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Diagonal 647, 08028 Barcelona, Spain
3George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University,

College Station, Texas 77843-4242, USA
(Received 25 May 2010; published 1 September 2010)

The Maxwell algebra is a noncentral extension of the Poincaré algebra, in which the momentum

generators no longer commute, but satisfy ½P�; P�� ¼ Z��. The charges Z�� commute with the momenta,

and transform tensorially under the action of the angular momentum generators. If one constructs an

action for a massive particle, invariant under these symmetries, one finds that it satisfies the equations of

motion of a charged particle interacting with a constant electromagnetic field via the Lorentz force. In this

paper, we explore the analogous constructions where one starts instead with the ISim subalgebra of

Poincaré, this being the symmetry algebra of very special relativity. It admits an analogous noncentral

extension, and we find that a particle action invariant under this Maxwell-Sim algebra again describes a

particle subject to the ordinary Lorentz force. One can also deform the ISim algebra to DISimb, where b is

a nontrivial dimensionless parameter. We find that the motion described by an action invariant under the

corresponding Maxwell-DISim algebra is that of a particle interacting via a Finslerian modification of the

Lorentz force. In an appendix is it shown that the DISimb algebra is isomorphic to the extended

Schrödinger algebra with its standard deformation parameter z, when b ¼ 1
1�z .
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I. INTRODUCTION

A popular line of thought in theoretical physics is to start
with a Lie algebra g or Lie group G, and then to construct
from it the space or spacetime in which physical objects,
for example, p-branes, move. Typically the spaces or
spacetimes are cosets G=H. The dynamics of p-branes is
then described as a map from the (pþ 1)-dimensional
world volume into G=H [1–5]. In the case of point parti-
cles, the dynamics is often thought of as geodesic motion,
or some modification thereof by ‘‘forces,’’ such as the
Lorentz force on electrically charges particles in electro-
magnetism, with respect to a metric on G=H that is invari-
ant under the left action ofG onG=H. More generally, one
is interested in invariant Lagrangians Lðx; vÞ on the tangent
space TðG=HÞ, or Hamiltonians Hðx; pÞ on the cotangent
space T?ðG=HÞ. For a recent statement of this viewpoint in
the context of quantum field theory, see [6].

An alternative construction of a p-brane action in the
space G=H is to consider the quotient ðG=HÞ=K, where K
is the stabilizer of the p-brane. The action of lowest order
in derivatives is obtained by considering the pullback to the
world volume of a (pþ 1)-form invariant under K [7] (see
also [8], where one can find further references). The action
contains extra Goldstone fields associated with the broken
‘‘rotations.’’ In order to make contact with the geometrical
Lagrangian Lðx; vÞ, we should eliminate the extra fields by
their nondynamical equations of motion or, more generally,
by the inverse Higgs mechanism [9].

An early example of this program followed the discov-
ery of the three congruence geometries: hyperbolic or

Lobachevsky space H3, Euclidean space E3, and spherical
space S3. Helmholtz characterized these three possibilities
physically in terms of axioms of the free mobility of rigid
bodies [10]. Such bodies permit rotations about any point
in space, and translations to any point in space. Thus he
demanded that H ¼ SOð3Þ and that G act transitively on
G=H. He arrived, after some additional arguments, at the
three possibilities

G ¼ SOð3; 1Þ: G=H ¼ H3; (1.1)

G ¼ Eð3Þ: G=H ¼ E3; (1.2)

G ¼ SOð4Þ: G=H ¼ S3: (1.3)

An equivalent way of looking at this is to say that the
configuration space Q of a rigid body with one point fixed
admits a simply transitive left action by SOð3Þ, and may
thus be identified with SOð3Þ. Free motion of a rigid body
is given by geodesic motion on SOð3Þwith respect to a left-
invariant metric. If the body moves in ordinary Euclidean
space, Q is enlarged to become the Euclidean group Eð3Þ.
If the body moves in an inviscid fluid, conservation of
momentum and angular momentum will still hold and
the metric is then given by a general left-invariant metric
on Eð3Þ. Correspondingly, geodesic motion on SOð3; 1Þ or
SOð4Þ with respect to a left-invariant metric gives the
motion of a rigid body moving in a fluid in H3 or S3,
respectively.
A slightly different strand of thought begins with the

observation (originally due to Lambert [11]) that passing to
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S3 or H3 introduces a new parameter into physics: the
radius of curvature. This new parameter is associated
with the fact that the translations in SOð3; 1Þ or SOð4Þ no
longer commute. Expressed mathematically, the Lie alge-
bras soð3; 1Þ and soð4Þ are continuous deformations of
eð3Þ, and this suggests that in seeking new physical laws
a fruitful procedure is to look for continuous deformations
of existing laws. In algebraic terms, this translates into
looking for continuous deformations of the Lie algebra g
that one begins with. Given that one has introduced a new
physical parameter whose magnitude is arbitrary, it is
natural to enquire whether it might be time-dependent. In
the case of spatial curvature, just such a suggestion was
made by Calinon long before general relativity and the
Robertson-Walker metric [12].

The group theory viewpoint came into its own with
Einstein’s theory of special relativity, for which G ¼
Eð3; 1Þ ¼ ISOð3; 1Þ, the Poincaré group. Indeed only ret-
rospectively was the Galilei group recognized as its
Wigner-İnönü [13] contraction. As with the Euclidean
group, the Poincaré group admits two continuous deforma-
tions, to SOð4; 1Þ or SOð3; 2Þ, for which spacetime trans-
lations fail to commute. It was perhaps only the early
death of Minkowski which delayed until after the advent
of Einstein’s general relativity the implementation of
Calinon’s idea. de Sitter, seeking a covariant version of
Einstein’s static universe, introduced their cosets, de Sitter
and anti–de Sitter, respectively.

Einstein did not scruple to break boost invariance with
his static universe [14], and this is a feature of all
Robertson-Walker metrics except those of de Sitter [15].
A natural question, answered by Bacry and Levy-Leblond
[16], is what other ten-dimensional kinematical algebras
exist, which contain rotations, translations in time and
space, and boosts. All can be regarded as Wigner-İnönü
contractions of the de Sitter and anti–de Sitter algebras.

Invariance under the local Lorentz group is extremely
well attested by experiment, but nevertheless Cohen and
Glashow [17] observed that if it is broken down to its four-
dimensional maximal subgroup Simð2Þ � SOð3; 1Þ it
leaves invariant no spurion fields, merely leaving fixed a
null direction n� � �n�, � � 0, where ���n

�n� ¼ 0. It

may play a role linking small neutrino masses, and is
compatible with all present-day tests of violations of
Lorentz invariance. Thus they proposed in their very spe-
cial relativity theory that the fundamental local symmetry
group is the semidirect product of Sim(2) and the trans-
lations, known as ISimð2Þ � ISOð3; 1Þ. In recent work, in
an attempt to obtain noncommuting translations, and hence
spacetime curvature [18], we studied the continuous de-
formations of ISim(2) and found a two-parameter family,
one of which was rejected because the deformation of the
SOð2Þ rotation generator ceased to be compact. The
remaining one-parameter deformed group DISimð2Þb
depends on a dimensionless parameter b, and coincides

with one introduced by Bogoslovsky [19] in his proposal
for an anisotropic Finslerian spacetime.
It is straightforward to generalize the DIsimð2Þb

group to kþ 2 spacetime dimensions. We denote the
resulting group DISimbðkÞ. It is interesting to note [20]
that the DISimbðkÞ is then isomorphic to the extended

Schrödinger group gSchðkÞ [21] which has resurfaced in
recent studies of nonrelativistic holography in k spatial
dimensions (see, e.g., [22] and references therein). Since
this topic is not strictly connected with the Maxwell alge-
bra which is the main concern of the present paper, we
relegate the details to Appendix B.
Since Maxwell’s equations are invariant under

DISimð2Þb, the dispersion relation for photons is the
standard one, and hence these theories are consistent
with the recent high-precision test of Lorentz violation
using the gamma-ray burst GRB090510 [23].
The advent of quantum mechanics led to the realization

that not only are deformations of algebras important, but so
also are extensions, especially central extensions. The
Ur-example is the Heisenberg algebra

½q̂j; p̂i� ¼ i@�j
i : (1.4)

