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We review the similarities between the effective chiral Lagrangrian, relevant for low-energy strong

interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism

whereby gravitons would emerge as Goldstone bosons of a global SOðDÞ �GLðDÞ symmetry broken

down to SOðDÞ by fermion condensation. We propose a two-dimensional toy model where a dynamical

zweibein is generated from a topological theory without any preexisting metric structure, the space being

endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the

notion of distance is an induced effective one. In spite of several nonstandard features this simple toy

model appears to be renormalizable and at long distances is described by an effective Lagrangian that

corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is

related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an

infrared regulator. The low-energy expansion is valid for momenta k >M, i.e. for supra-horizon scales.

We briefly discuss a possible implementation of a similar mechanism in four dimensions.
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I. INTRODUCTION

Einstein formulated general relativity in 1915 and
95 years later we still have little or no clue as to the true
quantum nature of this theory.

It is surely correct to say that string theory is able to
provide a consistent perturbative quantum theory of gravi-
tation, at the price of a rather radical modification of
quantum field theory, including the acceptance that our
world has more than four dimensions. Unfortunately string
theory is not able to select a unique vacuum, in particular, it
does not shed light at present on the fact that we live in a
world where hg��i � 0. Other modifications of gravity that

include extra dimensions, although extremely interesting
from a conceptual and phenomenological point of view,
typically lack an ultraviolet completion and therefore
should probably find their ultimate justification in specific
compactifications of string theory (where again the choice
of vacuum appears itself).

Less popular alternatives, but of considerable interest
nonetheless, are the search for nontrivial ultraviolet fixed
points in gravity (asymptotic safety [1]) and the notion of
induced gravity [2]. The former approach is the one pur-
sued by exact renormalization-group (RG) practitioners [3]
and by lattice and numerical techniques such as Lorentzian

triangulation analysis [4]. Induced gravity advocates that a
possible explanation of the relative weakness of gravity as
compared to other interactions is that it is a residual or
induced force, a subproduct of all the rest of matter and
interaction fields. With the exception of lattice studies, all
these approaches also rely on the introduction of a metric
from the very beginning. On the contrary, lattice analysis
only requires some premetric input, in particular, a notion
of causality (hence transport of a timelike vector).
It has been pointed out several times in the literature (see

e.g. [5]) that gravitons should perhaps be considered as
Goldstone bosons of some broken symmetry. This is ex-
actly the point of view that we adopt in this paper. This idea
goes back probably to early papers by Salam and co-
workers [6], and Ogievetsky and co-workers [7], if not
earlier1 [8], but a concrete proposal has been lacking so
far (see however [9]). By concrete proposal we mean some
field theory that does not contain the graviton field as an
elementary degree of freedom. Ideally it should not even
contain the tensor ��� as this already implies the use of

some background metric. Indeed we would like to see the
metric degrees of freedom emerging dynamically, like the
pions appear dynamically after chiral symmetry breaking
in QCD. Furthermore, if possible, we would like the under-
lying theory to be in some sense ‘‘simpler’’ than gravity, in

*On leave of absence from ICCUB and DECM, Universitat de
Barcelona.

1We thank L. Alvarez-Gaumé and B. McElrath for pointing
out to us some of the earlier work on this subject.
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particular, it should be renormalizable. One could then
pose questions that are left unanswered in gravity, such
as the fate of black hole singularities and the counting of
degrees of freedom.

II. THE LOW-ENERGY EFFECTIVE ACTION
OF QCD

The four-dimensional chiral Lagrangian is a nonrenor-
malizable theory describing accurately pion physics at
low energies. It has a long history, with the first formal
studies concerning renormalizability being due mostly to
Weinberg [10] and later considerably extended by Gasser
and Leutwyler [11]. The chiral Lagrangian contains a
(infinite) number of operators

L ¼ f2� Tr@�U@�Uy þ �1 Tr@�U@�Uy@�U@�Uy

þ �2 Tr@�U@�U
y@�U@�Uy þ � � � ;

U � expi ~�=f�; ~� � �a�a=2; (1)

organized according to the number of derivatives

L ¼ Oðp2Þ þOðp4Þ þOðp6Þ þ � � � : (2)

Pions are the Goldstone bosons associated with the (global)
symmetry breaking pattern of QCD

SUð2ÞL � SUð2ÞR ! SUð2ÞV: (3)

The above Lagrangian is the most general one compatible
with the symmetries of QCD and their breaking. Locality,
symmetry, and relevance (in the renormalization-group
sense) are the guiding principles to construct L.
Renormalizability is not; in fact if we cut off the derivative
expansion at a given order the theory requires counterterms
beyond that order no matter how large the order is. Note
that, although the symmetry has been spontaneously bro-
ken, the effective Lagrangian still has the full symmetry
U ! LURy with L and R being SUð2Þ matrices belonging
to the left and right groups, respectively.

