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We construct several new families of vacuum solutions that describe black holes in uniformly

accelerated motion. They generalize the C metric to the case where the energy density and tension of

the strings that pull (or push) on the black holes are independent parameters. These strings create large

curvatures near their axis and when they have infinite length they modify the asymptotic properties of the

spacetime, but we discuss how these features can be dealt with physically, in particular, in terms of

‘‘wiggly cosmic strings.’’ We comment on possible extensions and extract lessons for the problem of

finding higher-dimensional accelerating black hole solutions.
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I. INTRODUCTION

The C metric is a solution of the Einstein equations that
describes the spacetime of two black holes uniformly
accelerating in opposite directions [1]. This solution and
its variants have been applied to a number of interesting
problems, including gravitational radiation from acceler-
ated sources [2], instantonic pair creation of black holes
[3], black holes on branes [4], five-dimensional black rings
[5], etc. It is remarkable that a simple, exact solution is
available for the study of such a variety of problems, and so
it seems desirable to investigate possible extensions of it.

The generalization that we study in this paper can be
easily motivated. In the original C metric, conical singu-
larities are unavoidable since they reflect the need of an
external force to accelerate the black holes. Conical deficit
angles correspond to distributional stringlike sources with
linear energy density " and tension T ¼ ". The black holes
in the C metric are then accelerated under the pull of two
such semi-infinite strings. These sources are physically
appealing since they can be made sense of as cosmic
strings (vortices) in the limit in which their thickness is
negligible. Note, however, that for the purpose of pulling
on the black holes one merely needs a tensile string. In
particular, it is not necessary that its energy density equals
its tension. Thus it appears that a one-parameter general-
ization of the C metric where the energy density of the
string is independent of its tension should be possible. Our
purpose is to describe a solution where black holes are
accelerated by such generic strings.

Stringlike sources with " � T arise as the zero-thickness
limit of a variety of less singular sources, such as ‘‘wiggly’’
cosmic strings or cylindrical shells. A main difference with
the " ¼ T sources is that when " � T the Newtonian
gravitational potential does not vanish and the gravitational

field has nontrivial local curvature. As a consequence the
spacetime is not asymptotically flat, not even locally.
Although this may appear as a serious drawback, it need
not be a problem in physical situations in which the string
is not infinite but forms a (possibly long) loop, whose
radius provides a natural cutoff for the geometry at large
transverse distance from the string (this is often assumed
also for e.g., global strings). One might also take the view
that, like e.g., for the Melvin universe, these strings define
their own asymptotic class. We shall accept that these
solutions admit physical motivation.
Interestingly, we can also have ‘‘struts’’ that stretch

between the black holes and push them apart. These solu-
tions are locally inequivalent to those with pulling strings
and since the struts have finite length, the asymptotic
behavior at spatial infinity is expected to be better. The
struts have negative tension, but in contrast to the Cmetric,
they do not violate any energy condition if the energy
density on the struts is large enough. There is also the
possibility of solutions with both strings and struts.
Although the physical import of these metrics is less clear,
they provide the largest (five-parameter) family of solu-
tions in this class and we present them explicitly for
completeness.
There are several interesting possible extensions of the

solutions described in this paper. In fact one of the reasons
leading us to their study has been the consideration of
higher-dimensional generalizations of the C metric. In
the context of these elusive solutions, which have been
sought for many of the applications mentioned in our
opening paragraph, the possibility of different kinds of
string sources is potentially even more important than in
four dimensions. We shall address this point toward the end
of the paper.
In the next section we analyze the basic string solutions

that later will be used to pull, or push, on the black holes. In
Sec. III we present the new metrics for accelerating black
holes, first with pulling strings, then with pushing struts,
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and we analyze their main properties. We also present the
most general solution with both strings and struts.
Section IV discusses extensions of these solutions. The
Appendix contains an alternative form for the new metrics
that resembles more closely the conventional way of writ-
ing the C metric.