However, a more relevant example for our purposes is the
motion of a particle of charge e in a uniform time-
independent magnetic field. The minimally coupled
Lagrangian is

L ¼ T þ eAi _x
i; (1.5)

where Ai ¼ � 1
2Fijx

j, and T is the kinetic energy. If pi �
@T=@ _xi (sometimes called the mechanical momentum),
then the canonical momentum is

�i � @L

@ _xi
¼ pi þ eAi ¼ pi � 1

2
eFijx

j: (1.6)

Assuming that �i and xj satisfy the standard Poisson
algebra fxi; �jg ¼ �i

j, fxi; xjg ¼ f�i; �jg ¼ 0, then pi and

xj satisfy the centrally extended algebra

fxi;pjg ¼ �i
j; fxi; xjg ¼ 0; fpi;pjg ¼ eFij: (1.7)

The action associated to (1.5) is invariant, up to a
boundary term, under constant translations:

xi ! xi þ ai: (1.8)

The Noether charges or moment maps associated with
these spatial translations are ai ~pi, where

~p i ¼ �i � 1
2eFijx

j ¼ pi � eFijx
j: (1.9)

It follows from the equations of motion that d~pi=dt ¼ 0.
One finds the following nontrivial Poisson brackets:

f~pi; ~pjg ¼ �eFij; fxi; ~pjg ¼ �i
j: (1.10)
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Note that the ~pi and pi momenta Poisson commute:

f~pi; pjg ¼ 0: (1.11)

The constancy of the ~pi is now seen to follow from the fact
that the Hamiltonian obtained by taking the Legendre
transform of the Lagrangian (1.5) is a function only of
the mechanical momentum pi, and independent of the
spatial coordinates xi.

One can think of e as a central element � �Z in a finite-
dimensional Poisson algebra, which commutes with all
other generators. The moment maps pi and �Z generate a
group of transformations on phase space, whose Lie
algebra is

½Pi;Pj� ¼ ZFij; ½Pi;Z� ¼ 0: (1.12)

(The relative sign between Lie algebra brackets and
Poisson brackets is a consequence of our general conven-
tions, which are detailed in Appendix A.) Note that
whereas the ‘‘central term’’ in the Poisson algebra (1.7)
is cohomologically trivial (it can be removed by the local
redefinition of generators that maps from xi and pi to xi

and �i), the central term in the Lie algebra (1.12) is
cohomologically nontrivial. The reason for the difference
is that the xi are included as generators in the Poisson
algebra, but not in the Lie algebra.

Inclusion of a uniform time-independent electric as well
as a magnetic field generalizes (1.12) to the Lorentz-
covariant Lie algebra

½P�;P�� ¼ ZF��: (1.13)

This five-dimensional algebra has as group manifoldG, the
five-dimensional space with coordinates x� and �, conju-
gate to P� andZ, respectively. It turns out, in Kaluza-Klein

fashion, that geodesic motion on G projects down onto the
coset G=H, where H � R is generated by the central
element Z, and electric charge is the conserved momentum
in that direction. Particles with magnetic as well as electric
charge (dyons) may also be catered for, by passing to six
dimensions and replacing (1.13) by

½P�;P�� ¼ ZF�� þ Z?F?
��; (1.14)

where F?
�� ¼ 1

2 ���	
F
	
 is the Hodge dual of F��.

A different approach is to consider noncentral exten-
sions of the fundamental algebra g. This is by now standard
in supersymmetric p-brane theories, following the pioneer-
ing work of van Holten and van Proeyen [24]. However, the
simplest example, which is purely bosonic and predates
their work, is the 16-dimensional Maxwell algebra, which
is a noncentral extension of the Poincaré algebra with six
tensorial charges Z�� arising through a noncommutativity

of the momentum generators,

½P�;P�� ¼ Z��: (1.15)

One now introduces six angles conjugate to Z��. These

angles are dynamical variables with a nontrivial evolution.

Note that for any particular solution of the relevant
equations of motion, �Z�� ¼ �eF��, spontaneous symme-

try breaking will occur and the symmetry will be reduced
to the subgroup of the Poincaré group leaving the back-
ground F�� invariant. This is the kinematical group in this

context.
The aim of this paper is to study in the framework of

the very special relativity [17], or its deformation [18], the
motion of a bosonic charged massive particle in the pres-
ence of a constant electromagnetic field. This will be done
by constructing the noncentral extensions and deforma-
tions of ISim(2). As we shall see, the Maxwell-Sim algebra
is constructed from the translation generators P� and the

noncentral extension Z�� ¼ ½P�;P��, together with the

SimðnÞ generators ðMþi;Mþ�;MijÞ.
Later we study the deformations of the Maxwell-Sim

algebra. In general dimensions we find two deformations,
with parameters b and c. The deformation parametrized
by c is analogous to the k deformation of the Maxwell
algebra found in [25] [now restricted to the 14 generators
of Maxwell-Sim(2)], which gave SOð3; 2Þ � SOð3; 1Þ or
SOð4; 1Þ � SOð3; 1Þ, depending on the sign of k. The b
deformation of Maxwell-Sim produces the Maxwell ex-
tension of the DISimb algebra, which is related to
Finslerian geometry.
In order to construct the particle models with the previous

symmetries, we use two different approaches: one based in
the Lagrangian formalism and the nonlinear realization
approach [26], and the other based on the Hamiltonian
formalism constructed from the momentum maps.
In the case of Maxwell-DISimb the motion is given by

a Finslerian Lorentz force, while for the undeformed
Maxwell-Sim we obtain the ordinary Lorentz force.
Therefore the study of anisotropies of a massive particle
in an electromagnetic field could provide a test of a pos-
sible Finsler geometry.
The organization of the paper is as follows. In Sec. II we

review the Maxwell algebra, and in Sec. III we recall the
basic facts about the ISim algebra. In Sec. IV we construct
the Maxwell-Sim algebra, and then in Sec. V we the study
its deformations. The particle Lagrangians are constructed
in Sec. VI, and in Sec. VII we perform the Hamiltonian
analysis. The paper ends with conclusions. Appendix A
discusses the Hamiltonian formalism and moment maps,
and Appendix B discusses the Lifshitz and Schrödinger
algebras.

II. THE MAXWELL ALGEBRA

The name Maxwell algebra appears to originate with
Glashow, as reported in [27] in connection with the behav-
ior of matter in extremely strong magnetic fields such as are
found in neutron stars. Nowadays one might think of mag-
netars. However, it is Schrader [28] who seems to have been
the first to study it systematically. Other earlier work apply-
ing group theoretic methods to uniform electromagnetic
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fields is in [29,30]. This often-cited work assumes a con-
stant c-number background field F��, and is largely con-

cerned with what they called the kinematical group, i.e.,
with the six-dimensional subgroup of the Poincaré group
that leaves F�� invariant, generated by P� and two com-

muting Lorentz generators

G ¼ 1
2F

��M��; G? ¼ 1
2F

?��M��: (2.1)

This gives the algebra

½G;G?� ¼ 0; (2.2)

½G;P�� ¼ F��P
�; (2.3)

½G?;P�� ¼ F?
��P

�; (2.4)

where we have defined F?
�� ¼ 1

2 �����F
��. We shall refer

to these six-dimensional kinematical algebras as the Bacry-
Combe-Richards or BCR algebras. The BCR group is
Eð2Þ � Eð1; 1Þ, the product of the two-dimensional
Euclidean group Eð2Þ with the two-dimensional Poincaré
group Eð1; 1Þ.

If we use light-cone coordinates where x� ¼
ðx�; xþ; xiÞ, define �þ�12 ¼ þ1, and take the Maxwell
field to be zero except for Fþ� ¼ 1, then G ¼ Mþ�,
G? ¼ M12, and the algebras associated with the two fac-
tors are generated by

Eð2Þ: fP1;P2;G
?g; Eð1; 1Þ: fPþ;P�;Gg: (2.5)

For more details on the BCR group, the reader may consult
[31].

