ð3=2Þþ	V̂
�ð2	=3Þ
3 þ 4�ð2ÞV̂ 3:

(3.33)

This only depends on the T 3 moduli, which form the
‘‘geometrical’’ part of the moduli space. The ‘‘stringy’’
dependence on the Kähler structure, U, is due toM2-brane
windings and is not apparent in the supergravity calcula-
tions. More generally, this is consistent with the SLðdÞ
invariance of toroidal compactifications of perturbative
supergravity on a T d torus. However, the divergence of

the SLð3Þ expression lim	!0E
SLð3Þ
½10�;ð3=2Þþ	 must be regular-

ized by subtracting the pole at 	 ¼ 0 since it is no longer
cancelled. This reflects the presence of a one-loop loga-
rithmic ultraviolet divergence in supergravity. Therefore,Z 1=2

�ð1=2Þ
dU1E

ð8þ2	Þ
ð0;0Þ ¼ 2�

	
þ ÊSLð3Þ

½10�;ð3=2Þ þ 4�ð2ÞV̂ 3

� 2� logðV̂ 3=�8Þ þOð	Þ:
(3.34)

After subtracting the pole, the regularized interaction is
given by the SLð3Þ invariantZ 1=2

�ð1=2Þ
dU1E

ð8Þ
ð0;0Þ ¼ ÊSLð3Þ

½10�;ð3=2Þ þ 4�ð2ÞV̂ 3

� 2� logðV̂ 3=�8Þ; (3.35)

where ÊSLð3Þ
½10�;ð3=2Þ is the regularized Eisenstein series defined

in Appendix B 4. The logðV 3=‘
3
11Þ term in this equation

cancels against the one in (3.32).
The correspondence with string theory follows by using

the string theory/M-theory dictionary, which implies

m2
1R

2
11 þm2

2R
2
10 þm2

3R
2
9 ¼ �1=3

2

�jm1 þm2�j2
�2

þm2
3

�2

�
� m2

SLð3Þ; (3.36)

so that ÊSLð3Þ
½10�;ð3=2Þ in (3.35) is identified with the expression

in (3.16). Expressing the volumeV 3 of theM-theory torus
in terms of the string theory variables using (2.21), we have

V̂ 3 ¼ VA
2

‘2s
¼ VB

2

r2B
; (3.37)

so V̂ 3 is identified with the volume of the two torus T2 ¼
rAr2=‘

2
s on the type IIA side and to the complex structure

parameter U2 ¼ r2=rB on the type IIB side. Thus (3.34) is
written asZ 1=2

�ð1=2Þ
dU1E

ð8Þ
ð0;0Þ ¼ ÊSLð3Þ

½10�;ð3=2Þ þ 4�ð2ÞU2

� 2� logðU2=�8Þ: (3.38)

In type IIB variables the U modulus is acted only by
the SLð2;ZÞ group of theU-duality group E3ð3Þ ¼ SLð3Þ �
SLð2Þ. The U2-dependent part is completed into

the SLð2;ZÞ-invariant expression, Ê1ðUÞ ¼
�� logðU2j�ðUÞj4Þ (see Appendix B 3) by the M2-brane
contributions in the full theory.

C. Seven dimensions

Compactification to dimensions D< 8 raises a new
issue since the leading dependence on s, t, u no longer
comes from the analytic R4 interaction. The one-loop
supergravity contribution in 4<D< 8 dimensions is fi-
nite and gives a well-studied nonanalytic contribution,
symbolically of the form determined by dimensional

analysis Anonan � sD=2�4R4 (suppressing a plethora of
logarithms depending on ratios of Mandelstam invariants)
[31]. Infrared divergences arise for D � 4. We are inter-
ested in subtracting this contribution in order to isolate the
analytic R4 interaction.
After compactification of type II string theory, the ef-

fective action (3.1) with D ¼ 7 is invariant under the
U-duality group SLð5Þ. The natural conjecture is that the
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coefficient function, Eð7Þ
ð0;0Þ, is a SLð5Þ-invariant Epstein

series, similar to the one in [11]. According to this con-
jecture, the coefficient of the seven-dimensional R4 inter-
action in the Einstein-frame action is

E ð7Þ
ð0;0Þ ¼ ESLð5Þ

½1000�;ð3=2Þ: (3.39)

As before, our notation implies that the series is given by
the minimal parabolic Eisenstein series for SLð5Þ at a
special value of the parameters (see (B3) in
Appendix B). Setting s2 ¼ s3 ¼ s4 ¼ 0 gives the Epstein
zeta function, which has the general form of (B7) with d ¼
5. Using a familiar U-duality invariant parametrization of
the metric in terms of the SOð5ÞnSLð5Þ moduli gives

ESLð5Þ
½1000�;ð3=2Þ ¼

X
ðm1;m2;n1;n2;n3Þ�0

�
�2=5
3

�jm1 þm2�þ B 
 nj2
�2

þ nT 
 ~g�1 
 n
�2=3
3

���ð3=2Þ
: (3.40)

The term in brackets is proportional to the SLð5Þ-invariant
mass squared in a parametrization that makes manifest the

string theory three torus with SLð3Þ metric ~gij [~g ¼
gðdetgÞ�1=3, where g is the GLð3Þ metric] and associated
Kaluza-Klein charges, ni. The three scalar fields

Bi ¼ Bi
RR þ�Bi

NS; i ¼ 1; 2; 3; (3.41)

arise from the reduction of the complex 2-form Cð2Þ þ
�BNS on the three two-cycles of the three torus T 3.

Although this series appears to be divergent and in need
of regularization, analyticity in s guarantees that it is well
defined by meromorphic continuation. In other words, it
does not need to be regulated (which is a different inter-
pretation from that of [11]). A detailed analysis of its
behavior is given in Appendix B 5. Furthermore, as we
will soon see, decompactification to D ¼ 8 leads to pre-
cisely the finite combination of terms that was determined
in the previous section.

(i) Decompactification to D ¼ 8
The r3=‘8 ! 1 limit is associated with the constant
term in the maximal parabolic subgroup P�4

¼
Pð3; 2Þ with Levi subgroup GLð1Þ � SLð3Þ �
SLð2Þ, which is the U-duality group for D ¼ 8. In

considering this limit inESLð5Þ
½1000�;s we will make use of

the relations

��1
3 ¼ �3=2

2

1

‘6s
ðr1r2r3Þ2 ¼ ��ð5=6Þ

2

�
r3
‘8

�
2
; (3.42)

recalling that ��1
2 ¼ �2ðr1r2Þ2=‘4s .

The SLð5Þ-invariant mass that enters the exponent of
(3.40) decomposes into the sum of a SLð3Þ-invariant
term and SLð2Þ-invariant term under the decompo-
sitionT 3ðr1; r2; r3Þ � T 2ðr1; r2Þ � S1ðr3Þ, which is
relevant for the Pð3; 2Þ parabolic. The quantity in

brackets in the definition of the series in (3.40) then
becomes the sum of the SLð3Þ and SLð2Þ-invariant
mass squared, m2

SLð5Þ ¼ m2
SLð3Þ þm2

SLð2Þ, where

m2
SLð3Þ ¼ �1=3

2

�jm1 þm2�þm3Bj2
�2

þm2
3

�2

�
;

m2
SLð2Þ ¼

1

�2

jn1 þ n2Uj2
U2T2

; (3.43)

with T2 ¼ r1r2=‘
2
s and U2 ¼ r1=r2.

Details of the evaluation of the constant term of the
SLð5Þ Eisenstein series on this maximal parabolic
are given in Appendix B 5, with the result

‘7
Z
Pð3;2Þ

ESLð5Þ
½1000�;ð3=2Þ

¼ r3

�
ÊSLð3Þ

½10�;ð3=2Þ þ 2Ê1ðUÞ � 4� log

�
r3

‘8�7

��
;

(3.44)

where log�7 ¼ logð4�Þ � 
E. This shows that the
R4 interaction in D ¼ 7 dimensions decompactifies
to the D ¼ 8 interaction

‘7E
ð7Þ
ð0;0Þ ¼ r3

�
Eð8Þ
ð0;0Þ � 4� logð r3

‘8�7

��
þOðe�r3=‘8Þ:

(3.45)

The term proportional to r3 contains the requisite
D ¼ 8 coefficient together with a r3 logr3 term that
is essential for cancelling a similar term in the sum of
the infinite series of ðsr23Þm terms that reproduces the

eight-dimensional s logð�‘28sÞR4 threshold behav-

ior (as described in [4,18] and the introduction).
(ii) D ¼ 7 perturbative string theory.

The D ¼ 7 perturbative expansion parameter is
y�1
7 ¼ �2

2v3, where v3 ¼ ðr1r2r3Þ=‘3s . The invari-
ant mass is given in terms of y7 and v3 by

m2
SLð5Þ ¼ y�ð1=5Þ

7 ðy7ðm1 þ BRR 
 nþ�1BNS 
 nÞ2
þm2

SLð4ÞÞ; (3.46)

where we have introduced the SLð4Þ-invariant mass

m2
SLð4Þ ¼

jm2 þ BNS 
 nj2
v3

þ vð1=3Þ
3

tn 
 ~g 
 n:
(3.47)

In the perturbative string theory limit, the U-duality
group reduces to its maximal parabolic subgroup
P�1

¼ Pð1; 4Þ with Levi subgroup GLð1Þ �
SOð3; 3Þ.
The results of Appendix B imply
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Z
Pð1;4Þ

ESLð5Þ
½1000�;s ¼ y�ð4s=5Þ

7 2�ð2sÞ þ �1=2
�ðs� 1

2Þ
�ðsÞ

� yðs=5Þ�ð1=2Þ
7 ESLð4Þ

½100�;s�ð1=2Þ: (3.48)

Setting s ¼ 3=2, this gives

‘7
Z
Pð1;4Þ

Eð7Þ
ð0;0Þ ¼ ‘s

�
2�ð3Þ
y7

þ 2ESLð4Þ
½100�;1

�
: (3.49)

The overall normalization has been chosen so that
the first term is the standard tree-level contribution,
while the second term, which is independent of y7,
is the genus-one contribution. This agrees with the
perturbative genus-one string theory contribution to
R4 evaluated in (D13).

(iii) Semiclassical M-theory limit
We will now discuss the relation between the R4

interaction in D ¼ 7 dimensions and the interac-
tion obtained by considering the one-loop (L ¼ 1)
amplitude of 11-dimensional supergravity on a four
torus (derived in Appendix G 1). This limit corre-
sponds to the maximal parabolic subgroup P�2

¼
Pð4; 1Þ with Levi subgroup GLð1Þ � SLð4Þ of the
U-duality group.

In this limit the SLð5Þ-invariant mass reduces to

m2
SLð5Þ ¼ V̂

�3=10
4 m2

SLð4Þ þ n23V̂
6=5
4 ; (3.50)

where we have used V̂ 4 ¼ ðR11R10=‘
2
11Þ5=4��1=2

3 and ‘7 ¼
‘11V̂

�1=5
4 .

Therefore the constant term of SLð5Þ series evaluated in
Appendix B 5 implies that the R4 interaction is given by

‘7
Z
Pð4;1Þ

Eð7Þ
ð0;0Þ ¼ ‘11

�
V̂

1=4
4 ESLð4Þ

½100�;ð3=2Þ þ 4�ð2ÞV̂ 4

�
;

(3.51)

which is invariant under the SLð4Þ symmetry associated
with the geometry of T 4 and precisely matches the expan-
sion of the M-theory L ¼ 1 amplitude on a four torus in
Appendix G 1.

D. Six dimensions

For D ¼ 6, the U-duality group is E5ð5Þ � SOð5; 5Þ and
the conjectured coefficient of the R4 interaction is

E ð6Þ
ð0;0Þ ¼ ESOð5;5Þ

½10000�;ð3=2Þ; (3.52)

which corresponds to the suggestion in [11,15], although
our analysis will be somewhat different (in particular re-
garding the regularization). The Eisenstein series depends
on the moduli parametrizing the coset SOð5Þ �
SOð5ÞnSOð5; 5Þ. The Dynkin diagram of Fig. 1 (i) with
n ¼ 5 is symmetric under the interchange of nodes 2 and 5,
which means that the decompactification limit to D ¼ 7
and decompactification to M theory are each described by

a constant term associated with a SLð5Þmaximal parabolic
subgroup of SOð5; 5Þ (see Table II).
(i) Decompactification to D ¼ 7

Equation (C9) together with the relation Vð5Þ ¼
ðr4=‘7Þ5=2 gives the explicit relation between the

SOð5; 5Þ Epstein series ESLð5Þ
½1000�;ð3=2Þ and the Epstein

series associated with one of the SLð5Þ maximal
parabolic subgroups. The decompactification limit
is obtained by deleting the last node �5 of the
Dynkin diagram for E5ð5Þ ¼ D5 in Fig. 1 (i). The

decompactification limit r4=‘7 ! 1 is associated
with the constant term of the parabolic subgroup,
P�5

, which has the form

‘26

Z
P�5

Eð6Þ
ð0;0Þ ¼ ‘7r4

�
4�ð2Þ r4

‘7
þ Eð7Þ

ð0;0Þ

�
; (3.53)

where we have used the relation between the Planck

lengths in six and seven dimensions ‘6 ¼ ‘5=47 r�1=4
4 .

The coefficient of the term proportional to r4 is the
expected D ¼ 7R4 coefficient and the term propor-
tional to r24 combines once more with terms in an
infinite series of ðr24sÞn terms to build the threshold
behavior in the nonanalytic term in D ¼ 7.

(ii) D ¼ 6 perturbative string theory
We may now check agreement with the D ¼ 6
perturbative string theory expansion. This is ob-
tained by deleting first node �1 of the Dynkin
diagram, resulting in a series of terms with
SOð4; 4Þ T-duality invariance. The associated para-
bolic subgroup is denoted P�1

. Substituting the

relation between the SOð5; 5Þ Eisenstein series,

ESOð5;5Þ
½10000�;s and ESOð4;4Þ

½1000�;s0 [given in (C15)] and trans-

forming to string frame using ‘6 ¼ ‘sy
1=4
6 , we ob-

tain

‘26

Z
P�1

Eð6Þ
ð0;0Þ ¼ ‘2s

�
2�ð3Þ
y6

þ 2ESOð4;4Þ
½1000�;1

�
: (3.54)

The first term on the right-hand side of (3.54) is the
tree-level string theory term and the second term
gives the genus-one contribution, in agreement with
the explicit string theory calculation given in (D5)
evaluated for d ¼ 4.

(iii) Semiclassical M-theory limit

Finally, we may check the M-theory limit, V̂ 5 !
1, where V̂ 5 is the dimensionless volume of the
M-theory torus, T 5. This limit is obtained by de-
leting node �2 of the Dynkin diagram in Fig. 1 (i).
The associated parabolic subgroup is denoted P�2

.

In this limit we can use the relation between the

Planck lengths, ‘46 ¼ ‘411V̂
�1
5 , and the relation

(C9) to show that
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‘26

Z
P�2

Eð6Þ
ð0;0Þ ¼ ‘211V̂ 5ð4�ð2Þ

þ V̂
�ð3=5Þ
5 ESLð5Þ

½1000�;ð3=2ÞÞ: (3.55)

This equation agrees explicitly with the regularized
one-loop amplitude in 11 dimensions of
Appendix G 1. Note that the symmetry between
the nodes �2 and �5 of the Dynkin diagram for
E5ð5Þ in Fig. 1 (i) means that the decompactification

limit in (3.53) and theM-theory limit in (3.55) take
similar forms.

More generally, compactification of string theory on a
higher-dimensional torus, T d (orM theory on T dþ1) with
d > 4, leads to a D ¼ ð10� dÞ-dimensional theory with
exceptional U-duality group Edþ1ðdþ1Þ. Consideration of

limits (i), (ii), and (iii) should again pin down the details of

the R4 coefficients, EðDÞ
ð0;0Þ, in these cases. Although we

have not completed a detailed analysis of these coeffi-
cients, we have a sketchy understanding of some of their
properties, including the Laplace eigenvalue equations that
they satisfy, as will be described in the discussion Sec. VI.

IV. THE @4R4 INTERACTION

The next contribution to the low-energy expansion of the
local part of the four-supergraviton effective action (or,
equivalently, to the analytic part of the low-momentum
expansion of the four-supergraviton S matrix) in the
D-dimensional type IIB theory after the ‘�1

s R4 term is
of the form

S@4R4 ¼ ‘12�D
D

Z
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�GðDÞ

p
EðDÞ
ð1;0Þ@

4R4: (4.1)

The duality-invariant coefficient function in D ¼ 10
dimensions is a familiar nonholomorphic Eisenstein series
for SLð2Þ evaluated at s ¼ 5=2,

E ð10Þ
ð1;0Þ ¼

1

2
E5=2ð�Þ: (4.2)

This coefficient function was initially obtained directly by
considering the two-loop (L ¼ 2) amplitude of 11-
dimensional supergravity compactified on T 2 in the limit
in which the volume, V 2, vanishes [7]. This follows from
the nine-dimensional expression to be presented in (4.9).
Its perturbative expansion is given by the constant term

‘210

Z 1=2

�ð1=2Þ
d�1E

ð10Þ
ð1;0Þ ¼ ‘2s

�
2�ð5Þ
y10

þ 8

3
�ð4Þy10

�
; (4.3)

which contains the correct tree-level and two-loop terms
(and the absence of a one-loop contribution also agrees
with string perturbation theory). The expression (4.2) can
also be strongly motivated by supersymmetry arguments
[9] that extend those of [8].

The coefficient Eð10Þ
ð1;0Þ satisfies the SOð2ÞnSLð2Þ Laplace

equation

�ð10ÞEð10Þ
ð1;0Þ ¼

15

4
Eð10Þ
ð1;0Þ: (4.4)

In the following subsections we will discuss the general-
ization of the @4R4 interaction to D ¼ 9, 8, and 7 dimen-
sions. Comments about the D ¼ 6 will be made in the
discussion in Sec. VI with some more details in [32].

A. Nine dimensions

The effective @4R4 action in D ¼ 9 dimensions (4.1)
(with D ¼ 9) has the coefficient function

E ð9Þ
ð1;0Þ ¼

1

2
��ð5=7Þ
1 E5=2ð�Þ þ 2�ð2Þ

15
�9=7
1 E3=2ð�Þ

þ 4�ð2Þ�ð3Þ
15

��ð12=7Þ
1 : (4.5)

Making use of the Laplacian on nine-dimensional moduli

space, (3.9) we see that Eð9Þ
ð1;0Þ satisfies the differential

equation �
�ð9Þ � 30

7

�
Eð9Þ
ð1;0Þ ¼ 0: (4.6)

(i) Decompactification to ten dimensions.
In the rB=‘10 ! 1 it is useful to write (4.5) as

‘39E
ð9Þ
ð1;0Þ ¼ ‘210rB

�
Eð10Þ
ð1;0Þ þ

2�ð2Þ
15

�
‘10
rB

�
4
Eð10Þ
ð0;0Þ

þ 4�ð2Þ�ð3Þ
15

�
rB
‘10

�
2
�
: (4.7)

The term linear in rB gives the finite ten-dimensional
result. The term proportional to r3B is known to be
necessary [1,4] in order to account for the ten-
dimensional normal threshold proportional to
s logð�‘210sÞR4. As described in the introduction,

this arises from the interchange of limits needed in
making the transition from the D ¼ 9 low-energy
limit r2Bs  1 and the D ¼ 10 low-energy limit
1  r2Bs  r2B‘

�2
s s.8 The term proportional to r�3

B

multiplies the modular invariant function Eð10Þ
ð0;0Þ,

which is the coefficient of R4 in D ¼ 10. This fits
in with the general statement that terms suppressed
by powers of rB are coefficients of interactions with
fewer derivatives.

8The amplitude compactified on a circle has an infinite series
of massive square root thresholds of the form

P
pcpðsþ

p=r2BÞ1=2R4 �P
ndnðr2BsÞn=rBR4. In the limit r2Bs � 1 this

series sums to the logarithmic singularity. However, this infinite
series of powers of r2Bs is relevant in the low-energy limit r2Bs 
1 in the D ¼ 9 interactions. The r3B term in (4.8) is the n ¼ 2
term in this series.
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(ii) D ¼ 9 perturbative string theory.
The perturbative limit is simply obtained by ex-
panding the Eisenstein series in powers of y9 ¼
g2s‘s=r, giving

‘39

Z 1=2

�ð1=2Þ
d�1E

ð9Þ
ð1;0Þ ¼ ‘3s

�
�ð5Þ
y9

þ 4

15
�ð2Þ�ð3Þ

�
�
r3

‘3s
þ ‘3s

r3

�
þ 4

3
�ð4Þy9

�
�
r2

‘2s
þ ‘2s

r2

��
: (4.8)

This reproduces the tree-level term proportional to
1=y9, the genus-one terms in (3.28), which are in-
dependent of y9 and genus-two terms proportional
to y9. The coefficients of all these terms are consis-
tent with direct calculations in string perturbation
theory. Furthermore, since y9 is invariant under T
duality, the expression exhibits the known equiva-
lence of the perturbative IIA and IIB theories for
genus less than or equal to four.

(iii) Semiclassical M-theory limit.
TheM-theory limit is also easy to establish. Indeed,
the complete expression (4.5) can be obtained di-
rectly by adding together the L ¼ 1 and L ¼ 2
contributions to the four-supergraviton amplitude
of 11-dimensional supergravity compactified on a
two torus [7], giving (in M-theory units)

‘39E
ð9Þ
ð1;0Þ ¼ ‘311

�
1

2

1

V̂
3=2
2

E5=2ð�Þ þ 4

15

1

V̂
3
2

�ð2Þ�ð3Þ

� 8�ð4ÞV̂ 3=2
2 E�ð1=2Þð�Þ

�
: (4.9)

The last term is the contribution of one-loop super-
gravity (L ¼ 1), while the second term comes from
the finite part of the two-loop (L ¼ 2) supergravity
amplitude. The first term is the sum of the L ¼ 2
subdivergences and the triangle diagram in which
one vertex is a R4 one-loop counterterm. The
divergences cancel between these terms leaving
the displayed finite contribution. Upon converting
from M-theory units to nine-dimensional Planck
units, this expression coincides with (4.5).

B. Eight dimensions

Compactification onT 2 gives rise to the @4R4 effective
action (4.1) with D ¼ 9, which is invariant under the D ¼
8 duality group, E3ð3Þ ¼ SLð3Þ � SLð2Þ. Since this is a

product group, the automorphic function is generally, by
separation of variables, expected to be the sum of products
of eigenfunctions of the SOð2ÞnSLð2Þ and SOð3ÞnSLð3Þ
Laplacian operators. As argued in [12], the modular func-
tion has the explicit form

E ð8Þ
ð1;0Þ ¼ 1

2E
SLð3Þ
½10�;ð5=2Þ � 4ESLð3Þ

½10�;�ð1=2ÞE2ðUÞ: (4.10)

Interestingly, we find by explicit computation that the total

interaction Eð8Þ
ð1;0Þ is an eigenfunction of the total

SOð3ÞnSLð3Þ � SOð2ÞnSLð2Þ Laplacian

�ð8ÞEð8Þ
ð1;0Þ ¼

10

3
Eð8Þ
ð1;0Þ: (4.11)

However, the total interaction is not an eigenfunction of the
cubic Casimir (whereas the Eisenstein series are). The
evidence that (4.10) is the correct expression is based on
the fact that it reduces to the expected expressions in the
three degeneration limits described earlier, as we will now
demonstrate.
(i) Decompactification to D ¼ 9

This is the constant term corresponding to the

r2=‘9 ! 1 limit. Using the expansions of ESLð3
½10�;s

and Es, it is straightforward to obtain the constant
term

‘48

Z 1=2

�ð1=2Þ
dBRRdBNSE

ð8Þ
ð1;0Þ

¼ ‘39r2

�
Eð9Þ
ð1;0Þ þ

1

2

�
‘9
r2

�
3
Eð9Þ
ð0;0Þ þ

4��ð4Þ
45

�
r2
‘9

�
3
�
:

(4.12)

The term linear in r2 reproduces the D ¼ 9 @4R4

coefficient, while the term proportional to r�2
2 is

proportional to the R4 coefficient. The term propor-
tional to r42 is the expected contribution to the non-
analytic R4 threshold term.