The lowest-order, tree level contribution to pion-pion
scattering derived from the previous Lagrangian is
�p2=f2�. Simple counting arguments show that the one-
loop chiral corrections are�p4=ð16�2f4�Þ. Thus the count-
ing parameter in the loop (chiral) expansion in 4D is

p2

16�2f2�
: (4)

Each chiral loop gives an additional power of p2.
At each order in perturbation theory the divergences that

arise can be eliminated by redefining the coefficients in the
higher order operators

�i ! �i þ ci
�
: (5)

In addition to the pure pole in �, logarithmic nonlocal
terms necessarily appear. For instance in a two-point func-
tion they appear in the combination

1

�
þ log

�p2

�2
; (6)

with p being the external momentum. Note that the cut
provided by the log is actually absolutely required by
unitarity. All coefficients in the chiral Lagrangian are
nominally of OðNcÞ. Loops are automatically suppressed
by powers of Nc, because f

2
� � Nc appears in the denomi-

nator, but they are enhanced by logs at low momenta.
We have also acquired experience from chiral

Lagrangians in the use of the equations of motion in an
effective theory: at any order in the chiral expansion we
can use the equations of motion derived from previous
orders. For instance, using that at the lowest order
UhUy � ðhUÞUy ¼ 0 [from the Oðp2Þ Lagrangian],
one can reduce the number of operators at Oðp4Þ.

III. IS GRAVITYA GOLDSTONE PHENOMENON?

The 4D Einstein-Hilbert action shares several remark-
able aspects with the pion chiral Lagrangian. It is a non-
renormalizable theory as well as it is also described,
considering the most relevant operator (we ignore here
for a moment the cosmological constant), by a dimension
two operator containing in both cases two derivatives of the
dynamical variable. Both Lagrangians contain necessarily
a dimensionful constant in four dimensions: MP, the
Planck mass, is the counterpart of the constant f� in the
pion Lagrangian (of course the value of both constants is
radically different). Both theories are nonlinear and, fi-
nally, both describe the interactions of massless quanta.
The Einstein-Hilbert action is

L ¼ M2
P

ffiffiffiffiffiffiffi�g
p

RþLmatter; (7)

where as just mentioned R contains two derivatives of the
dynamical variable which is the metric g��

R �� ¼ @��
�
�� � @��

�
�� þ ��

���
�
�� � ��

���
�
��; (8)

�	
�� ¼ 1

2g
	
ð@�g
� þ @�g
� � @
g��Þ: (9)

In the chiral language, the Einstein-Hilbert action would be
Oðp2Þ, i.e., most relevant, if we omit the presence of the
cosmological constant which accompanies the identity
operator. Arguably, locality, symmetry, and relevance in
the RG sense (and not renormalizability) are the ones that
single out Einstein-Hilbert action in front of e.g. R2.
Unlike the chiral Lagrangian, the Einstein-Hilbert

Lagrangian, or extensions that include higher derivative
terms, has a local gauge symmetry. Indeed, gravity can be
(somewhat loosely) described as the result of promoting a
global symmetry (Lorentz) to a local one (for a detailed
discussion on the gauge structure of gravity see e.g. [12]).
This means that the gauge symmetry that is present in
gravity will in practice reduce the number of degrees of
freedom that are physically relevant.
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Exactly like the chiral Lagrangian, the Einstein-Hilbert
action requires an infinite number of counterterms

L ¼ M2
P

ffiffiffiffiffiffiffi�g
p

Rþ �1

ffiffiffiffiffiffiffi�g
p

R2 þ �2

ffiffiffiffiffiffiffi�g
p ðR��Þ2

þ �3

ffiffiffiffiffiffiffi�g
p ðR����Þ2 þ � � � : (10)

The divergences can be absorbed order by order by rede-
fining the coefficients �i just as done in the previous
section for the pion effective Lagrangian. Power counting
in gravity appears, at least superficially, quite similar to the
one that can be implemented in pion physics. Of course,
the natural expansion parameter is a tiny number in normal
circumstances, namely,

p2=16�2M2
P or r2=16�2M2

P; R=16�2M2
P; (11)

making quantum effects usually quite negligible. There are
some subtleties when matter fields are included (see [13]
for a discussion).

Like in the pion chiral Lagrangian, nonlocal logarithmic
pieces accompany the divergences. In position space they
look like

1

�
þ log

r2

�2
; (12)

where r is the covariant derivative on symmetry grounds,
r2 reducing to�p2 in flat space-time. These nonlocalities
are due to the propagation of strictly massless nonconfor-
mal modes, such as the graviton itself. Therefore they are
unavoidable in quantum gravity. Notice that the coeffi-
cients of these nonlocal terms are entirely predictable
from the infrared properties of gravity.

Let us use ‘‘chiral counting’’ arguments to derive the
relevant quantum corrections to Newton’s law (up to a
constant). The propagator at tree level gets modified by
one-loop ‘‘chiral-like’’ corrections

1

p2 ! 1

p2

�
1þ A

p2

M2
P

þ B
p2

M2
P

logp2

�
: (13)

Consider now the interaction of a pointlike particle with a
static source (p0 ¼ 0) and let us Fourier transform the
previous expression for the loop-corrected propagator in
order to get the potential in the nonrelativistic limit. We
recall that

Z
d3x expði ~p ~xÞ 1

p2
� 1

r
;

Z
d3x expði ~p ~xÞ1� �ð ~xÞ;

Z
d3x expði ~p ~xÞ logp2 � 1

r3
; (14)

with r ¼ j ~xj. Thus quantum corrections to Newton’s law
are of the form

GMm

r

�
1þ K�ð ~xÞ þ C

G@

c3
1

r2
þ � � �

�
: (15)

We have restored for a moment @ and c to make evident
that C is a pure number. The contribution proportional to