II. THE LEVI-CIVITA STRING AND ITS SOURCES

The Levi-Civita spacetime1

ds2 ¼ ��2mdt2 þ �2mðm�1Þðdz2 þ d�2Þ þ �2ð1�mÞ d�
2

C2
;

(2.1)

is a long-known cylindrically symmetric solution to the
vacuum Einstein equations [6]. It is a Weyl metric of
general Petrov type,2 and contains two parameters: m,
which determines the local curvature, and C, which intro-
duces a conical structure along the axis when the normal-
ization of � is fixed by identifying ���þ 2�. When
m ¼ 0, 1 with C ¼ 1 it reproduces Minkowski and Rindler
space, respectively, but for generic values of m and C the
solution is not asymptotically flat as � ! 1 and exhibits a
curvature singularity at � ¼ 0. As a Weyl solution, it
corresponds to an infinite line source of the Newtonian
potential with linear density m=2G. We shall refer to it as
the ‘‘Levi-Civita string’’.

It has been argued that, in order to admit an interpreta-
tion as the spacetime of a cylindrical source, one must have
m< 1=2, or possibly m< 1 (see e.g., [7,8] and references
therein). The precise range will not concern us much, since
later we shall be mostly interested in small values of m, as
well as C close to 1, for which the line source is readily
interpreted. Nevertheless let us briefly discuss the general
case. The singular behavior near the axis � ¼ 0 may be
smoothed by replacing the region around it with an ex-
tended source, and a simple example is a cylindrical tub-
ular shell [9–14]. Cutting the metric at � ¼ �s and
replacing the interior with flat Minkowski spacetime (m ¼
0, C ¼ 1), one can apply Israel’s analysis [15] to obtain the
stress tensor at the shell interface

Tt
t ¼ �m�1

s

8�G
ðð1�mÞ2��m2

s � CÞ;

Tz
z ¼ �m�1

s

8�G
ð��m2

s � CÞ;

T�
� ¼ �m�1

s

8�G
m2��m2

s :

(2.2)

In this manner, the problem of interpreting the strong
curvature singularity at � ¼ 0 is shifted to that of finding

an adequate source that smoothens the milder singularity at
the shell. Observe in (2.2) the presence of not only energy

density and tension along z, but also a hoop stress T�
� ,

which seems to be a necessary feature of any possible
source of these spacetimes. Typically the equation of state
of the shell matter will impose a relationship betweenm,C,
and �s. We shall not dwell much on candidate shell
sources, but merely note that tubular structures with similar
properties appear naturally in string theory in the form of
supertubes and closely related helical strings (smeared
along the z direction). It seems likely that combinations
or variants of these can provide adequate sources for these
spacetimes.
From (2.2) we can introduce the energy density per unit

length [13],

" ¼ �
Z
�¼�s

d�
ffiffiffiffiffiffiffiffiffi
g��

p
Tt
t ¼ 1

4G

�
1� ð1�mÞ2

C�m2

s

�
(2.3)

and tension

T ¼ �
Z
�¼�s

d�
ffiffiffiffiffiffiffiffiffi
g��

p
Tz
z ¼ 1

4G

�
1� 1

C�m2

s

�
: (2.4)

These are nontrivially equal only in the case of a conical-
defect spacetime, m ¼ 0, C � 1.
Let us now consider the Levi-Civita spacetime (2.1)

expanded to linear order in m and in � � C� 1,

ds2 ’ �ð1þ 2m log�Þdt2 þ ð1� 2m log�Þðdz2 þ d�2Þ
þ ð1� 2m log�Þð1� 2�Þ�2d�2: (2.5)

In this linearized approximation we can also write m and �
in terms of the energy density (2.3) and tension (2.4) as

m ’ 2Gð"� TÞ; � ’ 4GT: (2.6)

We will regard these simple relations as the basic inter-
pretation of the parameters of the Levi-Civita string.
Observe that �s does not appear in them. Relatedly, the

hoop stress T�
� isOðm2Þ and therefore it does not appear in

the linearized approximation.
Using (2.6), and performing the coordinate change

ð1� 4Gð"þ TÞ logrÞr2 ¼ ð1� 8GTÞð1� 4Gð"� TÞ
� log�Þ�2 (2.7)

(to the required expansion order) the metric (2.5) is brought
to the form

ds2 ’ �ð1þ 4Gð"� TÞ logrÞdt2 þ ð1� 4Gð"� TÞ
� logrÞdz2 þ ð1� 4Gð"þ TÞ logrÞðdr2 þ r2d�2Þ:

(2.8)

This can be recognized as the solution to the linearized
Einstein equations, in transverse gauge,

1The solution does not contain any length scale so the coor-
dinates may be regarded as normalized relative to an arbitrary
length unit.