(ii) D ¼ 8 perturbative string theory.
The coupling constant associated with string pertur-
bation theory, y8 is a modulus in the SOð3ÞnSLð3Þ
part of the moduli space. The weak coupling expan-
sion can therefore be obtained using properties of
the SLð3Þ Eisenstein series described in (B53):

Z 1=2

�ð1=2Þ
dBRRd�1E

SLð3Þ
½10�;ð5=2Þ ¼

2�ð5Þ
y5=38

þ 4

3
y1=38 E2ðTÞ;

(4.13)

Z 1=2

�ð1=2Þ
dBRRd�1E

SLð3Þ
½10�;�ð1=2Þ

¼ � 1

6
y1=38 � 1

2�3

1

y2=38

E2ðTÞ: (4.14)

The perturbative expansion in terms of SLð2Þ �
SLð2Þ functions is given by the constant term
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‘48

Z 1=2

�ð1=2Þ
dBRRd�1E

ð8Þ
ð1;0Þ

¼ ‘4s

�
�ð5Þ
y8

þ 2

�3
E2ðTÞE2ðUÞ

þ 2

3
y8ðE2ðTÞ þ E2ðUÞÞ

�
; (4.15)

which contains tree-level, genus-one, and genus-
two contributions. All three of these terms can be
verified directly from the low-energy expansion of
the four-supergraviton scattering amplitude in string
perturbation theory compactified on T 2. The tree-
level term is standard. Higher loops are briefly dis-
cussed in Appendix D. The @4R4 interaction ex-
tracted by expanding the genus-one integrand has a
factor of E2ð�Þ, where � is the world-sheet modulus
that has to be integrated over the fundamental do-
main, F SLð2Þ [4,33]. Upon compactifying, the inte-

grand is multiplied by the lattice factor, giving

Ið2Þ1 ¼
Z
F SLð2Þ

d2�

�22
E2ð�Þ�ð2;2ÞðT;UÞ

¼ 2

�2
E2ðTÞE2ðUÞ; (4.16)

in agreement with (4.15). We refer to Appendix D 1
for the evaluation of this integral. The two-loop
amplitude given in [34,35], when compactified on
T 2 is proportional to @4R4 multiplied by

Ið2Þ2 ¼
Z
F Spð4Þ

jd3�j2
ðdet=m�Þ3 �ð2;2Þ; (4.17)

where �ð2;2Þ is the genus-two lattice sum. This in-

tegral was evaluated in [15] (also reviewed in
Appendix E), giving

Ið2Þ2 ¼ 4

3�
ðE2ðTÞ þE2ðUÞÞ: (4.18)

(iii) Semiclassical M-theory limit
The expression (4.10) may be motivated by analyz-
ing the M-theory limit obtained by compactifica-
tion of the four-supergraviton amplitude in 11-
dimensional supergravity on T 3 at one and two
loops. This builds in the SLð3;ZÞ invariance as the
geometric symmetry of T 3; whereas, compactifi-
cation of perturbative supergravity does not build in
the SLð2;ZÞ part of the duality group, which is
sensitive to the effects of euclidean M2-branes
wrapped around T 3. This results in the following
expression for the @4R4 interaction [1,7]:

‘48

Z 1=2

�ð1=2Þ
dU1E

ð8Þ
ð1;0Þ

¼ 1

‘11

1

V̂
5=3
3

�
1

2
ESLð3Þ

½10�;ð5=2Þ

þ 2

�
ESLð3Þ

½01�;2

�
2�ð4ÞV̂ 2

3 þ ��ð3Þ
5

1

V̂ 3

��
: (4.19)

The first term arises from the two-loop (L ¼ 2)
counterterm calculation given by the triangle dia-
gram evaluated in the Appendix G 1. The second
term arises from the M-theory one-loop (L ¼ 1),
and the last term arises from the finite part of
the two-loop amplitude and is evaluated in
Appendix G 1. Transforming to the eight-

dimensional Einstein frame using ‘11 ¼ ‘8V̂
1=6
3

and V̂ 3 ¼ U2 and using the relation ESLð3Þ
½10�;2 ¼

��4ESLð3Þ
½01�;�ð1=2Þ given in (B9) gives

‘48

Z 1=2

�ð1=2Þ
dU1E

ð8Þ
ð1;0Þ

¼ ‘48

�
1

2
ESLð3Þ

½10�;ð5=2Þ þ
2

�
ESLð3Þ

½01�;2

�
2�ð4ÞU2

2 þ
��ð3Þ
5U2

��
:

(4.20)

It is easy to see that (4.20) has the unique
SLð3;ZÞ � SLð2;ZÞ completion given in (4.10).

C. Seven dimensions

In this subsection we will show that the seven-
dimensional @4R4 effective action, (4.1) with D ¼ 7, con-
tains the coefficient function

E ð7Þ
ð1;0Þ ¼

1

2
ÊSLð5Þ

½1000�;ð5=2Þ þ
3

�3
ÊSLð5Þ

½0010�;ð5=2Þ: (4.21)

The symbol ^ signifies that each SLð5Þ Eisenstein series is
regulated by evaluating the series at s ¼ 5=2þ 	 and
subtracting the pole in the limit 	 ! 0. These poles are a
signal of the ultraviolet divergence of the supergravity two-
loop amplitude in D ¼ 7. The detailed evaluation of the
series close to the pole in Appendix B 5 gives

ESLð5Þ
½1000�;ð5=2Þþ	 ¼

4�2

3	
þ ÊSLð5Þ

½1000�;ð5=2Þ þ
8�2

9
ð3
E � 4Þ

þOð	Þ;

ESLð5Þ
½0010�;ð5=2Þþ	 ¼

2�5

9	
þ ÊSLð5Þ

½0010�;ð5=2Þ þ
2�3

27
ð6�2
E � 11�2

þ 36� 0ð2ÞÞ þOð	Þ: (4.22)

It is significant that the poles cancel in the combination
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lim
	!0

�
ÊSLð5Þ

½1000�;ð5=2Þþ	 þ
6

�3
ÊSLð5Þ

½0010�;ð5=2Þ�	

�

¼ ÊSLð5Þ
½1000�;ð5=2Þ þ

6

�3
ÊSLð5Þ

½0010�;ð5=2Þ þ logð ~�7Þ; (4.23)

which is therefore finite. The constant

log ~�7 ¼ 16� 0ð2Þ þ 16�2
E=3� 76�2=9; (4.24)

can be absorbed into the definition of the scale of the
logarithm in the nonanalytic part of the amplitude, leaving
the combination of Eisenstein series on the right-hand side
of the ansatz (4.21).

Using the properties of the SLð5Þ Eisenstein series in
Appendix B 5, it follows that this combination of
Eisenstein series satisfies

�ð7ÞEð7Þ
ð1;0Þ ¼

40�2

3
: (4.25)

As with the coefficient Eð8Þ
ð0;0Þ in (3.25), the presence of the

inhomogeneous term on the right-hand side of this equa-

tion implies the presence of an additive logarithm in Eð7Þ
ð1;0Þ,

which is in this case a sign that the low-energy supergravity
limit has a two-loop logarithmic ultraviolet divergence.

(i) Decompactification to D ¼ 8
The r3=‘8 ! 1 limit again involves the constant
term in the Pð3; 2Þ parabolic. Using the relation
between the Planck length in seven and eight dimen-
sions, ‘57 ¼ ‘68r

�1
3 , and the formulas of Appendix B,

we have

‘57

Z
Pð3;2Þ

Eð7Þ
ð1;0Þ ¼ ‘48r3

�
Eð8Þ
ð1;0Þ þ

�
‘8
r3

�
2 �

3

�
�
Eð8Þ
ð0;0Þ þ

28�

5
logð‘8 ~�7=r3Þ

�

þ 2�

15

�
r3
‘8

�
4
�
: (4.26)

The term proportional to r3 reproduces the eight-
dimensional interaction (4.10) and the coefficient
of the 1=r3 term is the R4 interaction in D ¼ 8
dimensions. The term with a positive power r43 is

needed to contribute to the series of ðr23sÞn terms that

sums to give the R4 logð�‘28sÞ threshold in eight

dimensions.
(ii) D ¼ 7 perturbative string theory

Using the relation between the seven-dimensional

Planck length and the string scale ‘7 ¼ ‘sy
1=5
7 , in

D ¼ 7 the string perturbative expansion, which is
associated with the P�1

¼ Pð1; 4Þ parabolic with

Levi component GLð1Þ � SOð3; 3Þ, has the form

‘57

Z
Pð1;4Þ

Eð7Þ
ð1;0Þ ¼ ‘5s

�
�ð5Þ
y7

þ 3

�3
ESLð4Þ

½010�;ð5=2Þ

þ 2y7
3

ðÊSLð4Þ
½100�;2 þ ÊSLð4Þ

½001�;2Þ

þ 4�2

15
y7 logðy7= ~�7Þ

�
; (4.27)

which matches the direct string perturbation theory
calculations of the tree-level, genus-one terms in
(D14), and the genus-two contribution in (E9).
The tree-level term and the first genus-two term

come from the Pð4; 1Þ parabolic of ÊSLð5Þ
½1000�;ð5=2Þ in

(4.21), while the genus-one term and the second
genus-two term come from the Pð4; 1Þ parabolic of
the series ÊSLð5Þ

½0010�;ð5=2Þ in (4.21). Thew logy7 term is

the genus-two ultraviolet threshold, which has a
coefficient that is proportional to the inhomogene-
ous term on the right-hand side of (4.21).

(iii) Semiclassical M-theory limit
As before, the compactification of the 11-
dimensional supergravity amplitude provides the
data for the constant term for the parabolic sub-
group associated with node �2 in Fig. 1 (i), which
gives a series of SLð4Þ-invariant terms.

The validity of the ansatz for the @4R4 coefficient,
(4.21), can be checked in this limit by using the relation
between the seven-dimensional Planck length and the 11-

dimensional Planck length ‘7 ¼ ‘11V̂
�1=5
4 the @4R4. This

leads to

‘57

Z
Pð4;1Þ

Eð7Þ
ð1;0Þ ¼

‘511

V̂
2
4

�
1

2
V̂

3=4
4 ESLð4Þ

½100�;ð5=2Þ

þ �

30
V̂

9=4
4 ESLð4Þ

½001�;ð5=2Þ þ
2

�4
ÊSLð4Þ

½010�;2

� 6�2

5
logðV̂ 4= ~�7Þ

�
: (4.28)

This series of terms again coincides with contributions
from Feynman diagrams in 11-dimensional supergravity.
The first term arises from the finite part of the two-loop
L ¼ 2 diagrams in D ¼ 11 supergravity onT 4. This finite
contribution is given by the integral of the �ð4;4Þ lattice over
the fundamental domain of the torus, which leads using the

techniques of Appendix G 1 to the series �ð4ÞESOð3;3Þ
½100�;5=2 ¼

ESLð4Þ
½010�;5=2. The second term in (4.28) arises from the one-

loop L ¼ 1 diagrams and the last term from the triangle
diagram that contains the one-loop counterterm.
In order to understand the coefficients in dimensions

D � 6 in detail, we need to make use of the properties of
the constant terms that have not yet been obtained in detail.
However, we have pinned down the combination of two
Eisenstein series that arises in D ¼ 6 [with U-duality
group SOð5; 5Þ] although we have not determined their
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relative coefficient. Further comments will be made in the
discussion in Sec. VI, where we will also present the
Laplace eigenvalue equations that we believe these series
should satisfy for all D � 3.

V. THE @6R4 INTERACTION

The next order in the analytic part of the momentum
expansion of the amplitude is encoded into the local effec-
tive action

S@6R4 ¼ ‘14�D
D

Z
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�GðDÞ

p
EðDÞ
ð0;1Þ@

6R4: (5.1)

At this order in the low-energy expansion, the structure of
the equation satisfied by the coefficient functions changes,
as is evident from the D ¼ 10 SLð2;ZÞ case (1.8), which
has a source term on the right-hand side [10]:

ð�SOð2ÞnSLð2Þ � 12ÞEð10Þ
ð0;1Þ ¼ �ðEð10Þ

ð0;0ÞÞ2: (5.2)

Although this has not been derived explicitly from super-
symmetry, it is easy to argue for the qualitative structure of
the equation based on a generalization of the arguments of
[8] used to determine the coefficient of theR4 interaction.
The constant term is given by

‘410

Z 1=2

�ð1=2Þ
d�1E

ð10Þ
ð0;1Þ ¼ ‘4s

�
2�ð3Þ2

3
�2

2 þ
4�ð2Þ�ð3Þ

3

þ 8�ð2Þ2
5

��2
2 þ 4�ð6Þ

27
��4

2

þOðe�4��2Þ
�
; (5.3)

which has perturbative contributions up to genus three and
has contributions from D-instanton/anti–D-instanton pairs
with zero net instanton number.

Once again, we will see that the generalization to higher-
rank groups does not change the structure of the equation
although the eigenvalues of the homogeneous equation

change. The structure of the coefficient EðDÞ
ð0;1Þ was deter-

mined for D ¼ 10 in [8] and generalizations to D ¼ 9, 8
were suggested by Basu [13]. We will demonstrate that in

each case EðDÞ
ð0;1Þ satisfies an inhomogeneous Laplace eigen-

value equation. In D ¼ 8 dimensions subtle effects due to
the regularization of the R4 term in the source imply
additional contributions to the solution given in [13]. We
will later determine the D ¼ 7 equation and properties of
its solution. The D ¼ 6 @6R4, which is of particular

interest since it contains the three-loop ultraviolet loga-
rithm characteristic of the ultraviolet divergence in maxi-
mal supergravity [36], will not be discussed here, although
a few comments will be made in the concluding discussion
in Sec. VI (and in [32]).

A. Nine dimensions

In this case the effective action, (5.1) with D ¼ 9, con-
tains the coefficient function determined in [13] to be

Eð9Þ
ð0;1Þ ¼ ��ð6=7Þ

1 Eð10Þ
ð0;1Þ þ

2�ð2Þ
3

�1=7
1 E3=2 þ 2�ð2Þ

63
�15=7
1 E5=2

þ 4�ð2Þ�ð5Þ
63

��ð20=7Þ
1 þ 8�ð2Þ2

5
�8=7
1 : (5.4)

The function Eð10Þ
ð0;1Þ is the ten-dimensional coefficient that

satisfies the inhomogeneous Laplace equation, (5.1).

It is readily checked that Eð9Þ
ð0;1Þ satisfies�

�ð9Þ � 90

7

�
Eð9Þ
ð0;1Þ ¼ �ðEð9Þ

ð0;0ÞÞ2: (5.5)

The source term is again quadratic in the modular function
that arises for the coefficient of the R4 interaction, as it
was for D ¼ 10 in (1.8).
(i) Decompactification to ten dimensions.

The contribution (5.4) can be reexpressed in ten-

dimensional units recalling that ‘9 ¼ ‘8=710 r�ð1=7Þ
B

and �1 ¼ ðrB=‘10Þ�2, giving

‘59E
ð9Þ
ð0;1Þ ¼ ‘410rB

�
Eð10Þ
ð0;1Þ þ

2�ð2Þ
3

�
‘10
rB

�
2
Eð10Þ
ð0;0Þ

þ 4�ð2Þ
63

�
‘10
rB

�
6
Eð10Þ
ð1;0Þ þ

4�ð2Þ�ð5Þ
63

�
rB
‘10

�
4

þ 8�ð2Þ2
5

�
‘10
rB

�
4 þOðe�rBÞ

�
: (5.6)

The term proportional to rB gives the ten-
dimensional expression in the rB ! 1 limit. Once
again, there is a growing term with the expected
power of r5B, which contributes a term proportional
to ðsr2BÞ2R4 to the expansion of the ten-dimensional
sR4 logð�‘210sÞ threshold in the limit sr2B ! 1.

(ii) Perturbative string theory.
The perturbative expansion of this coefficient is
given by expanding in powers of the string coupling,

‘59

Z 1=2

�ð1=2Þ
d�1E

ð9Þ
ð0;1Þ ¼ ‘5srB

�
�ð3Þ2
3g2B

þ �ð2Þ�ð3Þ
9

�
1þ ‘2s

r2B

�
þ �ð5Þ�ð2Þ

189

�
r2B
‘4s

þ ‘6s
r6B

�
þ 5�ð4Þg2B

9

‘2s
r2B

þ �ð4Þg2B
3

�
1þ ‘4s

r4B

�

þ 7�ð6Þ
576

g4B

�
1þ ‘6s

r6B

�
þOðe�1=gBÞ

�
: (5.7)
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This expression is symmetric under the T-duality
transformation rB ! 1=rA and gB ! gA=rA. The
genus-three term proportional to g4B comes from
expanding Eð0;1Þ and was shown to match the IIA
results in [18]. The symbol Oðe�1=gBÞ indicates
schematically the presence of instanton/anti-
instanton pairs in the zero D-instanton sector.

(iii) Semiclassical M-theory limit.
The contributions to the @6R4 interaction obtained
by compactifying the one-loop and two-loop
Feynman diagrams of 11-dimensional supergravity
onT 2 were evaluated in [10]. Collecting the L ¼ 2
and L ¼ 1modular functions along with the genus-
one terms of (3.28), we find the modular invariant
expression

‘59E
ð9Þ
ð0;1Þ ¼ ‘511V̂ 2

�Eð0;1Þ
12

1

V̂
3
2

þ �ð5Þ�ð2Þ
189

1

V̂
6
2

þ �ð4Þ
3

þ V̂
7=2
2

�ð2Þ
378

E5=2 þ �ð2Þ
9

V̂
1=2
2 E3=2

�
:

(5.8)

This expression sums all the contributions deter-
mined from the analysis of the L ¼ 1 and L ¼ 2
loop amplitude on a torus, to which has been added

the contribution �ð5Þ�ð2Þ=V̂ 6
2, which arises from a

�3 divergence of the L ¼ 3 amplitude. This con-
tribution has been regularized by matching the
string theory genus-one contribution determined in
(3.28), and is a prediction for the three-loop super-
gravity contribution to the @6R4 interaction.

In the next subsection we will see how this nine-
dimensional interaction arises by decompactifying the
eight-dimensional term proposed in [13] and discuss fur-
ther properties of this expression.

B. Eight dimensions

In this section we analyze the eight-dimensional @6R4

interaction, which has an effective action (5.2) that is
invariant under the U-duality group E3ð3Þ ¼ SLð3Þ �
SLð2Þ. We will show that the modular function proposed
in [13] satisfies the differential equation

�ð8ÞEð8Þ
ð0;1Þ ¼ 12Eð8Þ

ð0;1Þ � ðEð8Þ
ð0;0ÞÞ2: (5.9)

where �ð8Þ is the SLð3Þ � SLð2Þ Laplacian. The source
term appearing in this equation again involves the square of
the eight-dimensional R4 coefficient.

The systematic solution of this equation will be obtained
in Appendix A, where we will see that it is uniquely
specified by matching the known properties of string per-
turbation theory. The solution is close to the one argued for
in [13] on the basis of consistency with the higher-
dimensional interaction (our normalization differs by a
factor 2=3 from [13]),

E ð8Þ
ð0;1Þ ¼ ESLð3Þ

ð0;1Þ þ 40

9
ESLð3Þ

½10�;�ð3=2ÞE3ðUÞ þ 1

3
ÊSLð3Þ

½10�;ð3=2ÞÊ1ðUÞ

þ fðUÞ þ �

36
ÊSLð3Þ

½10�;ð3=2Þ þ
�

9
Ê1ðUÞ þ �ð2Þ

9
;

(5.10)

where the function fðUÞ is defined as the solution of the
equation

ð�U � 12ÞfðUÞ ¼ �4Ê2
1ðUÞ; (5.11)

where �U ¼ U2
2ð@2U1

þ @2U2
Þ. It is straightforward to ex-

tract the power-behaved terms in its expansion [see (I19)].

We have also introduced ESLð3Þ
ð0;1Þ satisfying

ð�SOð3ÞnSLð3Þ � 12ÞESLð3Þ
ð0;1Þ ¼ �ðÊSLð3Þ

½10�;ð3=2ÞÞ2: (5.12)

The last three terms in (5.10) (absent in the solution pre-
sented in [13]) arise from the regularization of the R4

interaction.
We will now consider the limits (i) and (ii), but since we

have not evaluated the derivative expansion of the L ¼ 2
amplitude on higher-dimensional tori, the limit (iii) will
not be discussed.
(i) Decompactification to D ¼ 9

In the decompactification limit r2=‘9 ! 1 the
SLð3;ZÞ modular functions in (5.10) have the form

Z 1=2

�ð1=2Þ
dBRRdBNSE

SLð3Þ
½10�;�ð3=2Þ

¼ 9

16�4
�1=2
2 E5=2ð�Þ þ �

315
��2
2 ; (5.13)

Z 1=2

�ð1=2Þ
dBRRdBNSÊ

SLð3Þ
½10�;ð3=2Þ

¼ ��ð1=2Þ
2 E3=2ð�Þ þ � log�2: (5.14)

Substituting the latter expansion into the source term
in (I5), one finds that the interaction coefficient
becomes

Z 1=2

�ð1=2Þ
dBRRdBNSE

SLð3Þ
ð0;1Þ ¼ 1

�2

Eð10Þ
ð0;1Þ þ

�
2�

9
��ð1=2Þ
2 logð�2Þ þ c1�

3=2
2 þ c2�

�ð5=2Þ
2

�
E3=2ð�Þ þ �ð2Þ

9
ð5þ 4 logð�2Þ

þ 8log2ð�2ÞÞ þOðe��1=2
2

��ð1=2Þ
2 ; e�ð�2�2Þ�ð1=2Þ Þ; (5.15)
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where c1, c2 are integration constants. They are
determined by taking at the same time the pertur-
bative string limit and comparing with the expres-
sions of Appendix I. We find c1 ¼ �ð5Þ=ð12�Þ and
c2 ¼ 0. In this case the zero instanton sector con-
tains instanton/anti-instanton pairs consisting of D
instantons and wrapped (p; q)-string world sheets
as indicated by the last term.
The SLð2;ZÞ modular functions have the expan-
sionsZ 1=2

�ð1=2Þ
dU1E3ðUÞ ¼ 2�ð6ÞU3

2 þ
3��ð5Þ

4
U�2

2 ;

(5.16)

Z 1=2

�ð1=2Þ
dU1Ê1ðUÞ ¼ 2�ð2ÞU2 � � logðU2Þ;

(5.17)

and the expansion of the function fðUÞ given in
[13] and in (I19) is9

6fðUÞ ¼ �2

180
ð65� 20�U2 þ 48�2U2

2Þ þ
�ð3Þ�ð5Þ
�U3

2

� 2�ð2Þ logU2ð4�U2 � 6 logU2 þ 1Þ
þOðe�U2Þ: (5.18)

Therefore, the constant term associated with de-
compactifying to nine dimensions is

‘68

Z 1=2

�ð1=2Þ
dBRRdBNSE

ð8Þ
ð0;1Þ ¼ ‘59r2E

ð9Þ
ð0;1Þ þ ‘69

�
�

36
Eð9Þ
ð0;0Þ þ

�
‘9
r2

�
4 15�ð5Þ

4�3
Eð9Þ
ð1;0Þ þ

16��ð6Þ
567

�
r2
‘9

�
6
�

� ‘69
�

9
log

�
r2
‘9

�
ð7Eð9Þ

ð0;0Þ � 4�ð2Þ�4=7
1 Þ � ‘69�

4=7
1

4��ð2Þ
21

logð�1Þ þ ‘79
r2

�ð2Þ
�
37

36
þ 86

9
log2

�
r2
‘9

�

� 20

9
log

�
r2
‘9

��
� ‘79

r2

�ð2Þ
21

logð�1Þ
�
1þ 4 log

�
r2
‘9

�
� 48

7
logð�1Þ

�
þOðe�r2Þ: (5.19)

The term linear in r2 reproduces the nine-
dimensional @6R4 interaction, the term indepen-
dent of r2 is proportional to the nine-dimensional
R4 interaction, and the term proportional to r�4

2 is
proportional to the nine-dimensional @4R4 inter-
action. The term proportional to r22 is needed to
reproduce the D ¼ 9 threshold of the form
ð�sÞ1=2R4.