According to [32], the BCR algebra has three central
extensions, so that

½G;G?� ¼ a; ½P�;P�� ¼ZelecF��þZmagF
?
��: (2.6)

There also are four other noncentral charges Z��

(in the complement of Zelec
�� ¼ ZelecF�� and Zmag

�� ¼
ZmagF

?
��):

½P�;P�� ¼ ZelecF�� þ ZmagF
?
�� þ Z��: (2.7)

In total there are six extensions which we can decompose
in representations ofG andG?. The difference with respect
to the Maxwell case to be treated later is the presence of
two central charges. The central charges are present be-
cause the Lorentz group has been reduced to the Abelian
subgroup G2 generated by G and G?. (Note that this two-
dimensional Abelian group G2 is not to be confused with
the 14-dimensional non-Abelian simple Lie group of the
Cartan/Dynkin classification.)

In [32,33] arguments are given to the effect that if the
rotation in G, G? is to be a compact generator then a
should vanish. That leaves Zelec and Zmag, which, as the

notation suggests, may be identified with the electric and
magnetic charge, respectively. In what follows we shall
refer to the eight-dimensional doubly extended kinematic
algebra generated by fP�;G;G?;Zelec;Zmagg as the

EBCR algebra.

The EBCR algebra is a direct sum of two subalgebras,
each of which has a nontrivial quadratic Casimir. In the
case where the only nonvanishing component of F�� is
given by Fþ� ¼ 1, the generators of the two subalgebras
are fG?;P1;P2;Zmagg and fG;Pþ;P�;Zelecg. The two

Casimirs are

C mag ¼ 1
2P

2
i þ ZmagM12;

Celec ¼ PþP� � ZelecMþ�:
(2.8)

By contrast, the Maxwell algebra is a 16-dimensional
extension of the Poincaré algebra with the nonvanishing
brackets

½M	
;P� ¼ �	P
 � �
P	; (2.9)

½M	
;M�� ¼ �	M
� � �	�M
 þ �
�M	

� �
M	�; (2.10)

½M	
;Z�� ¼ �	Z
� � �	�Z
 þ �
�Z	 � �
Z	�;

(2.11)

½P	;P
� ¼ Z	
; (2.12)

where Z	
 ¼ �Z
	. There are two generic Casimirs

(which exist for the Maxwell algebra in any dimension)
[28],

C 1 ¼ 1
2ðP�P� þM��Z

��Þ; C2 ¼ 1
2Z��Z

��; (2.13)

and a third quadratic Casimir that exists only in the special
case of four dimensions:

C 3 ¼ 1
2Z��Z

?��: (2.14)

The Casimirs are, of course, elements of the universal
enveloping algebra of the Maxwell Lie algebra.
The six additional generators Z�� are on the same foot-

ing as the Poincaré generators P� andM��, in that they are

dynamical; depending upon the equations of motion of the
theory under consideration, the associated momenta may
vary with time. The Z�� are associated with the Maxwell

2-form. In specific solutions of any equations of motion,
there may occur spontaneous symmetry breaking in which
the associated momenta �Z�� take constant values,
�Z�� ¼ �eF��.

1 The relevant algebra will then reduce to

the EBCR algebra that leaves invariant the background
field F��.

A set of left-invariant 1-forms are (we omit those for the
Lorentz subalgebra)

P�
L ¼ dx�; (2.15)

1More precisely, in a Hamiltonian treatment the �Z�� are the
moment maps. See Sec. VII for further details.
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Z
��
L ¼ d��� � 1

2ðx�dx� � x�dx�Þ; (2.16)

with generators of right actions being given by

PL
� ¼ @

@x�
� 1

2
x�

@

@��� ; (2.17)

ZL
�� ¼ @

@��� : (2.18)

They satisfy ½PL
�; P

L
�� ¼ ZL

��.

The 1-forms (2.15) are invariant under

�x� ¼ ��; ���� ¼ ��� þ 1
2ð��x� � ��x�Þ; (2.19)

which are generated by the vector fields

PR
� ¼ @

@x�
þ 1

2
x�

@

@��� ; ZR
�� ¼ @

@��� : (2.20)

The ten-dimensional subalgebra, which is obtained by
taking the quotient with respect to the Lorentz subalgebra,
is spanned by P� and Z��, and closes on the generalized
Heisenberg algebra. The associated coset is thus also a
group manifold, sometimes called a superspace, and has
as coordinates x� and ���. This ten-dimensional super-
space, which is fibered over Minkowski spacetime with flat
six-dimensional fibers, carries a natural Lorentz-invariant
metric:

ds210 ¼ ���P
�
LP

�
L þ 1

2�
�����Z��

L Z��
L : (2.21)

A. Quantization

The obvious approach to quantization is to consider
wave functions �ðx�; ���Þ depending upon both x� and
���. A generalized Klein-Gordan or Dirac equation may
readily be written in the usual way using the differential
operators

P�; Z��: (2.22)

The equations can be solved using Fourier transforms, and
the solutions used to construct one-particle Hilbert spaces.
The Maxwell group acts on these wave functions by pull-
back, and in this way one obtains a projective representa-
tion of the Maxwell group. For details of the procedure,
including the calculation of the relevant cocycles, the
reader is referred to Schrader’s paper [28].

B. Deformations and contractions

In general dimensions, the Maxwell algebra admits a
unique deformation parameter k. For k > 0 we have
soðD� 1; 2Þ � soðD� 1; 1Þ ¼ ðM��;P�;J ��Þ. If in-

stead k < 0, we have soðD; 1Þ � soðD� 1; 1Þ, where D ¼
nþ 2 is the dimension of spacetime [25,34]. Conversely, it
may be regarded as a Wigner-İnönü contraction [25] such
that

M�� ¼ M�� � J ��; (2.23)

P� ¼ lim
k!1

P�

jkj ; (2.24)

Z�� ¼ lim
k!1

�M��

k2
; (2.25)

where k has the dimensions of length and the sign choice is
made depending on whether we consider the anti–de Sitter
or de Sitter part.

III. THE ISIM ALGEBRA

We may consider a generalization of the discussion of
the Maxwell algebra of [35], where the starting point is
taken to be the ISim algebra rather than the Poincaré
algebra. The ISim generators are

P�; Mþi; Mþ�; Mij: (3.1)

The ISim algebra, with the conventions we are using, is
given in [18].
We define left-invariant 1-forms � as in (A1), but

now, for convenience, we denote them by �a ¼
ðP�;Mþi;Mþ�;MijÞ, and so

g�1dg ¼ P�P� þMþiMþi þ 1
2M

ijMij þMþ�Mþ�:
(3.2)

In terms of these, the ISimðnÞ algebra is given by

dPþ¼Mþi^PiþMþ�^Pþ; dP�¼�Mþ�^P�;

dPi¼Mij^Pj�Mþi^P�;

dMþi¼Mij^MþjþMþ�^Mþi; dMþ�¼ 0;

dMij¼Mik^Mkj:

(3.3)

The Lie brackets may be immediately read off from the
conventions presented in Appendix A.

IV. THE MAXWELL-SIM ALGEBRA

The Maxwell-Sim algebra can be constructed in com-
plete analogy to the Maxwell algebra discussed previously.
One way to describe this it that we start with the P�

generators alone, obtain the central extension in which
½P�;P�� ¼ Z��, and then append the SimðnÞ generators
ðMþi;Mþ�;MijÞ to form the Maxwell-SimðnÞ algebra. At
the level of the left-invariant 1-forms, this means that we
augment the ISimðnÞ relations (3.3) by
dZþi ¼ �Pþ ^ Pi þMþ� ^ Zþi þMij ^ Zþj

þMþi ^ Z�þ �Mþj ^ Zij;

dZ�i ¼ �P� ^ Pi �Mþ� ^ Z�i þMij ^Mþj;

dZ�þ ¼ �P� ^ Pþ þMþi ^ Z�i;

dZij ¼ �Pi ^ Pj �Mþi ^ Z�j þMþj ^ Z�i:

(4.1)
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V. DEFORMATIONS OF MAXWELL-SimðnÞ
We follow the method for finding the general nontrivial

deformation of an algebra that is described in [18] (see [36]
for further details). This entails first finding the second
cohomology class H2ðg; gÞ, which determines the nontri-
vial deformations at the linear level. If H3ðg;gÞ is trivial,
then there must exist, possibly after making (trivial) re-
definitions, an extension of the linearized deformations
that is valid to all orders. (This is checked by verifying
that the deformed algebra satisfies the Jacobi identities.) If,
on the other hand,H3ðg; gÞ is nontrivial, then the extension
beyond the linearized level may not be possible.