2Except for m ¼ 0, 1=2, �1, 2.
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h

�
h�� � h

2
���

�
¼ �16�GT�� (2.9)

with distributional stress tensor

T�� ¼ diagð";�T; 0; 0Þ�ðxÞ�ðyÞ (2.10)

which confirms our interpretation of " and T.
The solution (2.8) has been previously studied in the

context of a different kind of string source, namely, ‘‘wig-
gly strings’’ (see e.g., [16]). Cosmic strings have Lorentz-
invariant world sheets so " ¼ T, but if they acquire a short-
distance structure (wiggles), then when this is averaged it
produces an effective linear source with " � T. This is an
appealing physical realization of this linearized spacetime.

Finally, observe that the tension of the string may be
negative, and hence the string exerts pressure, while sat-
isfying the usual energy conditions if " is large enough. We
will refer to this as the ‘‘Levi-Civita strut.’’ Let us discuss it
in the case of small m and small C� 1. Equation (2.6)
implies that, when C< 1 and hence � < 0,

" ’m� j�j=2
2G

; "� T ’ m

2G
; "� jTj ’m� j�j

2G
:

(2.11)

Therefore the weak, strong, and dominant energy condi-
tions are all satisfied if m> j�j. While it does not seem
possible to realize these struts in terms of wiggly cosmic
strings, one may still obtain them from tubular shells. They
might be elastically unstable due to the negative tension,
but presumably this depends on the specific shell matter
(see [13] for energy conditions on generic shells).

III. ACCELERATING BLACK HOLES

We describe different families of solutions where the
black holes are accelerated either by strings that pull or by
struts that push on them. They all contain the C metric as a
limit.

A. Pulling with strings

We construct the metric using conventional integrability
techniques for Weyl spacetimes (see e.g., [7,17]). The rod
structure for the solution3 is depicted in Fig. 1. The metric
reads

ds2 ¼ �e2Udt2 þ e2�ðdz2 þ d�2Þ þ e�2U�2 d�
2

C2
(3.1)

with

e2U ¼ �2m �1�m
1 �3

�2

; (3.2)

and

e2� ¼ �2mðm�1Þ
�

�1

ð�2
1 þ �2Þ1�m

�
�1�2 þ �2

�1�3 þ �2

�
2
�
1�m

� �3ð�2�3 þ �2Þ2
�2ð�2

2 þ �2Þð�2
3 þ �2Þ ; (3.3)

where

�i ¼ ai � zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðai � zÞ2 þ �2

q
: (3.4)

The solution contains five parameters:m,C, ai (i ¼ 1, 2,
3). One of the ai may be absorbed by a shift in z so only
their differences ai � aj are physical. The parameter C

will be fixed presently by a regularity condition, so in the
end we will be left with a three-parameter family of
solutions. It contains the C metric as the particular case
m ¼ 0 (see the Appendix), while for m ¼ þ1 we obtain a
double Wick rotation of the Schwarzschild spacetime.
When all the ai ! þ1 the solution reduces, after a rescal-
ing of coordinates, to the Levi-Civita spacetime. Unlike the
C metric, for generic values of the parameters the solution
is not algebraically special.
The rod structure allows a ready interpretation of the

solution. Along the axis � ¼ 0, we expect to have the
following:
(i) A semi-infinite Levi-Civita string at z < a1 with rod

density m=2G.
(ii) A black hole horizon at a1 < z < a2.
(iii) An ‘‘exposed’’ axis of rotation at a2 < z < a3.
(iv) An acceleration (Rindler) horizon at a3 < z.
We proceed to analyze the solution near each of these

rods.
Exposed axis.—Assuming that ���þ 2�, the ab-

sence of conical singularities at the exposed axis at f� ¼
0; a2 < z < a3g requires that

C ¼ lim
�!0

e�ðUþ�Þja2<z<a3 ¼
1

2m
ða3 � a1Þ1�m

a3 � a2
: (3.5)

Black hole horizon.—Near the rod at a1 < z < a2, to
leading order in � the metric is

ds2 ’ ð2ðz� a1ÞÞm�1 a3 � z

a2 � z

�
��2dt2 þ

�
a2 � a1
a3 � a1

�
2ð1�mÞ

� ðdz2 þ d�2Þ
�
þ a2 � z

a3 � z

d�2=C2

ð2ðz� a1ÞÞm�1
: (3.6)

The horizon at � ¼ 0 is a regular surface away from the
Levi-Civita singularity at its pole z ¼ a1. The horizon area
is

1 a2 a3a

FIG. 1. Weyl rod structure for the solution with an accelerating
black hole pulled by a semi-infinite Levi-Civita string. The rod at
z < a1 has linear density m=2G. The rods at a1 < z < a2 and
z > a3 have linear density 1=2G.