�ð ~xÞ is of course nonobservable, even as a matter of
principle. It comes from the contact divergent term (that
may eventually collect contributions from arbitrarily high
frequency modes). C, however, is calculable. It depends
only on the infrared properties of the theory.
A long controversy regarding the value of C exists in the

literature [14–16]. The result now accepted as the correct
one, C ¼ 41=10� [17], is obtained by considering the
inclusion of quantum matter fields and considering the
on-shell scattering matrix. Note that quantum corrections
make gravity more attractive (by a really tiny amount) at
long distances than predicted by Newton’s law. In addition
to quantum corrections there are post-Newtonian classical
corrections that are not discussed here (see [13]).
There are in the literature definitions of an ‘‘effective’’

or ‘‘running’’ Newton constant [18]. A class of diagrams is
identified that dresses up G and turns it into a distance (or
energy)-dependent constant GðrÞ. Unfortunately it is not
clear that these definitions are gauge invariant; only physi-
cal observables (such as a scattering matrix) are guaranteed
to be. Nevertheless the renormalization-group analysis
derived from this running coupling constant is of course
very interesting and may bear relevance to the issue of
asymptotic safety mentioned in the Introduction.

IV. A TWO-DIMENSIONAL TOY MODEL

In the previous sections we have given arguments why
the Einstein-Hilbert action could be viewed as the most
relevant term, in the sense of the renormalization group, of
an effective theory describing the long distance behavior of
some underlying dynamics.
Here we want to pursue this line of thought further. As a

logical possibility, without making any particularly strong
claim of physical relevance, we shall investigate a formu-
lation inspired as much as possible in the chiral symmetry
breaking of QCD. It should have the following character-
istics:
(1) No a priori notion of metric should exist, only an

affine connection defining the parallel transport of
tangent vectors va on a manifold.

(2) The Lagrangian should be manifestly independent
of the field g��ðxÞ.

(3) The graviton field should appear as the Goldstone
boson of a suitably broken global symmetry.

(4) The breaking should be triggered by a fermion
condensate.

A model along these lines was considered some time ago
by Russo and others [9]. Our proposal appears to be
perturbatively renormalizable and leads to finite calculable
predictions, unlike the one in [9].
As announced we seek inspiration in the effective

Lagrangians of QCD at long distances. A successful model
for QCD is the so-called chiral quark model [19]. Consider
the matter part Lagrangian of QCDwith massless quarks (2
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flavors)

L ¼ i �c 6@c ¼ i �c L 6@c L þ i �c R 6@c R: (16)

This theory has a global SUð2Þ � SUð2Þ symmetry that
forbids a mass term M. However after chiral symmetry
breaking pions appear and they must be included in the
effective theory. Then it is possible to add the following
term:

�M �c LUc R �M �c RU
yc L (17)

that is invariant under the full global symmetry c L !
Lc L, c R ! Rc R, U ! LURy.

Chiral symmetry breaking is triggered by a nonzero
fermion condensate h �c c i � 0. In order to determine the
value of this condensate, and, in particular, whether it is
zero or not, one is to solve a ‘‘gaplike’’ equation in some
modelization of QCD, or on the lattice. The final step is to
integrate out the fermions using the self-generated effec-
tive mass as an infrared regulator. This reproduces the
chiral effective Lagrangian discussed in the first section,
although the low-energy constants �i obtained in this way
are not necessarily the real ones, as the chiral quark model
is only a modelization of QCD.

We shall use the Euclidean conventions. Our idea is to
find out a two-dimensional field theory with the character-
istics outlined above. There is only one possible ‘‘kinetic’’
term bilinear in fermions that is invariant under Lorentz�
Diff [actually SOðDÞ rather than Lorentz] and it is local
and Hermitian.2 It is

i �c a	
ar�c

� þ i �c �	ar�c a: (18)

To define r� we only need an affine connection

r�c
� ¼ @�c

� þ!ab
� �abc

� þ ��
��c

�: (19)

Here a; b; . . . are tangent space indices, while �; �; . . . are
world indices. The coordinates on the manifold shall be
denoted by x� and of course there is no way of raising or
lowering indices because there is no metric. Only �ab as
invariant tensor of the tangent space is admissible. c a and
c � are independent spinor fields. The field c � is expected
to have a spin 1=2 as well as a 3=2 component. No attempt
has been made to project out the 1=2 component.

Note that no metric is needed at all to define the action if
we assume that c � behaves as a contravariant spinorial
vector density under Diff. Then, �

�
�
 does not enter in the

covariant derivative, only the spin connection !ab
� . If we

keep this spin connection fixed, i.e. we do not consider it to
be a dynamical field for the time being, there is no invari-
ance under general coordinate transformations, but only
under the global groupG ¼ SOðDÞ �GLðDÞ. Notice once

more that the spin connection is the only geometrical
quantity introduced.
We would like to find a nonzero value for the fermion

condensate

h �c ac
� þ �c �c ai � A�

a � 0: (20)

Because the broken theory has still the full symmetry it is
of course irrelevant in which direction the condensate
points; all the vacua will be equivalent. We can choose
A
�
a ¼ �

�
a without loss of generality.