(ii) D ¼ 8 perturbative string theory

The perturbative expansion of the coefficient Eð8Þ
ð0;1Þ

in increasing powers of y8 ¼ ð�2
2T2Þ�1 is per-

formed in Appendix I. We may summarize the result

in terms of the functions Ið2Þh ðjðp;qÞh Þ that would be

obtained by evaluating the appropriate terms at
genus h in string perturbation theory. The function

jðp;qÞh is the expansion of the integrand of the

genus-h string loop diagram to order �p
2�

q
3R

4

(the notation is explained in Appendix D):

‘68

Z 1=2

�ð1=2Þ
d�1dBRRE

ð8Þ
ð0;1Þ ¼ ‘6s

�
2�ð3Þ2
3y8

þ 64�

3
Ið2Þ1 ðjð0;1Þ1 Þ þ 2��ð3Þ

9
logðy8Þ þ 2

3
y8I

ð2Þ
2 ðjð0;1Þ2 Þ

þ �

9

�
�

2
þ Ið2Þ1 ðjð0;0Þ1 Þ

�
y8 logðy8Þ þ �2

27
y8 logðy8Þ2 þ 20y28I

ð2Þ
3 ðjð0;1Þ3 Þ

þOðe�ðT2y8Þ�ð1=2Þ
; e�T1=2

2
y�ð1=2Þ
8 Þ

�
: (5.20)

The genus-one contribution to this expression has
the form Ið2Þ1 ðjð0;1Þ1 Þ ¼ 10

32�6
E3ðTÞE3ðUÞ

þ �ð3Þ
32�

ðÊ1ðTÞ þ Ê1ðUÞ þ log�Þ:
(5.21)9We correct a missing 1=� factor in the 1=U3

2 term in [13].
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This follows both from the expansion of the coef-
ficient Eð8Þ

ð0;1Þ and from the direct evaluation of the
genus-one string theory amplitude in (D10).

There is also a logarithmic correction to the genus-one
term of the form logy8 in (5.20). This is a manifestation of a
logarithmic ultraviolet divergence in supergravity that
originates from the one-loop R4 subdivergence of the
two-loop supergravity diagram. As before, the origin of
the logy8 is in the transformation of logð�‘2ssÞ from string
frame to Einstein frame.

Comparing (5.20) with the expansion of Eð8Þ
ð0;1Þ in

Appendix (I1), we see that the genus-two contribution is
given by

Ið2Þ2 ðjð0;1Þ2 Þ ¼ 2

3
Ê1ðTÞÊ1ðUÞ þ �

9
ðÊ1ðTÞ þ Ê1ðUÞÞ þ fðTÞ

þ fðUÞ þ 11�ð2Þ
36

: (5.22)

In principle it should be possible to check (5.22) with the
expansion of the genus-two string theory amplitude of
[34,35] at order @6R4, but this has not been done.

There is also a logarithmic term of the form y8 logy8 in
(5.20). As described earlier, such a term signifies the
presence of a two-loop supergravity logarithmic ultraviolet
divergence. In other words, there is a ‘6ss

3R4 logð�‘2ssÞ
contribution to the amplitude in string frame, which gen-
erates the y8 logy8 term in (5.20) upon transforming to the
Einstein frame.

The genus-three contribution in (5.20) extracted from

the expansion of Eð8Þ
ð0;1Þ in Appendix (I1) is

Ið2Þ3 ðjð0;1Þ3 Þ ¼ 1

270
ðE3ðTÞ þ E3ðUÞÞ: (5.23)

Little is known in detail about the genus-three superstring
amplitude apart from the fact that its leading low-energy
behavior contributes to @6R4 [28]. However, it is interest-
ing to note that this genus-three expression is given by the
evaluation of the two-dimensional lattice integrated over
the Siegel fundamental domain for Spð3;ZÞ evaluated in
Appendix F.

C. Seven dimensions

The construction of the coefficient of the @6R4 interac-
tion in the effective action (5.2) with D ¼ 7, follows the
same logic as in D ¼ 8, so this section will be brief. The
modular function multiplying the @6R4 interaction inD ¼
7 is determined by�

�ð7Þ � 42

5

�
Eð7Þ
ð0;1Þ ¼ �ðEð7Þ

ð0;0ÞÞ2; (5.24)

where

E ð7Þ
ð0;0Þ ¼ ESLð5Þ

½1000�;ð3=2Þ: (5.25)

As in the D ¼ 8 case, the solution can be written as

E ð7Þ
ð0;1Þ ¼ ESLð5Þ

ð0;1Þ þ 25

2�5
ESLð5Þ

½0010�;ð7=2Þ; (5.26)

where ESLð5Þ
ð0;1Þ is a particular solution and ESLð5Þ

½0010�;7=2 is the

only solution of the homogeneous equation that has per-
turbative terms consistent with string theory. The relative
coefficient in (5.26) will now be confirmed by studying the
decompactification limit.
(i) Decompactification to eight dimensions

In the limit r3=‘8 ! 1 the (3, 3) entry in the matrix
in (B62) (after setting r3 ¼ r2) becomes

Z
Pð3;2Þ

ESLð5Þ
½0010�;ð7=2Þ ¼ 2�ð6Þ�ð7Þ

�
r3
‘8

�
42=5

þ �2�ð2Þ
5

�
‘8
r3

�
8=5

ESLð3Þ
½10�;ð5=2Þ

þ 8

15

�
r3
‘8

�
12=5

ESLð3Þ
½01�;3E

SLð2Þ
3 :

(5.27)

From this expression we recognize the term

ESLð3Þ
½01�;3E

SLð2Þ
3 that decompactifies to eight dimen-

sions. The other possible solutions to the homoge-
neous equation (with Dynkin labels [1000] and
[0100]) are ruled out, because in the perturbative
string limit they give rise to terms that cannot be
identified with perturbative string theory (i.e. they

give wrong powers of the string coupling). The r42=53

term in (5.27) contributes to the D ¼ 8 threshold.
Comparing with the eight-dimensional expression

for Eð8Þ
ð0;1Þ given in Sec. VB, and using ESLð3Þ

½01�;3 ¼
2�5=3ESLð3Þ

½01�;�3=2, fixes the relative coefficient in

(5.26), as follows. In addition, we recognize the

term ESLð3Þ
½10�;ð5=2Þ in (5.27), multiplied by r�8=5

3 , which

is part of the @4R4 interaction in eight dimensions.
The other part of the @4R4 interaction is a term

r�8=5
3 ESLð3Þ

½01�;2E
SLð2Þ
2 , which does not show up in

(5.27), but arises from ESLð5Þ
ð0;1Þ , as follows. The

large-r3 limit of the source term is obtained with
the use of

Z
Pð3;2Þ

ESLð5Þ
½1000�;ð3=2Þ ¼

�
r3
‘8

�
6=5

Eð8Þ
ð0;0Þ

� 4�

�
r3
‘8

�
6=5

log

�
r3

‘8�7

�
:

(5.28)

In this limit, the constant term of the particular

solution ESLð5Þ
ð0;1Þ contains the contributions
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Z
Pð3;2Þ

ESLð5Þ
ð0;1Þ ¼

�
r3
‘8

�
12=5

�
ESLð3Þ
ð0;1Þ þ 1

3
ÊSLð3Þ

½10�;ð3=2ÞÊ1ðUÞ

þ fðUÞ þ
�
‘8
r3

�
4
Eh þ 
 
 


�
: (5.29)

The first three terms reproduce the eight-
dimensional result (once added to the contribution

ofESLð5Þ
½0010�;7=2). Since the source term does not contain

the power r�8=5
3 , Eh solves a homogeneous equation

for the SLð3Þ � SLð2Þ Laplacian with eigenvalue
10=3, which is the same as the eigenvalue of

ESLð3Þ
½10�;5=2 in (5.27). The term we are expecting is of

the form kESLð3Þ
½01�;2E

SLð2Þ
2 , where the coefficient k is

fixed by comparing with the @4R4 interaction,
which gives k ¼ �8�2�ð2Þ=5.

(ii) Perturbative string theory
We will now find the constant part of the particular

solution, ESLð5Þ
ð0;1Þ , in the parabolic subgroup of rele-

vance to limit (ii), the limit of perturbative string
theory. In this limit, the result is expressed in terms
of functions invariant under SOð3; 3Þ � SLð4Þ, the
T-duality group. We will need the expansions

Z
Pð4;1Þ

ESLð5Þ
½1000�;ð3=2Þ ¼ 2�ð3Þy�ð6=5Þ

7

þ 2y�ð1=5Þ
7 ESLð4Þ

½100�;1; (5.30)

Z
Pð4;1Þ

ESLð5Þ
½0010�;ð7=2Þ ¼ y�ð7=5Þ

7 ESLð4Þ
½010�;ð7=2Þ

þ 8��ð4Þ
15

y3=57 ESLð4Þ
½001�;3;

(5.31)

which can be found in entries (1, 1) and (1, 3) of
(B62) (setting y7 ¼ 1=r4). Thus the homogeneous
solution provides part of the genus-one and genus-
three contributions.

In order to study the perturbative string theory limit, we
will also need the decomposition of the SLð5Þ Laplace
operator into the SLð4Þ Laplace operator plus the second-
order differential operator associated with y7,

�ð7Þ ¼ �SOð5ÞnSLð5Þ

! �SOð4ÞnSLð4Þ þ 5
2ðy7@y7Þ2 þ 5ðy7@y7Þ: (5.32)

The coefficients 5=2 and 5 in this equation have been
determined by using the known D ¼ 8, 7 R4 and @4R4

interaction coefficients. The R4 coefficient is given in
(5.30); whereas, the @4R4 case can be checked using

Z
Pð4;1Þ

ESLð5Þ
½1000�;ð5=2Þ ¼ 2�ð5Þy�2

7 þ 4

3
ESLð4Þ

½100�;2; (5.33)

Z
Pð4;1Þ

ESLð5Þ
½0010�;ð5=2Þ ¼ y�1

7 ESLð4Þ
½010�;ð5=2Þ þ

4��ð2Þ
3

ESLð4Þ
½001�;2:

(5.34)

The constant term of the particular solution associated with
the parabolic subgroup of relevance to the perturbative
expansion is a series of the form

‘77

Z
Pð4;1Þ

ESLð5Þ
ð0;1Þ ¼ ‘7s

X3
n¼0

ESLð4Þ
n yn�1

7 : (5.35)

The coefficient functions EðSLð4Þ
n can be determined

by substituting this genus expansion into the Laplace
Eq. (5.24) and using (5.26), which gives

6ESLð4Þ
0 ¼ 4�ð3Þ2; (5.36)

�
�SOð4ÞnSLð4Þ � 21

2

�
ESLð4Þ
1 ¼ �8�ð3ÞESLð4Þ

½100�;1; (5.37)

ð�SOð4ÞnSLð4Þ � 10ÞESLð4Þ
2 ¼ �4ðESLð4Þ

½100�;1Þ2; (5.38)

ð�SOð4ÞnSLð4Þ � 9
2ÞESLð4Þ

3 ¼ 0: (5.39)

Equation (5.36) gives the tree-level contribution. The
genus-one coefficient is determined by (5.37), which is
solved by

ESLð4Þ
1 ¼ aESLð4Þ

½100�;1þ2
ffiffi
2

p þ a0ESLð4Þ
½001�;1þ2

ffiffi
2

p þ bESLð4Þ
½010�;ð7=2Þ

þ 2�ð3Þ
3

ESLð4Þ
½100�;1; (5.40)

for any a, a0, b. The constants a, a0 must be zero to match
the genus-one contribution inD ¼ 8, and b can be fixed by
the decompactification limit. Equation (5.38) defines the

genus-two function ESLð4Þ
2 which, by construction, in the

decompactification limit becomes the genus-two contribu-

tion Ê1ðTÞÊ1ðUÞ þ fðT; �TÞ þ fðU; �UÞ of the @6R4 inter-
action in eight dimensions. Finally, (5.39) has two

independent admissible solutions ESLð4Þ
½001�;3 and ESLð4Þ

½100�;3.
The first one combines with the solution of the homoge-
neous equation; see (5.31).
Thus, the complete perturbative expansion of the modu-

lar function Eð7Þ
ð0;1Þ is given by
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‘77

Z
Pð4;1Þ

Eð7Þ
ð0;1Þ ¼ ‘7s

�
2�ð3Þ2

3

1

y7
þ
�
2�ð3Þ
3

ESLð4Þ
½100�;1

þ ð1þ bÞESLð4Þ
½010�;ð7=2Þ

�
þ y7E

SLð4Þ
2

þ 2y27ðESLð4Þ
½001�;3 þ ESLð4Þ

½100�;3Þ þ n:p:

�
;

(5.41)

where n:p: indicates nonperturbative contributions. By
construction, this reproduces (5.20) in the decompactifica-
tion limit since, as discussed above, in this limit the dif-
ferential equation becomes the eight-dimensional one. The
genus-one contribution in string perturbation theory is

given by Ið3Þ1 ðjð0;1Þ1 Þ evaluated in (D15) is given by

Ið3Þ1 ðjð0;1Þ1 Þ ¼ 25

8!
ESLð4Þ

½010�;ð7=2Þ þ
�ð3Þ
16�

ESLð4Þ
½100�;1; (5.42)

which determines the value of b ¼ 5�=756� 1. It would
be interesting to determine the genus-two coefficient by
expanding the string theory amplitude [34,35].

Interestingly, as in D ¼ 8, the value of the genus-three
contribution is given by integrating the three-dimensional
lattice factor over the Siegel fundamental domain for
Spð3;ZÞ evaluated in Appendix F,

Z
F Spð3;ZÞ

jd6�j2
ðdet=m�Þ5 �ð3;3Þ ¼ 1

270
ðESLð4Þ

½100�;3 þ ESLð4Þ
½001�;3Þ:

(5.43)

VI. DISCUSSION

In this paper we have extended earlier analyses of the
nonperturbative structure of the coefficients of terms in the
low-energy expansion of the four-supergraviton amplitude
to the higher-rank duality groups that arise in toroidal
compactifications of maximally supersymmetric string the-
ory or M theory. We have considered terms up to order
@6R4 in the derivative expansion of the effective action
and compactification on T d to D ¼ 10� d dimensions.
TheR4 coefficient has been understood in cases with d �
7. The @4R4 coefficient has been understood in detail for
d � 3, with partial results for d ¼ 4 (see below). The
@6R4 coefficient, which has the richest structure, has
been understood for d � 3.

The derivation of the coefficient functions necessarily
followed a rather tortuous path since the aim is to discover
the modular invariant coefficients for low-dimension string
theory (high-rank duality groups) from information in
higher dimensions (low-rank duality groups), which in-
volves checking many limits. Nevertheless, the results
may be stated compactly. The three terms in the low-
energy expansion of the four-supergraviton amplitude

can be expressed as local terms in the effective action of
the form

S@2kR4 ¼ ‘2kþ8�D
D

Z
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�GðDÞ

p
EðDÞ
ðp;qÞ@

2kR4; (6.1)

where ðp; qÞ ¼ ð0; 0Þ, (1, 0), and (0, 1) and k ¼ 2pþ 3q ¼
0, 2, 3. The coefficient functions EðDÞ

ðp;qÞ are automorphic

functions of the coset space coordinates that transform as
scalars under the appropriate duality groups. Starting from
the known structure of these functions, we have determined
their form in the compactified theory by demanding con-
sistency in the three limits described in the introduction:
(i) decompactification from D to Dþ 1 dimensions;
(ii) known properties of string perturbation theory in the
limit of small string coupling; (iii) The limit of large
volume of the M-theory torus, T dþ1, which is described
by loop diagrams of 11-dimensional supergravity.
Clearly many, if not all, of the properties of the coef-

ficients are highly constrained by maximal supersymmetry
combined with the dualities. In particular, we have found
that they satisfy Laplace eigenvalue equations, with or
without source terms, which are known to be consequences
of supersymmetry in the simplest examples [8,9], although
we do not have a general proof. Given such an equation for

EðDÞ
ðp;qÞ, it is easy to derive similar equations satisfied by the

constant terms for maximal parabolic subgroups of any
given duality group. These follow from the decomposition
of the Laplace operator with respect to the same subgroups
as described in Appendix H. In summary, we found that the
coefficients are solutions of�

�ðDÞ � 3ð11�DÞðD� 8Þ
D� 2

�
EðDÞ
ð0;0Þ ¼ 6��D�8;0; (6.2)

�
�ðDÞ � 5ð12�DÞðD� 7Þ

D� 2

�
EðDÞ
ð1;0Þ ¼

20�2

3
�D�7;0; (6.3)

�
�ðDÞ � 6ð14�DÞðD� 6Þ

D� 2

�
EðDÞ
ð0;1Þ ¼ �ðEðDÞ

ð0;0ÞÞ2 þ c�D�6;0;

(6.4)

where the Laplace operators are defined on the appropriate
moduli space, and c is a constant that remains to be
determined (see below). The overall scale of the Laplace
operators (and hence, the eigenvalues) of any one of the
above equations is convention-dependent,10 but the relative
normalisations in the three equations is convention-
independent
The coefficients satisfying (6.2), (6.3), and (6.4) were

discussed in detail in the body of this paper for various

10The formula for the R4 eigenvalues differs by a factor of 2
from Eq. (4.11) in [15], since our conventions differ.
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values of D. In particular, the inhomogeneous Kronecker
delta terms on the right-hand side of these equations con-
tribute in the ‘‘critical’’ dimensions, D ¼ Dc ¼ 4þ
6=L—the lowest dimensions in which the L-loop diagrams
of low-energy supergravity have logarithmic ultraviolet
divergences. These are L ¼ 1, Dc ¼ 8 for R4 [see
(3.25)] and L ¼ 2, Dc ¼ 7 for @4R4 [see (4.25)]. In addi-
tion, (6.4) gives the L ¼ 3 Dc ¼ 6 case for @6R4, which
was not discussed here but will be described in [32]. It is
also notable that the eigenvalues in all these cases vanish in
the critical dimensions. This structure implies that the
solutions have logarithmic terms characteristic of the ul-
traviolet divergences of maximal supergravity. The coef-
ficients of these logarithms, suitably normalized, should
equal the residues of the epsilon poles in dimensionally
regularized supergravity, up to convention-dependent nor-
malizations. This is straightforward to verify for the Dc ¼
8 and Dc ¼ 7 cases (L ¼ 1 and L ¼ 2, respectively),
where the analysis has been carried out in detail. The value
of the constant c in the Dc ¼ 6 case determines the coef-

ficient of the genus-three logarithmic term in Eð6Þ
ð0;1Þ. This

has to be consistent with the residue of the 	 pole in the
three-loop supergravity calculation in [36], which is pro-
portional to �ð3Þ. A preliminary study indicates this is the
case [32].

Although our considerations are for the most part lim-
ited to D � 6, in Appendix H 2 we argue that (6.2), (6.3),
and (6.4) probably apply for allD � 3. This follows simply
by requiring that the Eisenstein series continue to satisfy a
Laplace eigenvalue equation for all D � 6.

Having obtained a coefficient function in D dimensions,
all results in dimensions greater than D follow, after some
work, by expanding in the radius, r, of a compact dimen-
sion. Importantly, we find that potentially divergent terms
cancel in this process, once account is taken of terms of the
form ðr2sÞn, which diverge in the large-r limit in a manner
associated with the presence of nonanalytic thresholds of
the scattering amplitude. It appears to be very nontrivial
that whenever a coefficient function contains divergent
Eisenstein series the divergences cancel between different
terms. The presence of such cancelling divergences is
indicated by logarithms of the moduli that are signals of
logarithmic ultraviolet divergences in the low-energy field
theory.

As a detailed example of these results, consider the
SLð5Þ-invariant coefficients of the D ¼ 7 interactions,
which was the lowest dimension considered in full detail.
The solutions we obtained were as follows:

E ð7Þ
ð0;0Þ ¼ ESLð5Þ

½1000�;ð3=2Þ; (6.5)

E ð7Þ
ð1;0Þ ¼

1

2
ÊSLð5Þ

½1000�;ð5=2Þ þ
3

�3
ÊSLð5Þ

½0010�;ð5=2Þ; (6.6)

E ð7Þ
ð0;1Þ ¼ ESLð5Þ

½0010�;ð7=2Þ þ ESLð5Þ
ð0;1Þ : (6.7)

In particular, the coefficient Eð7Þ
ð1;0Þ multiplies @4R4, which

has a nonanalytic two-loop threshold in D ¼ 7 supergrav-
ity, accompanied by a logarithmic divergence. This is
manifested in the string expression in (6.6), which illus-
trates the cancellation of divergences mentioned earlier.
We have subtracted the constant log�ð1;0Þ from the epsilon

regularized Eð7Þ
ð1;0Þ, because this quantity is the scale factor

of the threshold contribution s2R4 logð�‘27s=�ð1;0ÞÞ. The
higher-dimensional interactions can be deduced by consid-
ering the sequence of decompactifications corresponding
to limit (i).
We can also make some comments about Eisenstein

series for the groups Gd ¼ Edþ1ðdþ1Þ with 4 � d � 7 (of

relevance to 3 � D � 6, where D ¼ 10� d). These are
more difficult to analyze by elementary methods, but by
making use of some relations derived by Miller [27] we
find the following in dimensions 3 � D � 6:
(i) The D ¼ 6 R4 interaction with symmetry SOð5; 5Þ

has a coefficient Eð6Þ
ð0;0Þ ¼ ESOð5;5Þ

½10000�;3=2, as described in

Sec. III D, but the analysis for 3 � D � 5 has not
been completed. However, the eigenvalues in (6.2)

coincide with those of the Eisenstein series EðDÞ
ð0;0Þ ¼

E
Gd

½1;0;...;0�;3=2, as can be seen directly from (B2) setting

 ¼ ½3=2; 0; . . . ; 0�. This strongly suggests that the

R4 coefficient is given by EðDÞ
ð0;0Þ ¼ EGd

½1;0;...;0�;3=2 for all
D � 3, as suggested in [15].

(ii) Although the D ¼ 6 @4R4 interaction has not been
determined in detail, by looking at the decompacti-
fication limit it can be inferred that it must be of the

form ÊSOð5;5Þ
½10000�;5=2 þ cÊSOð5;5Þ

½00001�;3, where our knowledge
of the second series is based on [27]. The value of c
is determined by the cancellation of the poles of
these series at s ¼ 5=2 and s ¼ 3, respectively.

(iii) The D ¼ 6 @6R4 interaction coefficient is
uniquely determined from (6.4) by matching the
different limits, in the same manner as in earlier
sections. In particular, this determines the constant
c, which arises as the coefficient of a genus-three
logarithmic term. This is of special interest since it
is proportional to the coefficient of the ultraviolet
divergence of three-loop maximal supergravity in
D ¼ 6 dimensions.

(iv) As argued above, in D ¼ 3, 4, 5, we expect that the
modular functions multiplying the @4R4 and @6R4

interactions are still determined by (6.3) and (6.4),
but these equations alone do not determine the
Dynkin labels of the possible Eisenstein series
with the same eigenvalue. These must be found
by matching with the different limits, as done in
this paper for the higher D cases. This is an issue
that we will return to using more powerful methods.