For the generic case of the Maxwell-SimðnÞ algebra, we
find that there are two distinct 1-parameter nontrivial de-
formations. We denote these by the b deformation and the
c deformation, where b and c are the respective constants
parametrizing the two deformations.2

A. The b deformation

In the b deformation, the Maxwell-SimðnÞ algebra de-
fined by (3.3) and (4.1) is modified by the following
additions to dP� and dZ��:

dP� ¼ bMþ� ^ P� þ � � � ;
dZ�� ¼ 2bMþ� ^ Z�� þ � � � ; (5.1)

where the ‘‘� � �’’ terms represent the usual right-hand sides
of the undeformed Maxwell-SimðnÞ algebra. The SimðnÞ
relations in (3.3) are unmodified.

B. The c deformation

In the c deformation, the Maxwell-SimðnÞ algebra de-
fined by (3.3) and (4.1) is modified by the following
additions to dP� and dZ��:

dP� ¼ cP� ^ Z�� þ � � � ;
dZ�� ¼ �cZ�

� ^ Z�� þ � � � ; (5.2)

where again the ‘‘� � �’’ terms represent the usual right-hand
sides of the undeformed Maxwell-SimðnÞ algebra. The
SimðnÞ relations in (3.3) are again unmodified.

It is not possible to turn on the b and c deformations
simultaneously. (This agrees with the fact that there are no
de Sitter or anti–de Sitter deformations of the ISim algebra
[18].)

In the special case of Maxwell-Sim(2), we find that there
is an additional nontrivial deformation characterized by a
parameter a, which can be turned on simultaneously with
the b deformation. Thus in place of the b deformation
given by (5.1), for Maxwell-Sim(2) we may have

dP� ¼ aM12 ^ P� þ bMþ� ^ P� þ � � � ;
dZ�� ¼ 2aM12 ^ Z�� þ 2bMþ� ^ Z�� þ � � � : (5.3)

A calculation of the cohomology group H3ðg; gÞ for
Maxwell-Sim(2) shows that it is nontrivial, and of dimen-
sion three.
Note that the deformation parametrized by c in (5.2) is

analogous to the k deformation of the Maxwell algebra
found in [25], now restricted to the 14 generators of
Maxwell-Sim(2), which gave SOð3; 2Þ � SOð3; 1Þ or
SOð4; 1Þ � SOð3; 1Þ depending on the sign of k.
The deformations associated with the parameters a and

b are the Maxwellian extensions of the a and b deforma-
tions of the ISim(2) algebra obtained in [18].

VI. LAGRANGIANS

A. The Maxwell case

A particle model can be derived geometrically by the
techniques of nonlinear realizations [26]. Let us first con-
sider the coset (Maxwell)/(Lorentz). In order to construct a
Lorentz-invariant Lagrangian from the Maurer-Cartan
forms (2.15), one possibility is to introduce new dynamical
variables f�� that transform covariantly under the

Maxwell group [38]. A Lagrangian containing only first
derivatives with respect to proper time may be taken to be

L ¼ �m
ffiffiffiffiffiffiffiffiffi
� _x2

p
þ 1

2f��ð _��� � 1
2ðx� _x� � x� _x�ÞÞ: (6.1)

The equations of motion in the proper-time gauge are

_f �� ¼ 0; (6.2)

_��� ¼ 1
2ðx� _x� � x� _x�Þ; (6.3)

m €x� ¼ f�� _x
�: (6.4)

Integration of (6.2) gives f�� ¼ f0��, where f
0
�� is a con-

stant tensor. This solution spontaneously breaks the
Lorentz symmetry algebra down to a subalgebra of the
Maxwell algebra (namely the EBCR algebra discussed
earlier). Substituting this solution into Eq. (6.4) gives the
motion of a particle in a constant electromagnetic field.
The method of nonlinear realizations does not provide a

unique invariant Lagrangian. In fact since we know how to
construct Lorentz scalars, we can construct a Lagrangian
without the introduction of the new dynamical variables
f�� as

L ¼ m _x2 þ 	

2
ð _��� � 1

2ðx� _x� � x� _x�ÞÞ2; (6.5)

where 	 is a constant. The quantities _��� � 1
2 �ðx� _x� � x� _x�Þ are constants of motion. Choosing _��� �

1
2 ðx� _x� � x� _x�Þ ¼ �	�1f0��, we recover the same equa-

tion of motion of a particle moving in a constant electro-
magnetic field that we obtained above.

2We have performed some of the calculations with differential
forms with the aid of the EDC MATHEMATICA package [37].
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Another way to construct the Lagrangian is to consider
the coset (Maxwell)/(rotations). This coset is useful for the
construction of massive particle Lagrangians when the
tensor calculus is not known. For example, in the case of
ISim, we may consider the coset (ISim)/(rotations), rather
than (ISim)/(Sim), because we do not know a prioriwhat is
the length element; in order words, we do not have an
obvious tensorial calculus. A more striking example is the
case of the deformed ISim algebra DISimb, discussed in
[18]. We obtain left-invariant 1-forms, by first defining

g ¼ g0U; (6.6)

where

g0 ¼ ex
�P�eð1=2Þ���Z�� ; U ¼ ew

iM0i ; (6.7)

and wi, i ¼ 1, 2, 3, are the Goldstone bosons associated
with the broken boost symmetry generators. The left-
invariant 1-forms � may then be read off from

g�1dg ¼ U�1g�1
0 dg0UþU�1dU

¼ ��
PP� þ ���

Z Z�� þ �i
MM0i þ �ij

RMij: (6.8)

Defining

g�1
0 dg0 ¼ ���

PP� þ ����
Z Z��; (6.9)

we have

���
P ¼ dx�; ����

Z ¼ d��� � 1
2ðx�dx� � x�dx�Þ:

(6.10)

The Lorentz transformations generated by U may be used
to define ��

�ðwiÞ:
U�1P�U ¼ ��

�ðwiÞP�: (6.11)

The left-invariant 1-forms ��
P , �

ij
R , and ���

Z are then
given by

�
�
P ¼ ��

�
���
P ¼ ��

�dx
�;

�
��
Z ¼ ��

��
�
�
��
��
Z

¼ ��
��

�
�½d��� � 1

2ðx�dx� � x�dx�Þ�:
(6.12)

The 1-forms �i
M are given by

�i
M ¼ dwi þ dwjð�i

j � wiwjÞ
�
sinhw

w
� 1

�
;

�ij
R ¼

�
dwiwj � dwjwi

w2

�
ðcoshw� 1Þ:

(6.13)

A particle Lagrangian that is invariant under SOð3Þ is
L ¼ ½m�0

P þ 1
2f̂��ð�Þ���

Z �	; (6.14)

where the 	 indicates that the 1-forms are pulled back onto
the worldline: ½dx��	 � _x�ð�Þd�, etc. The coefficient m is

the mass of the particle, while f̂��ð�Þ is a dynamical field

that depends upon �. We see that (6.14) may be written as

L ¼ m�0
� _x� þ 1

2f��½ _��� � 1
2ðx� _x� � x� _x�Þ�; (6.15)

where ��
� is a general Lorentz boost transformation and

depends on the nondynamical coordinates wi which are the
Goldstone bosons associated to the broken boost. The
presence of nondynamical Goldstone bosons in the non-
linear realization approach was first noticed in [9]. We have

also introduced the tensor field f��, which is related to f̂��

by

f�� ¼ ��
�ðwiÞ��

�ðwiÞf̂��: (6.16)

We now define the particle momentum p� in the ca-

nonical way:3

p� ¼ @L

@ _x�
¼ m�0

� þ 1

2
f��x

�: (6.17)

Because �0
� is a timelike Lorentz vector, we have

ðp� � 1
2f��x

�Þ2 ¼ �m2: (6.18)

Introducing e as a Lagrange multiplier to enforce the mass-
shell condition (6.18), we arrive at the Lagrangian

L ¼ ðp� � 1
2f��x

�Þ _x� þ 1
2f��½ _��� � 1

2ðx� _x� � x� _x�Þ�
� 1

2e½ðp� � 1
2f��x

�Þ2 þm2�:
(6.19)

Varying with respect to p� gives

_x � ¼ eðp� � 1
2f

�
�x

�Þ: (6.20)

Substituting for p� in (6.19), and then varying with respect

to e to obtain

e ¼ �
ffiffiffiffiffiffiffiffiffi
� _x2

p

m
; (6.21)

we finally arrive at the Lagrangian (6.1). In Sec. VII we
shall see how the nonlinear realization method and coad-
joint orbit technique gives the same results.

