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We prove that static black holes in n-dimensional asymptotically flat spacetime cannot support

nontrivial electric p-form field strengths when ðnþ 1Þ=2 � p � n� 1. This implies, in particular, that

static black holes cannot possess dipole hair under these fields.
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I. INTRODUCTION

It has been known for several years that the properties of
higher-dimensional black holes can differ significantly
from the rigidly constrained character of four-dimensional
black holes [1]. References [2,3] trace the origin of the new
physics back to the possibility of having two parametri-
cally different length scales along the horizon, which al-
lows higher-dimensional black holes to exhibit black
brane-like behavior that cannot occur in four dimensions.
Typically, one of the scales is associated to the black hole
mass and the other to its angular momentum, which in five
or more dimensions can be arbitrarily large for a given
mass. As the two scales begin to separate, new phenomena
set in, such as black hole nonuniqueness and horizon
instabilities.

This observation suggests that the distinctively higher-
dimensional features of black holes arise only at suffi-
ciently large rotation. In particular, it leads us to expect
that the properties of static black holes should be qualita-
tively very similar to those of four-dimensional black
holes. There is already good evidence for this. Prompted
by the discovery of black rings and the nonuniqueness of
stationary black holes that they entail [4], Ref. [5] showed
that asymptotically flat, static vacuum black holes are
instead unique: the only solution is the Schwarzschild-
Tangherlini spacetime. Afterward it was also shown that
this solution is dynamically stable to linearized perturba-
tions [6]. While we expect that uniqueness (for solutions
with connected horizons) and stability are valid in a finite
range of values of the angular momenta, the precise upper
limits are still unknown in general (see [7,8] for some
recent progress in this direction).

It is clearly of interest to study how these results are
extended when gauge fields are present. A charge on the
black hole introduces an independent length scale, namely,
the charge radius. A separation of scales occurs as extrem-
ality is approached, but this occurs in directions transverse
to the horizon instead of parallel to it, and is in fact an
effect well-known in four dimensions too. So, again, the

onset of qualitatively new higher-dimensional features
seems to require a minimum amount of rotation. In this
direction, Ref. [9] has proven the uniqueness of the
n-dimensional static black holes electrically charged under
a two-form field strength, and Ref. [10] has studied their
stability.
A more distinctive property of gauge fields in higher

dimensions is the possibility that a black hole couples
electrically to p-form field strengths HðpÞ with p > 2. An

asymptotically flat black hole in n dimensions cannot have
a conserved monopolar electric charge under this field.
One might expect that the integral of �HðpÞ over a sphere

Sn�p near asymptotically flat infinity gives a conserved
charge. However, this is not the case when p > 2, since the
Sn�p can be shrunk to a point in the Sn�2 in the asymptoti-
cally flat region and the integral vanishes. Nevertheless, the
black hole can be the source of an electric dipole of this
field. Indeed, Ref. [11] presented rotating black ring solu-
tions with dipoles of a three-form field strength in five
dimensions. Since the dipole is not a conserved charge, it is
hair for the black hole. The generic existence of rotating
black holes with dipoles of fields HðpÞ with p � 3 in

dimensions n � pþ 2 is argued in [12].
Could a static black hole sport such dipole hairs?

Intuitively, the dipole field can be regarded as sourced
by a (p� 2)-brane-like object extended along a compact
(p� 2)-cycle. This ‘‘brane’’ exerts a tension that, if the
cycle is contractible, must be balanced by centrifugal
rotation (this is indeed explicitly observed in the dipole
rings of [11]). So this heuristic reasoning indicates that we
should not expect a black hole to be able to support a dipole
until it carries a sufficiently large angular momentum.
In this article we prove the impossibility of dipole hair

for static black holes. The proof follows the one employed
in the uniqueness theorem of higher-dimensional static
black holes [5,9,13,14]. This type of proof was first devel-
oped by Bunting and Masood-ul-Alam in four dimensions
[15]. Its extension to higher dimensions is quite nontrivial,
since [15] used properties specific to four dimensions, but
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the approach was extended in [5,13] in a manner that
avoids the use of such properties.