3That is, the line sources for the Newtonian potential U.
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ABH ¼
Z 2�

0
d�

Z a2

a1

dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gzzg��

p j�¼0

¼ 2�

C
ða2 � a1Þ

�
a2 � a1
a3 � a1

�
1�m

¼ 21þm�ða3 � a2Þ ða2 � a1Þ2�m

ða3 � a1Þ2�2m
: (3.7)

We can compute the surface gravity at the horizon of the
Killing vector @t,

	BH ¼ lim
�!0

@�
ffiffiffiffiffiffiffiffiffiffi�gtt

p
ffiffiffiffiffiffiffiffi
g��

p
��������a1<z<a2

¼
�
a3 � a1
a2 � a1

�
1�m

: (3.8)

One should keep in mind that given the unusual asymp-
totics created by the Levi-Civita string, the normalization
of the Killing generator of the horizon is somewhat arbi-
trary. Observe that the product

	BHABH ¼ 2�

C
ða2 � a1Þ (3.9)

is equal to the length of the black hole rod times a factor
that accounts for the modified length of the orbits of �.
One might want to regard this as a Smarr-type relation
	BHABH ¼ 4�GM that would define the mass of the black
hole. Actually, this definition of mass is equivalent to the
Komar mass of the black hole on its horizon. However, it is
unclear to what extent this definition of black hole mass is
appropriate in the present context.4

Acceleration horizon.—Near � ¼ 0 and a3 < z we find

ds2 ’ ð2ðz� a1ÞÞm�1 z� a2
z� a3

ð��2dt2 þ dz2 þ d�2Þ

þ z� a3
z� a2

d�2=C2

ð2ðz� a1ÞÞm�1
: (3.10)

There is an infinite Killing horizon (Rindler) at � ¼ 0
generated by @t. The apparent singularity at z ¼ a3 is
just a coordinate artifact and the horizon is regular every-
where. We compute the surface gravity as was done for the
black hole horizon,

	R ¼ 1: (3.11)

The acceleration of the black hole is ambiguous in that it
depends on the normalization of @t, which for a spacetime
with a Levi-Civita string is unclear, and also because the
black hole is an extended object. In the case of the
C metric, when the black hole is small (a2 � a1 � a3 �
a2) its acceleration relative to static asymptotic observers
can be unambiguously identified to leading order as A ’
ð2a3 � ða1 þ a2ÞÞ�1.

The ambiguities in the normalization of 	 cancel when
we consider the quotient

	R

	BH
¼

�
a2 � a1
a3 � a1

�
1�m

: (3.12)

The surface gravities can be associated as usual to horizon
temperatures, TBH;R ¼ 	BH;R=2�. Since TR < TBH the two

temperatures are never equal. Thus, even if the Levi-Civita
singularities at the string and infinity could be disposed of,
an otherwise regular Euclidean instanton could not be
constructed.
Levi-Civita string.—For small � and z < a1 we have

e2U ’ �2m21�m ða1 � zÞ1�mða3 � zÞ
a2 � z

;

e2� ’ �2mðm�1Þ a3 � z

a2 � z

�
22m�1 ða1 � zÞ2m�1ða2 � zÞ2

ða3 � zÞ2
�
1�m

:

(3.13)

The radial dependence is like in (2.1), but there is a
dependence on z as well. However, away from the string
end point at z ¼ a1 these functions vary slowly with z.
Thus let us introduce, at any given z along the string, the

functions ÛðzÞ and �̂ðzÞ by

e2ÛðzÞ ¼ 21�m ða1 � zÞ1�mða3 � zÞ
a2 � z

;

e2�̂ðzÞ ¼ a3 � z

a2 � z

�
22m�1 ða1 � zÞ2m�1ða2 � zÞ2

ða3 � zÞ2
�
1�m

:

(3.14)