B. The Maxwell-Sim Lagrangian

We start with the coset (Maxwell-Sim)/SOð2Þ, and then
construct the left-invariant 1-forms from the coset repre-
sentative

g ¼ g0U; (6.22)

with

g0 ¼ ex
�P�eð1=2Þ���Z�� ; U ¼ ew

iMþiewMþ� : (6.23)

Following the same steps as in the Maxwell case, we have

g�1dg ¼ �
�
PP� þ �

��
Z Z�� þ �i

MMþi þ �Mþ�Mþ�:
(6.24)

3In the introduction, we used � to denote the canonical
momentum, but from now on we shall use p� for this purpose.
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The left-invariant 1-forms �
�
P and �

��
Z are then given by

��
P ¼ ��

�
���
P ¼ ��

�dx
�;

�
��
Z ¼ ��

��
�
�
��
��
Z

¼ ��
��

�
�½d��� � 1

2ðx�dx� � x�dx�Þ�;
(6.25)

where

��
�
P ¼ dx�; ��

��
Z ¼ d��� � 1

2ðx�dx� � x�dx�Þ:
(6.26)

The Lorentz transformation ��
�ðwi; wÞ is given by

��
� ¼

e�w 0 0
� 1

2 e
wwkwk ew ewwi

�wj 0 1

0
@

1
A; (6.27)

where we order the spacetime coordinates in the sequence
x� ¼ ðx�; xþ; xiÞ, i ¼ 1, 2.

The 1-forms �i
M and �N are given by

�i
M ¼ ewdwi; �N ¼ dw: (6.28)

A particle Lagrangian that is invariant under SOð2Þ
(generated by J ¼ M12) is given by

L ¼ ½	�þ
P � 
��

P þ 1
2f̂��ð�Þ���

Z �	: (6.29)

As in the Maxwell case the coefficients 	 and 
 are

constants, while f̂��ð�Þ is a dynamical field that depends

upon �. We see that (6.29) may be written as

L ¼ 	�þ
� _x� � 
��

� _x�

þ 1
2f��½ _��� � 1

2ðx� _x� � x� _x�Þ�; (6.30)

where

f�� ¼ ��
�ðw;wiÞ��

�ðw;wiÞf̂��: (6.31)

The particle momentum p� is given by

p� ¼ @L

@ _x�
¼ 	�þ

� � 
��
� þ 1

2
f��x

�: (6.32)

Noting that �þ��þ� ¼ ��
��

�� ¼ 0 and �þ
��

�� ¼
1, we see that

ðp� � 1
2f��x

�Þ2 ¼ �m2; (6.33)

where we have defined the mass parameter as

m ¼ ffiffiffiffiffiffiffiffiffiffi
2	


p
: (6.34)

Introducing e as a Lagrange multiplier to enforce the mass-
shell condition (6.33), we arrive at the Lagrangian

L ¼ ðp� � 1
2f��x

�Þ _x� þ 1
2f��½ _��� � 1

2ðx� _x� � x� _x�Þ�
� 1

2e½ðp� � 1
2f��x

�Þ2 þm2�: (6.35)

Varying with respect to p� gives

_x � ¼ eðp� � 1
2f

�
�x

�Þ: (6.36)

Substituting for p� in (6.35), and then varying with respect

to e, we get the Lagrangian (6.1). Thus the undeformed
Maxwell-Sim algebra gives the same particle Lagrangian
as the Maxwell algebra based on the full Poincaré group.

C. The Maxwell-DISimb Lagrangian

The left-invariant 1-forms �
�
P of the DISimb algebra are

given by

�
�
P ¼ ~��

�dx
�; (6.37)

where the matrix ~� is

~� �
� ¼

e�wð1�bÞ 0 0
� 1

2 e
wð1þbÞwkwk ewð1þbÞ ewð1þbÞwi

�wj 0 1

0
B@

1
CA:
(6.38)

The 1-forms �i
M and �N are given by

�i
M ¼ ewdwi; �N ¼ dw: (6.39)

We wish to construct a particle Lagrangian that is in-
variant under SOð2Þ (generated by J ¼ M12). Thus we
begin by writing

L ¼ ½	�þ
P � 
��

P �	; (6.40)

where as before the 	 indicates that the 1-forms are pulled
back onto the worldline. The coefficients 	 and 
 are
constants. We see that (6.40) may be written as

L ¼ 	~�þ
� _x� � 
~��

� _x�; (6.41)

where ~��
� depends on the nondynamical coordinates

w and wi, and is given by (6.38).
We now define the particle momentum p� in the

canonical way:

p� ¼ @L

@ _x�
¼ 	~�þ

� � 
~��
�: (6.42)

Noting that ~�þ�~�þ� ¼ ~��
�
~��� ¼ 0 and

~�þ
�
~��� ¼ e2wb; (6.43)

we have the constraint

p2 ¼ �2	


�
pþ
	

�ðð2bÞ=ð1þbÞÞ ¼ �2	


�
n�p�

	

�ðð2bÞ=ð1þbÞÞ
:

(6.44)

With 	 ¼ �mð1� bÞ and 
 ¼ � 1
2mð1þ bÞ we obtain

Eq. (18) of [18]:

p2 þm2ð1� b2Þ
�
� n�p�

mð1� bÞ
�
2b=ð1þbÞ ¼ 0: (6.45)
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Introducing e as a Lagrange multiplier to enforce the mass-
shell condition (6.45), we arrive at the Lagrangian

L ¼ p� _x� � 1

2
e

�
p2 þm2ð1� b2Þ

�
�
� n�p�

mð1� bÞ
�
2b=ð1þbÞ�

: (6.46)

Varying with respect to p� gives

_x � ¼ e

�
p� � bm

�
� n�p�

mð1� bÞ
�ððb�1Þ=ðbþ1ÞÞ

n�
�
: (6.47)

If we solve for p� and substitute into (6.46), we obtain

L ¼ 1

2

_x2

e
� 1

2
m2ð1� b2Þ

�
�
� n� _x�
mð1� bÞ

�
2b=ð1þbÞ

eð1�bÞ=ð1þbÞ: (6.48)

Varying this with respect to e we get

e ¼ 1

mð1� bÞ ð� _x2Þðð1þbÞ=2Þð�n� _x�Þ�b; (6.49)

from which we obtain the Finslerian Lagrangian of [18]

L ¼ �mð���� _x
� _x�Þð1�bÞ=2ð�n� _x�Þb: (6.50)

For the Maxwell-DISimb case, following the same steps
as for the Maxwell-Sim case, we get

L ¼ �mð���� _x
� _x�Þð1�bÞ=2ð�n� _x�Þb

þ 1
2f��ð _��� � 1

2ðx� _x� � x� _x�ÞÞ: (6.51)

VII. HAMILTONIAN VIEWPOINT

A. Kaluza-Klein interlude

Before dealing with the Maxwell algebra approach,
it may be helpful to contrast the six ‘‘angles’’ ��� with

the single angle � introduced in Kaluza-Klein approaches
to motion in a homogeneous electromagnetic field, con-
sidered as geodesic motion in the five-dimensional
Heisenberg group. The Maurer-Cartan forms are

P� ¼ dx�; Z ¼ d�� 1
2F��x

�dx�; (7.1)

with the nontrivial algebra

dZ ¼ �1
2F��P

� ^ P�; (7.2)

and metric

ds25 ¼ ���dx
�dx� þ ðd�� 1

2F��x
�dx�Þ2: (7.3)

The metric (7.3) is invariant under the left action of the
Heisenberg group, and an additional outer action of the
Abelian subgroup G2 � SOð3; 1Þ generated by G and G?.
We may identify Z with Zelec introduced earlier. If we
consider the coset ðEBCRÞ=ðG2; ZmagÞ, then the quadratic

combination P2 þ Z2 is invariant under the stability group.