Finally, we remark that the analysis of interactions of
higher order that @6R4 raise interesting new issues. In
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particular, it was shown in [1] that the coefficient functions
for the @8R4, @10R4, and @12R4 interactions in D ¼ 9
dimensions consist of sums of modular functions with
different eigenvalues. The generalization to higher-rank
duality groups should be interesting but is beyond the
considerations of this paper.
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APPENDIX A: APPLICATIONS OF THE
UNFOLDING METHOD

This section will present some applications of the un-
folding method to the computation of integrals of modular
functions that are used in the main body of the paper. At
several points we need to evaluate integrals of the type

I½Es; f� ¼
Z
F SLð2;ZÞ

d2�

�22
Esð�Þfð�Þ; (A1)

where fð�Þ is a modular function, F SLð2Þ is a fundamental

domain for SLð2;ZÞ, and Esð�Þ is the Slð2;ZÞ Eisenstein
series defined by

E sð�Þ ¼ X
ðm;nÞ�ð0;0Þ

�s
2

jmþ n�j2s : (A2)

The integral (A1) can be evaluated by means of the stan-
dard unfolding method using the fact that Esð�Þ ¼
�ð2sÞP
2�1nSLð2;ZÞð=mð
 
 �ÞÞs, with

�1 ¼
�
� 1 n

0 1

� �
; n 2 Z

�

is an incomplete Poincaré series, leading to

I½Es; f� ¼ 2�ð2sÞ
Z 1

0

d�2
�2�s
2

Z 1=2

�ð1=2Þ
d�1fð�Þ: (A3)

A second type of integral that we need to consider is
integration of a modular function fð�Þ multiplied by a
Lattice sum,

I½�ðd;dÞ; f� ¼
Z
F SLð2;ZÞ

d2�

�22
�ðd;dÞfð�Þ; (A4)

where �ðd;dÞ is the (even) Lattice sum

�ðd;dÞ ¼
ffiffiffiffiffiffiffiffiffi
detg

p X
ðmi;niÞ2Zd�Zd

� exp

�
� �

�2
ðgij þ bijÞðmi � �niÞðmj � ��njÞ

�
¼ �d=22

X
ðpL;pRÞ2�ðd;dÞ

expð���2ðp2
L þ p2

RÞ

þ i��1ðp2
L � p2

RÞÞ; (A5)

where pL ¼ ðnþm 
 ðbþ gÞÞ 
 e� and pR ¼ ðnþm 

ðb� gÞÞ 
 e� with e defined by g ¼ eTe provide a basis
of the lattice �d so that T d ¼ Rd=ð2��dÞ, and e� is a
basis of the dual lattice.
This type of integral can be evaluated by the method of

orbits [11,15,29,37–39], as follows. The exponent in (A5)
can be rewritten as

1

�2
ðgþ bÞijðmi � �niÞðmj � ��njÞ

¼ 1

�2
1 � ��
� 	

MTðgþ bÞM 1
��

� �
; (A6)

where M is the d� 2-rectangular matrix with integer en-
tries

M ¼
m1 n1
..
. ..

.

md nd

0
BB@

1
CCA: (A7)

The SLð2;ZÞ action, � ! ða�þ bÞ=ðc�þ dÞ represented
by the matrix A 2 Slð2;ZÞ transforms the matrixM on the
right

M ! MA ¼
m1 n1
..
. ..

.

md nd

0
BB@

1
CCA d �c

�b a

� �
: (A8)

Therefore the integral can be decomposed into various
orbits with respect to the Slð2;ZÞ action. The orbits are (i)
the singular orbit that corresponds to mi ¼ ni ¼ 0 for all
i ¼ 1; . . . ; d; (ii) the degenerate orbit where all the sub-
determinants of the 2� 2 matrices defined by the ith and
jth line of the matrix M are vanishing dij ¼ minj �
mjni ¼ 0, which reduces to ni ¼ 0 for all 1 � i � d;
(iii) the nondegenerate orbit where at least one determinant
dij is nonzero. Up to relabeling, the representative of the
orbit can always be taken to have the form
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M0;k ¼

m1 j1
m2 j2
..
. ..

.

mk jk
0 nkþ1

..

. ..
.

0 nd

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; 0 � jk < mk; 2 � k � d: (A9)

Therefore the integral in (A4) can be expanded as

I½�ðd;dÞ; f� ¼
Z
F SLð2;ZÞ

d2�

�22
fð�Þ þ X

mi2Zdnf0g

Z 1

0

d�2
�22

e��ðmigijm
j=�2Þ

Z 1=2

�ð1=2Þ
d�1fð�Þ

þ 2
X

ðmi;niÞ2Zd�Zdnf0g2

Z
Cþ

d2�

�22
fð�Þe�ð�=�2ÞðgijþbijÞðmi��niÞðmj� ��njÞ: (A10)

We remark that the unfolding has been expressed in terms
of the matrix ðgþ bÞij, which implies that the last line of
(A10) contains exponentially suppressed effects of order
expð�gijÞ. If it is necessary to consider an expansion in
which exponentially suppressed terms are of order
expð�g�1

ij Þ, then one would apply the same formula start-
ing from the lattice expressed in terms of g�1 after a
complete Poisson resummation over all mi and ni integers
in (A5).

APPENDIX B: EISENSTEIN SERIES FOR SLðdÞ
The minimal parabolic Eisenstein series for a group G is

defined by [19]

E G
 ðgÞ ¼

X

2GðQÞ=BðQÞ

ehþ�;Hðg
Þi; (B1)

where h
; 
i is the inner product on the root system of G.
Any g 2 G can be uniquely decomposed according the
Iwasawa decomposition as g ¼ kan, where n 2 N in the
unipotent subgroup, a is in the maximal Abelian subgroup,
and h is in the maximal compact subgroup K. We have
identified a with expðHðgÞÞ. Finally, � is half the sum of
the positive roots and  is a vector in the weight space of
the Lie algebra g of G and B is a Borel subgroup of G.11

Eisenstein series are eigenfunctions of the invariant differ-
ential operators of KnG. In particular, they are eigenfunc-
tions of the Laplacian,12

�KnGEG
 ðgÞ ¼ 2ðh; i � h�; �iÞEG

 ðgÞ: (B2)

They are also eigenfunctions of higher-order Casimir op-
erators of G.
However, we will only need this general definition in

order to discuss the special low-rank cases of interest here.
For the most part, we are interested in Eisenstein series for
SLðdÞ, which can be analyzed relatively easily in terms of
their definitions as multiple sums (see, for example, [40]),
as we will see in this Appendix. Although we will not need
to explicitly consider the most general SLðdÞ series in this
paper, it is nevertheless illuminating to review their con-
struction since the maximal parabolic series can be ob-
tained from it. The following treatment is based closely on
notes by Stephen Miller and extensions of his thesis [25].
To begin, we consider H ¼ 
g
T , where 
 2 SLðd;ZÞ

and g is the SLðdÞ matrix parametrizing the coset space
SOðdÞnSLðdÞ. Letting Hk be the bottom right k� k
minor ofH the general minimal parabolic Eisenstein series
[27] associated with the minimal parabolic subgroup
Pð1; . . . ; 1Þ,

ESLðdÞ
½	1;...;	d�1�;s1;...;sd ¼

X

2SLðn;ZÞ=BðZÞ

Yd�1

k¼1

ðdetHkÞðd�kþ1�d�k�1Þ=2;

(B3)

which is a special case of the general formula (B1). Here,
we have set 2sk ¼ d�kþ1 � d�k � 1 for 1 � k � d� 1,
and 	k ¼ 1 if sk � 0 and 	k ¼ 0 if sk ¼ 0.
The SLðdÞ series that are studied in this paper are

(i) The series ESLðdÞ
½1;0d�2�;s given by d ¼ 1þ d�1 þ 2s

and for 2 � i � d� 1, we have d�i ¼ d�i�1 � 1.

(ii) The series ESLðdÞ
½0;1;0d�3�;s given by d ¼ 1þ d�1,

d�1 ¼ 1þ d�2 þ 2s and for 3 � i � d� 1, we
have d�i ¼ d�i�1 � 1.

(iii) The series ESLðdÞ
½0d�2;1�;s given by 2 ¼ 1þ 1 þ 2s

and for 1 � i � d� 2, we have d�i ¼ d�i�1 �
1.

11Because the function g ! expðhþ �;HðgÞiÞ is defined on
GðAÞ, where A is the ring of Adeles of Q, it is common to
consider the sum defined on the group of Adeles although this
will not be necessary for the considerations of this paper.
12Invariance under K implies that the eigenvalue of the
Laplacian is the same as the value of the second-order Casimir
of G h; i � h�; �i.
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(iv) Since H ¼ 
g
T , detHk ¼
m½i1 
 
 
mik�m½j1 
 
 
mjk�Qk

r¼1 girjr , where

(m1; . . . ; md) is the last row of 
 2 SLð2;ZÞ
Since detHd ¼ 1 in the definition (B3), one does not

need to introduce 2sd ¼ 1 � 0 � 1. However, in order to
make the symmetry more explicit, we introduce such
variables and consider the change of variables [40] sj ¼
zjþ1 � zj þ 1=2 for j � d and sd ¼ �zd þ 1=2, i.e., zi ¼
�P

d
j¼i sj þ d�iþ1

2 . The variables zi are related to the i

variables by d�i ¼ 2zi þ 1 for 1 � i � d. We define

�ðzÞ ¼ 1

�
2
P

d
j¼1

jzj
ESLðdÞ

½	1;...;	d�1�;s1;...;sd�1

Y
1�i<j�d

�

�
zj � zi þ 1

2

�
:

(B4)

Then,

E SLðdÞ
½	1;...;	d�1�;s1;...;sd�1

Y
1�i<j�d

�
zj � zi þ 1

2

�
(B5)

can be analytically continued to a holomorphic function for
all z 2 Cn and �ðzÞ satisfies the d! functional equations
[19]

�ð!ðzÞÞ ¼ �ðzÞ; (B6)

where !ðzÞ ¼ fz!ð1Þ; 
 
 
 ; z!ðdÞg is a permutation of the z
elements of the Weyl group of SLðdÞ.

The poles of the series ESLðdÞ
½	1;...;	d�1�;s1;...;sd�1

are located at

si ¼ 0 or si ¼ 1 and the residue at si ¼ 0 is given by the
Eisenstein series associated with the parabolic subgroup
Pi ¼ Pð1; . . . ; 1; 2; 1; . . . ; 1Þ evaluated at the value of
(s1; . . . ; si�1; siþ1; . . . ; sn). Furthermore, the residue at
si ¼ 1 is given by the Eisenstein series associated with
the parabolic subgroup Pi evaluated at the value of
the parameters (s1; . . . ; si�2; si�1 þ 1=2; siþ1 þ
1=2; siþ2; . . . ; sn) [40]. All the series discussed in the
main text and the following subsections can be deduced
by extracting residues of poles of the minimal parabolic
series (although we shall not exploit this procedure).

We will first present general features of the series

ESLðdÞ
½1;0d�2�;s and E

SLðdÞ
½0;1;0d�3�;s and then specialize to the particu-

lar cases of the SLð2Þ, SLð3Þ and SLð5Þ series that are of
specific interest in the main text.

1. The series ESLðdÞ
½1;0d�2�;s

The series ESLðdÞ
½1;0d�2�;s is defined by setting d ¼

1þ d�1 þ 2s and d�i ¼ d�i�1 � 1 for 2 � i �
d� 2. These Epstein series can be written in the usual
form as

E SLðdÞ
½1;0d�2�;s ¼

X
ðm1;...;mdÞ2Zdnð0;...;0Þ

1

ðmigijm
jÞs ; (B7)

where gij is the metric with unit determinant detg ¼ 1.

Since detg ¼ 1, the inverse metric g�1 ¼ adjðgÞT is given
by the transpose of the adjugate matrix. The elements of
the adjugate matrix are the determinant of the minors of
order d� 1 of the matrix g. If we introduce the dual
integers ni ¼ 	ij1


jd�1

mj1 
 
 
mjd�1 , we can express the

series ESLðdÞ
½0d�2;1�;s in terms of the inverse of g as

E SLðdÞ
½0d�2;1�;s ¼

X
ðn1;...;ndÞ2Zdnð0;...;0Þ

1

ðniðg�1ÞijnjÞs
: (B8)

Applying the general functional Eq. (B6), we find the
relation

�ðsÞ
�s

ESLðdÞ
½1;0d�2�;s ¼

�ðd2 � sÞ
�ðd=2Þ�s

ESLðdÞ
½0d�2;1�;ðd=2Þ�s

: (B9)

The Epstein series ESLðdÞ
½1;0d�2�;s has a single pole at s ¼ d=2

and converges absolutely for large values of <eðsÞ. It is
defined by meromorphic continuation for other values of s
[40]. These series do not have poles at the values s ¼ k=2
for 1 � k � d� 1, which agrees with the expectation
from the string theory arguments given in the main text.
Note particularly that it follows, using analytic continu-
ation and 2�ð0Þ ¼ �1, that

E SLðdÞ
½1;0d�2�;0 ¼ �1: (B10)

Using the integral representation of the series in (B7),

�ðsÞ
�s

ESLðdÞ
½1;0d�2�;s ¼

X
ðm1;...;mdÞ2Zdnf0g

Z 1

0

dt

t1þs
e�ð�=tÞmigijm

j
;

(B11)

and it follows that the constant term on the parabolic
subgroup P�d�1

¼ Pðd� 1; 1Þ with Levi component

GLð1Þ � SLðd� 1Þ characterized by the matrix of the

form g ¼ diagðr�ðd�1Þ=d~g; rðd�1Þ2=dÞ contains the explicit
perturbative termsZ
Pðd�1;1Þ

ESLðdÞ
½1;0d�2�;s ¼ rðsðd�1ÞÞ=dESLðd�1Þ

½1;0d�3�;s

þ 2�ðd�1Þ=2rððd�2sÞðd�1Þ2Þ=2d

� �ðs� d�1
2 Þ

�ðsÞ �ð2s� dþ 1Þ: (B12)

This implies by recursion that the Epstein series ESLðdÞ
½1;0d�2�;s

has a single pole at s ¼ d=2, so that

ESLðdÞ
½1;0d�2�;ðd=2Þþ	

¼ �d=2

�ðd2Þ	
þ ÊSLðdÞ

½1;0d�2�;ðd=2Þ

þ �d=2

�ðd2Þ
�

E � logð4Þ � �0ðd2Þ

�ðd2Þ
�
þOð	Þ;

(B13)
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where 
E is Euler’s Gamma constant and we introduced

the regularized series ÊSLðdÞ
½1;0d�2�;ðd=2Þ.

Using the expression for the SOðdÞnSLðdÞ Laplacian
given in [15], it is straightforward to verify that these series
satisfy the following Laplace equations:

�SOðdÞnSLðdÞE
SLðdÞ
½1;0d�1�;s ¼ s

�
s� d

2

�
2ðd� 1Þ

d
ESLðdÞ

½1;0d�1�;s;

(B14)

�SOðdÞnSLðdÞE
SLðdÞ
½0d�1;1�;s ¼ s

�
s� d

2

�
2ðd� 1Þ

d
ESLðdÞ

½0d�1;1�;s:

(B15)

These equations are particular cases of (B2) for the value of
the weight vector  specified by the Dynkin labels
[s; 0; . . . ; 0] and [0; . . . ; 0; s].

For s ¼ d=2, the eigenvalue vanishes and the Epstein
series satisfy the differential equation

�SOðdÞnSLðdÞÊ
SLðdÞ
½1;0d�1�;ðd=2Þ ¼

ðd� 1Þ�d=2

�ðd2Þ
: (B16)

2. The Series ESLðdÞ
½0;1;0d�3�;s

The series ESLðdÞ
½0;1;0d�3�;s is obtained by substituting the

values d ¼ 1þ d�1, d�1 ¼ 1þ d�2 þ 2s and, for
3 � i � d� 2, d�i ¼ d�i�1 � 1 in (B3). This gives

E SLðdÞ
½0;1;0d�3�;s ¼

X
1�k�d�1
½M0;k�

1

ðgijgkldildjkÞs
; (B17)

where dij ¼ minj �mjni, which can be interpreted as the
determinants of the order two minors of the rectangular
d� 2 matrix introduced in (A7). Setting nT ¼
ðn1; 
 
 
 ; ndÞ and mT ¼ ðm1; 
 
 
 ; mdÞ, we can introduce
the matrix

M ¼ ðn 
 g 
 nÞ ðn 
 g 
mÞ
ðn 
 g 
mÞ ðm 
 g 
mÞ

� �
; (B18)

such that

2 detM ¼ 2ððn 
 g 
 nÞðm 
 g 
mÞ � ðn 
 g 
mÞ2Þ
¼ gijgkld

ildjk: (B19)

The series in (B17) can then be represented as

E SLðdÞ
½0;1;0d�3�;s ¼

X
1�k�d�1
½M0;k�

1

ðdetMÞs : (B20)

We recognize here the conditions characterizing the non-
degenerate orbit when unfolding the lattice �ðd;dÞ in

Appendix A.
The expression (B20) is a generalization of the s ¼ 2

case that arises in the evaluation of the two-loop contribu-
tion to four-supergraviton scattering in compactified su-

pergravity, which is evaluated in (G20). This motivates the
introduction of the following integral representation when
s >�1:

Ids ð�Þ ¼
Z �

0
dVV2s�1

Z
F SLð2;ZÞ

d2�

�22

� X
ðmi;niÞ2Zd�Zd

e�Vð�=�2Þgijðmi��niÞðmj� ��njÞ; (B21)

where F SLð2;ZÞ is a fundamental domain for SLð2;ZÞ, so
modular invariance is explicit. Evaluating this integral with
the unfolding method of Appendix A, the finite part that
arises from the nondegenerate orbit leads to the
�-independent contribution

Ids ð�Þj�0 ¼ 2
Z 1

0
dVV2s�1

Z
Cþ

d2�

�22

� X
1�k�d�1
½M0;k�

e�ð�=�2ÞVgijðmi��niÞðmj� ��njÞ

¼ 2
X

1�k�d�1
½M0;k�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
detM

p
Z 1

0
dVV2s�2e�2�V

ffiffiffiffiffiffiffiffiffi
detM

p

¼ 2
�ð2s� 1Þ
ð2�Þ2s�1

X
1�k�d�1
½M0;k�

1

ðdetMÞs

¼ 2
�ð2s� 1Þ
ð2�Þ2s�1

ESLðdÞ
½0;1;0d�3�;s: (B22)

Therefore

Ids ð�Þ ¼ 2�ð2Þ�
2s

2s
þ 1

�

�2s�1

2s� 1
ESLðdÞ

½1;0d�2�;1

þ 2
�ð2s� 1Þ
ð2�Þ2s�1

ESLðdÞ
½0;1;0d�3�;s; (B23)

where the series ESLðdÞ
½1;0d�2�;1 is finite for d > 2 and is defined

by analytic continuation from the region where <eðsÞ>
d=2.
For the d ¼ 3 case, the normalization of the series

ESLðdÞ
½0;1;0d�3�;s is different and we have

I3s ð�Þ ¼ 2�ð2Þ�
2s

2s
þ 1

�

�2s�1

2s� 1
ESLð3Þ

½10�;1

þ 2
�ð2s� 1Þ�ð2s� 1Þ

ð2�Þ2s�1
ESLð3Þ

½01�;s: (B24)

In order to evaluate the constant term on the P�d�1
¼

Pðd� 1; 1Þ parabolic subgroup characterized by the

matrix of the form g ¼ diagðr�ðd�1Þ=dgd�1; r
ðd�1Þ2=dÞ;

it is useful to split the lattice sum in (B21) into the

product of two lattice factors, �ðd;dÞ ¼
�ð1;1Þðrðd�1Þ2=dÞ�ðd�1;d�1Þðr�ðd�1Þ=dgd�1Þ. Unfolding the

�ð1;1Þ factor [37] leads to the constant term
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2�ð2s� 1Þ
�2s�1

Z
Pðd�1;1Þ

ESLðdÞ
½0;1;0d�3�;s

¼ 2�ð2s� 1Þ
�2s�1

ESLðd�1Þ
½0;1;0d�4�;s þ

Z 1

0
dVV2s�1

Z 1

0

d�2
�22

� X
m2Znf0g

e��rððd�1Þ2Þ=dðVm2=tÞ Z 1=2

�ð1=2Þ
d�1�ðd�1;d�1Þ: (B25)

The �1 integral projects on the sector p 
 w ¼ 0 where p
and w are the Kaluza-Klein and winding modes of the
lattice. The piece independent of � arises13 from the
zero winding sector w2 ¼ 0, leading to14

Z
Pðd�1;1Þ

ESLðdÞ
½0;1;0d�3�;s ¼ rð2sðd�1ÞÞ=dESLðd�1Þ

½0;1;0d�4�;s

þ rððd�2sÞðd�2Þðd�1Þ=2dÞ�ðd=2Þ�1

� �ðsþ 1� d
2Þ

�ðsÞ �ð2sþ 2� dÞ

� ESLðd�1Þ
½1;0d�3�;s�ð1=2Þ: (B26)

We note, in particular, the d ¼ 4 case, with our normal-
izations for the SLð3Þ series, we find
Z
Pð3;1Þ

ESLð4Þ
½010�;s ¼ r3s=2�ð2s� 1ÞESLð3Þ

½01�;s

þ rð3ð2�sÞÞ=2�
�ðs� 1Þ
�ðsÞ �ð2s� 2Þ

�ESLð3Þ
½10�;s�ð1=2Þ; (B27)

which is used in various places in this paper.

Therefore the series ESLðdÞ
½0;1;0d�3�;s has single pole at s ¼

d=2 so that

ESLðdÞ
½0;1;0d�3�;ðd=2Þþ	

¼ ð2�Þd
24�ðd� 1Þ	þ ÊSLðdÞ

½0;1;0d�3�;ðd=2Þ

þ ð2�Þd
24�ðd� 1Þ

�

E þ logð2�Þ

þ 12� 0ð�1Þ � 1� �0ðd� 1Þ
�ðd� 1Þ

�
þOð	Þ;
(B28)

where we introduced the regularized series ÊSLðdÞ
½0;1;0d�3�;ðd=2Þ

and similarly

ESLðdÞ
½0d�3;1;0�;ðd=2Þþ	

¼ ð2�Þd
24�ðd� 1Þ	þ ÊSLðdÞ

½0d�3;1;0�;ðd=2Þ

þ ð2�Þd
12�ðd� 1Þ

�

E þ logð2�Þ

þ 12� 0ð�1Þ � 1� �0ðd� 1Þ
�ðd� 1Þ

�
þOð	Þ:
(B29)

The antisymmetric rank-two dij representation can be
converted into the antisymmetric rank-(d� 2) representa-
tion, dr1


rd�2

¼ 	ijr1


rd�2
dij representation, so that

2 detM ¼ gijgkl	
ikr1


rd�2	jls1


sd�2dr1


rd�2

ds1


sd�2
:

(B30)

Since gijgkl � gikgjl are the rank-two minors of the matrix

g, it follows (for matrices with detg ¼ 1) that
gijgkl	

ikr1


rd�2	jls1


sd�2 are the rank d� 2 minors of

g�1. Therefore

4 detM ¼ ðd� 2Þ!Yd�2

i¼1

ðg�1Þrisidr1


rd�2
ds1


sd�2

: (B31)

This leads to the series with label [0d�3; 1; 0] evaluated for
the metric g�1. By Poisson resummation this sum can be
brought back to a sum over g, giving the following func-
tional equation, which is a particular case of (B6)

�ðsÞ�ðs� 1
2Þ

�2s�ð1=2Þ ESLðdÞ
½0;1;0d�3�;s ¼

�ðd2 � sÞ�ðd�1
2 � sÞ

�d�2s�ð1=2Þ

� ESLðdÞ
½0d�3;1;0�;ðd=2Þ�s

; (B32)

where use has been made of the replicating formula

2�ð2s� 1Þ=ð2�Þ2s�1 ¼ �ðs� 1=2Þ�ðsÞ=�2s�3=2.
Using the expression for the SOðdÞnSLðdÞ Laplacian

given in [15], it is easy to verify that the integral repre-
sentation implies

�SOðdÞnSLðdÞE
SLðdÞ
½0;1;0d�3�;s ¼ s

�
s� d

2

�
4ðd� 2Þ

d
ESLðdÞ

½0;1;0d�3�;s;

(B33)

�SOðdÞnSLðdÞE
SLðdÞ
½0d�3;1;0�;s ¼ s

�
s� d

2

�
4ðd� 2Þ

d
ESLðdÞ

½0d�3;1;0�;s:

(B34)

These equations are particular cases of (B2) for the value of
the weight vector  specified by the Dynkin labels
[0; s; 0; . . . ; 0] and [0; . . . ; 0; s; 0].
For the value s ¼ d=2, this gives

�SOðdÞnSLðdÞÊ
SLðdÞ
½0;1;0d�2�;ðd=2Þ ¼

ð2�Þd
12�ðd� 2Þ : (B35)

13See Appendix B 5 a for detailed example on the SLð5Þ series.
14Conjecture 5 of [15] states that �ESLðdÞ

½0;1;0d�3�;1=2 ¼ ESLðdÞ
½1;0d�2�;1.