These are approximately constant in a neighborhood of a
given z not close to a1, so we may locally absorb them
through a change of coordinates in such a way that the
geometry is well approximated by a metric of the form
(2.1) with a z-dependent C parameter5

ĈðzÞ ¼ CeÛðzÞe�̂ðzÞ½ð1�mÞ=ðm2�mþ1Þ�: (3.15)

This is a monotonically decreasing function of z. In this
sense, we may say that the string tension increases along
the string from infinity toward the black hole. Note that for
theCmetric withm ¼ 0 this z dependence cancels out. For
small m

ĈðzÞ ¼ a3 � a1
a3 � a2

�
1�m log

ða2 � zÞða3 � a1Þ
ða1 � zÞða3 � zÞ þOðm2Þ

�
:

(3.16)

It is tempting to interpret this effect as saying that the
wiggles in the string get stretched when this pulls on the
black hole, but we have not pursued this interpretation
further.
While it does not seem feasible to identify in a unique

manner the mass and acceleration of the black hole, we
note that when the black hole-rod length a2 � a1 is small

4See [18] for a definition of ‘‘boost mass.’’

5We may equivalently say that we are matching the metrics
induced on a surface at constant z < a1.
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(much smaller than a3 � a2) and m is small, on general
grounds we might expect to identify the ratio of surface
gravities as

	R

	BH
’ 4GMA: (3.17)

In this limit C is close to 1 so we can identify the string
tension from (2.6). If "� T � T we find that Newton’s
second law

T � MA (3.18)

is recovered. It is interesting to observe that for the
C metric (m ¼ 0) the identity 1� C�1 ¼ 	R=	BH is ex-
actly satisfied.

B. Pushing with struts

Now we place a finite Levi-Civita rod along a2 < z < a3
while leaving the semi-infinite axis z < a1 exposed. If the
latter is nonsingular, then, as we will see below, the seg-
ment a2 < z < a3 must support a conical excess angle
instead of a deficit angle, and hence we find a Levi-
Civita strut pushing on the black holes. This configuration
has the advantage that, since the strut has finite length, we
expect the metric to be asymptotically flat at spatial infin-
ity. Furthermore, as discussed at the end of the previous
section, the positive pressure along the strut need not imply
a violation of energy conditions as long as m is sufficiently
large. This is unlike in the C metric with a strut, which
always violates positivity of energy and therefore makes
the solutions manifestly unphysical.

The rod structure is as in Fig. 2. The metric functions are

e2U ¼ �1

�
�3

�2

�
1�m

; (3.19)

and

e2� ¼
�
�3

�2

�
�1�2 þ �2

�1�3 þ �2

�
2
� ð�2�3 þ �2Þ2
ð�2

2 þ �2Þð�2
3 þ �2Þ

�
1�m

�
1�m

� �1

�2
1 þ �2

: (3.20)

In contrast to the C metric, when m � 0 the geometry is
locally inequivalent to our previous solution where the
strings run to infinity. Along � ¼ 0 we now have an
exposed axis at z < a1, a black hole horizon at a1 < z <
a2, a Levi-Civita strut with rod density m=2G at a2 < z <
a3, and an acceleration horizon at a3 < z.

The area and surface gravities of the horizons take the
same form as in Eqs. (3.8), (3.9), and (3.11), but now
regularity at the exposed axis z < a1 requires

C ¼ 1: (3.21)

We can then expect an excess angle along the Levi-Civita
rod. Indeed, for small � and a2 < z < a3 we find

e2U ’ �2m21�2m ðða3 � zÞðz� a2ÞÞ1�m

z� a1
;

e2� ’ �2mðm�1Þ 2
�1þ2m�2m2

ðz� a1Þ2m�1

�
�ða3 � a2Þ2�2mðða3 � zÞðz� a2ÞÞ�1þ2m

ða1 � a3Þ2
�
1�m

(3.22)

and we can define a z-dependent C parameter along this
rod like we have done above. For small m we find

ĈðzÞ ¼ a3 � a2
a3 � a1

�
1þm log

ða3 � a1Þða3 � zÞðz� a2Þ
ðz� a1Þða3 � a2Þ2

þOðm2Þ
�
; (3.23)

which is smaller than 1, reflecting the need of a negative
tension (pressure) to push the black holes. The rest of the
analysis can be carried out as in the previous solution and
we omit it.