The corresponding metric is (7.3) and therefore it is invari-
ant under the whole EBCR group.
A convenient matrix representation of the Heisenberg

group is given by

x0�
�0
1

0
@

1
A ¼

��
� 0 a�

� 1
2F��a

� 1 	
0 0 1

0
@

1
A x�

�
1

0
@

1
A: (7.4)

The phase or cotangent space T?ðGÞ � G� g of the
Heisenberg algebra has coordinates ðx�; �; p�; p�Þ.
ð �P�; �M��; �ZÞ are the corresponding moment maps gener-

ating right actions, and are given by

�P� ¼ p� � 1
2p�F��x

�; �Z ¼ p�: (7.5)

The nonvanishing Poisson brackets of the generators of
the right actions of the Heisenberg group are

f �P�; �P�g ¼ �F��
�Z: (7.6)

The geodesic Hamiltonian associated to the metric (7.3) is

H ¼ 1

2m
�P�

�P� þ 1

2m
�Z2; (7.7)

so that

_�Z ¼ 0; _�P� ¼ � 1

m
�ZF��

�P�: (7.8)

[Note that although the �Z2 term in (7.7) is needed for the
correspondence with the metric (7.3), it plays no role in the
dynamics.] The x� equation of motion is

_x � ¼ 1

m
�P�: (7.9)

The equation for �, conjugate to �Z��, is

_� ¼ 1

m
�Z: (7.10)

The moment maps that generate left translations are
given by

�P� þ �ZF��x
�; �Z: (7.11)

These are constant for a Hamiltonian such as (7.7), which
depends only on the moment maps that generate right
translations.
The mechanical momentum pi and Noether momentum

Pi in our discussion in the introduction correspond to
momentum maps generating right translations and left
translations, respectively.
We have obtained the standard Lorentz force equation,

and the electric charge corresponds to the conserved mo-
mentum � �Z in the extra dimension. The externally given
Maxwell field F�� is constant throughout, and is nondy-

namical. Note that we could obtain the same result with a
more general Hamiltonian of the form
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H ¼ 1

2m
�P�

�P� þ 
 �Z2; (7.12)

where 
 is an arbitrary constant.
We may also include a magnetic charge by adding an

extra central extension

Z? ¼ d�? � 1
2F

?
��x

�dx�: (7.13)

The Hamiltonian

H ¼ 1

2m
�P�

�P� (7.14)

will now lead to the constancy of both �Z and �Z? and the
equation of motion

_�P� ¼ � 1

m
ð �ZF�� þ �Z?F?

��Þ �P�: (7.15)

If we identify Z? with Zmag, then the six-dimensional

Heisenberg algebra with two central charges may be iden-
tified with the coset ðEBCRÞ=G2. Note that the presence of
magnetic and electric charges is due to the presence of
central charges in the eight-dimensional EBCR algebra.
These central charges are absent in the Maxwell algebra.

B. The Maxwell algebra

The phase space, or cotangent space, T?ðGÞ � G� g of
the Maxwell algebra has coordinates ðx�; ���; p�; f��Þ.
The left-invariant Maurer-Cartan forms are given by
(2.15) and ð �P�; �M��; �Z��Þ are the corresponding moment

maps generating right actions. They are given by

�P� ¼ p� � 1
2f��x

�; �Z�� ¼ f��: (7.16)

The nonvanishing Poisson brackets are

f �M	
; �Pg ¼ �

�P	 � �	

�P
; (7.17)

f �M	
; �M�g ¼ �

�M	� � �
�

�M	 þ �	�
�M


� �	
�M
�; (7.18)

f �M	
; �Z�g ¼ �

�Z	� � �
�

�Z	 þ �	�
�Z
 � �	

�Z
�;

(7.19)

f �P	; �P
g ¼ � �Z	
: (7.20)

There are two generic Casimir functions,

C1 ¼ 1
2ð �P� �P� þ �M��

�Z��Þ; C2 ¼ 1
2
�Z��

�Z��: (7.21)

For the Hamiltonian, we take

H ¼ 1

2m
��� �P�

�P�: (7.22)

Thus the Euler equations imply

_�Z�� ¼ 0; ) �Z�� ¼ �eF�� ¼ constant; (7.23)

_�P� ¼ 1

m
f �P�; �P�g �P� ¼ � �Z��

�P� ¼ eF��
�P�; (7.24)

and the x� equation of motion is

_x � ¼ 1

m
�P�: (7.25)

The equation for ���, conjugate to �Z�� is

_��� ¼ 1
2ðx� _x� � x� _x�Þ: (7.26)

Thus we obtain the motion of a particle in a constant
electromagnetic field, for which the momentum vector
�P�ð�Þ undergoes a constant Lorentz transformation

�P�ð�Þ ¼ ½expðe�FÞ���
�P�ð0Þ: (7.27)

By contrast with the Kaluza-Klein approach, which
gives the same equations for the x� variables with an
externally imposed constant Maxwell field F��, in the

Maxwell algebra approach we find that the Maxwell field
must be constant as a consequence of the equations of
motion. The equations for the six angles ��� are also
richer. They may be interpreted geometrically as follows.
The curve in spacetime x� ¼ x�ð�Þ has a projection onto
each �-� 2-plane. The curve sweeps out area at a rate

dA��

d�
¼ 1

2
ðx� _x� � x� _x�Þ: (7.28)

Thus (7.26) may be rewritten as

d���

d�
¼ dA��

d�
: (7.29)

In other words ���ð�Þ is the total area A��ð�Þ swept out
during the motion.
The canonical Lagrangian that reproduces the previous

equation of motion is

L¼ �P� _x�þ 1
2f��½ _���� 1

2ðx� _x��x� _x�Þ�� 1
2e

�P2; (7.30)

which, apart from a constant piece, is obtained from the
diffeomorphism-invariant Lagrangian (6.19) by choosing
the proper-time gauge e ¼ m.
One may choose different Hamiltonians. For example,

H ¼
�P�

�P�

2m
þ 1

2
	 �Z��

�Z��: (7.31)

The equations of motion are the same as before except for
those of the variables ���, which now satisfy

_��� ¼ 1
2ðx� _x� � x� _x�Þ þ 	f��: (7.32)

The canonical Lagrangian

L ¼ �P� _x� þ 1

2
f��

�
_��� � 1

2
ðx� _x� � x� _x�Þ

�

� 1

2
e �P2 � 	

2
f��f

�� (7.33)
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gives, after eliminating the nondynamical field f��, the

Lagrangian (6.5).

C. Other Hamiltonians

Those which admit a constant �Z�� ¼ F�� and are

Lorentz-invariant are of the form

2mH ¼ �P�
�P� þ 1

2	
�Z��

�Z�� � 
 �Z��
�M��: (7.34)

The second term does not contribute, since it commutes
with everything, and so we drop it. Hamilton’s equations
then give

_�P� ¼ 1

m
ð1� 
ÞF��

�P�: (7.35)

Note that in the special case 
 ¼ 1, we find _�P� ¼ 0. This

is not surprising, because in that case the Hamiltonian is bi-
invariant; i.e., it is a Casimir, and hence generates no
motion at all.

D. Maxwell-Sim and Maxwell-DISimb

The Maurer-Cartan forms of the coset (Maxwell-Sim)/
(Sim) are the same as in the Maxwell case (2.15), and the
moment maps are also given by

�P� ¼ p� � 1
2f��x

�; �Z�� ¼ f��: (7.36)

The geodesic Hamiltonian is given by

H ¼
�P�

�P�

2m
þ 1

2
	 �Z��

�Z��; (7.37)

and therefore reproduces the same dynamics as in the
Maxwell case.

For the case of the coset ðMaxwell-DISimbÞ=ðSimÞ, the
Maurer-Cartan forms and the momenta are the same as for
the Maxwell case.