Along with the breaking a large number of Goldstone
bosons are produced. The original symmetry group G ¼
SOðDÞ �GLðDÞ has DðD�1Þ

2 þD2 generators. After the

breaking G ! H, with H ¼ SOðDÞ there are D2 broken
generators, as expected. It remains to be seen how many of
those actually couple to physical states.
In order to trigger the appearance of a vacuum expecta-

tion value we have to include some dynamics to induce the
symmetry breaking. The model we propose is to add the
interaction piece

SI ¼
Z

d4xðiBa
�ð �c ac

� þ �c �c aÞ þ c detðBa
�ÞÞ: (21)

Note that the interaction term also behaves as a density
thanks to the covariant Levi-Civita symbol hidden in the
determinant of Ba

� so no metric is needed. Note that (21) is

non-Hermitian, but the continuation to Minkowski is: Ba
�

upon continuation changes like a Euclidean mass does
Ba
� ! iBa

�. Since the field Ba
� is auxiliary, it is clear that

we are dealing with a four-fermion interaction; fermions
are the only dynamical fields.

A. Equations of motion

If we consider the equation of motion for the auxiliary
field Ba

� we get

h �c ac
� þ H:c:i ¼ �ic����abB

b
�: (22)

We conjecture the field Ba
� to correspond to the zweibein,

ea�, up to a (dimensionful) constant.

Making use of this equation of motion, the interaction
term in 2D corresponds to a four-fermion interaction.3

����
abð �c ac

� þ �c �c aÞð �c bc
� þ �c �c bÞ: (23)

This can be integrated over the manifold without having to
appeal to a measure if we assume that c � is a spinorial
density. Note that if h �c ac

� þ �c �c ai acquires a vacuum
expectation value (VEV) it is possible to write new
operators.

2Actually what we really should require is that the continu-
ation to Minkowski space is Hermitian.

3Although this would take us too far away, note that this is
reminiscent of an instanton-generated interaction. We are grate-
ful to C. Gómez for a discussion on this subject.
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The equations of motion for the fermion fields are

	ar�c
� þ Ba

�c
� ¼ 0; (24)

and

	ar�c a þ Ba
�c a ¼ 0: (25)

Note that after use of the equations of motion the
Lagrangian itself reduces to the term c detðBa

�Þ.

B. Energy-momentum tensor and symmetries

Altough the above theory is ‘‘topological’’ inasmuch as
it is described by an action that does not contain a metric
(albeit it depends on a connection), the energy-momentum
tensor understood as the Noether currents of translation
invariance is nonvanishing

T
�
� ¼ i �c �	a@�c a þ i �c a	

a@�c
� � �

�
� L: (26)

Note that no metric is needed to define T
�
� . In the absence

of the external connection T
�
� is traceless as expected given

that the theory is formally conformal, but we will see later
that it will not remain so at the quantum level as anomalous
dimensions develop.

The free action (18), without considering the interaction
term, is invariant under the symmetry

c a ! c 0
a ¼

�
�b
a � 1

D
	a	

b

�
c b: (27)

Another invariance of the free action is provided by re-
defining, in Fourier space,

c �ðkÞ ! c 0� ¼ P
�
� c �ðkÞ; (28)

where k�P
�
� ¼ 0. These two invariances make it consid-

erably difficult for the heat-kernel derivation of an effective
action for the field Ba

� that will be discussed below.

C. Free propagator and renormalizability

Note the peculiar ‘‘free’’ kinetic term 	a � k�. It is of

course reminiscent of the Dirac equation, but it is not quite
identical (the Dirac equation needs a metric or an n-bein to
be defined). In the next section we will see that after the
introduction of the interaction term � detB, the field Ba

�

will indeed develop a VEV that we conventionally take to
be

hBa
�i ¼ M�a

�: (29)

Any other direction would be equivalent. The only sub-
stantial fact is whetherM is zero or not. Via (22) this VEV
for Ba

� translates into a VEV for �c ac
� þ �c �c a. From

(21) we see that the scaleM plays the role of a dynamically
generated mass for the fermions (not unlikely the ‘‘con-
stituent mass’’ in chiral dynamics, except that here it will
be possible, as we will see, to determine exactly its relation
to the fundamental parameters of the model).

Below we write explicitly in two dimensions the bilinear
operator acting on the fermion fields. Considered as a
matrix, we shall not distinguish at this point between
tangent and world indices (we then use indices in the
middle of the alphabet i; j; k; . . . ):

�ij ¼
iB11 k1 iB12 k2
k1 iB11 k2 iB12

iB21 �ik1 iB22 �ik2
ik1 iB21 ik2 iB22

0
BBB@

1
CCCA: (30)

When Bij develops a VEV, Bij ¼ M�ij, this reads

�ðkÞij ¼
iM k1 0 k2
k1 iM k2 0
0 �ik1 iM �ik2
ik1 0 ik2 iM

0
BBB@

1
CCCA: (31)

The inverse of this matrix will give the propagator of the
fermion field. It can be written (in any number of dimen-
sions) as

��1ðkÞij ¼ �i

M

�
�ij �

	iðk6 � iMÞkj
k2 þM2

�
; (32)

with k2 ¼ P
ik

2
i . The covariance of the results, not evident

at all from these expressions, will be discussed in the next
section.
This is an appropriate point to discuss the renormaliz-

ability of the model. Naively, because the coupling con-
stant c is dimensionless in 2D, we would expect the model
to be renormalizable. However, this expectation is jeopar-
dized by the behavior of the propagator. Indeed the diag-
onalization of (31) gives as eigenvaulesM (twice), kþ iM,
and k� iM. Therefore the propagator does not behave, in
general, as 1=k and therefore the usual counting rules
simply do not apply.
There is however a further twist to the issue of renorma-

lizability. The model proposed does not contain a metric
and therefore the number of counterterms that one can
write is extremely limited. For instance, a mass term for
the B field is impossible. Higher dimensional operators
would require powers of

ffiffiffi
g

p
to preserve the Diff invariance

that the model has (when w is a dynamical variable), but
there is no metric. In fact the metric will be generated after
the breaking, but the counterterms of a field theory do not
depend on whether there is spontaneous breaking of a
global symmetry or not. In summary, the lack of counter-
terms makes us believe that the theory is renormalizable
after all. Indeed this expectation is supported by an explicit
one-loop calculation (see Sec. VI), where the only diver-
gence that appears can be absorbed by a redefinition of c.
We find this quite remarkable.