C. Strings and struts

Clearly, one can construct a larger class of metrics with a
Levi-Civita rod at z < a1 with density mL=2G and another
rod at a2 < z < a3 with density mR=2G. The construction
of these solutions is straightforward, and the metric func-
tions are

e2U ¼ �2mL�1�mL

1

�
�3

�2

�
1�mR

(3.24)

and

e2� ¼
�
�3

�2

�
1�mR

� ð�2�3 þ �2Þ2
ð�2

2 þ �2Þð�2
3 þ �2Þ

�ð1�mRÞ2

�
�

�1�
�2mL

ð�2
1 þ �2Þ1�mL

�
�1�2 þ �2

�1�3 þ �2

�
2ð1�mRÞ�1�mL

:

(3.25)

Since there is no exposed axis there does not seem to be
any preferred value for the parameter C. This is then a five-
parameter family of solutions. Their analysis does not
introduce any other important novelties so we shall not
dwell on it.

1 a2 a3a

FIG. 2. Weyl rod structure for the solution with a finite Levi-
Civita strut pushing the black hole. The rod at a2 < z < a3 has
linear density m=2G. The rods at a1 < z < a2 and z > a3 have
linear density 1=2G.
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IV. OUTLOOK

We have exhibited several new families of explicit so-
lutions that describe black holes accelerating under the pull
or push of a stringlike object. Their construction is fairly
straightforward and our aim has been to underscore that
these solutions can have physical significance, in particu-
lar, when strings pull on the black holes. One important
feature is that, even if the Levi-Civita string (or strut) is
strongly singular, it can end on the black hole without
destroying the regularity of the horizon (away from the
touch point). This feature was not a priori obvious, but it
follows essentially from the properties of Weyl rod struc-
tures: close to a ‘‘horizon rod’’ the geometry is always of
Rindler type (as we have explicitly exhibited). This is
indeed the reason that, while we have not performed a
detailed analysis of the extension of the solutions across
the horizons, we do expect that this poses no difficulty.
When the self-gravity of the string is weak (and hence the
acceleration is small) it can be regarded as the zero-
thickness limit of a wiggly cosmic string, but it may also
correspond to other nonsingular sources. The main diffi-
culties in interpreting this solution and identifying its
physical parameters stem from its unconventional asymp-
totics. But this is a problem only if we consider the string to
be infinitely long, and if the solution is taken to approxi-
mate only a portion of a closed loop of string then the
asymptotic behavior will be improved. On the other hand,
the solutions with finite struts are presumably spatially
asymptotically flat.

The existence and properties of these solutions raise a
number of suggestions for future work:

String sources and cylindrical shells in the accelerating
black hole solution.—We have not investigated the regu-
larization of the Levi-Civita string in the accelerating black
hole spacetime, but there are reasons to expect that this
should not be problematic. In terms of wiggly strings,
looking sufficiently close to the black hole one may resolve
the wiggles and use the analysis of [19] to conclude that the
vortex string can pierce the black hole. It would remain to
solve the problem of how the wiggly structure extends to
all the length of the string, possibly with z-dependent
effective parameters as suggested by our analysis above.
One may also replace the Levi-Civita string with a tubular
shell. It does seem possible to cut the solution at some � ¼
�ðzÞ in a region z 	 zs, with zs < a2, and replace the
interior with a smooth spacetime, so the Levi-Civita string
is replaced by an empty cylindrical shell that ends on the
black hole. Israel’s construction will yield the shell stress
tensor. Stationarity demands that it be orthogonal to the
null generator of the horizon k, i.e., k�k�T�� ¼ 0. Other

than this, in the absence of a specific model for the shell
there do not seem to be any restrictions on its stress tensor.

Black hole charge and pair creation.—The impossibility
of matching the black hole and acceleration temperatures
prevents the construction of a Euclidean instanton that

would mediate the snapping of the string by spontaneous
formation of a pair of black holes at its end points.
Extending our solution to include black hole charge should
allow one to lower the black hole temperature to match the
acceleration temperature, as in [3], and then study this
process. For black holes in Kaluza-Klein theory the con-
struction of this solution should be rather straightforward
given the integrability of the five-dimensional equations.
AdS and black holes on branes.—There does not seem to