E. Hamiltonian treatment of the
Bogoslovsky-Maxwell algebra

In previous work [18] we obtained a Finslerian
Lagrangian invariant under DISimð2Þb, where b is the
deformation parameter constructed from the Finslerian
line element

ds2 ¼ �Fðv�Þ2d�2; (7.38)

where the Finsler function Fðv�Þ is homogeneous of de-
gree 1 in the four-velocity v� ¼ dx�=d�. In general, if we
were to use a multiple of the Finlser function Fðv�Þ as a
Lagrangian Lðv�Þ, then its Legendre transform would
vanish, since a Lagrangian which is homogeneous of de-
gree k in velocities gives, on taking a Legendre transform, a
Hamiltonian

Hðp�Þ ¼ v�p� � Lðv�Þ (7.39)

¼ v� @L

@v� � L (7.40)

¼ ðk� 1ÞL; (7.41)

which is homogeneous of degree k
k�1 in momenta p�. If

k ¼ 2 we have

HðpÞ ¼ LðvÞ; (7.42)

and both are of degree two. Therefore it is customary in
Finsler geometry to set

Lðv�Þ ¼ �1
2mF2ðv�Þ: (7.43)

For the case of Bogoslovsky’s Finslerian geometry we
would then have

L ¼ �1
2mð�n�v

�Þ2bð����v
�v�Þ1�b; (7.44)

where n� ¼ ���n� is a constant future-directed null vec-
tor. The minus signs appear in (7.44) because v� is as-
sumed to be future-directed and timelike. With our
signature convention, the inner product n � v ¼ n�v

� is

then negative. We find that

p� ¼ bmn�ð�n � vÞ2b�1ð�v2Þ1�b

þ ð1� bÞmv�ð�n � vÞ2bð�v2Þ�b; (7.45)

and

H ¼ � 1

2m

�
� p2

1� b2

�
1þb

�
� n � p

1� b

��2b
: (7.46)

Imposing the mass-shell condition H ¼ � 1
2m, i.e.,

FðvÞ2 ¼ 1, leads to Eq. (18) of [18]. In this case, the
parameter � coincides with the Finslerian measure of
proper time along the worldline of the particle.4 Equation
(7.46) is also equivalent to the expression (6.44) [with 	 ¼
�mð1� bÞ and 
 ¼ � 1

2mð1þ bÞ].
We may also give the expression for v� ¼ @H=@p�,

finding

v� ¼ e

�
p� � bm

�
� n�p�

mð1� bÞ
�ððb�1Þ=ðbþ1ÞÞ

n�
�
; (7.47)

where

e ¼ �ð1þ bÞm
p2

: (7.48)

Again, this is in agreement with the corresponding expres-
sion (6.47) obtained in the Lagrangian treatment.
The Lorentz force equation follows from (7.47), and

_�P
� ¼ f �P�;Hg, which implies

_�P� ¼ � �Z��v�: (7.49)

4We could instead impose the gauge condition v2 ¼ �1, but
this is less natural in the Finslerian framework.
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VIII. CONCLUSIONS

We have constructed the noncentral extensions and de-
formations of the ISim algebra. The Maxwell-Sim algebra
is obtained from the translation generators P� and the

noncentral extension Z�� ¼ ½P�;P��, together with the

SimðnÞ generators ðMþi;Mþ�;MijÞ.
In general dimensions, the deformations of Maxwell-

Sim algebra are characterized by two parameters b and c.
The deformation parametrized by c is the analogue of the k
deformation of the Maxwell algebra found in [25], which
gave SOð3; 2Þ � SOð3; 1Þ or SOð4; 1Þ � SOð3; 1Þ, depend-
ing on the sign of k. The b deformation of Maxwell-Sim
produces the Maxwell extension of the DISimb algebra,
which is related to Finslerian geometry.

We have also studied the motion of a massive particle
interacting with a constant electromagnetic field with these
symmetries. In the case of Maxwell-DISimb, the motion is
given by a Finslerian Lorentz force, while by contrast for
the undeformed Maxwell-Sim algebra we obtain the ordi-
nary Lorentz force.
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APPENDIX A: CONVENTIONS

In this appendix we record some of our conventions and
notation when working with Lie groups, Lie algebras, and
Poisson algebras.

Given a Lie group G, with coordinates x�, i.e., group
elements G 3 g ¼ gðx�Þ, and left- and right-invariant
Cartan-Maurer forms

g�1dg ¼ �aea; dgg�1 ¼ �aea; (A1)

with ea a basis for the Lie algebra g such that

½ea; eb� ¼ Ca
c
bec; (A2)

the Maurer-Cartan equations are

d�c ¼�1

2
Ca

c
b�

a ^�b; d�c ¼ 1

2
Ca

c
b�

a ^�b: (A3)

The left- and right-invariant vector fields L�
a and R�

a

dual to �a
� and �a

�, respectively,

�a
�L

�
b ¼ �a

b; �a
�R

�
b ¼ �a

b; (A4)

satisfy

½La; Lb� ¼ Ca
c
bLc ½Ra; Lb� ¼ 0;

½Ra; Rb� ¼ �Ca
c
bRc;

(A5)

and, respectively, generate right and left translations on G.
Quantum mechanically, one often inserts i’s so that if

R̂a ¼ 1
i Ra, L̂a ¼ 1

i La then

½R̂a; R̂b� ¼ iCa
c
bR̂c; (A6)

½L̂a; L̂b� ¼ �iCa
c
bL̂c: (A7)

The R̂a and L̂a vector fields are then operators acting on
complex-valued functions of the group coordinates x�.
Thinking of G as a configuration space, we can pass

to the phase space or cotangent space TG? � G� g, with

coordinates ðx�; p�Þ. The actions ofG onG then lift to TG?

as canonical transformations, leaving the natural symplec-
tic form dp� ^ dx� invariant. Given the symplectic form,

we can introduce the Poisson bracket as usual. In local
Darboux coordinates ðx�; p�Þ, it is given by

ff; gg ¼ @f

@x�
@g

@p�

� @g

@x�
@f

@p�

; (A8)

so that

fx�; p�g ¼ ��
� : (A9)

Infinitesimally, the lifts of left and right actions are canoni-
cal transformations generated by ‘‘generating functions’’
or ‘‘moment maps.’’ Because, in general, we have both left
and right actions to take into account, we define two sets of
moment maps into g?, the dual of the Lie algebra,

Ma ¼ p�L
�
a ; Na ¼ p�R

�
a ; (A10)

with Poisson brackets which are readily seen to be

fMa;Mbg ¼ �Ca
b
cMb; fMa;Nbg ¼ 0;

fNa;Nbg ¼ Ca
b
cNb:

(A11)

The moment maps Ma generate the lifts of right trans-
lations and the moment maps Na generate the lifts of left
translations.
A Hamiltonian H ¼ Hðx�; p�Þ, which is left-invariant,

satisfies

_N a ¼ fNa;Hg ¼ 0; (A12)

and so the moment maps Na are constants of the motion.
By contrast, the moment mapsMa generating right actions
are time-dependent,

_Ma ¼ fMa;Hg � 0: (A13)
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A left-invariant Lagrangian may be constructed from
combinations of left-invariant velocities or angular
velocities

!a ¼ �a
� _x�: (A14)

Thus the Hamiltonian is a combination of the momenta
maps Ma,

H ¼ HðMaÞ: (A15)

Thus (A13) provides an autonomous first-order system of
ordinary differential equations on g? for the moment maps
Ma, called the Euler equations. To obtain the motion on the
group, one uses the equation

_x � ¼ @H

@p�

: (A16)

Now

p� ¼ Ma�
a
�; (A17)

and so

_x � ¼ L
�
a

@H

@Ma

: (A18)

APPENDIX B: LIFSHITZ AND
SCHRÖDINGER ALGEBRAS

In this appendix we shall describe the connection between
the deformed inhomogeneous Sim algebra disimbðkÞ and
the Lifshitz, Schrödinger, and extended Schrödinger alge-

bras, lifz, schzðkÞ, and gschðkÞ, respectively.
1. Lifshitz scaling

In nonrelativistic theories with k spatial dimensions, one
is interested in the behavior of physical quantities under
what has come to be called Lifshitz scaling, i.e., under

t ! �zt; x ! �x; (B1)

where t is the time variable and x ¼ ðx1; x2; . . . ; xkÞ is the
spatial position vector.