D. Gap equation

If w� ¼ 0 then one can use homogeneity and isotropy

arguments to look for constant solutions of the gap equa-
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tion associated with the following effective potential:

Veff ¼ c detðBa
�Þ � 2

Z dDk

ð2�ÞD trðlogð	ak� þ iBa
�ÞÞ:

(33)

The factor 2 is due to the fact that c � and c a are inde-
pendent degrees of freedom. By deriving with respect to
Ba
�, the extrema of Veff are found from the equation

cn�aa2���an�
��2����nBa2

�2
� � �Ban

�n

� 2i tr
Z dDk

ð2�ÞD ð	 � kþ iBÞ�1j�a ¼ 0: (34)

In 2D this equation is particularly simple

c�ab�
��Bb

� � i tr
Z dDk

ð2�ÞD ð	 � kþ iBÞ�1j�a ¼ 0: (35)

The ‘‘gap equation’’ to solve for constant values of Bij is

cBij þ 1

2�
Bij log

detB

�2
¼ 0: (36)

A logarithmic divergence has been absorbed in c. Notice
that the equations are invariant under the permutation

Bij ! B�ðiÞ�ðjÞ; ki ! k�ðiÞ; ��S2: (37)

This equation has a nontrivial solution that we can always
choose, as indicated before, to be Bij � �ij. We thus see

that the dynamical mass for the fermions is indeed gener-
ated hence justifying a posteriori the propagator intro-
duced in the previous section. The solution for the
dynamical mass is

M ¼ �e��cð�Þ: (38)

Plugging this back into the effective potential we obtain

Veff ¼ ��2e�2�cð�Þ

2�
: (39)

Upon continuation to Minkowski space-time this term is to
be identified with the cosmological constant, because when
rotating to Minkowski space V ! �V, the cosmological
constant is positive. At this levelM is an observable and as
such it should be a renormalization-group invariant. This is
guaranteed if c runs according to the rather trivial beta
function

�
dc

d�
¼ 1

�
: (40)

Note that the coefficient of this term is related to the
coefficient of the logarithmic divergence and hence it is
universal.

The above effective potential and ensuing gap equation
are exact in the limit where the number of fermions, N, is
infinite. In fact we expect that it is exact only in this limit,
as in 2D the phenomenon of spontaneous breaking of a

continuous symmetry can take place only in the N ¼ 1
limit.
For a nonzero connection (w� � 0) the gap equation is

not applicable and one needs to derive the full effective
action. Then one would minimize the fields Ba

� as a func-

tion of w�. This is discussed in the next section.

V. DERIVATION OF THE EFFECTIVE ACTION

Let us now attempt to derive the effective action for the
fields Ba

� and the external affine connection w� that even-

tually we will allow to become a dynamical variable too.
Hereafter we want to perform a double minimization with
respect to these fields. This will be an exact procedure for
N ¼ 1 and provide a guidance in the general case. Of
course the really interesting question is what happens for
D> 2.
We would expect that this double minimization will

provide us with two equations whose meaning would be
schematically the following: One of them would provide a
relation between the field Ba

� (associated with the zwei-

bein) and the affine connection w�. If the present model is

to describe in its broken phase 2D gravity, this relation
would be analogous to the relation of compatibility be-
tween the metric and the connection that appears when the
Palatini formalism [20] is used in general relativity and the
equations of motion for the connectionw� are derived. The

remaining equation, after imposition of the previous com-
patibility condition, should then be equivalent to Einstein’s
equations.
However, in 2D gravity it is rather peculiar and indeed

the condition

wab
� ¼ ea�@�E

�b þ ea�E
�b��

��; (41)

where E�
a is the inverse zweibein E�

a eb� ¼ �b
a, holding in

any number of dimensions, does not follow in 2D from any
variational principle (see e.g. [21]). There are several ways
to understand this fact, but perhaps the simplest one is to
realize that the Einstein-Hilbert action in 2D depends on
w� only through the two-form dw which is linear in the

affine connection w�. In fact, the scalar curvature termffiffiffi
g

p
R does not contain in 2D any coupling between g��

and w�. Adding higher derivatives does not really help as

the Riemann tensor contains only an independent compo-
nent that can be ultimately related to the scalar curvature.
We shall see below that this peculiarity of two-dimensional
gravity is faithfully reproduced in our proposal.
The starting point of the derivation of the effective

action is the differential operator

Da
� ¼ 	að@� þ w��3Þ þ Ba

�: (42)

We consider the expansion around a fixed background
preserving SOðDÞ but not the full symmetry group G. We
will take Ba

� ¼ M�a
�, where M will be determined via the

gap equation discussed in the previous section, which
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corresponds to a solution of the equation of motion at the
lowest order in a weak field and derivative expansion, in
the spirit of effective Lagrangians. To go beyond this
approximation we have to consider x-dependent fluctua-
tions around this vacuum and include the external fieldw�.