exist any obstacle of principle to extending our solutions to
include a (negative) cosmological constant, even if in
practice finding exact solutions might not be feasible (for
instance, inverse scattering techniques are unavailable for
this case). At any rate, with these solutions one could
investigate extensions of the construction of [4] of black
holes localized on a Randall-Sundrum two-brane. Note,
however, that the existence of solutions to Israel’s junction
conditions for a vacuum brane, i.e., one with extrinsic
curvature proportional to its induced metric, is not guaran-
teed. Also, if the additional parameter in the solutions
allowed one to construct a continuous family of black holes
localized on a two-brane, this might seem to entail a
continuous violation of uniqueness of black holes on the
brane. However, although we are not aware of any theo-
rems against this, it is unlikely to be realized in this manner
since the Levi-Civita string (‘‘hidden behind the brane’’)
presumably makes it impossible to have flat asymptotics
along the brane directions.
Global structure and gravitational radiation.—In this

paper we have not attempted to study the maximal analytic
extension and global structure of these solutions, but there
may be more to this than a point of mathematical rigor. In
particular it should be interesting to study the extension
beyond the Rindler horizon of the solution with pulling
strings to describe the ‘‘roof’’ in the Penrose diagram,
where the radiative properties of the spacetime become
apparent (see the second reference in [2]). The Levi-Civita
string is absent from this region and so it may be interesting
to study whether the asymptotic geometry at null infinity is
better behaved. If radiation at infinity can be suitably
characterized, this may provide an interesting extension
of the class of boost-rotation symmetric radiative space-
times. On the other hand, the solutions with struts probably
have worse asymptotic behavior in the ‘‘roof.’’
Nonuniform rod density.—The only parameter that must

be fixed in order to avoid singularities on the exposed axis
is C, which amounts to a simple rescaling of �, and which
in the linearized limit corresponds to the string tension.
Thus it would seem possible to construct Weyl solutions
analogous to the ones we have studied, with naked singu-
larities only at the pulling string, where the rod at z < a1
would have z-dependent densitymðzÞ [varying in the range
ð0; 1=2Þ or possibly (0, 1)], while C remains constant.
Obviously the same could be done with finite struts. In
general, explicit solutions could be found presumably only
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up to quadratures, but their properties might perhaps still
be analyzable. This would give a one-function family of
accelerating black holes. It is conceivable that if m ap-
proaches zero sufficiently fast as z ! �1 the asymptotic
behavior might be as in the C metric.

Accelerating black holes in higher dimensions.—No ex-
act solution for accelerating black holes inD> 4 is known.
Reference [20] solved the perturbation equations for aD>
4 Schwarzschild black hole to give it uniform acceleration
and found a solution with a distributional linear source
accelerating the black hole.

Let us reexamine this problem in light of what we have
learned in four dimensions. In the class of metrics we have
analyzed, the C metric is singled out as the one where the
string has a milder singularity at the axis and also has
better-behaved (locally flat) asymptotics. In contrast, in
D 
 5 we would expect the asymptotic behavior to be
good for all string sources with finite energy density and
tension: the gravitational field in directions transverse to
the string falls off like�1=rD�4. Near the string, however,
there are significant differences between sources.
Requiring the symmetry Rt � Rz � SOðD� 2Þ, the static,
cylindrically symmetric stringlike solutions to the vacuum
Einstein equations can be obtained as a particular case of
solutions in [21] (or in D ¼ 5 by uplifting the solutions in
[22]) to find

ds2 ¼ �f½ðD�3Þ"�T�=�dt2 þ f½ðD�3ÞT�"�=�dz2

þ f�ðD�5Þ=ðD�4Þ�ð"þTÞ=�dr2

þ f1=ðD�4Þ�ð"þTÞ=�r2d�ðD�3Þ (4.1)

with

f ¼ 1� 16�G

ðD� 4ÞðD� 2Þ�ðD�3Þ
�

rD�4
;

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� 4ÞðD� 2Þ

�
"2 þ T2 � 2

D� 3
"T

�s
:

(4.2)

We may regard these as the D-dimensional versions of the
Levi-Civita strings. The two parameters ", T are the energy
density and tension measured at asymptotic infinity. They
coincide with the energy density and tension of the sources
for the linearized approximation to the solutions. When
T ¼ "=ðD� 3Þ we recover the black string,6 but in all
other cases the solutions present naked singularities where
f ¼ 0, including, in particular, the strings with Lorentz-
invariant world sheet, " ¼ T [23].7 One might nevertheless
expect that, like in four dimensions, all of these strings

with T > 0 should be able to accelerate a massive object.
The black string might be more appealing physically, but it
is not known whether it can pierce a black hole horizon in a
nonsingular manner.8