Comparison of (B12) and (B26) implies that ESLðdÞ
½1;0d�2�;1 ¼�2�ESLðdÞ

½0;1;0d�2�;1=2 for all values of d � 4.
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3. The SLð2Þ Eisenstein series

Nonholomorphic SLð2Þ Eisenstein series are defined by

E sð�Þ ¼ X
ðm;nÞ�ð0;0Þ

�s
2

jmþ n�j2s ; (B36)

with � ¼ �1 þ i�2 2 h ¼ f�2 > 0;�1 2 Rg in the
complex upper-half plane. The modular function

~E sð�Þ ¼ �ðsÞ
�s Esð�Þ (B37)

has an analytic continuation for all complex s and has
simple poles at s ¼ 0 and s ¼ 1. It satisfies the functional

equation ~Esð�Þ ¼ ~E1�sð�Þ which is a particular case of
the general functional equation satisfied by the Eisenstein
series (B6).

The Fourier expansion with respect to �1 is given by

Esð�Þ ¼ 2�ð2sÞ�s
2 þ 2

ffiffiffiffi
�

p �ðs� 1
2Þ

�ðsÞ �ð2s� 1Þ�1�s
2

þ 2�s

�ðsÞ�
1=2
2

X
n�0

jnjs�ð1=2Þ X
0<d

n=d2N

1

d2s�1

� Ks�ð1=2Þð2�jnj�2Þe2i�n�1 ; (B38)

where KsðxÞ is a modified Bessel function of the second-
kind. These series are eigenfunctions of the Laplacian,

�� ¼ �2
2ð@2�1

þ @2�2
Þ ¼ 4�2

2@� �@ ��; (B39)

��Esð�Þ ¼ sðs� 1ÞEsð�Þ: (B40)

Eisenstein series evaluated at special values

(i) The SLð2Þ Eisenstein series has a pole at s ¼ 1.
Setting s ¼ 1þ 	 and expanding for small 	 gives

E1þ	ðzÞ ¼ �

	
� � logð�2j�ð�Þj4Þ

þ 2�ð
E � logð2ÞÞ þOð	Þ; (B41)

where 
E is Euler’s constant. The regulated series,

Ê1ð�Þ, is defined by subtracting the pole and a
constant to give

Ê 1ð�Þ ¼ �� logð�2j�ð�Þj4Þ; (B42)

where �ð�Þ is the Dedekind function

�ð�Þ ¼ ei��=12
Y1
n¼1

ð1� e2i�n�Þ: (B43)

Since �E1þ	ð�Þ ¼ 	ð1þ 	ÞE1þ	ð�Þ, for any 	 it
follows that

�Ê1 ¼ �: (B44)

(ii) The series with s ¼ 1=2 appears to diverge, but is
finite when defined in terms of a limit,

E 1=2ð�Þ ¼ lim
	!0

Eð1=2Þþ	ð�Þ

¼ 2�1=2
2 ð
Eþ logð�2=ð4�ÞÞ

þ2�1=2
2

X
ðm;nÞ2Z2

K0ð2�jmnj�2Þe2i�mn�1 :

(B45)

(iii) The series with s ¼ 0 is defined by analytic con-
tinuation to have the finite value

E 	ð�Þ ¼ �1þ 	ð��1Ê1 � 2 logð2�ÞÞ þOð	2Þ;
(B46)

which is compatible with functional equation of

Eisenstein series ~E1þ	ð�Þ ¼ ~E�	ð�Þ.

4. SLð3Þ Eisenstein series

For the d ¼ 3 case, it is useful to introduce the integers
pi ¼ 	ijkd

jk, where 	ijk is the completely antisymmetric

symbol (	123 ¼ 1), and (B19) becomes

2 detM ¼ 	ilm	jkngijgklpmpn ¼ ðg�1Þmnpmpn; (B47)

which uses the fact that 	ilm	jkngijgkl are the elements of

the adjugate of the matrix gij and that g�1 ¼
ðdetgÞ�1adjðgÞT , where detg ¼ 1. Therefore the definition
(B20) gives the functional relation between Eisenstein
series

�ðsÞ
�s

ESLð3Þ
½01�;s ¼

�ðð3=2Þ � sÞ
�ð3=2Þ�s

ESLð3Þ
½10�;ð3=2Þ�s: (B48)

1. Fourier expansions

Using the parametrization of SOð3ÞnSLð3Þ given in the

main text, the Eisenstein series ESLð3Þ
½10�;s is defined by

E SLð3Þ
½10�;s ¼

X
ðm1;m2;m3Þ�ð0;0;0Þ

��ðs=3Þ
2

ðjm1þm2�þm3Bj2
�2

þ m2
3

�2
Þs
; (B49)

where ��1
2 ¼ �2T

2
2 is the inverse volume of the two torus

of compactification defined in (2.17) expressed in terms of
the string variables, and B ¼ BRR þ�BNS is the usual
combination of the Ramond-Ramond (RR) and Neveu-
Schwarz (NS) B field (in the construction from the L ¼
1 and L ¼ 2 supergravity loops, there is no dependence on
the 3-form of 11-dimensional supergravity, therefore we
have to set B ¼ 0).
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The SOð3ÞnSLð3Þ Laplacian is given by [11]

�SOð3ÞnSLð3Þ ¼ 4�2
2@� �@ �� þ j@BNS

��@BRR
j2

�2�2

þ 3@�2
ð�2

2@�2
Þ; (B50)

which gives

�SOð3ÞnSLð3ÞE
SLð3Þ
½10�;s ¼

2sð2s� 3Þ
3

ESLð3Þ
½10�;s: (B51)

For s � 3=2, these Eisenstein series can be expanded
using T�2

2 ¼ �2�2 [11–13]:

E SLð3Þ
½10�;s ¼ ��ðs=3Þ

2 Esð�Þ þ 2�
�ðs� 1Þ
�ðsÞ �ð2s� 2Þ�ð2s�3Þ=3

2 þ 2�s

�ðsÞ�
ðs�3Þ=6
2 �ð1�sÞ=2

2

X
ðm1 ;m2Þ�ð0;0Þ

m3�0

jm2 �m1�

m3

js�1

� Ks�1ð2�jm3ðm2 �m1�ÞjT2Þe2i�m3ðm1BRRþm2BNSÞ: (B52)

Using the variables (y8; T) (where y
�1
8 ¼ �2

2T2), this can be rewritten as

ESLð3Þ
½10�;s ¼ 2�ð2sÞy�ð2s=3Þ

8 þ ffiffiffiffi
�

p �ðs� 1
2Þ

�ðsÞ yð2s�3Þ=6
8 Es�ð1=2ÞðTÞ þ 2�s

�ðsÞT
ð2s�1Þ=4
2 y�ð2sþ3Þ=12

8

X
m1�0;m2�0









m1

m2









s�ð1=2Þ

� Ks�ð1=2Þð2��2jm1m2jÞe2i�m1m2�1 þ 2�s

�ðsÞ
ffiffiffiffiffi
T2

p
yð2s�3Þ=6
8

X
ðm1 ;m2Þ�ð0;0Þ

m3�0









m2 �m1�

m3









s�1

� Ks�1ð2�jm3ðm2 �m1�ÞjT2Þe2i�m3ðm1BRRþm2BNSÞ: (B53)

Series evaluated at special values.—
(i) For s ¼ 3=2, the expression has a logarithmic diver-

gence associated with the one-loop divergence in
eight dimensions discussed in the main text. The
expression needs to be regulated, leading [in the
(�2;�) variables] to

ESLð3Þ
½10�;ð3=2Þþ	 ¼

2�

	
þ 4�ð
E � 1Þ þ ÊSLð3Þ

½10�;ð3=2Þ

þOð	Þ; (B54)

where the regularized series ÊSLð3Þ
½10�;ð3=2Þ can be ex-

panded in limit (i) as

Ê
SLð3Þ
½10�;ð3=2Þ ¼ ��ð1=2Þ

2 E3=2ð�Þ þ 4�

3
logð�2Þ

þOðe��1=2
2

��ð1=2Þ
2 ; e���ð1=2Þ

2
��ð1=2Þ
2 Þ

(B55)

or in limit (ii) as

Ê
SLð3Þ
½10�;ð3=2Þ ¼

2�ð3Þ
y8

þ 2Ê1ðTÞ þ 2�

3
logðy8Þ

þOðe�ðT2y8Þ�ð1=2Þ
; e�T1=2

2
y�ð1=2Þ
8 Þ: (B56)

Since

�ESLð3Þ
½10�;ð3=2Þþ	 ¼

2

3
	ð3þ 2	ÞESLð3Þ

½10�;ð3=2Þþ	; (B57)

we deduce that

�ÊSLð3Þ
½10�;ð3=2Þ ¼ 4�: (B58)

(ii) For s ¼ 1, the expression using the (�; �2) variables
in (B52) appears to diverge because it involves
E1ð�Þ and �ðs� 1Þ and so seems to have a pole
in s. But the pole cancels between the first two terms
and no explicit subtraction is needed. This is ob-
vious from the expansion given in (B53) where no
divergences are met at s ¼ 1. The resulting expres-
sion is therefore

ESLð3Þ
½10�;1 ¼ lim

	!0
ESLð3Þ

½10�;1þ	

¼ 2�ð2Þy�ð2=3Þ
8 þ y�ð1=6Þ

8 E1=2ðTÞ
þOðe�

ffiffiffiffiffiffiffiffiffiffi
�2=�2

p
; e�1=

ffiffiffiffiffiffiffiffiffi
�2�2

p
Þ

¼ ��ð1=3Þ
2 ðÊ1ð�Þ � � logð�2Þ

þ 2�ð
E � logð4�ÞÞÞ
þOðe�ðT2y8Þ�ð1=2Þ

; e�T1=2
2

y8�ð1=2Þ Þ; (B59)

where we have used the expression for E1=2ðTÞ
given in (B45) Using the duality relation between
Eisenstein series, this gives a definition of

�ESLð3Þ
½01�;ð1=2Þ ¼ ESLð3Þ

½10�;1.
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(iii) For s ¼ 1=2, we get

ESLð3Þ
½10�;ð1=2Þ ¼ lim

	!0
ESLð3Þ

½10�;1þ	

¼ ��ð1=6Þ
2 ESLð2Þ

1=2 ð�Þ þ �

3
��ð2=3Þ
2

þOðe�
ffiffiffiffiffiffiffiffiffiffi
�2=�2

p
; e�1=

ffiffiffiffiffiffiffiffiffi
�2�2

p
Þ

¼ y�ð1=3Þ
8

�
1

�
Ê1ðTÞ � logðy8Þ

þ 2ð
E � logð4�ÞÞ
�

þOðe�ðT2y8Þ�ð1=2Þ
; e�T1=2

2
y�ð1=2Þ
8 Þ: (B60)

The two set of Eqs. (B59) and (B60) are compatible

with the functional equation ESLð3Þ
½10�;1 ¼ �ESLð3Þ

½01�;1=2.

5. SLð5Þ Eisenstein series

In the following subsections we will determine the en-

tries in the matrix ASLð5Þ
s ðu; v; rÞ defined in (2.10). Recall

that the columns of the matrix are labeled by u, which
specifies the root, �u, which labels which of the si’s is
nonzero. The series associated with a particular u is

ESLð5Þ
½0u�1;1;04�u�;s. The rows, labeled by v, specify the node

�v that defines a particular parabolic subgroup of the SLð5Þ
series.

The detailed discussion of each entry will be given in
Sec. B 5 a and B 5 b. Since this is fairly complicated, we
will first summarize the results. First note a simple con-
sequence of the symmetries of the Weyl group is the set of
relations

ASLð5Þ
s ðu; 1; rÞ ¼ �2s�ð5=2Þ �ð52 � sÞ

�ðsÞ ASLð5Þ
ð5=2Þ�sðu; 4; rÞ

ASLð5Þ
s ðu; 2; rÞ ¼ �4s�5 �ðð5=2Þ � sÞ�ð2� sÞ

�ðs� 1
2Þ�ðsÞ

� ASLð5Þ
ð5=2Þ�sðu; 3; rÞ: (B61)

The explicit expressions for the entries are as follows:

ASLð5Þ
s ðu; v; rÞ ¼

ðB:76Þ ðB:91Þ ðB:92Þ ðB:80Þ
ðB:97Þ ðB:109Þ ðB:111Þ ðB:100Þ
ðB:98Þ ðB:110Þ ðB:112Þ ðB:101Þ
ðB:78Þ ðB:89Þ ðB:93Þ ðB:82Þ

0
BBB@

1
CCCA;

(B62)

where the entries number the equations where the constant
terms can be found.

Constant terms of Eisenstein series at the special values
in main text

Since we are interested in the values of the constant
terms at particular values of s, we will here summarize
properties of the entries in (B62) at those values.

(i) The SLð5Þ series has a single pole at s ¼ 5=2.
Explicitly, setting s ¼ 5=2þ 	 gives

ESLð5Þ
½1000�;ð5=2Þþ	 ¼

4�2

3	
þ ÊSLð5Þ

½1000�;ð5=2Þ

þ 8�2

9
ð3
E � 4Þ þOð	Þ: (B63)

The constant terms of ÊSLð5Þ
½1000�;ð5=2Þ for the parabolic

subgroups considered in the main text areZ
Pð1;4Þ

ÊSLð5Þ
½1000�;ð5=2Þ ¼ 2r8�ð5Þ þ 4

3
ÊSLð4Þ

½100�;2

� 16�2

15
logðrÞ; (B64)

Z
Pð4;1Þ

ÊSLð5Þ
½1000�;ð5=2Þ ¼ r2ESLð4Þ

½100�;ð5=2Þ �
64�2

15
logðrÞ;
(B65)

Z
Pð3;2Þ

ÊSLð5Þ
½1000�;ð5=2Þ ¼ r4ESLð3Þ

½10�;ð5=2Þ þ
4�

3
ÊSLð2Þ

½1�;1

� 16�2

5
logðrÞ: (B66)

The series ESLð5Þ
½0010�;s also has a pole when s ¼ 5=2þ

	,

E SLð5Þ
½0010�;ð5=2Þþ	 ¼

2�5

9	
þ 2�3

27
ð6�2
E � 11�2

þ 36� 0ð2ÞÞ þ ÊSLð5Þ
½0010�;ð5=2Þ þOð	Þ;

(B67)

and the relevant constant terms are

Z
Pð1;4Þ

ÊSLð5Þ
½0010�;ð5=2Þ ¼ r4ESLð4Þ

½010�;ð5=2Þ þ
2�3

9
ÊSLð4Þ

½001�;2

� 8�5

15
logðrÞ; (B68)

Z
Pð4;1Þ

ÊSLð5Þ
½0010�;ð5=2Þ ¼ �ð4Þr6ESLð4Þ

½001�;ð5=2Þ þ
2�

3
ÊSLð4Þ

½010�;2

� 16�5

45
logðrÞ; (B69)

Z
Pð3;2Þ

ÊSLð5Þ
½0010�;ð5=2Þ ¼ 10�ð4ÞÊSLð3Þ

½10�;ð3=2Þ �
32�5

45
logðrÞ

þ 2r4

3
ESLð3Þ

½01�;2E
SLð2Þ
½1�;2 þ 2�ð4Þr12:

(B70)

(ii) The SLð5Þ series ESLð5Þ
½1000�;s is finite when s ¼ 3=2.

The constant terms of interest to us are given by
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Z
Pð1;4Þ

ESLð5Þ
½1000�;ð3=2Þ ¼ r6=5ESLð4Þ

½001�;ð3=2Þ þ 4�ð2Þr16=5;
(B71)

Z
Pð3;2Þ

ESLð5Þ
½1000�;ð3=2Þ ¼ r12=5ðÊSLð3Þ

3=2 þ 2ÊSLð2Þ
½1�;1

þ 8� logðrÞÞ: (B72)

Furthermore, using the functional equation for the

SLð3Þ series (B48) ESLð3Þ
½01�;1 ¼ �ESLð3Þ

½10�;1=2, one sees

that ESLð3Þ
½10�;1=2 also contains a logarithmic term in its

Pð2; 3Þ constant term.

a. Parabolic subgroups Pð1; 4Þ and Pð4; 1Þ
For the maximal parabolic subgroup P�1

¼ Pð1; 4Þ ob-
tained by deleting the first node of the Dynkin diagram in

Fig. 1 (iii) the matrix gij has the block diagonal form

g5 ¼ r�ð16=5Þ 0
0 r4=5g4

 !
; (B73)

where g4 is a 4� 4 square matrix of unit determinant so
that detg5 ¼ 1. The parabolic subgroup P�4

¼ Pð4; 1Þ is
obtained by deleting the last node of the Dynkin diagram in
Fig. 1 (iii) and is characterized by the matrix of the form

g5 ¼ r�ð4=5Þg4 0
0 r16=5

 !
: (B74)

For these parabolic subgroups, the Levi subgroup is
GLð1Þ � SLð4Þ.
Constant term of the seriesESLð5Þ

½1000�;sThe constant term for

the parabolic Pð1; 4Þ is given by

�ðsÞ
�s

Z
Pð1;4Þ

ESLð5Þ
½1000�;s ¼

X
ðm;n1;...;n4Þ2Z5nfð0;...;0Þg

Z 1

0

dt

t1þs
exp

�
��

t
½m2r�ð16=5Þ þ r4=5nT 
 g4 
 n�

�
: (B75)

Performing a Poisson resummation on m, one gets

Z
Pð1;4Þ

ESLð5Þ
½1000�;s ¼ 2�ð2sÞr16s=5 þ ffiffiffiffi

�
p �ðs� 1

2Þ
�ðsÞ r2�ð4s=5ÞESLð4Þ

½100�;s�ð1=5Þ; (B76)

which gives the element ASLð5Þ
s ð1; 1; rÞ of the ASLð5Þ

s matrix in (B62).
The constant term in the Pð4; 1Þ parabolic takes the form

�ðsÞ
�s

Z
Pð4;1Þ

ESLð5Þ
½1000�;s ¼

X
ðm;n1;...;n4Þ2Z5nfð0;...;0Þg

Z 1

0

dt

t1þs
exp

�
��

t
½m2r16=5 þ r�ð4=5ÞnT 
 g4 
 n�

�
: (B77)

Performing the Poisson resummation on the integers (n1; . . . ; n4) givesZ
Pð4;1Þ

ESLð5Þ
½1000�;s ¼ r4s=5ESLð4Þ

½100�;s þ 2�2�ð2s� 4Þ�ðs� 2Þ
�ðsÞ r8�ð16s=5Þ: (B78)

This gives the element ASLð5Þ
s ð4; 1; rÞ of the ASLð5Þ

s matrix in (B62).

Constant term of the series ESLð5Þ
½0001�;sThe constant terms for the parabolic Pð1; 4Þ is given by

�ðsÞ
�s

Z
Pð1;4Þ

ESLð5Þ
½0001�;s ¼

X
ðm;n1;...;n4Þ2Z5nfð0;...;0Þg

Z 1

0

dt

t1þs
exp

�
��

t
½m2r16=5 þ r�ð4=5ÞnT 
 g�1

4 
 n�
�
: (B79)

Performing a Poisson resummation on (n1; . . . ; n4) givesZ
Pð1;4Þ

ESLð5Þ
½0001�;s ¼ r4s=5ESLð4Þ

½001�;s þ 2�2�ð2s� 4Þ�ðs� 2Þ
�ðsÞ r8�ð16s=5Þ; (B80)

which gives the entry ASLð5Þ
s ð1; 4; rÞ of the ASLð5Þ

s matrix in (B62).
The constant term in the Pð4; 1Þ takes the form

�ðsÞ
�s

Z
Pð4;1Þ

ESLð5Þ
½0001�;s ¼

X
ðm;n1;...;n4Þ2Z5nfð0;...;0Þg

Z 1

0

dt

t1þs
exp

�
��

t
½m2r�ð16=5Þ þ r4=5nT 
 g�1

4 
 n�
�
: (B81)

Performing the Poisson resummation on m gives
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Z
Pð4;1Þ

ESLð5Þ
½0001�;s ¼ 2�ð2sÞr16s=5 þ ffiffiffiffi

�
p �ðs� 1

2Þ
�ðsÞ r2�ð4s=5ÞESLð4Þ

½001�;s�ð1=2Þ; (B82)

which gives the entry ASLð5Þ
s ð4; 4; rÞ of the ASLð5Þ

s matrix in (B62).

Constant term of the series ESLð5Þ
½0100�;sTo evaluate the constant terms for the parabolic Pð4; 1Þ specified by the metric in

(B74), we will write the lattice sum in (B21) in the factorized form

�Pð4;1Þ ¼
X

ðp;qÞ2Z2

e��Vr16=5ðjpþq�j2Þ=�2
X

ðm;nÞ2Z8

e��Vr�ð4=5Þððm��nÞT 
g4
ðm� ��nÞÞ=�2 : (B83)

Starting from the representation in (B21) and unfolding the �ð1;1Þ lattice gives

Ið4;1Þs ð�Þ ¼ I4s ð�Þ þ
Z �

0
dVV2s�1

Z 1

0

d�2
�22

X
m�0

e��r16=5Vðm2=�2Þ
Z 1=2

�ð1=2Þ
d�1�ð4;4Þ: (B84)

We are particularly interested in the finite part (order �0)
of this integral, which is given by

Isð�Þð4;1Þj�0 ¼ 2
�ð2s� 1Þ
ð2�Þ2s�1

Z
Pð4;1Þ

ESLð5Þ
½0100�;s: (B85)

The finite part of the first term on the right-hand-side of
(B84) is given by

Isð�Þ4j�0 ¼ 2r8s=5
�ð2s� 1Þ
ð2�Þ2s�1

ESLð4Þ
½010�;s: (B86)

To analyze the second term, we perform a Poisson resum-
mation on half of the integers in the lattice �ð4;4Þ giving the
representation in terms of Kaluza-Klein momenta p and
windings w,

�ð4;4Þ ¼
�
�2r

4=5

V

�
2 X
ðp;wÞ2�ð2;2Þ

e���2ðVr�ð4=5Þp2þV�1r4=5w2Þþ2i��1p
w:

(B87)

The integral over �1 projects onto the subspace p 
 w ¼ 0,
where p2 ¼ mT 
 g4 
m and w2 ¼ nT 
 g�1

4 
 n. This is
solved by either p ¼ 0 or w ¼ 0. So the finite part of
the second term in (B84) is given by the contribution
with w ¼ 0,

Isð�Þð4;1Þj�0 ¼ r8=5
Z 1

0
dVV2s�3

Z 1

0
dt

� X
m�0
p2Z4

e��Vr16=5ðm2=tÞ��tðVp2=r4=5Þ

¼ r6�ð12s=5Þ�ð2s� 3Þ�ðs�
3
2Þ�ðs� 1

2Þ
�2s�2

�ESLð4Þ
½100�;s�ð1=2Þ: (B88)

Thus, the constant term for the parabolic Pð4; 1Þ is

Z
Pð4;1Þ

ESLð5Þ
½0100�;s ¼ r8s=5ESLð4Þ

½010�;s þ r6�ð12s=5Þ�3=2�ð2s� 3Þ

� �ðs� 3
2Þ

�ðsÞ ESLð4Þ
½100�;s�ð1=2Þ; (B89)

which gives the entry ASLð5Þ
s ð4; 2; rÞ of the ASLð5Þ

s matrix in
(B62).
For the parabolic subgroup Pð1; 4Þ characterized by the

metric in (B73), the lattice sum takes the form

�Pð1;4Þ ¼
X

ðp;qÞ2Z2

e��Vr�ð16=5Þðjpþq�j2Þ=�2

� X
ðm;nÞ2Z8

e��Vr4=5ððm��nÞT 
g4
ðm� ��nÞÞ=�2 : (B90)

Performing a complete Poisson resummation on the �ð1;1Þ
lattice and then using the same manipulations as before
leads to the expression for the constant termZ

Pð1;4Þ
ESLð5Þ

½0100�;s ¼ �ð2s� 1Þr12s=5ESLð4Þ
½001�;s

þ �r4�ð8s=5Þ �ðs� 1Þ
�ðsÞ ESLð4Þ

½010�;s�ð1=2Þ;

(B91)

which gives the entry ASLð5Þ
s ð1; 2; rÞ of the ASLð5Þ

s matrix in
(B62).