We shall decompose

Ba
� ¼ 
a

L b
�Bb
�


�1�
R �; (43)

where 
L 2 SOðDÞ, 
R 2 GLðDÞ, and �Ba
� is a solution of

the gap equation, M�a
� in our case. It is technically ad-

vantageous to absorb the matrices 
L and 
R in the fermion
fields (in QCD this is the so-called ‘‘constituent’’ quark
basis [19]). Then the differential operator to deal with will
be

D b
� ¼ 
y b

La 	að@
 þ w
�3Þ


R � þ �Bb

�: (44)

To evaluate the effective action generated by the inte-
gration of the fermion fields one possibility is to write the
log of the fermion determinant as

W ¼ � 1

2

Z 1

0

dt

t
trhxje�tXjxi; (45)

where

X�� � MyM; (46)

with

M ¼ Db
�; My ¼ �D�b (47)

and

Db
� ¼ 
y b

La 	að@
 þ w
�3Þ


R � þ �Bb

�;

D�b ¼ 
y �
R� ð@� � w��3Þ	a


a
L b � �B�b:

(48)

X�� has both world and Dirac indices (the latter not

explicitly written). Note that as previously discussed M
is not Hermitian, but of course X�� ¼ MyM is. We could

have also considered the determinant ofMMy which is of
course identical, but it is important to maintain a covariant
appearance as long as possible (note that there is no metric
so far and no way of lowering or raising indices). The final
result has to be of course covariant, since our starting point
is, but using, as we shall do, a plane basis to evaluate the
traces in the heat-kernel expansion breaks in principle this
covariance in intermediate steps.
Once Wðw;BÞ is known we can differentiate with re-

spect to w� and obtain the relation between the zweibein

and the spin connection using the logic behind the Palatini
formalism.
The starting point of the heat-kernel derivation is the

evaluation of

trhxje�tX�� jxi ¼ 1

tD=2

Z dDk

ð2�ÞD tre½�D
>R�
�




R�k�k
þi

ffiffi
t

p
D�b


�1b
L a	

ak




R�þi

ffiffi
t

p

>
R�

�k�	a

�1a
L b

Db
��tX��Þ�; (49)

where for convenience we have rescaled k� and a plane
wave basis resolution of the identity has been used. For
simplicity let us call the exponent on the right-hand side of
the previous equation Xð ffiffi

t
p Þ. Then the way to proceed is to

expand the exponential eXð
ffiffi
t

p Þ in powers of
ffiffi
t

p
. Only even

powers of
ffiffi
t

p
(and thus of k) will contribute at the end to the

series, so the first nontrivial term will be of order t. We
define

FnðXð0Þ; _Xð0Þ; €Xð0ÞÞ � dðnÞ

ðd ffiffi
t

p Þn e
Xð ffiffi

t
p Þj ffiffi

t
p ¼0; (50)

and then

tr hxje�tX�� jxi / tr
X
n

Fn

ð ffiffi
t

p Þn
n!

¼ F0 þ t

2
F2 þ t2

24
F4 þOðt4Þ: (51)

This expansion is quite tedious and to perform it we used
repeatedly the well-known formula

d

dt
eAðtÞ ¼

Z 1

0
daeð1�aÞAðtÞ dAðtÞ

dt
eaAðtÞ: (52)

Note that the invariances discussed in the previous section
introduce zero modes in the exponent and hence integrals
that are not damped for large values of the momentum k.
Of course they are not true zero modes of the full theory,
just of the kinetic term, but the technical complications that
they bring about are notable.
However, it is pleasant to see that a formally covariant

result emerges. If we neglect w� and we take the matrices


 to be constant it is not difficult to see that the lowest
nontrivial order of the heat-kernel calculation gives

W ¼ 3M2

16�

Z
d2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½ð
�

R�

y

R�Þ�1�

q
; (53)

where a summation over � is to be understood and where
M2 is the dynamically generated mass. This is just a

cosmological term with g�
 ¼ P
�


�
R�


y

R�. One can like-

wise verify that other pieces in the effective action are
covariant. The coefficient of the cosmological constant
term obtained at the lowest order in the heat-kernel expan-
sion does not agree with the one obtained through the gap
equation. We shall see later why this is so.
Since the most general metric in two dimensions is

conformally flat we can reconstruct the full covariant
action from this particular choice. This notably simplifies
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the derivation of the effective action. We take Ba
�ðxÞ ¼ 
a

Lb
�Bb




�1

R �ðxÞ ¼ M��1�a

�. The expressions that follow are
specific to this gauge.

At second order in the heat-kernel expansion [order ð ffiffi
t

p Þ2] the corresponding piece of the effective action reads

Wð2Þ ¼
Z

d2x��2

�
3M2

16�

�
2

�
� 	� log

�
M2

�2

�
þ logð8�Þ þ 4

�
þ ð@��Þ2

4�

�
2

�
� 	� log

�
M2

�2

�
þ logð8�Þ � 5

3

�

þ w2�2

4�

�
2

�
� 	� log

�
M2

�2

�
þ logð8�Þ

��
; (54)

where D ¼ 2� �. We can take one step further and calculate the contribution to order t2

Wð4Þ ¼
Z

d2x��2

�
� 3M2

32�

�
2

�
þ logð8�Þ � log

�
M2

�2

�
� 	þ 5

18

�
��4ð@�w�Þ2

4�M2

þ�3ð2w�@��@�w� � 3w�@��@�w�Þ
3�M2

�2ð@��Þ2w2

6�M2
� w�w�@��@��

�M2
þ�2w2

8�
� �4w4

4�M2
� 5ð@��@��Þ

48�

þ �

M2

@��@��@�@��

3�
þ �

M2

@��@��@�@��

15�
� 7�3

M2

@�@�@�@��

60�
� @��@��@��@��

5�M2

�
: (55)

The calculation of the fourth-order coefficients in the heat-
kernel expansion just shown is already a formidable task
and we will not attempt to go beyond.