If D generates scalings or dilatations, we may combine
this with space translations Pi, spatial rotations Mij, and

time translationsH to obtain the Lifshitz algebra, lifzðkÞ, in
k spatial dimensions,

½D;Mij� ¼ 0; ½D;Pi� ¼ Pi; ½D;H� ¼ zH;

(B2)

where the obvious brackets for Mij have been omitted.

The Lie algebra spanned by D, Pi, and H is therefore
invariant under the adjoint action of the rotation subalgebra
soðkÞ generated by Mij. If i ¼ 1; 2; . . . ; k, then lifzðkÞ has
dimension 1

2 kðkþ 1Þ þ 2 and the quotient lifzðkÞ=soðkÞ
has dimension kþ 2.

2. Lifshitz spacetime

This is a (kþ 2)-dimensional spacetime equipped with a
metric invariant under the left action of the (kþ 2)-
dimensional group generated by Pi, H, and D. A
Maurer-Cartan basis for this solvable group is

er ¼ dr

r
; ei ¼ dxi

r
; e0 ¼ dt

rz
: (B3)

The Lifshitz metric is then

ds2kþ2 ¼ L2

�
�dt2

r2z
þ dxidxi

r2
þ dr2

r2

�
; (B4)

with Killing vector fields corresponding to

Mij ¼�ðxi@j � xj@iÞ; Pi ¼�@i; H¼�@t;

D¼�ðzt@t þ xi@i þ r@rÞ:
(B5)

(i) As r ! 1we approach a singular horizon (IR limit).
(ii) As r ! 0 we approach infinity (UV limit).
The boundary metric at infinity is obtained by taking out

a factor of r2 and letting r ! 0:

ds2kþ2 ¼
L2

r2

�
� dt2

r2ðz�1Þ þ dxidxi þ dr2
�
: (B6)

Thus

ds2boundary ¼ dxidxi � r2ð1�zÞdt2; (B7)

the speed is cðrÞ ¼ rð1�zÞ, and
(i) If z > 1, we obtain infinite speed (the boundary light

cone opens out to a plane).
(ii) If z ¼ 1, we obtain finite speed (the boundary light

cone remains a cone).
(iii) If z < 1, we obtain zero speed (the boundary light

cone closes up to a half line).

Strictly speaking, in the z > 1 case, we need to consider the
inverse metric when taking the limit r ! 0.

3. The boost-extended Lifshitz algebra

One may extend the Lifshitz algebra to include boosts
Ki. The scaling dependence of Ki is then determined by its
commutation relations. Since Ki is a vector, we have

½Kk;Mij� ¼ �ð�kiKj � �kjKiÞ: (B8)

For the Galilei group,

½Ki; Pj� ¼ 0; (B9)

½Ki;H� ¼ Pi; (B10)

which implies that we must take

½D;Ki� ¼ ð1� zÞKi: (B11)
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For the Carroll group

½Ki; Pj� ¼ �ijH; (B12)

½KiH� ¼ 0; (B13)

which implies that we must take

½D;Ki� ¼ ðz� 1ÞKi: (B14)

In the case of the Poincaré group there is no choice, and
one must take z ¼ 1.

4. DISimbðkÞ
Recall that DISimbðkÞ is a deformation of the ISimðkÞ

subgroup of the Poincaré group in (kþ 2) spacetime di-
mensions, depending on a parameter b, which may be
regarded as a subgroup of the inhomogeneous Weyl group
or causal group (i.e., the semidirect product of Poincaré
with dilatations), in which the actions of a boost and
dilations are identified up to a factor [18]. It is thus of
dimension 1

2 kðkþ 1Þ þ kþ 3.

If the translations are Pþ, P�, Pi, and the boosts are
Mþi, Mþ�, then the nontrivial Lie brackets are given by

½Mþ�;P��¼�ðb�1ÞP�; ½Mþ�;Pi� ¼�bPi;

½Mþ�;Mþi� ¼�Mþi; ½Mþi;P��¼Pi;

½Mþi;Pj� ¼��ijPþ:

(B15)

The soðkÞ rotations have the standard brackets and act on
Pi and Mþi as vectors. The boost generator Mþ� acts on
(kþ 2)-dimensional Minkowski spacetime as

xi ! ��bxi; x� ! �1�bx�; xþ ! ��1�bxþ:

If b ¼ 0, then Mþ� acts as an ordinary boost.

5. The Schrödinger and extended Schrödinger algebras

In k spatial dimensions, the centrally extended
[ 12 kðkþ 1Þ þ kþ 3]-dimensional Schrödinger algebra (in

current terminology [22]), which we denote gschzðkÞ, is
obtained by adjoining Galilean boosts Ki, and a central
term N, to the Aristotelian algebra of translations, rota-
tions, and time translations, such that

½Mij; Kk� ¼ ð�ikKj � �jkKiÞ; (B16)

½Pi; Kj� ¼ ��ijN; (B17)

½H;Ki� ¼ �Pi: (B18)

The result is the [ 12 kðkþ 1Þ þ kþ 2]-dimensional

Bargmann algebra, a central extension of the [ 12 kðkþ 1Þþ
kþ 1]-dimensional Galilei algebra. One then adjoins a
dilatation D,

½D;Ki� ¼ ð1� zÞKi; ½D;N� ¼ ð2� zÞN: (B19)

If k ¼ 3 this is 12-dimensional, whereas what has been
called the Schrödinger group, i.e., the conformal symmetry
group of the free Schrödinger equation (corresponding to
z ¼ 2), is 13-dimensional.5 This is because the special
conformal or temporal inversion operator has been left out.
One may consistently drop the central extension N from

the Bargmann algebra to get the Galilei algebra, and then

the extended Schrödinger algebra gschðkÞ reduces to the
[ 12 kðkþ 1Þ þ kþ 2]-dimensional unextended

Schrödinger algebra schðkÞ. If one then drops the boost
generator Ki one gets the Lifshitz algebra lifzðkÞ.
It is well known that nonrelativistic symmetries and

nonrelativistic conformal symmetries (Schrödinger
algebras) in k spatial dimensions may be thought of as
subgroups of relativistic or conformal symmetries in
(kþ 2)-dimensional Minkowski spacetime which com-
mute with lightlike translations. Thus it is no surprise that

gsch zðkÞ � disimbðkÞ; b ¼ 1

1� z
: (B20)

To see this, one must identify the generators as follows:

H$P�; N$�Pþ; Pi $Pi; Ki $Mþi; (B21)

and

D $ ðz� 1ÞMþ�: (B22)

Note that it is also possible to obtain the Lifshitz algebra
lifðkÞ as a truncation of the disimbðkÞ algebra by discard-
ing the Pi generators and making the identifications

H $ P�; Pi $ Mþi; D $ Mþ�; (B23)

and

z ¼ ðb� 1Þ: (B24)

However, this is perhaps less useful than the identification
(B20).

6. Schrödinger spacetime

This is (kþ 3)-dimensional, and has metric

ds2kþ3 ¼ L2

�
�dt2

r2z
� 2dtdv

r2
þ dxidxi

r2
þ dr2

r2

�
(B25)

with Killing vectors

Ki ¼ �ðt@t þ xi@vÞ; N ¼ �@v; (B26)

Pi ¼ �@i; Mij ¼ �ðxi@j � xj@iÞ;
D ¼ �ðzt@t þ xi@i þ ð2� zÞv@v þ r@rÞ:

(B27)

5The reader should note the difference with the Galilean
conformal algebra obtained by contraction from the relativistic
conformal algebra, which has 15 generators (see, for example,
[39,40]).
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A Cartan-Maurer basis for this solvable group manifold
is given by

er¼dr=r; ei¼dxi

r
; ev¼ dv

r2�z
; et¼dt

rz
: (B28)

7. Lifshitz spacetime as a null reduction
of Schrödinger spacetime

If we identify points in the Schrödinger spacetime under
the R action generated by the null Killing field @v, i.e.,

under the action of the ‘‘central’’ element N, we obtain the
Lifshitz spacetime. On the boundary we have the metric

ds2boundary ¼ dxidxi � 2dtdv� r2ð1�zÞdt2: (B29)

In the cases z > 1, we may regard the boundary as the
(kþ 2)-dimensional Duval-Kunzle spacetime whose null
reduction produces the (kþ 1)-dimensional Newton-
Cartan spacetime. Strictly speaking we need to consider
the inverse metric when taking the limit.
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