Constant term of the series ESLð5Þ
½0010�;sThis series is defined

in Sec. B 2, as ESLð5Þ
½0100�;sðg�1

5 Þ, which is the same series as

discussed in the previous paragraphs but evaluated with the
inverse metric. Applying the previous results it follows that
the constant term on the parabolic subgroup Pð1; 4Þ is
given byZ
Pð1;4Þ

ESLð5Þ
½0010�;s ¼ r8s=5ESLð4Þ

½010�;s þ r6�ð12s=5Þ�3=2�ð2s� 3Þ

� �ðs� 3
2Þ

�ðsÞ ESLð4Þ
½001�;s�ð1=2Þ; (B92)
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which gives the entry ASLð5Þ
s ð1; 3; rÞ of the ASLð5Þ

s matrix in
(B62).

On the parabolic subgroup Pð4; 1Þ the constant term is
given byZ

Pð4;1Þ
ESLð5Þ

½0010�;s ¼ �ð2s� 1Þr12s=5ESLð4Þ
½001�;s

þ �r4�ð8s=5Þ �ðs� 1Þ
�ðsÞ ESLð4Þ

½010�;s�ð1=2Þ;

(B93)

which gives the entry ASLð5Þ
s ð4; 3; rÞ of the ASLð5Þ

s matrix in
(B62).

b. Parabolic subgroup Pð2; 3Þ and Pð3; 2Þ
The maximal parabolic subgroup P�2

¼ Pð2; 3Þ, ob-

tained by deleting the second node, is characterized by
the matrix

g5 ¼ r�ð12=5Þg2 0
0 r8=5g3

 !
; (B94)

where g3 is square 3� 3 matrix and g2 a square 2� 2
matrix both of unit determinant. The other parabolic P�3

¼
Pð3; 2Þ is obtained by considering the matrix

g5 ¼ r�ð8=5Þg3 0
0 r12=5g2

 !
: (B95)

For these parabolic subgroups, the Levi subgroup is given
by GLð1Þ � SLð2Þ � SLð3Þ.

Constant term of the series ESLð5Þ
½1000�;sFor the parabolic

Pð2; 3Þ, the metric takes the form given in (B94), leading
to the integral representationZ
Pð2;3Þ

ESLð5Þ
½1000�;s ¼

�s

�ðsÞ �
X

ðm1;...;m3;n1;n2Þ2Z5nfð0;...;0Þg

Z 1

0

dt

t1þs

� exp

�
��

t
½r8=5m 
 g3 
mT

þ r�ð12=5ÞnT 
 g2 
 n�
�
: (B96)

Performing a Poisson resummation on the two integers n1
and n2, one gets one gets for the constant term for the
parabolic Pð2; 3ÞZ

Pð2;3Þ
ESLð5Þ

½1000�;s ¼ r12s=5ESLð2Þ
½1�;s

þ �
�ðs� 1Þ
�ðsÞ r4�ð8s=5ÞESLð3Þ

½10�;s�1; (B97)

which gives the entry ASLð5Þ
s ð2; 1; rÞ of the ASLð5Þ

s matrix in
(B62).

The parabolic Pð3; 2Þ is obtained by using the metric
(B95) and performing the Poisson resummation (m1; . . . ;

m3) one gets gives the coefficient ASLð5Þð4; 3; r; sÞ of the
ASLð5Þ
s matrix in (B62):Z

Pð3;2Þ
ESLð5Þ

½1000�;s ¼ r8s=5ESLð3Þ
½10�;s

þ �3=2
�ðs� 3

2Þ
�ðsÞ r6�ð12s=5ÞESLð2Þ

½1�;s�ð3=2Þ;

(B98)

which gives the element ASLð5Þ
s ð3; 1; rÞ of the ASLð5Þ

s matrix
in (B62).

Constant term of the series ESLð5Þ
½0001�;sFor the parabolic

Pð2; 3Þ, the relevant metric is that in (B95) and the integral
representation for the constant term is given byZ
Pð2;3Þ

ESLð5Þ
½0001�;s ¼

�s

�ðsÞ �
X

ðm1;...;m3;n1;n2Þ2Z5nfð0;...;0Þg

Z 1

0

dt

t1þs

� exp

�
��

t
½r�ð8=5Þm 
 g�1

3 
mT

þ r12=5nT 
 g�1
2 
 n�

�
: (B99)

Performing a Poisson resummation on the three integers
m1,m2, andm3 one gets the constant term for the parabolic
Pð2; 3Þ,Z

Pð2;3Þ
ESLð5Þ

½0001�;s ¼ r8s=5ESLð3Þ
½01�;s

þ �3=2
�ðs� 3

2Þ
�ðsÞ r6�ð12s=5ÞESLð2Þ

½1�;s�ð3=2Þ;

(B100)

which gives the entry ASLð5Þ
s ð2; 4; rÞ of the ASLð5Þ

s matrix in
(B62).
In the case of the Pð3; 2Þ parabolic we perform the

Poisson resummation on the two integers n1 and n2, one
gets Z

Pð3;2Þ
ESLð5Þ

½0001�;s ¼ r12s=5ESLð2Þ
½1�;s

þ �
�ðs� 1Þ
�ðsÞ r4�ð8s=5ÞESLð3Þ

½01�;s�1;

(B101)

which gives the entry ASLð5Þ
s ð3; 4; rÞ of the ASLð5Þ

s matrix in
(B62).

Constant term of the series ESLð5Þ
½0100�;sIn the case of the

parabolic Pð2; 3Þ, we decompose the lattice sum (B21) as

�Pð2;3Þ ¼ �ð2;2Þðr�ð12=5Þg2Þ�ð3;3Þðr8=5g3Þ. Performing a

Poisson resummation on the �ð2;2Þ factor gives

�ð2;2Þ ¼ r24=5

V2

X
ðm;nÞ2Z4nf0g

e��V�1r12=5ððm�n�ÞT 
g�1
2


ðm�n ��ÞÞ=�2 ;

(B102)
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and unfolding the lattice sum following the method de-
scribed in Appendix A results in

Ið2;3Þs ð�Þ ¼ I3s ð�Þ þ r24=5
Z �

0
dVV2s�3

Z 1

0

d�2
�22

� X
n2Z2nð0;0Þ

e��r12=5ðnT 
g�1
2


n=�2VÞ

�
Z 1=2

�ð1=2Þ
d�1�ð3;3Þ þ 2r24=5

Z �

0
dVV2s�3

�
Z
Cþ

d2�

�22

X
½M0;1�

e��r12=5ðð1 ��ÞMT
0;1
g�1
2

M0;1ð1 ��ÞT=V�2Þ

� �ð3;3Þ: (B103)

We are interested in the finite part of this integral,

Ið2;3Þs ð�Þj�0 ¼ 2
�ð2s� 1Þ
ð2�Þ2s�1

Z
Pð2;3Þ

ESLð5Þ
½0100�;s: (B104)

The first term in the right-hand-side of (B103) leads to

I3s ð�Þj�0 ¼ 2r8�ð16s=5Þ �ð2s� 3Þ
ð2�Þ2s�3

�ð2s� 3ÞESLð3Þ
½01�;s�1:

(B105)

The second term is treated as in the previous section. The
integration over �1 projects on the sector p 
 w ¼ 0 of the
�ð3;3Þ lattice and the contribution constant in � is given by

the p ¼ 0 term

ðIð2;3Þs ð�Þj�0Þ2nd line ¼ r12=5
Z 1

0

dV

Vð9=2Þ�2s

Z 1

0

d�2

�1=22

X
n2Z2nð0;0Þ

p2Z3

e��ðr12=5=VÞðnT 
g�1
2 
n=�2Þ���2ðw2=Vr8=5Þ

¼ 1

2
r2þð4s=5Þ

�
�ðs� 1

2Þ
�s�ð1=2Þ

�
2
ESLð2Þ

½1�;s�ð1=2ÞE
SLð3Þ
½10�;s�ð1=2Þ: (B106)

In the last line the sum is over the representative ½M0;1� defined in (A9)

M0;1 ¼ m j
0 n

� �
; 0 � j < m; n � 0: (B107)

The finite contribution from the last line is given by�
Ið2;3Þs ð�Þj�0Þ3rd line ¼ 2r24=5

Z 1

0
dVV2s�3

Z
Cþ

d2�

�22

X
½M0;1�

e��ðr12=5=VÞðð1 ��ÞMT
0;1
g�1
2

M0;1ð1 ��ÞT=�2Þ

¼ 4r24s=5
�ð2s� 1Þ
ð2�Þ2s�1

�ð2sÞ�ð2s� 1Þ; (B108)

where we have used the fact that this contribution only arises from the sector with �ð3;3Þ � r24=5V�3.
Collecting the various contributions, the constant term for the parabolic Pð2; 3Þ reads

Z
Pð2;3Þ

ESLð5Þ
½0100�;s ¼ 2r24s=5�ð2sÞ�ð2s� 1Þ þ ð2�Þ2r8�ð16s=5Þ �ð2s� 3Þ

�ð2s� 1Þ �ð2s� 3ÞESLð3Þ
½01�;s�1

þ
ffiffiffiffi
�

p
2

r2þð4s=5Þ �ðs� 1
2Þ

�ðsÞ ESLð2Þ
½1�;s�ð1=2ÞE

SLð3Þ
½10�;s�ð1=2Þ; (B109)

which gives the entry ASLð5Þ
s ð2; 2; rÞ of the ASLð5Þ

s matrix in (B62).
Similar manipulations apply to the analysis of the parabolic subgroup Pð3; 2Þ, leading to

Z
Pð3;2Þ

ESLð5Þ
½0100�;s ¼ r16s=5�ð2s� 1ÞESLð3Þ

½01�;s þ �r4�ð4s=5Þ �ð2s� 2Þ
�ð2s� 1ÞE

SLð2Þ
½1�;s�1E

SLð3Þ
½10�;s�ð1=2Þ

þ 2ð2�Þ3r12�ð24s=5Þ �ð2s� 4Þ
�ð2s� 1Þ �ð2s� 4Þ�ð2s� 3Þ; (B110)

which gives the entry ASLð5Þ
s ð3; 2; rÞ of the ASLð5Þ

s matrix in (B62).

Constant term of the series ESLð5Þ
½0010�;sApplying the same manipulation as before, one finds the constant term for the

parabolic Pð2; 3Þ
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Z
Pð2;3Þ

ESLð5Þ
½0010�;s ¼ r16s=5�ð2s� 1ÞESLð3Þ

½10�;s þ �r4�ð4s=5Þ �ð2s� 2Þ
�ð2s� 1ÞE

SLð2Þ
½1�;s�1E

SLð3Þ
½01�;s�ð1=2Þ

þ 2ð2�Þ3r12�ð24s=5Þ �ð2s� 4Þ
�ð2s� 1Þ �ð2s� 3Þ�ð2s� 4Þ; (B111)

which gives the entry ASLð5Þ
s ð2; 3; rÞ of the ASLð5Þ

s matrix in (B62).
Finally, similar manipulations applied to the parabolic subgroup Pð3; 2Þ lead to

Z
Pð3;2Þ

ESLð5Þ
½0010�;s ¼ 2r24s=5�ð2s� 1Þ�ð2sÞ þ

ffiffiffiffi
�

p
2

r2þð4s=5Þ �ðs� 1
2Þ

�ðsÞ ESLð2Þ
½1�;s�ð1=2ÞE

SLð3Þ
½01�;s�ð1=2Þ

þ ð2�Þ2r8�ð16s=5Þ �ð2s� 3Þ
�ð2s� 1Þ �ð2s� 3ÞESLð3Þ

½10�;s�1; (B112)

which gives the entry ASLð5Þ
s ð3; 3; rÞ of the ASLð5Þ

s matrix in
(B62).

APPENDIX C: THE SOðd; dÞ EISENSTEIN SERIES

We will here consider Eisenstein series for SOðd; dÞ
groups defined with respect to the Dynkin label ½1; 0d�1�
[recall our convention for labeling the nodes in the case of
SOðd; dÞ groups shown in Fig. 1] (ii). These are analogous
to the Epstein series discussed earlier in the case of SLðdÞ
groups. In this case the series depend on the coset SOðdÞ �
SOðdÞnSOðd; dÞ.

In order to define these Eisenstein series, we will con-
sider various integrals involving the lattice sum �ðd;dÞ

�ðd;dÞ ¼
ffiffiffiffiffiffiffiffiffi
detg

p X
ðmi;niÞ2Zd�Zd

exp

�
� �

�2
ðgij þ bijÞðmi � �niÞ

� ðmj � ��njÞ
�
; (C1)

which typically arises in compactifications of string or field
theory loop integrals on T d. We will introduce the volume
of the d torus, VðdÞ ¼

ffiffiffiffiffiffiffiffiffi
detg

p
and the rescaled metric, ~g,

defined by gij ¼ V2=5
ðdÞ ~gij, so that det~g ¼ 1. A sensible

definition of the SOðd; dÞ Eisenstein series of relevance
to us is the manifestly invariant function

E SOðd;dÞ
½1;0d�1�;s ¼

�s

2�ð2sþ 2� dÞ�ðsÞ
�
Z
F SLð2;ZÞ

d2�

�22
Esþ1�ðd=2Þð�Þð�ðd;dÞ � VðdÞÞ:

(C2)

The analysis in the body of the paper and in the following

demonstrates that, for the appropriate values of s, this has
the correct behavior in the appropriate limits. Furthermore,
it satisfies a Laplace eigenvalue equation of the appropriate
form, as well as the correct functional equation.
[The definition of the Eisenstein series in (C2) differs

from that given in (3.10) of [15] and in [11,14].]
We are particularly interested in the series with s ¼

d=2� 1, which is given by

E SOðd;dÞ
½1;0d�1�;ðd=2Þ�1

¼ �ðd=2Þ�1

�ðd2 � 1Þ
Z
F SLð2;ZÞ

d2�

�22
ð�ðd;dÞ � VðdÞÞ;

(C3)

where we have used E0ð�Þ ¼ �1. Instead of subtracting
the volume factor, we could have regularized the series by
analytically continuing in s as in Appendix D.
Using the differential equation for the lattice factor

given in [15]:

�
�SOð2ÞnSLð2Þ � �SOðdÞ�SOðdÞnSOðd;dÞ � dðd� 2Þ

4

�
�ðd;dÞ ¼ 0;

(C4)

we find that

�SOðdÞ�SOðdÞnSOðd;dÞE
SOðd;dÞ
½1;0d�1�;s ¼ 2sð1� dþ sÞESOðd;dÞ

½1;0d�1�;s:

(C5)

These equations are particular cases of (B2) for the value of
the weight vector  specified by the Dynkin label
[s; 0; . . . ; 0].
Using the method of orbits [11,15,29,37–39] reviewed in

Appendix A, this Eisenstein series can be expanded in
terms of SLðdÞ series as
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E SOðd;dÞ
½1;0d�1�;s ¼ VðdÞ

�s

�ðsÞ
X

mi2Zdnf0g

Z 1

0

d�2
�2

�s�ðd=2Þ
2 e��ðmigijmj=�2Þ þ VðdÞ

�ð2sþ 1� dÞ
�ð2sþ 2� dÞ

�sþð1=2Þ

�ðsÞ

� �ðsþ 1�d
2 Þ

�ðsþ 1� d
2Þ

X
mi2Zdnf0g

Z 1

0

d�2
�2

�ðd=2Þ�s�1
2 e��ðmigijmj=�2Þ

þ VðdÞ
�s

�ð2sþ 1� dÞ�ðsÞ
X

ðmi;niÞ2Z2dnf0g

Z
Cþ

d2�

�22
Esþ1�ðd=2Þð�Þe�ð�=�2ÞðgijþbijÞðmi��niÞðmj� ��njÞ; (C6)

leading to

E SOðd;dÞ
½1;0d�1�;s ¼ V2s=d

ðdÞ ESLðdÞ
½0d�2;1�;s þ V2�ð2ðsþ1ÞÞ=d

ðdÞ �ðd�1Þ=2 �ð2sþ 1� dÞ
�ð2sþ 2� dÞ

�ðsþ 1�d
2 Þ

�ðsÞ ESLðdÞ
½1;0d�2�;sþ1�ðd=2Þ þOðe�gijÞ; (C7)

where we have made use functional Eq. (B9) for the
SLðdÞ series. This expansion corresponds to the constant
term of the series for the parabolic subgroup obtained
by deleting the node �d with Levi subgroup GLð1Þ �
SLðdÞ.

For the d ¼ 3 case comparison of the expansion in (C7)

with the expansion of the SLð4Þ series, ESLð4Þ
½010�;s in (B27)

leads to

E SLð4Þ
½010�;s ¼ �ð2s� 1ÞESOð3;3Þ

½100�;s : (C8)

In the case of s ¼ d=2� 1, we get15Z
P�d

ESOðd;dÞ
½1;0d�1�;ðd=2Þ�1

¼ V1�ðd=2Þ
ðdÞ ESLðdÞ

½0d�2;1�;ðd=2Þ�1

þ VðdÞ
3

�d=2

�ðd2 � 1Þ ; (C9)

where we have used ESLðdÞ
½1;0d�2�;0 ¼ �1.

Constant term on the Parabolic subgroup P�1

The constant term of the series defined in (C2) on the
parabolic subgroup obtained by removing the first node of
the Dynkin diagram in Fig. 1 (ii) is expressed in terms of
series for the parabolic subgroup with Levi component
GLð1Þ � SOðd� 1; d� 1Þ. This is analyzed by splitting
the metric of the d torus in the form

gIJ ¼ ~gij 0
0 r2

� �
; (C10)

so that the lattice factor �ðd;dÞ ¼ �ðd�1;d�1Þ � �ð1;1Þ, giving

Z
P�1

ESOðd;dÞ
½1;0d�1�;ðd=2Þ�1

¼ �ðd=2Þ�1

�ðd2 � 1Þ
Z
F SLð2;ZÞ

d2�

�22

�ð�ðd�1;d�1Þ�ð1;1Þ � VðdÞÞ: (C11)

Since �ð1;1Þ is given by the sum

�ð1;1Þ ¼ rd
X

ðm;nÞ2Z2

e��r2
d
ðjmþn�j2=�2Þ; (C12)

one can evaluate this integral by unfolding the �ð1;1Þ factor
as in [37], to get

Z
P�1

ESOðd;dÞ
½1;0d�1�;ðd=2Þ�1

¼ �ðd=2Þ�1

�ðd2 � 1Þ rd
�Z

F SLð2;ZÞ

d2�

�22

� ð�ðd�1;d�1Þ � Vðd�1ÞÞ
þ X

m2Znf0g

Z 1

0

d�2
�22

e��ðr2
d
m2=�2Þ

�
Z 1=2

�ð1=2Þ
d�1�ðd�1;d�1Þ

�
; (C13)

where VðdÞ ¼ rdVðd�1Þ. Using the second representation in

(A5) for the lattice sum in the second line, we findZ
P�1

ESOðd;dÞ
½1;0d�1�;ðd=2Þ�1

¼ 2�ðd� 2Þrd�2
d

þ rd
ffiffiffiffi
�

p �ðd2 � 3
2Þ

�ðd2 � 1ÞE
SOðd�1;d�1Þ
½1;0d�2�;ðd�1=2Þ�1

:

(C14)

For the SOð5; 5Þ case used in the main text, we haveZ
P�1

ESOð5;5Þ
½1;04�;ð3=2Þ ¼ 2�ð3Þr35 þ 2r5E

SOð4;4Þ
½1000�;1: (C15)

APPENDIX D: GENUS-ONE INTEGRALS IN
STRING THEORY

In this Appendix we evaluate the one-loop integrals
arising in the derivative expansion of the genus-one four-
graviton amplitude in 10� d dimensions, which was dis-
cussed in [4].
First, we will introduce some notation appropriate for

the evaluation of the terms that contribute to the analytic
part of the amplitude at any order in �0 ¼ ‘2s on a genus-h

15This expansion matches the one of Appendix C of [15] which
uses SLðdÞ series with non unit determinant. We would like to
thank Boris Pioline for a clarification about this point.
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world sheet. This expansion involves integration over the
world-sheet moduli, M, with measure d�ðMÞ. In princi-
ple, this leads to integrals of the form

IðdÞh ðjðp;qÞh Þ ¼
Z
Mg

d�ðMÞjðp;qÞh ðMÞ�ðd;dÞ; (D1)

where �ðd;dÞ is the genus-h generalization of the (even)

Lattice sum defined in (A5), and the function jðp;qÞh ðMÞ is a
specific modular function of the world-sheet complex
structure. This integral is invariant under SOðdÞ �
SOðdÞnSOðd; dÞ.

For genus h � 3, the integration over the moduli space
of Riemann surfaces can be evaluated directly by integra-
tion over the fundamental domain for Spðh;ZÞ, which is
evaluated in Appendix F. Beyond that order, the dimension
of the (complex) moduli space of Riemann surfaces 3ðh�
1Þ is strictly smaller than the number of parameters in the
period matrix hðhþ 1Þ=2, which leads to technical diffi-
culties in defining the integration over moduli for genus
h � 4.

Much more is known about the genus-one function jðp;qÞ1

than other values of h.16 In the genus-one case (h ¼ 1)
there is a single modulus so M ! � and

R
M1

d�ðMÞ ¼R
F SLð2;ZÞ d

2�=�22. The functions j
ðp;qÞ
1 ð�Þ are invariant under

SLð2;ZÞ transformations of �. Although the genus-one
string amplitude is finite, when performing the derivative
expansion the separation of the analytic contribution from
the nonanalytic contribution may introduce divergences in
each term separately, which cancel in the total amplitude.
In particular, (D1) diverges for large �2. Following the
method of [4,33], one can cut off the fundamental domain
so that �2 � L. The total string amplitude is independent of

L and all dependence on L cancels between IðdÞ1 ðjðp;qÞ1 Þ and
the nonanalytic part of the amplitude. This is a fairly
simple procedure and in this Appendix we will only quote
the result for the L independent contributions.