If we look at the results of the expansion at second order
it is interesting to see that the terms that are generated are
the ones expected from the point of view of general rela-
tivity. There is a cosmological term (proportional to ��2,
which in covariant form corresponds to

ffiffiffi
g

p
), and a

Liouville term [proportional to ��2ð@��Þ2, which in co-

variant form is nonlocal:
ffiffiffi
g

p
Rr�2 ffiffiffi

g
p

R]. In addition

there is a term proportional to w2 (which once written in
a covariant form would be

ffiffiffi
g

p
g��w�w�). Note that the

Einstein term itself is topological in 2D and it is not
expected to show up. However, in spite of these satisfac-
tory results, we notice that the cosmological term does not
quite coincide with the one previously derived, via the gap
equation, and the Liouville term is apparently divergent
casting doubts on the renormalizability of the model. We
note that like in the chiral Lagrangian, the effective theory
still possesses the full symmetry group G.

Yet it is easy to see that the above results are by necessity
incomplete. For instance, the same operator ��2 gets a
contribution from the terms of order t and from t2, ditto for
Liouville. This comes from the fact that because the op-
erator Xð ffiffi

t
p Þ contains terms linear inM and the heat-kernel

expansion is effectively an expansion in inverse powers of
M, a given order in t does not correspond to a given order in
derivatives or external fields. Therefore although the heat-
kernel calculation gives an interesting guidance to the form
of the effective action and it shows the reappearance of
covariance, the precise values of the coefficients of the
different operators cannot be extracted from it. To solve
this difficulty we turn to a diagrammatic calculation.

VI. DIAGRAMMATIC CALCULATION

Let us recapitulate. The heat-kernel calculation is
plagued by two problems. The first one is related to the
zero modes of the kinetic term, which increase consider-
ably the difficulty of the calculations. The other one lies in
the fact that the expansion is ill defined in the sense of
relevance of the subsequent orders. In a way, the heat
kernel fails to provide exact coefficients for the different
operators but gives an accurate catalog of the possible
terms one could expect.
In this section we derive the Feynman rules of our toy

model and proceed to calculate the exact contributions of
the zero-, one-, and two-point functions. As will be shown,
we obtain finite contributions except for the cosmological
term which nevertheless can be renormalized. The theory
appears to be perfectly renormalizable in spite of the
apparent bad power counting (due to the zero modes of
the propagator).

A. Feynman rules

We start by writing the generating functional of the
theory in the conformal gauge in Euclidean space from
which we can read off the Feynman rules for the one- and
two-point functions we are interested in. We know that the
diagrammatic expansion is not covariant, but once we have
convinced ourselves that covariance is recovered, we can
use this method for identifying specific coefficients. In this
section it will be convenient to express the conformal
gauge in the form

Ba
�ðxÞ ¼ Me��ðxÞ=2�a

�: (56)

The first term in the expansion of the exponential provides
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the dynamically generated mass for the fermions.
Incidentally, this formalism is clearly quite reminiscent
of chiral dynamics.

The interaction vertices are

B. Zero-, one-, and two-point functions

With the rules described in the previous section and the
propagator derived in Sec. IVC we can calculate the exact
contributions of the zero-, one-, and two-point functions of
the theory. Since the theory is nonstandard, and it has a
nonfamiliar set of Feynman rules, we will provide the
diagrams, after transcribing the Feynman rules, and the
final result. Note that because there are two species of
fermions the result from the Feynman diagrams has to be
multiplied by a factor 2. Let us first consider one-particle
irreducible diagrams containing the � field as the external
one:

There is another diagram with two external scalar legs:
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From the M2 terms in (58) and (59) we can already infer the total contribution to the cosmological term

M2e��

4�

�
2

�
� 	� log

�
M2e��

�2

�
þ logð4�Þ þ 1

�
: (60)

The divergence can be absorbed in the redefinition of the coupling constant, c. This result fully agrees with the one derived
via the gap equation previously. In addition we observe that the p2 piece in the last diagram will correspond in position
space to the Liouville term. As it can be seen it is finite.

Next we look at the two-point function that mixes a � field with a w field. This could yield a R-type term but since in
two dimensions gravity is topological we do not expect to see such a term. Indeed, the diagram gives zero

Finally we calculate the last of the two-point functions possible. Again we obtain a finite result

We see with relief that even if the ultraviolet behavior of
each and every one of the integrals is very bad, the final
result hints of the renormalizability of the theory. After
renormalizing the only coupling constant c of the theory
the final result is perfectly finite.