Together with the gauge dipole, wewill also consider the
inclusion of scalar fields and scalar hair. Bekenstein proved
that a static black hole cannot have scalar hair in four
dimensions [16]. This no-hair theorem is easily extended
to higher dimensions since the dimensionality does not
enter into the proof. [16]However, this type of proof cannot
be applied to systems where the scalar field couples to
higher form fields.

The rest of this paper is organized as follows. In Sec. II,
we prove the no-dipole-hair theorem in two steps: first we
show that a static black hole cannot support nontrivial
p-form fields when ðnþ 1Þ=2 � p � n� 1, and then we
prove the uniqueness of the Schwarzschild-Tangherlini
solution. In Sec. III, we discuss the outlook of this work
and, in particular, the restriction on the values of p to which
the theorem applies.

II. NO-DIPOLE-HAIR THEOREM

We consider n-dimensional asymptotically flat solutions
of theories described by the class of Lagrangians

L ¼ R� 1

2
ð@�Þ2 � 1

p!
e���H2

ðpÞ; (1)

where R is the n-dimensional Ricci scalar, � is a dilaton
with coupling �, andHðpÞ is the field strength of a (p� 1)-

form field potential Bðp�1Þ,

HðpÞ ¼ dBðp�1Þ: (2)

Since we are interested in asymptotically flat spacetimes,
we take p � n� 1. A form field with p ¼ n does not have
any dynamical degree of freedom and behaves like a
cosmological constant, which would prevent asymptotic
flatness.

We only consider electric fields of HðpÞ. Note that via

electric-magnetic duality we can always trade a magnetic
charge or dipole under HðpÞ for an electric one under

Hðn�pÞ.
1 However, we do not consider the possibility of

simultaneous presence of dipoles and monopole charges of
electric and magnetic type, e.g., in n ¼ pþ 2 one can have
solutions with both magnetic monopole charge and electric
dipole of HðpÞ. Sometimes these involve an additional

Chern-Simons term in the action, which however is incon-
sequential for our analysis involving only electric fields.
The uniqueness of Uð1Þ2-symmetric black holes in some
such theories in five dimensions has been discussed in [18].

The equations of motion for the theories (1) are

r2� ¼ � �

p!
e���H2

ðpÞ (3)

rMðe���HMN1���Np�1Þ ¼ 0 (4)

and

RMN ¼ 1

2
rM�rN�þ 1

p!
e���

�
�
pH

I1���Ip�1

M HNI1���Ip�1
� p� 1

n� 2
gMNH

2
ðpÞ

�
; (5)

where rM is the covariant derivative with respect to gMN,
and M;N ¼ 0; . . . n� 1.
The metric of a static spacetime can be written as

ds2 ¼ gMNdx
MdxN ¼ �V2ðxiÞdt2 þ gijðxkÞdxidxj; (6)

where xi are spatial coordinates on x0 ¼ t ¼ const surfaces
�. In these coordinates, the event horizon is located at
V ¼ 0, i.e., the Killing horizon. The static ansatz for the
(p� 1)-form potential is of the form

Bðp�1Þ ¼ ’i1���ip�2
ðxkÞdt ^ dxi1 ^ � � � ^ dxip�2 : (7)

Then the only nontrivial component of the field strength is
H0i1���1p�1

. The metric components and the potential do not

depend on t.
We shall prove the following theorem:
No-dipole-hair theorem.—The only static, asymptoti-

cally flat black hole solution for the theories (1)
with electric p-form field strength, with ðnþ 1Þ=2 � p �
n� 1, is the Schwarzschild-Tangherlini solution.
From the Einstein equation we have

Rij¼ðn�1ÞRij�
1

V
DiDjV

¼1

2
Di�Dj�þ 1

ðp�2Þ!e
���

�
H

0k1���kp�2

i Hj0k1���kp�2

� 1

n�2
gijH0k1���kp�1

H0k1���kp�1

�
(8)

and

R00 ¼ VD2V ¼ n� p� 1

ðn� 2Þðp� 1Þ! e
���H

i1���ip�1

0 H0i1���ip�1
;

(9)

where Di is the covariant derivative with respect to gij.