Determining the form of the functions jðp;qÞ1 was a major

part of [4]. At low orders in the expansion jðp;qÞ1 is simply a
linear combination of SLð2Þ Eisenstein series Es and one
can apply the results of Appendix C, giving s manifest
SOðd; dÞ invariance

IðdÞ1 ðEsÞ ¼
2�ð2sÞ�ðsþ d

2 � 1Þ
�sþðd=2Þ�1

ESOðd;dÞ
½1;0d�1�;sþðd=2Þ�1

þ VðdÞ
Z
F SLð2;ZÞ

d2�

�22
Esð�Þ: (D2)

The last term is divergent for <eðsÞ> 1 but can be regu-
larized by cutting off the fundamental domain at �2 ¼ L,
where L � 1, as in [33]. As mentioned above, terms that
diverge as positive powers of L can be dropped since they

cancel with contributions from nonanalytic terms in the
amplitude, which we are not considering here. The only
real concern might have been logL terms, which arise at
poles in s,but these are regularized by subtracting them.
For <eðsÞ 2�0; 1½ the integral of Es converges, and since
this function is an eigenfunction of the SLð2Þ Laplacian in
(B39), we deduce that

Z
F SLð2;ZÞ

d2�

�22
Esð�Þ ¼ 0; for <eðsÞ 2�0; 1½: (D3)

By analytic continuation, we set to zero the value of this
integral for all values of s different from s ¼ 0 and s ¼ 1
so that

IðdÞ1 ðEsÞ ¼
2�ð2sÞ�ðsþ d

2 � 1Þ
�sþðd=2Þ�1

ESOðd;dÞ
½1;0d�1�;sþðd=2Þ�1

: (D4)

Substituting s ¼ 0 in the expansion of the SOðd; dÞ series
(C7), and using the fact that ESLðdÞ

½10


0�;s¼0 ¼ ESLðdÞ
½0


01�;s¼0 ¼

�1 and that the volume of the fundamental domain for
SLð2;ZÞ is �=3, we find that

IðdÞ1 ð1Þ ¼ �ðd2Þ
�d=2

ESOðd;dÞ
½1;0d�1�;ðd=2Þ�1

¼ VðdÞ
�

�
4�ð2Þ þ V�ð2=5Þ

d

�ðd2 � 1Þ
�d=2

ESLðdÞ
½0d�2;1�;ðd=2Þ�1

þOðe�gijÞ
�
: (D5)

We will now consider the d ¼ 2 and the d ¼ 3 cases in
more detail.

1. The genus-one amplitude on a two torus

For the special case with d ¼ 2 an application of the
method of orbits of Appendix A, together with the regu-
larization by analytic continuation described above, gives

Ið2Þ1 ðEsÞ ¼
Z
F SLð2;ZÞ

d2�

�22
Esð�Þ�ð2;2Þ ¼ �ðsÞ

�s EsðTÞEsðUÞ;
(D6)

where T and U are, respectively, the Kähler and complex
structure of the T 2 of compactification. This leads to the
following expressions for the one-loop contributions to the
higher-derivative interactions.
(i) The coefficient of the R4 interaction [4] is given by

the lowest order term in the expansion of the genus-

one diagram, which has jð0;0Þ1 ¼ 1. Setting s ¼ 	 and

considering the small 	 expansion of (D6) gives

Ið2Þ1 ðE	Þ ¼
Z
F SLð2;ZÞ

d2�

�22
E	ð�Þ�ð2;2Þ

¼ 1

	
� 1

�
ðÊ1ðTÞ þ Ê1ðUÞ þ log�Þ þ oð	Þ;

(D7)

16This notation identifies jðp;qÞ1 with jðp;qÞ introduced in the h ¼
1 case in [4].
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where the hat notation again denotes the subtraction
of the pole part of Es and log� ¼ �ð
E �
4 logð2Þ � 3 logð�ÞÞ. The 1=	 pole corresponds to
the ultraviolet divergence of the one-loop supergrav-
ity amplitude. This pole cancels against an equiva-
lent nonanalytic contribution in the genus-one
amplitude [4]. The same finite expression is obtained
by decompactifying the analytic D ¼ 7 R4 coeffi-
cient shown in (D18). Therefore, the analytic con-
tribution is given by

Ið2Þ1 ðjð0;0Þ1 Þ ¼ 1

�
ðÊ1ðTÞ þ Ê1ðUÞ þ log�Þ: (D8)

The log� term is interpreted as the scale of the
massless threshold contribution, R4 logð�‘2ssÞ, to
the nonanalytic part of the amplitude in eight
dimensions.

(ii) The @4R4 coefficient is determined by the function

jð1;0Þ2 ¼ E2ð�Þ=ð4�Þ2 [4,33], which gives

Ið2Þ1 ðjð1;0Þ2 Þ ¼ 1

16�4
E2ðTÞE2ðUÞ: (D9)

(iii) The genus-one contribution to the @6R4 coefficient

[4] is determined by the function jð0;1Þ1 ¼
10E3ð�Þ=ð4�Þ3 þ �ð3Þ=32, resulting in

Ið2Þ1 ðjð0;1Þ1 Þ ¼ 10

32�6
E3ðTÞE3ðUÞ þ �ð3Þ

32�
ðÊ1ðTÞ

þ Ê1ðUÞ þ log�Þ: (D10)

The log� term contributes to the massless thresh-
old contribution, ‘6ss

3R4 logð�‘2ssÞ, to the ampli-
tude in eight dimensions.

2. The genus-one amplitude on a three torus

In this section we evaluate the genus-one contributions
to the R4, @4R4, and @6R4 interactions for the special
case of a three-torus compactification d ¼ 3.

By definition of the SOðd; dÞ Eisenstein series in
Sec. , the one-loop integral of the three-dimensional torus
gives

Ið3Þ1 ðEsÞ ¼
2�ð2sÞ�ðsþ 1

2Þ
�sþð1=2Þ ESOð3;3Þ

½100�;sþð1=2Þ: (D11)

For <eðsÞ large this integral would divergence for large �2
and it needs to be regulated either by subtracting the term
proportional to the volume as in (C2) or equivalently by
using the analytic continuation in s as above. Applying
(D4) to the d ¼ 3 case and using the relation (C8) between

the SOð3; 3Þ and SLð4Þ series, Ið3Þ1 ðEsÞ can be expressed in
terms of SLð4Þ series,

Ið3Þ1 ðEsÞ ¼
2�ðsþ 1

2Þ
�sþð1=2Þ ESLð4Þ

½010�;sþð1=2Þ: (D12)

(i) The R4 interaction [4,33] is given by the lowest
order term in the expansion of the genus-one dia-

gram, which has jð0;0Þ1 ¼ 1. Applying the result in

(D5) to the case d ¼ 3 and comparing to the expan-
sion of the SLð4Þ series into SLð3Þ series given in
(B12) gives

Ið3Þ1 ð1Þ ¼ ESOð3;3Þ
½100�;ð1=2Þ ¼ 2ESLð4Þ

½010�;ð1=2Þ ¼
2

�
ESLð4Þ

½100�;1;

(D13)

where we have made use of the relation

�ESLð4Þ
½010�;ð1=2Þ ¼ ESLð4Þ

½100�;1 derived in Appendix B.

(ii) For the @4R4 interaction [4,33] the function jð1;0Þ2 ¼
E2ð�Þ=ð4�Þ2 which gives

Ið3Þ1 ðjð1;0Þ1 Þ ¼ �ð4Þ
960

ESOð3;3Þ
½100�;ð5=2Þ ¼

1

960
ESLð4Þ

½010�;ð5=2Þ:

(D14)

(iii) For the @6R4 interaction [4], the contribution to the
analytic part of the interaction is given by the

function jð0;1Þ1 ¼ 10E3ð�Þ=ð4�Þ3 þ �ð3Þ=32, result-
ing in

Ið3Þ1 ðjð0;1Þ1 Þ ¼ 25�ð6Þ
8!

ESOð3;3Þ
½100�;ð7=2Þ þ

�ð3Þ
32

ESOð3;3Þ
½100�;ð1=2Þ

¼ 25

8!
ESLð4Þ

½010�;ð7=2Þ þ
�ð3Þ
16�

ESLð4Þ
½100�;1: (D15)

Upon decompactification, r3 ! 1, the results of the
previous section must be recovered. This is the limit cor-
responding to the constant term of the SOð3; 3Þ Eisenstein
series on the parabolic subgroup obtained by deleting the
node �1 in Dynkin diagram represented in Fig. 1 (ii),

Z
P�1

Ið3Þ1 ðEsÞ ¼ r3I
ð2Þ
1 ðEsÞ

þ 4r1þ2s
3

�ð2sÞ�ð2sþ 1Þ�ðsþ 1
2Þ

�sþð1=2Þ

þ r3�2s
3

�ð2s� 2Þ�ð2s� 1Þ�ð2s� 2Þ
22s�5�s�2�ðsÞ :

(D16)

Equivalently, using the SLð4Þ representation, this expres-
sion corresponds to the parabolic Pð2; 2Þ obtained by de-
leting the node �2. The constant term of the SLð4Þ series
ESLð4Þ

½100�;s on the parabolic subgroup Pð2; 2Þ is given by
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Z
Pð2;2Þ

ESLð4Þ
½100�;s ¼ rs3EsðTÞ þ r2�s

3 �2s�2 �ð2� sÞ
�ðsÞ E2�sðUÞ:

(D17)

The SLð4Þ representation makes explicit the factorized

dependence on the Kähler modulus T and the complex
structure modulus U. The equivalence of the two formula
is due to the fact that SOð2; 2Þ ¼ SLð2Þ � SLð2Þ.
For the case of the R4 interaction in (D13), we have

Z
P�1

Ið3Þ1 ðE	Þ ¼ r3ðIð2Þ1 ðE	Þ � 1

	
þ 2 logðr3Þ � logð�Þ � 
EÞ þOð	Þ

¼ r3ðE1þ	ðTÞ þ E1�	ðUÞÞ þ 	 logðr3ÞðE1þ	ðTÞ � E1�	ðUÞÞ þ 2	r3ð
E þ logð�ÞÞE1�	ðUÞ þOð	Þ
¼ r3ðÊ1ðTÞ þ Ê1ðUÞ þ 2 logðr3=�Þ � 2
EÞ þOð	Þ; (D18)

leading to a finite answer in the decompactification limit
(apart from the logr3 term which is needed to build the
correct eight-dimensional thresholds [4]). The explicit 1=	
pole in the first line cancels against the 1=	 pole of Ið2Þ1 ðE	Þ
evaluated in the previous section.

APPENDIX E: GENUS-TWO STRING INTEGRALS

In this section we consider the genus-two partition func-
tion arising from the compactification of string amplitudes
on d torus T d. The leading term in the s, t, u ! 0 limit is

IðdÞ2 ð1Þ ¼
Z
F Spð2;ZÞ

jd3�j2
ðdet=m�Þ3 �ðd;dÞ: (E1)

This integral [34,35] is over the Siegel upper-half-plane for
Spð2;ZÞ. The resulting expression is an automorphic form
invariant under the T-duality group, SOðd; d;ZÞ. The lat-
tice factor for a compactification on a two torus is given by
a theta series summed over the even-lattice,

�ðd;dÞ ¼ ðVðdÞÞ2 X
ðmi

a;n
iaÞ2Z2d�Z2d

expð��ðgij þ bijÞ

� ðmi
a � �abn

ibÞð=m��1Þacðmj
c � �cdn

jdÞÞ: (E2)

It was remarked in [15] that the lattice factor satisfies the
differential equation17

ð�SOðdÞ�SOðdÞnSOðd;dÞ ��Spð2Þ þ dðd� 3ÞÞ�ðd;dÞ ¼ 0;

(E3)

so that the integral in (E1) satisfies the differential equation

ð�SOðdÞ�SOðdÞnSOðd;dÞ þ dðd� 3ÞÞIðdÞ2 ð1Þ ¼ 0: (E4)

(i) For d ¼ 2 the SOð2; 2Þ Laplace operator is a sum of
the SLð2Þ Laplace operators acting on the T and the

U moduli and (E4) gives

ð�T þ �U � 2ÞIð2Þ2 ð1Þ ¼ 0; (E5)

which is solved by

Ið2Þ2 ð1Þ ¼ 1

6�
ðE2ðTÞ þ E2ðUÞÞ: (E6)

The normalization has been determined from the
large-volume limit The normalization is determined
by the large-volume limit the integral (E1) behaves
as

lim
T2!1I

ð2Þ
2 ð1Þ ¼ �ð4Þ

3�
T2
2 þOðT2Þ; (E7)

where we have used the value of the fundamental
domain for Spð2;ZÞ given in [41]

Z
F Spð2;ZÞ

jd3�j2
ðdet=m�Þ3 ¼

�ð4Þ
3�

: (E8)

(ii) For d ¼ 3 the eigenvalue in (E4) vanishes as ex-
pected since there two-loop supergravity amplitude
has an ultraviolet divergence in D ¼ 7. In this case
the integral in (E1) needs to be regulated and the
finite part is given by

Ið3Þ2 ¼ 1

6�
ðÊSOð3;3Þ

½010�;2 þ ÊSOð3;3Þ
½001�;2 Þ

¼ 1

6�
ðÊSLð4Þ

½100�;2 þ ÊSLð4Þ
½001�;2Þ: (E9)

The normalization has been fixed using the large-
volume limit and the expansion (B12).

(iii) For d � 4 the differential equation is not sufficient
to determine the solution. The Eisenstein series

ESOðd;dÞ
½0d�1;1�;s, ESOðd;dÞ

½0d�2;1;0�;s associated with the nodes

�d�1 and �d of the Dd Dynkin diagram of Fig. 1
(ii) satisfy (B2)

17Our normalisations for the SOðd; dÞ Laplacian differ by a
factor of 2 compared to [15].
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�SOðdÞ�SOðdÞnSOðd;dÞE
SOðd;dÞ
½0d�1;1�;s

¼ dsð1� dþ sÞ
2

ESOðd;dÞ
½0d�1;1�;s; (E10)

�SOðdÞ�SOðdÞnSOðd;dÞE
SOðd;dÞ
½0d�2;1;0�;s

¼ dsð1� dþ sÞ
2

ESOðd;dÞ
½0d�2;1;0�;s: (E11)

The series associated with the other nodes �u with
1 � u � d� 2 satisfy the differential equation

�SOðdÞ�SOðdÞnSOðd;dÞE
SOðd;dÞ
½0u�1;1;0d�u�;s

¼ usð2s� 2dþ uþ 1ÞESOðd;dÞ
½0d�1;1;0;0�;s: (E12)

Therefore, (E4) is satisfied by ESOðd;dÞ
½0d�1;1�;2,

ESOðd;dÞ
½0d�2;1;0�;2, E

SOðd;dÞ
½0d�3;1;0;0�;1, E

SOðd;dÞ
½0d�3;1;0;0�;d=2 for all val-

ues of d. With other solutions for each value of d.
It would be interesting to confirm the conjecture in [15]

the only solution is the sum of ESOðd;dÞ
½0d�1;1�;2, E

SOðd;dÞ
½0d�2;1;0�;2.

APPENDIX F: INTEGRALS OVER SIEGEL
FUNDAMENTAL DOMAINS

For genus h � 4 the parametrization of the moduli space
Mh of genus h curves is given by period matrices supple-
mented by the Schottky relations [42], and the integration
is not over the Siegel fundamental domains for Spðh;ZÞ.
The quantities protected by supersymmetry, such as the
R4, @4R4, and @6R4 interactions evaluated in the main
text receive perturbative contributions up to genus three
and are given by integrals over the Siegel fundamental
domain for Spðh;ZÞ.

For the case of the two torus, we consider the integral

Ið2Þh ¼
Z
F Spðh;ZÞ

jdðhðhþ1ÞÞ=2�j2
ðdet=m�Þhþ1

�ð2;2Þ: (F1)

This integral is an automorphic function invariant under
the T-duality group SOð2; 2Þ. By applying the SOð2; 2Þ
Laplace operator, we obtain [15]

ð�T þ�UÞIð2Þh ¼ hðh� 1ÞIð2Þh ; (F2)

where �SOð2Þ�SOð2ÞnSOð2;2Þ ¼ �T þ �U. The large-volume

limit of Ið2Þh is given by

lim
T2!1I

ð2Þ
h ¼ volðF Spðh;ZÞÞTh

2 ; (F3)

where volðF Spðh;ZÞÞ is the volume of F Spðh;ZÞ computed in

[41]:

vol ðF Spðh;ZÞÞ ¼ 2
Yh
k¼1

�ð2kÞ�ðkÞ
�k

: (F4)

With this boundary condition the solution to (F2) is given

by

Ið2Þh ¼ volðF Spðh;ZÞÞ
2�ð2hÞ ðEhðTÞ þEhðUÞÞ: (F5)

Now consider the case of the three-torus compactification,

Ið3Þh ¼
Z
F Spðh;ZÞ

jdðhðhþ1ÞÞ=2�j2
ðdet=m�Þhþ1

�ð3;3Þ: (F6)

This is a SOð3; 3Þ automorphic function, which satisfies the
differential equation derived in [15],

�SOð3Þ�SOð3ÞnSOð3;3ÞI
ð3Þ
h ¼ 3

2
hðh� 2ÞIð3Þh ; (F7)

which is satisfied by Ið3Þh ¼ aESOð3;3Þ
½010�;h þ bESOð3;3Þ

½001�;h for any a

and b. The large-volume limit

lim
V3!1I

ð3Þ
h ¼ volðF Spðh;ZÞÞVh

3 (F8)

determines the solution to be

Ið3Þh ¼ volðF Spðh;ZÞÞ
2�ð2hÞ ðESOð3;3Þ

½010�;h þ ESOð3;3Þ
½001�;h Þ

¼ volðF Spðh;ZÞÞ
2�ð2hÞ ðESLð4Þ

½100�;h þ ESLð4Þ
½001�;hÞ: (F9)

APPENDIX G: SUPERGRAVITY LOOP
AMPLITUDES

1. One-loop amplitudes inD ¼ 11 and the epstein series

In this Appendix the expressions for the scalar box
function and the scalar triangle function reduced on a dþ
1-dimensional torus T dþ1 will be evaluated. The scalar
box function arises as the coefficient of R4 in the four-
graviton one-loop amplitude in 11-dimensional supergrav-
ity [6]. This diagram has a one-loop divergence that is
subtracted by a R4 counterterm. The scalar triangle func-
tion arises from the contribution of this counterterm as a
vertex in a one-loop four-graviton amplitude, which can-
cels the subdivergences of the two-loop 11-dimensional
supergravity amplitude and multiplies @4R4 [7]. These
results generalize the d ¼ 1 discussion given in [1] to
higher values of d.
The expression for the scalar box function is

IðD�d�1Þ
4 ðS; TÞ ¼ �ðD�d�1Þ=2

V dþ1

Z 1

��2

dt

t
tðd�Dþ9Þ=2

�
Z
T ST

Y3
r¼1

d!r

� X
mI2Zdþ1

e��tgIJmImJþ�tQ4ðS;TÞ; (G1)

where D ¼ 11þ 2	, T ST ¼ f0 � !1 � !2 � !3 � 1g,
and the function Q4ðS; TÞ is defined by [7]
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Q4ðS; TÞ ¼ �S!1ð!3 �!2Þ � Tð!2 �!1Þð1�!3Þ;
(G2)

with an equivalent definitions for the (S;U) and (T;U)
regions. The scalar triangle function is given by

IðD�d�1Þ
3 ðSÞ ¼ �ðD�d�1Þ=2

V dþ1

Z 1

��2

dt

t
tðd�Dþ7Þ=2

�
Z
0�!1�!2�1

Y2
r¼1

d!r

� X
mI2Zdþ1

e��tgIJmImJþ�tQ3ðSÞ; (G3)

where the function Q3ðS; TÞ is defined by [7]

Q3ðS; TÞ ¼ �S!1!2: (G4)

The masses of the Kaluza-Klein states running in the loop
are denoted gIJmImJ and the volume of the dþ 1 torus is
V dþ1.

We will first analyze the momentum expansion of the
scalar box function. This expression contains a nonanalytic
contribution from the massless supergravity states in (10�
d) dimensions together with analytic terms,

IðD�d�1Þ
4 ðS; TÞ ¼ IðD�d�1Þ

4;nonan ðS; TÞ þ ÎðD�d�1Þ
4 ðS; TÞ: (G5)

The nonanalytic part is the usual field theory contribution,

IðD�d�1Þ
4;nonan ðS; TÞ �

Z
T ST

Y3
r¼1

d!rðQ4ðS; TÞÞðd�Dþ9Þ=2: (G6)

For d ¼ �1 this is the 11-dimensional supergravity

contribution, M4;1 � ð�‘211SÞ3=2; for d ¼ 0 it is the ten-

dimensional supergravity contribution Mð10Þ
4;1 �

S logð�‘211SÞ; for d ¼ 1 it is the nine-dimensional contri-

bution Mð9Þ
4;1 � ð�‘211SÞ�1=2, with an extra power of S�1=2

for each extra compact dimension. A detailed discussion of
the relation between these various expressions obtained by
decompactifying successively from d ¼ 1 to d ¼ 0 and
d ¼ �1 is given in [6,7,18].

It is convenient to separate the zero-momentum part of
the analytic part of the amplitude

IðD�d�1Þ
4 ðS; TÞ ¼ IðD�d�1Þ

4 ð0; 0Þ þ ~IðD�d�1Þ
4 ðS; TÞ: (G7)

In order to isolate the divergences one must perform a
Poisson resummation over the Kaluza-Klein modes mI in

IðD�d�1Þ
4 ð0; 0Þ [6,7]. Evaluating this integral with D ¼ 11
and a momentum cutoff � gives

Ið10�dÞ
4 ð0; 0Þ ¼ �ð10�dÞ=2 Z �2

0
dt̂t̂1=2

X
fm̂g2Zdþ1

e��t̂gIJm̂
Im̂J

¼ �ð10�dÞ=2�3 þ �ð10�dÞ=2

2�V 3=ðdþ1Þ
dþ1

ESLðdþ1Þ
½1;0d�1�;ð3=2Þ;

(G8)

where gIJ ¼ V 2=d
d ~gIJ is the metric of the d torus and

det~gIJ ¼ 1. The ultraviolet divergence is now localized
in the zero winding sector m̂I ¼ 0. The finite part is the
contribution from the nonzero winding, which is invariant
under large diffeomorphisms, described by the action of
SLðdþ 1;ZÞ on the dþ 1-dimensional torus and is pro-

portional to the Epstein series, ESLðdþ1Þ
½1;0d�1�;ðD�8Þ=2. The same

integral evaluated in dimension D ¼ 11þ 2	 gives

Ið10�dþ2	Þ
4 ð0; 0Þ ¼ �ðð10�dÞ=2Þþ	

Z 1

0
dt̂t̂ð1=2Þþ	

� X
fm̂g2Zdþ1

e��t̂gIJm̂
Im̂J

¼ �ð10�dÞ=2 1

V ðð3þ2	Þ=ðdþ1ÞÞ
dþ1

�ðð3=2Þ þ 	Þ
�3=2

�ESLðdþ1Þ
½1;0d�1�;ð3=2Þþ	

: (G9)

The higher-order terms in the expansion in powers of the
external momenta give

~I ðD�d�1Þ
4 ðS; TÞ ¼ 2

X
n�1

ðV 2=ðdþ1Þ
dþ1 Þn�ðD�d�1Þ=2 G

n
ST

n!

� �ðd�Dþ9
2 þ nÞ

�dþ5þn�D
ESLðdþ1Þ

½0d�1;1�;ðd�Dþ9Þ=2þn
;

(G10)

where

G n
ST �

Z
T ST

Y3
r¼1

d!rðQ4Þn: (G11)

Similarly, the triangle diagram will be written as the sum
of analytic and nonanalytic terms,

IðD�d�1Þ
3 ðSÞ ¼ IðD�d�1Þ

3;nonan ðSÞ þ ÎðD�d�1Þ
3 ðSÞ; (G12)

where

IðD�d�1Þ
3;nonan ðSÞ �

Z
0�!1�!2�1

Y2
r¼1

d!rðQ3ðSÞÞðd�Dþ7Þ=2;

(G13)

and the analytic part will be separated into a zero-
momentum part and a momentum-dependent part,

Î ð11�dÞ
3 ðSÞ ¼ Îð11�dÞ

3 ð0Þ þ ~Ið11�dÞ
3 ðSÞ: (G14)

The zero-momentum part is given by

Ið10�dÞ
3 ð0Þ ¼ �ð10�dÞ=2 Z �2

0
dt̂t̂3=2

X
fm̂g2Zdþ1

e��t̂GIJm̂
Im̂J

¼ �ð10�dÞ=2�5 þ �ð10�dÞ=2 1

V 5=ðdþ1Þ
dþ1

3

ð2�Þ2

� ESLðdþ1Þ
½1;0d�1�;ð5=2Þ: (G15)
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The momentum expansion of ~IðD�dþ1Þ
3 ðSÞ is given by

~I ðD�dþ1Þ
3 ðSÞ ¼ 2

X
n�1

ðV 2=ðdþ1Þ
dþ1 Þn�ðD�6Þ=2 S

n

n!