C. Effective action

Let us now put all the pieces together and use the lowest-
order equations of motion for the field Ba

�, or what is

tantamount, for the dynamically generated mass M, to
write the effective action. The result is

Seff ¼
Z

d2x

�
�M2

2�
e�� þ 1

24�
@��@��þ ð@�w�Þ2

3�M2

� w2

�
þ � � �

�
; (63)

with M is given by (38). This is our final result.
Several comments are in order. First we recall that the

effective action is written in the conformal gauge for the
metric, but it is trivial to recover a full covariant form.
Secondly, we note that there is no coupling between metric
and connection, as befits the Palatini formalism in two
dimensions where, exceptionally, metric and connection
are unrelated. One can apply a variational principle to the
affine connection w� in the above effective action, obtain-

ing some equations of motion at Oðp2Þ, but in 2D they do
not provide any information on the conformal factor �.
One is then left with a cosmological and a Liouville

term, as corresponds to two-dimensional gravity [22]. The
dots correspond to higher curvatures that we have not
attempted to compute. In general they will be nonzero.
Notice that the expansion is valid as long as the character-
istic momenta fulfill k >M. Since M is the mass scale
related to the two-dimensional cosmological constant, this
would correspond to scales larger than the horizon.

VII. FOUR DIMENSIONS

It is almost compulsory to discuss the possible extension
of these results to four dimensions.
There is apparently a fundamental problem in consider-

ing four-dimensional theories where the graviton is gen-
erated dynamically. If we refer to the original paper by
Weinberg and Witten [23] (see also [24]), the apparent
pathology of these theories lies in the fact that the
energy-momentum tensor has to be identically zero if
particles with spin higher than 1 appear and we insist on
the energy-momentum tensor being Lorentz covariant.
This result does not hold in two dimensions as it relies
on angular momentum considerations that do not apply. Of
course there is no true spontaneous breaking of continuous
symmetries in two dimensions either, but this is circum-
vented by appealing to the large N limit.
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However, very preliminary results indicate that one gets
from the simple toy model proposed here a result that looks
close to what one expects in four-dimensional gravity, so it
is legitimate to ask whether the Weinberg and Witten result
applies. We note something peculiar in our model, namely,
the energy-momentum tensor derived in Sec. IV does not
have tangent (Lorentz) indices. In fact, Lorentz indices are
of an internal nature in the present approach; the connec-
tion between Lorentz and space-time indices appears only
after a n-bein is dynamically generated. But then one is
exactly in the same situation as general relativity where the
applicability of [23] is excluded. Thus it is not clear to us to
what extent the conditions assumed by Weinberg and
Witten apply to the present model.

Of course in four dimensions we would possibly gen-
erate a graviton field, hopefully with the same couplings
dictated by general relativity, but with all the degrees of
freedom thrown in. To see that only two of them are
physical one has to go through the usual procedure of
gauge fixing.

It is worth noticing that the loop integrals of the present
model show an even worse ultraviolet behavior in four
dimensions. However, exactly as in two dimensions, the
absence of a metric in the fundamental theory seriously
limits the number of possible counterterms.

Then while the previous two-dimensional example is all
too trivial it shows perfectly the general ideas. It seems
conceivable to entertain the idea that a mechanism analo-
gous to chiral symmetry breaking may trigger the dynami-
cal appearance of some degrees of freedom that, at the very
least, formally reproduce the Einstein-Hilbert action.

In four dimensions there are two independent dimen-
sionful parameters in gravity: the scale associated with the

cosmological constant �1=4 and the Planck mass MP,
which is absent in 2D. In a simple model (such as the
one proposed here) it is to be expected that the two scales
are related (this may not necessarily be so if the 4D model
requires additional subtractions). This is of course the old
problem of fine-tuning associated with the cosmological
constant reemerging, the novel aspect here being that in the
present microscopic model of gravity this can be made
quantitative. Solving this fine-tuning problem was not
however our primary motivation, but rather trying to cir-
cumvent the difficulties of the Einstein-Hilbert Lagrangian
at the quantum level by considering it as an effective theory
and proposing a microscopic toy model.

VIII. SUMMARY

In this work we have proposed a model where two-
dimensional gravity emerges from a theory without any
predefined metric. The minimal input is provided by as-
suming a differential manifold structure endowed with an
affine connection.
We have made an allusion in the title of this article to the

emergence of geometry and this is really what happens in
the model proposed. Gravity and distance are induced
rather than fundamental concepts. At sufficiently short
scales, when the effective action does not make sense
anymore, the physical degrees of freedom are fermionic.
Below that scale there is not even the notion of a smaller
scale: in a sense that is the shortest scale that can exist.
Avery important aspect of the model is that it appears to

be renormalizable. All divergences can be absorbed in the
redefinition of a unique coupling constant. With the appro-
priate running, dictated by the corresponding beta function,
the cosmological constant becomes a renormalization-
group invariant. Everything else is finite. Of course at
long distances the conformal mode is the relevant degree
of freedom and this induces new divergences which are,
nevertheless, the ones characteristic of two-dimensional
gravity. They have been discussed in Sec. III. The renor-
malizability aspect of this model (and its relative technical
simplicity) is its main virtue when compared with previous
proposals [9], where even semiquantitative discussions
appear impossible. Here one is able to derive in all detail
the effective action. The derivation remains valid for supra-
horizon momenta, where the theory is governed by the
induced metric modes, while at subhorizon energy scales
everything seems to indicate that the fundamental fermi-
onic degrees of freedom are the relevant ones.
The renormalizability of the model can be traced back

eventually to the absence of a metric. There are no obvious
counterterms to be written, a behavior that could possibly
persist in four dimensions.
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