From these we derive

ðn�1ÞR ¼ e���

ðp� 1Þ!V2
H

i1���ip�1

0 H0i1���ip�1
þ 1

2
ðD�Þ2 (10)

and

D2V ¼ n� p� 1

ðn� 2Þðp� 1Þ!
e���

V
H

i1���ip�1

0 H0i1���ip�1
: (11)

From the equations for the form field we obtain

Diðe���Hi
j1���jp�20

Þ ¼ DiV

V
e���Hi

j1���jp�20
: (12)

1Reference [17] purports to study black holes with both
electric and magnetic monopole charges under Hðn�2Þ, but if
n > 4 this is impossible for the reasons given above.
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The asymptotic behavior of V, gij, and HðpÞ is

V ¼ 1� m

rn�3
þOð1=rn�2Þ (13)

gij ¼ �ij

�
1þ 2

n� 3

m

rn�3

�
þOð1=rn�2Þ (14)

H0i1���ip�1
¼ Oð1=rn�pþ1Þ: (15)

Observe that the falloff of HðpÞ is the appropriate one for a
dipole field, or higher multipole components. In our proof
this decay rate could be relaxed to that of a monopole field,
Oð1=rn�pÞ. However, as we explained in the introduction,
when p > 2 electric monopole charges are incompatible
with asymptotic flatness.

We also assume regularity on the event horizon. To this
effect, we compute the curvature invariant

RMNKLR
MNKL

¼ ðn�1ÞRijkl
ðn�1ÞRijkl þ 4ðn�1ÞR0i0j

ðn�1ÞR0i0j

¼ ðn�1ÞRijkl
ðn�1ÞRijkl þ 4

DiDjVD
iDjV

V4

¼ ðn�1ÞRijkl
ðn�1ÞRijkl þ 4ðn� 2Þ

ðn� 3ÞV2�2

� ½kabkab þ k2 þDa�Da��: (16)

Here we have used the fact that the spatial metric can be
written as

gijdx
idxj ¼ �2dV2 þ habdx

adxb; (17)

where xa is the coordinate on the level surfaces of V.Da is
the covariant derivative with respect to hab. kab is the

extrinsic curvature of V ¼ const surface and � :¼
jDiVDiVj�1=2. Then, from Eq. (16), one can easily see that

kabjV¼0 ¼ Da�jV¼0 ¼ 0 (18)

hold on the event horizon. From the Einstein equation, we
can also easily see that regularity implies H0i1���ip�1

¼ 0 on

the event horizon; see Eq. (10).
Let us consider the conformal transformation defined by

~g ij ¼ �2�gij; (19)

where

�� ¼
�
1� V

2

�
2=ðn�3Þ ¼: !2=ðn�3Þ

� : (20)

This conformal transformation is the same as the one
employed in the proof for the vacuum case [5,13]. Now

we have two manifolds, ð~�þ; ~gþÞ and ð~��; ~g�Þ. The Ricci
scalar of ~��

is

�2�ðn�1Þ ~R� ¼ ðn�1ÞR� 2ðn� 2ÞD2 ln��
� ðn� 3Þðn� 2ÞðD ln��Þ2

¼ ðn�1ÞR	 2ðn� 2Þ
n� 3

!�1� D2V

¼ 1

ðp� 1Þ!
e���

V2

��
!�

H
i1���ip�1

0 H0i1���ip�1

þ 1

2
ðD�Þ2; (21)

where

�� :¼ 1	 3n�4p�1
n�3 V

2
: (22)

Since 0 � V � 1, the �� are positive-definite if

nþ 1

2
� p � n� 1: (23)

Under this condition the positivity of ðn�1Þ ~R� follows. We
will use this result later.

On ~�þ
the asymptotic behavior of the metric becomes

~gþ
ij ¼ ð1þOð1=rn�2ÞÞ�ij (24)

and therefore the Arnowitt-Deser-Misner (ADM) mass

vanishes there. On ~��
, the metric behaves like

~g�
ijdx

idxj ¼ ðm=2Þ4=ðn�3Þ

r4
�ijdx

idxj þOð1=r5Þ
¼ ðm=2Þ4=ðn�3Þðd�2 þ �2d�2

n�2Þ þOð�5Þ;
(25)

where we set � :¼ 1=r. From this, we see that infinity on�
corresponds to a point, which we denote as q.