This suggests that in D> 4, as in four dimensions, a
family of accelerating black hole solutions should exist
with at least three independent parameters, for the black
hole mass and the string energy density and tension, with
an open set of their values being potentially useful for
physical applications. But, unlike in four dimensions, the
asymptotic behavior does not seem to single out any spe-
cific solution, so in this respect they all appear to be on a
similar footing and different pulling strings may be rele-
vant to different problems. It is even possible that strings
with nonuniform density need to be considered, e.g., in
order to satisfy the junction conditions on the brane as
suggested by the results of [20]. One may also consider
struts pushing on the black holes, but they are always
nakedly singular since there are no ‘‘black struts.’’
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APPENDIX: THE SOLUTIONS IN ðx; yÞ
COORDINATES

The C metric is customarily written not in Weyl coor-
dinates but in a set of coordinates ðx; yÞ adapted to uni-
formly accelerated motion. In order to write our solutions
in these coordinates, we perform the change

� ¼ 2

A
ðx� yÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þðy2 � 1Þð1þ �xÞð1þ �yÞ

q
;

z ¼ ð1� xyÞð2þ �ðxþ yÞÞ
A
ðx� yÞ2 ; (A1)

and

a1 ¼ � �

A
 ; a2 ¼ �

A
 ; a3 ¼ 1

A
 ; (A2)

which can be generically applied to anyWeyl solution with
two finite rods. The parameter A fixes the overall scale, and
its exponent is


 ¼ 2

1þm
for solutions with strings;


 ¼ 2 for solutions with struts:

(A3)

We take y 	 �1, �1 	 x 	 1, and 0< �< 1.

6Observe that this contains the conical-defect strings for D ¼
4.

7The case " ¼ T=ðD� 3Þ has conical singularities when
�1< z <1. Note also that only when " > ðD� 3ÞT or " <
T=ðD� 3Þ does the angular SD�3 shrink to zero at the
singularity. 8The methods of [24] should be of help here.
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The functions �i in (3.4) then become

�1 ¼ 2
ðx� 1Þð1þ yÞð1þ �yÞ

A
ðx� yÞ2 ;

�2 ¼ 2
ðx� 1Þð1þ yÞð1þ �xÞ

A
ðx� yÞ2 ;

�3 ¼ 2
ðy2 � 1Þð1þ �xÞ

A
ðx� yÞ2 :

(A4)

DefiningGð�Þ ¼ ð1� �2Þð1þ ��Þ, the metric with strings
of Sec. III A reads

ds2 ¼ 2

A2ðx� yÞ2
�
GðyÞ

�
2GðxÞ
ðx� yÞ2

1� y

1� x

�
m
dt2

þGðxÞ
�
2GðxÞ
ðx� yÞ2

1� y

1� x

��m d�2

�C2

�

þ �

A2

�
� dy2

GðyÞ þ
dx2

GðxÞ
�
; (A5)

where

� ¼ 2

�
1� �

x� y

�
2

�
�ð1� xÞð1� yÞð2þ �ð1þ xþ y� xyÞÞ2�m

2GðxÞ
�

�
GðxÞð1� yÞ

ð1� xÞðx� yÞ
�
m
�
m
; (A6)

and

�C ¼ 1

2m
ð1þ �Þ1�m

1� �
: (A7)

For the solution with struts of Sec. III B we get

ds2 ¼ 2

A2ðx� yÞ2
�
GðyÞ

�
1� x

1� y

�
m
dt2 þGðxÞ

�
�
1� x

1� y

��m
d�2

�
þ �

A2

�
� dy2

GðyÞ þ
dx2

GðxÞ
�
; (A8)

now with

� ¼ 2

�
1� �

x� y

�
2
�½�ðxþ yþ �ð1þ xyÞÞð2þ �ð�1þ xþ yþ xyÞÞ�2�m

4ð1� �Þ2ð2�mÞðð1� xÞð1� yÞÞ1�m

�
m
: (A9)

When m ¼ 0 both solutions reduce, up to a constant rescaling of coordinates, to the uncharged C metric with the
factorized form for Gð�Þ first given in [25] (see also [26]).
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