� �ðd�Dþ7
2 þ nÞ

�3þdþn�D
ESLðdþ1Þ

½0d�1;1�;ððd�Dþ7Þ=2Þþn
;

(G16)

where

S n �
Z
0�!1�!2�1

Y2
r¼1

d!rðQ3Þn: (G17)

2. Two-loop amplitudes inD ¼ 11 and Eisenstein series

The finite part of the L ¼ 2 four-graviton amplitude in
11-dimensional supergravity compactified on T d will be
evaluated in this Appendix. The leading term in the low-
energy limit has the form [22] ðs2 þ t2 þ u2ÞIL¼2.
Following [7] IL¼2 can be rewritten in the form of a
genus-one string theory amplitude, which has the low-
energy limit

Ið11�dÞ
2 ¼

Z �2

0
dVV3

Z
F �

d2�

�22

� X
ðmi;niÞ2Zd�Zd

e�VV 2=d
d

ð�=�2Þgijðmi��niÞðmj� ��njÞ;

(G18)

where F� ¼ f� ¼ �1 þ i�2j � 1=2 � �1 � 1=2; j�1j2 þ
j�2j2 � �2g. Using the method of orbits this integral has
three kinds of pieces [7]

Ið11�dÞ
2 ¼ �8Ið0Þ þ�5Ið1Þ þ Ifin: (G19)

We are interested in the finite part of the integral, which
can be evaluated by the method of orbits as detailed in
Appendix A and is given by

Ifin ¼ 2
Z 1

0
dVV3

Z
Cþ

d2�

�22

� X
1�k�d�1
½M0;k�

e�VV 2=d
d

ð�=�2Þgijðmi��niÞðmj� ��njÞ

¼ 2

V 2=d
d

X
1�k�d�1
½M0;k�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
detM

p
Z 1

0
dVV2e�2�VV 2=d

d

ffiffiffiffiffiffiffiffiffi
detM

p

¼ 1

2�3V 8=d
d

X
1�k�d�1
½M0;k�

1

ðdetMÞ2 ¼
1

2�3V 8=d
d

ESLðdÞ
½0;1;0d�3�;2;

(G20)

where the sum is over the representativesM0;k in (A9) and

the matrix M is defined in (B18).

APPENDIX H: LAPLACIANS ON KnGMANIFOLDS

In the next subsection we will discuss the Laplace
operator on some of the cosets of explicit relevance to
the discussions in the text. In the subsequent subsection
we will use an iterative method to relate the Laplace
operator and its eigenvalues for different values of D,
which leads to Eqs. (6.2), (6.3), and (6.4).

1. Explicit examples for D ¼ 8, 9, 10

These cosets are parametrized by scalar (moduli) fields.
These scalars enter in the supergravity in the form of a
sigma model with action

Sscalar ¼ 1

‘D�2
D

Z
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�GðDÞ

p
hijð�Þ@��i@��j; (H1)

and the associated Laplace operator is given by

�� ¼ 1ffiffiffiffiffiffiffiffiffiffi
hð�Þp @�ið

ffiffiffiffiffiffiffiffiffiffi
hð�Þ

p
hij@�jÞ: (H2)

The explicit expressions for these Laplacians in terms of
our choice of fields in the Einstein frame in various dimen-
sions is as follows.
(i) The scalar field action of D ¼ 10 type IIB is

Sscalar10d ¼ 1

2‘810

Z
d10x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Gð10Þ

p @��@��

�2
2

: (H3)

The SLð2;RÞ symmetry acts on the complexified
coupling constant �, and the SOð2ÞnSLð2Þ
Laplacian is defined as

�� � 4�2
2@� �@ �� ¼ �2

2ð@2�1
þ @2�2

Þ: (H4)

Note that our normalization conventions are such
that the Eisenstein series Esð�Þ has eigenvalue
sðs� 1Þ.

(ii) The nine-dimensional scalar field action with
GLð2;RÞ ¼ SLð2;RÞ � Rþ invariance is

SscalarD¼9 ¼ 1

‘79

Z
d9x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�Gð9Þ

p �
2

7
@� log�1@

� log�1

� 1

2

@��@� ��

�2
2

�
: (H5)

Here, the SLð2;RÞ symmetry acts on� and Rþ acts
as a shift on log�1 ! log�1 þ . The Laplace op-
erator acting on scalars in D ¼ 9 is

�ð9Þ � �� þ 7
4�1@�1

ð�1@�1
Þ þ 1

2�1@�1
: (H6)

(iii) In eight dimensions the U-duality group is
SOð3ÞnSLð3;RÞ � SOð2ÞnSLð2;RÞ where
SLð3;RÞ acts on �, the eight-dimensional
volume �2, and the combination of Ramond-
Ramond and Neveu-Schwarz–Neveu-Schwarz B
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fields, B ¼ BRR þ�BNS. The SLð2;RÞ group acts
on the complex structure U. The SOð3ÞnSLð3Þ
Laplacian is given by [11]

�SOð3ÞnSLð3Þ ¼ 4�2
2@� �@ �� þ j@BNS

��@BRR
j2

�2�2

þ 3@�2
ð�2

2@�2
Þ: (H7)

The full Laplacian for the eight-dimensional theory
is the sum of the SOð3ÞnSLð3Þ and the
SOð2ÞnSLð2Þ Laplacians,
�ð8Þ � �SOð3ÞnSLð3Þ þ �SOð2ÞnSLð2Þ

¼ 4U2
2@U �@ �U þ 4�2

2@� �@ �� þ j@BNS
��@BRR

j2
�2�2

þ 3@�2
ð�2

2@�2
Þ: (H8)

2. Connections between Laplace equations in different
dimensions

In this Appendix we will give a derivation of (6.2), (6.3),
and (6.4). Wewill take the dimensionless radius of the (dþ
1)th dimension on the string theory torus to be large, i.e.,
large rdþ1=‘s. This corresponds to deleting the last node of
the Dynkin diagram in Fig. 1 (i) for the group Gd ¼
Edþ1ðdþ1Þ, which reduces its rank. In this limit the

Laplace operator, �ðDÞ � �Gd decomposes as (where d ¼
10�D)

�ðDÞ ! �ðDþ1Þ � aDðrd@rdÞ2 � bDðrd@rdÞ; (H9)

where aD and bD are numerical coefficients whose deter-
mination is discussed below. In the decompactification
limit

‘D�1
Dþ1 ¼ ‘D�2

D rd: (H10)

We will now determine the Laplace equations, (6.2),
(6.3), and (6.4), by a recursive method, as follows. Given

a modular function EðDÞ
ðp;qÞ in dimension D, the modular

function EðDþ1Þ
ðp;qÞ in Dþ 1 dimensions can be obtained via

the relation

‘8þ2k�D
D

Z
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�GðDÞ

p
EðDÞ
ðp;qÞ@

2kR4

¼ ‘7þ2k�D
Dþ1

Z
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�GðDÞ

p
ðrdEðDþ1Þ

ðp;qÞ þ 
 
 
Þ@2kR4;

(H11)

where k ¼ 2pþ 3q and ‘‘
 
 
’’ stands for the terms that
either grow faster than rd or vanish in the limit rd ! 1. As
we have seen in the examples in the body of the paper the
divergent terms contribute to the threshold behavior, and
not to the analytic part of the Dþ 1 dimensional ampli-
tude. They can therefore be ignored. Therefore, the rd

dependence in (H11) is completely determined by the
requirement that the term decompactifies to Dþ 1,

E ðDÞ
ðp;qÞ ¼

�
rd

‘Dþ1

�ðð4pþ6ðqþ1ÞÞ=ðD�2ÞÞðEðDþ1Þ
ðp;qÞ þ 
 
 
Þ: (H12)

The formula (H9) then establishes a recursive relationship

between the eigenvalues ðDÞ
ðp;qÞ: knowing the eigenvalues in

ten dimensions, one can derive the eigenvalues in all lower
dimensions.
The direct determination of the numerical coefficients

aD and bD in low dimensions is complicated, due to the
complicated structure of the Laplace operator. However, a
simple way to find them is by using as input the eigenval-
ues for the R4 and @4R4 interactions in D and Dþ 1
dimensions where they are known. Then the eigenvalue for
the @6R4 interaction is a prediction. It is actually sufficient
to determine aD and bD in 7 � D � 9. We find

ða7; b7Þ ¼ ð� 5
12;

5
2Þ; ða8; b8Þ ¼ ð�3

7;
9
7Þ;

ða9; b9Þ ¼ ð� 7
16;

1
4Þ:

(H13)

With this information one can consider the ansatz

ðDÞ
ðp;qÞ ¼

Aðp;qÞðBðp;qÞ �DÞðD� Cðp;qÞÞ
D� 2

: (H14)

The (D-independent) coefficients Aðp;qÞ; Bðp;qÞ; Cðp;qÞ are

determined by substituting the relation (H12) between
the coefficients into the Laplace equation satisfied by

EðDÞ
ðp;qÞ. It follows that, for 7 � D � 9,

ðDÞ
ðp;qÞ ¼ ðDþ1Þ

ðp;qÞ � aD
ð4pþ 6ðqþ 1ÞÞ2

ðD� 2Þ2

� bD
4pþ 6ðqþ 1Þ

D� 2
: (H15)

For the three cases under consideration

ðDÞ
ð0;0Þ ¼

3ð11�DÞðD� 8Þ
D� 2

; (H16)

ðDÞ
ð1;0Þ ¼

5ð12�DÞðD� 7Þ
D� 2

; (H17)

ðDÞ
ð0;1Þ ¼

6ð14�DÞðD� 6Þ
D� 2

: (H18)

Assuming that (H15) holds for ðp; qÞ ¼ ð0; 0Þ and ðp; qÞ ¼
ð1; 0Þ in any generic dimension 3 � D � 10, one can
determine aD and bD

aD ¼ � D� 2

2ðD� 1Þ ; bD ¼ �D2 � 3D� 58

2ðD� 1Þ : (H19)

As a check that this extrapolation to arbitrary dimensions
3 � D � 10 makes sense, one verifies that (H19) also
solves (H15) for ðp; qÞ ¼ ð0; 1Þ. Another check is that
(H16)–(H18) [or, equivalently, (H15) with (H19) and
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0 � 2pþ 3q � 3] give the correct eigenvalues in six di-
mensions. Since the information about the D ¼ 6 eigen-
values was not used at all, this is a nontrivial check.

Summarizing, the basic rule behind the above derivation
is the requirement that a modular function inD dimensions
decompactifies to a finite term in Dþ 1 dimensions. This
determines the rd dependence, and hence the shift in the
eigenvalues. Since this rule applies equally to the 3 � D<
6 modular functions, we expect that in these dimensions
the modular functions for the interactions R4, @4R4, and
@6R4 satisfy the differential Eqs. (6.2), (6.3), and (6.4). It
should be noted that the source term in (6.4) is also
determined by the decompactification procedure since

EðDÞ
ð0;0Þ decompactifies appropriately.

APPENNDIX I: DETERMINATION OF Eð8Þ
ð0;1Þ

We will here solve the inhomogeneous Laplace equa-
tions that define the coefficients of the @6R4 interactions in
D ¼ 8 dimensions. In each case we will find a unique
solution satisfying certain boundary conditions obtained
from string perturbation theory.

We wish to solve (5.9),

�ð8ÞEð8Þ
ð0;1Þ ¼ 12Eð8Þ

ð0;1Þ � ðEð8Þ
ð0;0ÞÞ2: (I1)

The general form of the solution is the sum of a particular
solution and a solution of the homogeneous equation. The

homogeneous equation ð�ð8Þ � 12ÞF ¼ 0 has one solution
that is compatible with string perturbation theory,

f�ð3=2Þ;3 ¼ ESLð3Þ
½10�;�ð3=2ÞE3ðUÞ: (I2)

There are other solutions, such as ESLð3Þ
½10�;s with s� ¼

3=4ð1� ffiffiffiffiffiffi
17

p Þ and E4ðUÞ. However, none of these solu-
tions is compatible with string perturbation theory.
Therefore,

E ð8Þ
ð0;1Þ ¼ ��ð3=2Þ;3E

SLð3Þ
½10�;�ð3=2ÞE3ðUÞ þ P ; (I3)

where the particular solution P can be expressed by sepa-
ration of variables as

P ¼ ASLð3Þ þ BSLð2ÞðUÞ þ CSLð3ÞDSLð2ÞðUÞ; (I4)

where ASLð3Þ and CSLð3Þ are SLð3;ZÞ automorphic func-

tions and BSLð2ÞðUÞ and DSLð2ÞðUÞ are SLð2;ZÞ-invariant
functions ofU. By expanding the source term, each piece is
found to satisfy the following equations:

ð�SOð3ÞnSLð3Þ � 12ÞASLð3Þ ¼ �ðÊSLð3Þ
½10�;ð3=2ÞÞ2; (I5)

ð�SOð2ÞnSLð2Þ � 12ÞBSLð2ÞðUÞ ¼ �4ðÊ1ðUÞÞ2; (I6)

ð�SOð3ÞnSLð3Þ�SOð2ÞnSLð2Þ � 12ÞCSLð3ÞDSLð2ÞðUÞ
¼ �4ÊSLð3Þ

½10�;ð3=2ÞÊ1ðUÞ: (I7)

The SLð3;ZÞ functions can be expanded using the varia-
bles (�2;�) with an explicit SLð2;ZÞ invariance acting on
� or using the variables (y8; T) with an explicit SLð2;ZÞ
symmetry acting on T. The T-duality group in eight di-
mensions is SOð2; 2Þ ¼ SLð2Þ � SLð2Þ, where the SLð2Þ
factors act on T and U, respectively. This ensures that the
perturbative answer is symmetric under exchange T $ U.
The first differential equation in (I5) defines an SLð3;ZÞ

invariant function

ASLð3Þ � ESLð3Þ
ð0;1Þ : (I8)

The SLð3Þ functions will be written as functions of the
(y8; T) variables, in terms of which the SOð3ÞnSLð3Þ
Laplacian takes the form

�SOð3ÞnSLð3Þ � T2
2ð@2T1

þ @2T2
Þ þ 3@y8ðy28@y8Þ: (I9)

Using the expansion given in (B55) for ÊSLð3Þ
½10�;3=2, one can

determine the perturbative expansion of ESLð3Þ
ð0;1Þ . The ansatz

Z 1=2

�ð1=2Þ
d�1dBRRE

SLð3Þ
ð0;1Þ ¼ a0

y28
þ 1

y8
ðA1ðTÞ þ a1 logðy8ÞÞ

þ A2ðT; y8Þ þ
X
n�3

AnðTÞyn�2
8

(I10)

leads to

a0 ¼ 2�ð3Þ2
3

; a1 ¼ 2�

9
�ð3Þ; (I11)

and the set of equations

ð�T � 12ÞA1ðTÞ ¼ �8�ð3ÞÊ1ðTÞ þ 2�

3
�ð3Þ; (I12)

ð�T þ 3@y8ðy28@y8Þ � 12ÞA2ðT; y8Þ

¼ �
�
2Ê1ðTÞ þ 2�

3
logðy8Þ

�
2
; (I13)

ð�T � 6ÞA3ðTÞ ¼ 0; (I14)

ð�T � 3ð2þ 3n� n2ÞÞAnðTÞ ¼ 0; n � 4; (I15)

with �T ¼ T2
2ð@2T1

þ @2T2
Þ.

(i) Equation (I12) gives the genus-one contribution.
Because the source term is linear (I12) is solved by

A1ðTÞ ¼ a01E4ðTÞ þ 2

3
�ð3ÞÊ1ðTÞ: (I16)

An explicit evaluation of the genus-one contribution
in (D10) shows that a01 ¼ 0.
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(ii) Equation (I13) is solved by

A2ðT; y8Þ ¼ a02E4ðTÞ þ fðTÞ þ 7�2

216
þ �

18
Ê1ðTÞ

þ
�
�2

27
þ 2�

9
Ê1ðTÞ

�
logðy8Þ

þ �2

27
logðy8Þ2; (I17)

where fðTÞ is the particular solution to

ð�T � 12ÞfðTÞ ¼ �4Ê2
1ðTÞ: (I18)

This is the same as the equation for BSLð2ÞðUÞ in (I6)
as is required by T duality at genus two. The struc-

ture of this equation is similar to that of Eð10Þ
ð0;0Þ. This is

complicated to solve explicitly, but it is straightfor-
ward to determine the power-behaved terms in the
large-T2 expansion, as given in [13],

fðTÞ ¼ �ð2Þ
180

ð65� 20�T2 þ 48�2T2
2Þ þ

�ð3Þ�ð5Þ
6�T3

2

� �ð2Þ
3

logT2ð4�T2 � 6 logT2 þ 1Þ
þOðe�T2Þ: (I19)

Since there cannot be a T4
2 contribution to the genus-

two @6R4, we conclude that a02 ¼ 0.
Equation (I14) is solved by A3ðTÞ ¼ �3E3ðTÞ.

(iii) Equation (I15) has solutions AðTÞ ¼ bEsðTÞ where
s is not real. Therefore they do not fit with string
perturbation theory, so we must set b ¼ 0, which is
compatible with the absence of contributions be-
yond genus three.

The perturbative expansion for ESLð3Þ
ð0;1Þ therefore has the

form

Z 1=2

�ð1=2Þ
d�1dBRRE

SLð3Þ
ð0;1Þ ¼ 2

3

�ð3Þ2
y28

þ 2�ð3Þ
9

1

y8
ð3Ê1ðTÞ

þ � logðy8ÞÞ þ A2ðT; y8Þ
þ �3y8E3ðTÞ: (I20)

By considering the powers of y8 in (I6) and (I7), we see that
(I7) has genus-one and genus-two contributions,

Z 1=2

�ð1=2Þ
d�1dBRRC

SLð3ÞDSLð2ÞðUÞ

¼ h1ðT;UÞ
y8

þ h2ðT;U; y8Þ; (I21)

where

ð�T þ �U � 12Þh1ðT;UÞ ¼ �8�ð3ÞÊ1ðUÞ; (I22)

ð�T þ �U þ 3@y8ðy28@y8Þ � 12Þh2ðT;U; y8Þ

¼ �8Ê1ðTÞÊ1ðUÞ � 8�

3
Ê1ðTÞ logðy8Þ: (I23)

These equations are solved by

h1ðT;UÞ ¼ ĥ1ðT;UÞ þ 2

3
�ð3ÞÊ1ðUÞ þ �

18
�ð3Þ; (I24)

h2ðT;U; y8Þ ¼ ĥ2ðT;UÞ þ 2

3
Ê1ðTÞÊ1ðUÞ þ �

9
Ê1ðUÞ

þ �

18
Ê1ðTÞ þ 2�

9
Ê1ðUÞ logðy8Þ

þ �2

54
logðy8Þ þ �2

54
; (I25)

where

ð�T þ�U � 12ÞĥiðT;UÞ ¼ 0; i ¼ 1; 2: (I26)

The only solution to this equation which is symmetric
under T $ U, and that can a priori be compatible with
the decompactification limit has the form

ĥ iðT;UÞ ¼ �iE3ðTÞE3ðUÞ:
General solutions with eigenvalue equal to 12 of the form
Es1ðUÞEs2ðTÞ þ Es2ðUÞEs1ðTÞ would have nonrational

values of s1, s2 and thus would lead to nonrational powers
of r2 in the decompactification limit. On the other hand, a
possible solution proportional to E4ðUÞ þ E4ðTÞ is ruled
out for the reasons explained above.
Finally, the perturbative contributions from the homoge-

neous solution (I2) areZ 1=2

�ð1=2Þ
d�1dBRRE

SLð3Þ
½10�;�ð3=2ÞE3ðUÞ

¼ 3

2�5
ðy�1

8 E3ðTÞ þ ��ð4Þy8ÞE3ðUÞ: (I27)

This expression contains genus-one and genus-three terms.

Collecting the perturbative contributions to Eð8Þ
ð0;1Þ, we

haveZ 1=2

�ð1=2Þ
d�1dBRRE

ð8Þ
ð0;1Þ ¼

f0
y28

þ f1
y8

þ f2 þ y8f3; (I28)

with

f0 ¼ 2

3
�ð3Þ2; (I29)

f1 ¼
�
��ð3=2Þ;3

3

2�5
þ �1

�
E3ðTÞE3ðUÞ

þ 2

3
�ð3ÞðÊ1ðTÞ þ Ê1ðUÞÞ þ 2��ð3Þ

9
logðy8Þ

þ �

18
�ð3Þ; (I30)

AUTOMORPHIC PROPERTIES OF LOW ENERGY STRING . . . PHYSICAL REVIEW D 81, 086008 (2010)

086008-47



f2 ¼ 2

3
Ê1ðTÞÊ1ðUÞ þ fðTÞ þ fðUÞ þ �2E3ðTÞE3ðUÞ

þ 11�2

216
þ �

9
ðÊ1ðTÞ þ Ê1ðUÞÞ

þ �

18
ð�þ 4Ê1ðTÞ þ 4Ê1ðUÞÞ logðy8Þ þ �2

27
logðy8Þ2;

(I31)

f3 ¼
��ð3=2Þ;3

60
E3ðUÞ þ �3E3ðTÞ: (I32)

Strikingly, after combining the different log contributions
the final result containing log parts is symmetric under the
exchange of U-T variables.

Symmetry under the T $ U also determines the relation

��ð3=2Þ;3 ¼ 60�3: (I33)

Decompactification to ten dimensions and the value of the
genus-three coefficient found in [10] fixes

�3 ¼ 2
27: (I34)

Comparison with the genus-one computation in (D10) fixes

��ð3=2Þ;3 þ 2�5

3
�1 ¼ 40

9
; (I35)

which implies that �1 ¼ 0. The large-volume limit of the
genus-two contribution fixes �2 ¼ 0. Thus we find

f0 ¼ 2

3
�ð3Þ2; (I36)

f1 ¼ 20

3�5
E3ðTÞE3ðUÞ þ 2

3
�ð3ÞðÊ1ðTÞ þ Ê1ðUÞÞ

þ 2��ð3Þ
9

logðy8Þ þ �

18
�ð3Þ; (I37)

f2 ¼ 2

3
Ê1ðTÞÊ1ðUÞ þ fðTÞ þ fðUÞ þ �

9
ðÊ1ðTÞ þ Ê1ðUÞÞ

þ �

18
ð�þ 4Ê1ðTÞ þ 4Ê1ðUÞÞ logðy8Þ

þ 2�ð2Þ
9

logðy8Þ2 þ 11�ð2Þ
36

; (I38)

f3 ¼ 2

27
ðE3ðUÞ þE3ðTÞÞ: (I39)

Finally, the SLð3;ZÞ � SLð2;ZÞ invariant expression for

CSLð3ÞDSLð2ÞðUÞ that solves (I7) and has the above pertur-
bative expansion is given by

CSLð3ÞDSLð2ÞðUÞ ¼ 1

3
ÊSLð3Þ

½10�;ð3=2ÞÊ1ðUÞ þ �

36
ÊSLð3Þ

½10�;ð3=2Þ

þ �

9
Ê1ðUÞ þ �ð2Þ

9
:

This has terms that were not present in [13], that originate
from the regularization of the source term.
The complete form of the solution is given by

E ð8Þ
ð0;1Þ ¼ ESLð3Þ

ð0;1Þ þ 40

9
ESLð3Þ

½10�;�ð3=2ÞE3ðUÞ þ 1

3
ÊSLð3Þ

½10�;ð3=2ÞÊ1ðUÞ

þ fðUÞ þ �

36
ðÊSLð3Þ

½10�;ð3=2Þ þ 4Ê1ðUÞÞ þ �ð2Þ
9

:
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