Let us construct a new manifold ð~�; ~gijÞ :¼ ð~�þ; ~gþij Þ [
ð~��; ~g�ij Þ [ fqg by gluing the two manifolds ð~�þ; ~gþij Þ and
ð~��; ~g�ij Þ along the surface V ¼ 0 and adding the point q.2

The calculations above imply that ð~�; ~gijÞ has zero mass

and non-negative Ricci scalar. Note also that near the point

q (which corresponds to r ! 1) we have ðn�1Þ ~R� ¼
Oðr�ðn�3ÞÞ, so ~��

is regular at q.3 Thus ~� is a
Riemannian manifold with non-negative Ricci scalar and
zero ADM mass. Then, by the positive energy theorem

[19], ~� is flat. So the metric ~gij is flat and

H0i1���ip�1
¼ 0 and � ¼ const (26)

2Note that the resulting manifold ~� is C1 on the surface V ¼
0. This is as in the vacuum case [5], since the conformal trans-
formation is the same, as mentioned above.

3Even if the system has monopole charge, ðn�1Þ ~R� ¼
Oðr�ðn�5ÞÞ. So ~��

will be regular whenever n � 5. Our method
of proof does not depend on which hair the system has. If
H0i1���ip�1

¼ Oð1=rsÞ, ðn�1Þ ~R� ¼ Oðrn�2p�2sþ5Þ. Then regularity
requires s � ðnþ 1Þ=2� ðp� 2Þ.
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hold.4 That is, asymptotically flat static black holes in n
dimensions cannot support an electric dipole p-form field
strength with p in the range (23), nor a nontrivial scalar
field.

Once we have ruled out the possibility of nontrivial
p-form and scalar fields, the problem is exactly the same
as in vacuum and the results of [5] imply the uniqueness of
the Schwarzschild-Tangherlini solution. For the sake of
completeness, we briefly review this argument.

We have seen that ~�þ
must be flat space. In addition, we

can check that the extrinsic curvature of the surface V ¼ 0

on ~�þ
is proportional to its induced metric with a constant

coefficient. According to Kobayashi and Nomizu [21],
such a surface in flat space is spherically symmetric.
Next, we define the function v by

v ¼ 2

1þ V
: (27)

It is easy to see that it is a harmonic function on flat space
~�þ

, that is

@2v ¼ 0: (28)

The boundary corresponding to the horizon is spherically
symmetric. So the problem is reduced to the familiar one of
an electrostatic potential with spherical boundary in flat
space. We can easily see that the level surfaces of v are

spherically symmetric in the full region of ~�þ
. So we have

shown that � is spherically symmetric and then the space-
time must be the Schwarzschild-Tangherlini spacetime.
This completes our proof.

III. OUTLOOK

We have proven a no-dipole-hair theorem for p-form
fields with p in the range (23). The proof can be straight-
forwardly extended to theories containing several electric
form fields HðpiÞ of different rank pi, each with its

own coupling �i to the dilaton, as long as each of the pi

satisfies (23).

As mentioned above, the upper bound on p is a natural
one given the requirement of asymptotic flatness. But the
physical motivation for the lower bound, if any, is unclear.
Could static black holes support dipoles when p < ðnþ
1Þ=2? The answer when p ¼ 2 is known: the uniqueness
theorem of [9] affirms that a static black hole can have
electric monopole charge, but not any higher multipole.
However, here we are more interested in p > 2 where
monopoles are not allowed. For instance, could there be
static black holes in n � 6 with electric three-form, i.e.,
string, dipole? The heuristic argument presented in the
introduction would seem to run counter to this possibility,
but maybe this argument misses a way to balance or cancel
the tension of dipole sources that does not involve cen-
trifugal forces. If this were the case it would be a striking
new feature of static black holes afforded by higher di-
mensions. Alternatively, and more simply, maybe our no-
dipole-hair theorem can be strengthened to rule out all
p-form dipoles whenever p � n� 1. This issue seems
worthy of further investigation.
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